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Abstract

A simple general analytical formula is obtained for autoionization decay rates in parabolic quantum numbers for
highly excited atomic states. The formula is applicable for atomic transitions without change of principle quantum
numbers ( A n=0 transitions). A quasiclassical approach for an electron motion in Coulomb field as well as for Clebsh-
Gordan coefficient is used for justification of the formula. The results obtained are of universal type applicable for a
description of autoionization decay rates in arbitrary ions with complex cores.
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1. Introduction

Autoionization decay rates are important atomic
parameters responsible for a number of atomic
phenomena in plasmas. The most important
applications of these parameters are calculations of
dielectronic recombination (DR) rates for multicharged
ions in plasmas, see [1] DR plays the main role for
ions with complex core in different plasma objects both
in laboratory and astrophysical plasmas.

In recent years a numerous papers arc devoted to
calculations of dielectronic recombination rates in the
presence of external electric fields existing in
expertmental installations (for example, storage rings)
or produced by surrounded plasma ions (high density
plasmas), see {2]. The strong modifications of DR rates
were discovered connected mostly with change of
atoms quantization direction in the electric ficlds (see,
for example, [2-4]). The simplest models for these
effects are conmected with transformation of atomic
wave functions from spherical to parabolic basis where
the mteraction of the atom with external fields is
diagonal. Usualty this transformation is performed by
numnerical methods mvolving a large number of highly
excited (Rydberg) atomic states responsible for
dielecironic recombination of complex ions. At the
same time the contribution of this sates as well as
electric field effects can be taken into account in a
universal mamner on a basis of a quasiclassical
approach It is the goal of the paper to obtain a simple
universal quasiclassical description for autoionization
decay rates in parabolic coordinates which are fast to
be applicable for the account of electric fields effects
on atomic processes.

To make clear the reasons for applications of
quasiclassical methods it is to mote that the plasma
electrons responsible for a strong dielectronic capture
are generally pure classical ones. Really let us consider
a multicharged ion with an ion charge Z and complex
atomic core having transitions without changing of its
principle quantum number # {An=0 transitions). The
energy of these transitions is of order of Z atemic units
{(a u) so the energy E=mV*/2 (v is the electron velocity)
of the captured electron must be smaller than Z. At the
same time the ionization potential of the ion is of order
of Z° that is much larger than the electron energy £.
These conditions are just the conditions of classical
electron motion in the field of the multicharged ion:

E<Z < Z  or Ze? /qwo>1- (h

So the electron captured in the field of multicharged
jons without change of principal quantum number can
be considered on the basis of pure classical mechanics.
To do it let us consider matrix elements of electron-
electron interaction ez/r,; {r;; is the distance between
atomic (1) and colliding (2) electrons) in the dipole
approximation rr/r; ? presenting the wave function of
the system as a product of the core wave function and
excited electron wave function. Then the matrx
element is equal to the product of core matrix element
(r;),s between initial (/) and finite (f) core states and the
matrix element of the electric field r, / 7> ° produced by
the colliding electron on nucleus. The last one can be
expressed in terms of electron acceleration & rydf
according the equation of the electron metion in the ion
field:

r/r? =2 F et (2)



According the correspondence principle [5] the
matrix elements make a transfer to the corresponding
Fourier coefficients. That means that the matrix
element from eq.(2) is expressed in terms of Fourier
coefficients of its acceleration in the ion Coulomb field
weil known in classical electrodynamics. The squared
of these Fourier coefficients determine intensities of
classical electron radiation emission in a Coulomb field,
see [6]. Note that classical consideration is applicable
even for strong inelastic electron transitions when the
change of the electron energy in large as compared
with it’s initial energy. It is due to the strong electron
acceleration in the attractive Coulomb potential being a
basis of so called Kramers electrodynamics approach,
see [7.8].

The scheme above is used below for quasiclassical
consideration of autoionization decay rates.

2. Quasiclassical antoionization decay rates in
spherical coordinates

A quasiclassical expression for autoionization
decay rate W; may be obtained by different ways
which result in the same formulas. The first way is a
direct transition to the classical limit in general
formulas for matrix elements of the radius-vector taken
with Coulomb wave functions. Note that in the case of
Rydberg states (r>>1) there is no difference which
types of electron tramsitions (free-bound, bound-bound
or free-free) are considered.

The first results were obtained by Zommerfeld [9]
for free-free radiative transition in a Coulomb field. He
made also a transition to classical limit and obtained
quasiclassical formulas for matrix elements as function
of scatiering angle. With accounting for the
relationship between the scattering angle and the
electron orbital momentum 1 one reproduces at fast the
total analogues of Kramers classical formulas from the
Zommerfeld results. The same results were obtained
by Beigman et al [10] by direct calculation of free-
bound matrix elements with further transition to the
classical limit. The second way is connected with the
relationship between the rate W, and partial electron
excitation cross section near threshold {1]:

(20+ g W (nl)=Z°n"ogo, ()/r’al, ()

where g,; . @ are statistical wages and transition
frequency equal to the difference of initial and final
encrgies of the core energy levels.

The electron excitation cross section for A n=0
transitions can be also calculated in the frame of pure
classical mechanics resulting in the formulae, see [11]:

8x’ 2z 2 -4
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where [/ is the electron orbital momentum,
V =m Ze'/mv’, € is the classical eccentricity of the
orbit, dy is the matrix element of dipole momentum of
the core, H is the Hankel functions.

The most interesting case tesponses to the large
value of the parameter V >>]. For large values of
V one obtained finally

Fr [ @oM’ (5)
w, =22 G| L2 |
T 377

where f; is the oscillator strength for the core transition,
M = mvp is the electron orbital momentum, the
function G(u) is equal to :

Glw =ulK 2 o(u) + K2 ()l (6)

where K5 55 aze McDonald’s functions.

The result (5) presents the autoionization decay rate
W(n,l) in classical approximation. It coincides with the
limiting case of quantum mechanical consideration
[10] after the standard substitution / - [+1/2. One
can see the sharp decrease of the autoionization decay
rate with the increase of the electron orbital momentum
{ describing by the function &. Taking into account that
the essential values of the argument of G-function is
never close to zero it is possible for practical using to
change the function G by its asymptotic expansion

Gu) =T exp(-2u) (7

To obtain total autoionization decay rate it is
necessary to multiply the eq.(5) by (2{+1) and sum (or
integrate) over / It is more convenient to use the
relationship (3) and to express the tota! autoionization
decay rate in terms of total excitation cross section:

Wnj=4Z° f; g2 /2E)*?] /377 v (8)

where g(v} is the classical Gaunt-factor for
Bremsstruhlung { H are standard Hankel functions):

n3

g(v)=T‘vaj)(ive)HfJ)'(ive) %)

Equations (8, 9} can be used for calculations of total
autotonization decay rates of the atomic state with
principal quanfum number #. The precision of the
result (%) is the same as the precision of the general
relationship (3), the precision of guasiclassical cross
sections being very high up to threshold, see [10].

To obtain final result for total autoionozation decay
rate one must substitute into (8) the value of the
electron energy near threshold E=»n’/2= @ that gives

Wim=42Z"| 4, |’ gl(Z 80)"71 /37 0 (10)

The dependence of W, on Z is practically absent if
one takes into account that d,-jz o< Z7, the argument of

_2_



Gaunt-factor 1s large 1f one scales 0 o< Z that means
that the value of g is close 1o 7 (practicaily however the
argument is not so large).

3. Transformation to parabelic basis

The transformation to parabolic basis may be done
also in two ways: 1) calculation of probabilities of an
appearance of a specific value of parabolic quantum
number 1 the anglular momenta distribution in
Coulomb field and 2) application of the asymptotic
representation of Clebsh-Gordan coefficients [12].
Both methods use the specific four dimensional
symmetry properties of the Coulomb field. These
properties are connected as well known with the
additional integral of motion in Coulomb field —Runge-
Lentz vector A = -Je'<r>/3a (a=€’/2E) where < >
means average over the electron motion. The properties
of the vector are as follows
LA=0A4% + 2EL° =1 or v’ €%+ F=nr" (11)
where £ is the eccentricity of the electron orbit and we
have substituted quantum numbers /. » instead of orbital
momentum and energy.

The evoluton of the electron motion can be
described in terms of two independent orbital
momentums J;, J> :

] m ! 2
.,,,2:_[“(_] }
2 a

(12)

Main properties of the momentums are as follows

Ji =5 =g+
(J 1. :mj:_'ij:_u,
2 (13)
(Joj, =m, =BT
. - 2

- i 2
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The last equation together with eq.(11) describes the
connection between projections of vectors (J)z (J))z
and parabolic (n,, n,, k=n€ =n,-n;) and spherical (/)
quantum numbers. Followng conditions are fulfilled in
our case of strongly curved classical trajectories
corresponding to the formulae (2)
m<l<<p o< j (14)

Equation (13) expresses some limitations on the
distribution of projections of these vectors in space.
Under conditions (14) one can consider the simplest
model when m=0. Putting the Z axis along the vector A
and X axis along the vector L we can consider a two
dimensional model for the evolution of projections J;
and J, of both vectors J;, J>.

To determine the joint probability P{lkn) of
appearance of  spherical and parabolic quantum
numbers /, & let us perform intergration over all phase
space of vectors J,, J» with account for limitations (13).
The integrals take the form

Pakm=[[[[ arxdizdindss 8 012+ 9:0 8 G20l [0 + 07 )'-118 (1207 - 97)'"]

=T

{15)

The intergration is performed with the help of
properties of & - functions: O [fix)]= [df (x)idx]” & (x-
xo) (f{xg)=0) and proper limitations on the domains of
variable change.

With account for normalization conditions the
result takes the simple form:
Plknm=0) = 2[(n-1 - K] /7 (16)
that is the probability of appearance of the parabolic

guantum number & doesn’t depend on / at all under
conditions of small /<<n! The probability distribution

{15} coincides with the probability of the oscillating
variable J;-J; to take a defimite value k. It corresponds
to a picture of electron motion resulting in the
oscillation of orbital momentums ./; ; along Z axis with
small (neglecting) projections on the X axis.

A close result for the case m# 0 can be obtained
from a consideration of quasiclassical limit of Clebsh-
Gordan coefficients. Reaily the parabolic and sphericai
quantum numbers are connected by the sum with
Clebsh-Gordan coefficients

n—1 n-1

pmrn, =y

m-+n; —n,

(17)
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The squared of the coefficients may be considered
as a joint probability P(nlkm} of the presence of
specific quantum numbers. Making a transit to large
values of all quantum numbers [12] and using the
conditions (14) determining the domain of present
interest one arrives to the following approximation

Pin,lkm)
= Cln-1)/2, (n-1)/2, I; (m-k)/2, (m+k)/2, m]
=2F i -] /T, (18)

where

bnn” = {[{n=1)*+m" k']
{1+ K — dn-17m ) )2

(18a)
bt = {{(n-1)"+m*-K]
(-1 R — 4172
or, when m<<n
lmmz = (H'I)z mZ [(n'])z'l'mz-kzjij
(18b)

Inei’ = [(n-1P+m’ K] =(n-1) "/ L’

Ome can see that when m=0 the q.(18) reduces to
the ciassical eq.(16). The difference between both
probability distributions is inside a small domain [(n-
D-kf =m<<n.

The normatlization of P(n,lkm} (18) is equal to 1.
Really, the integration (18) over ¥ gives the expression

2z
arar

-2+ 12 +12,

2 2
lmax + lmm

J = —x arcsin =17

Il

The parabolic representation of a autoionization
decay rate is obtained by multiplication of the rate in

spherical basis (5) by the probability (18) and
integrating (summing) over /

F e
Wn, k m) = j'dlp(n,z,k,m)WA(n,Z) (19)
-
where Ly, L. are defined by eq. (18a) or (18b).
Substituting the expressions {5), (18} for functions
Wufnly and P(n ik m) and making a transformation to

dimensionless variables ¢ = [ [, = 32wy it is
possible to obtain:
Wan, k. m)=n " n” £, Knkm), (20

where the universal function I{n & m} 1s

It km) =I(t 0t
¢

=2, /% ‘[ @ P GE) (Pt P 872 (21
Loun

where G was defined by (6) and (7), tum= (r-1) m [{n-
I+t ]2, b = (n=1)M by = 1.

Below we will use the approximation (7) for our
particular calculations.

One can see that for the case 1., =n>>1eq. (21)
may be transformed to:

Uit =2 s /by | @ £ GE) (Prtyr) ™
of

Liin

= Uyl [ dtPemp(26) (et

L

=1I{ trin) 2lerbpa (22)

The universal function /(x} is presented on Fig. 1.
Limiting cases of the function /(x) are as follows:

2/3
Lo ~ {1‘(2/3)/2 3,

( /12)V xV7% exp( =2 x),

x<< 1 (23)

x>> 1.

The dependences of dimensionless autoionization
decay rate I(mkm)(m)”’ from eq. (21) on “electric”
quanium number £ for different values of magnetic
quantum number m are presented on Figs.2-5 for Li-
like ion ZnXXVTII (Z=30). One can see that the most
contribution into A-phase space comes from small
values m.

4. Conclusion
The consideration above resuits in the simple

quasiclassical formula (20) for auicionization decay
rate in parabolic quantum numbers &m. Tt is applicable

_4_

for the atomic processes accompanied by transitions in
atomic cores without change of it’s principle quantum
number ( A #=0 transitions). These transitions are
responsible for the most contribution to atomic
processes in collisions of electrons with complex ions.
Just for such processes the conditions (1) for
quasiclassical electron motion are provided. The
present result makes it possible to calculate
autionization decay rates in a simple way for every ions
having A n=0 wansitions in the cores using scaling
data for energy levels and oscillator strengths [13].

The results are essential as already pointed for
atomic processes in plasmas where external or plasma
electric fields provide parabolic quantization of atoms.
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Figure captions
Fig.1 The universal function I(t,,.).

Fig. 2. Distribution of autoionization decay rates over
“electric™ quantum numbers & at different values of
magnetic guantum numbers m for Li-like 1on
ZnXXVIIl at the principal quantum number n=100.
Here the scale for /(100.% 10} equals to the scale for
1(100.k,0) multiplied by 10"

Fig. 3. The same as on Fig.2 but for n=50. Here the
scale for 150,k 10) equals to the scale for [(50.k0)
multiplied by 10

Fig.4. The same as on Figs.2,3 but for n=30: I(30.k.m).

Fig.5. The same as

110.km).

on Figs.2.3.4 but for n=/0:
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