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Abstract

A turbulent swirling flow in a circular pipe is studied with the aid of a variational method.
The turbulent-energy production effect, which is linked with spatial velocity gradients,
expresses the energy cascade from mean to turbulent components of motion and is a
cause of the loss of distinct mean-flow structures. In the turbulent-energy equation,
weakening of the production effect tends to enhance the diffusion effect of turbulent
energy, which is also harmful to the sustainment of such structures. An optimum state in
which these two effects are reconciled with each other is sought with resort to a
variational approach combined with helicity. The resulting state is expressed by the mean
vorticity proportional to its curl. On this basis. the centerline axial vorticity is shown to
play a central role in the occurrence of axial-velocity refardation or reversal in a turbulent

swirling pipe flow.
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I. INTRODUCTION

One of prominent features of turbulent flows is the enhancement of mixing effect.
The feature may be typically seen in a turbulent circular-pipe flow. The enhanced mixing
effect changes the flow structure from an elongated (parabolic) velocity profile in a
laminar state to a flattened mean-velocity profile. This fact indicates that flow structures
with large mean spatial velocity gradients, in general, tend to be smoothed out and lost in

a turbuient flow.

A typical flow that keeps their intrinsic structures against turbulent mixing effect is a
swirling flow in a circular pipe.! In the flow, swirl motion is imposed on the axial flow at
the entrance of a pipe. Far downstream, this flow relaxes to a usual pipe flow with its
axial component as a sole mean velocity. In the intermediate region subject to swirling
effect, a characteristic feature of the flow is the retardation of an axial velocity near the
centerline. With the increase in the entrance swirl intensity, the velocity near the axis is

turther retarded, eventually resulting in the reversal of flow direction.

The occurrence of such retarded or reversed flow structures results in large mean
velocity gradients, compared with the nonswirling case. This fact suggests the existence
of some mechanism under which those structures may survive against the turbulent
mixing effect represented typically by the turbulent viscosity. The study of a swirling pipe
flow is an interesting theme from a viewpoint of elucidating a coexistence mechanism of

distinct mean-flow structures and fluctuations.

A swirling pipe flow is also a challenging subject for the test of the capability of
turbulence models that are a useful tool in the analysis of engincering turbulent flows at
high Reynolds numbers. Turbulent-viscosity models represented by the standard K — ¢
model, in which the Reynolds stress is linear in the mean velocity-strain tensor, may
capture the enhancement of mixing effect by fluctuations. Turbulent mixing effect
generally contributes to the rapid loss of distinct mean-flow structures associated with the
retardation and reversal of an axial velocity. In order that the K —& model may
reproduce the results consistent with the observation of a swirling flow, the magnitude of
the turbulent viscosity associated with the swirl component of mean velocity needs to be
reduced to about one percent of its axial-component counterpart.2 The range of
applicability of turbulence models has been much enlarged through explicit algebraic3-8
and second-order®-1% models, but those models still cannot properly analyze a swirling
pipe flow (see Ref. 11 for the attempt based on a second-order model).



In this work, we adopt an approach entirely different from the standard turbulence
modeling, that is, a vanational approach, and explore a coexistence mechanism of a
mean-flow structure with large velocity gradients and fluctuations in a swirling pipe flow.
Here we should stress that the purpose of this work is not to propose a substitute of
current turbulence models, but to shed light on fundamental aspects of a mechanism

mussing from these models, as a first step towards their improvement.

This article is organized as follows. The fundamental equations and their related
conservation property are given in Sec. II. In Sec. III, the variational approach to a
turbulent flow with nonvanishing mean-flow helicity is developed, and a vorticity
equation is derived. In Sec. IV, the solution of the vorticity equation is applied to a
swirling pipe flow, and the reversed centerline velocity 1s discussed in comparison with
observations. Reference i1s also made to a turbulent flow in an axially rotating pipe and the

relationship with turbulence modeling. The concluding remarks are given in Sec. V.
II. FUNDAMENTAL EQUATIONS
A. Navier-Stokes equation and related conservation law

The Navier-Stokes equation for a viscous incompressible fluid is given by
du
§+(u-V)u:*Vp+vAu, (1)

with the solenoidal condition V-u = 0. Here u is the velocity, p is the pressure divided
by constant density, v is the kinematic viscosity, and A = \'
The vorticity
®w=Vxu (2)
obeys

T,

> =Vx(ux o)+ vio. 3)

In relation to the first term on the right-hand side, we have the well-known relationship

C)



Equation (4) indicates that larger |u - @ tends to give smaller [ux @|. The decrease in
V x (u x @) leads to weakening of the energy cascade, which suggests that u - @, which

is called the helicity, 1s a candidate of a parameter controlling the sustainment of distinct
flow structures in turbulence. This point is a motivation of the present work on a swirling

flow.

The helicity u- @ obeys!2.13

a

L )

ou; o 2
iu-m=—2v§"’%+V-(-(u-m)u+[—p+}12—}fn+vV(u-m)}. (5)

The integration of Eq. (5) in a whole fluid region V results in

pa) ou; dm .
§JVu~(ndV=—_{V2v§j¥:dV
2
+gn- ~{(u- @] ~p+ — @+VV{u o) @gs, (6)
y P2 J

from the Stokes integral theorem. Here S is the surface of V', and n is the outward unit
vector normal to S. In Eq. (6), the second term on the right-hand side expresses the flux
of helicity across S. Then a total amount of helicity in the absence of v is conserved so
long as there is no flux of helicity across .S, entirely the same as for kinetic energy. This

fact indicates that helicity is a quantity deserving much attention.

Let us simply see the structure of Eq. (6) in the light of the swirl motion at the
entrance of a pipe. The vorticity arising the swirl motion is in the axial direction, which is
combined with the axial velocity to generate helicity. Then the imposition of swirling at
the entrance is equivalent to the injection of helicity into a fluid region. The injection is
made through the u - @-related part in the second term on the right-hand side of Eq. (6),

which is rewritten as
[sn-(—(u-0)u)s = [ju,(u- 0)ds, 7
at the entrance cross section, where u, is the axial component of flow.

Here we should stress that u - @ is not Galilean-invariant; namely, its magnitude is
dependent on the choice of a coordinate system. Throughout the present work, we shall
choose the frame fixed to a pipe. In the context of Eq. (7), a swirl motion imposed at the



entrance of a pipe is a source of the helicity of mean flow. In the frame fixed to a pipe, the

flow far downstream is reduced to a usual state with no mean-flow helicity.

B. Mean and fluctuation

We use the ensemble averaging { ) and divide a quantity f into the mean and the

fluctuation around it, F' and f'; namely, we write

f=F+f', F=(f), (8)
where
f=(u,pw), F=(UPQ), f'=(u',p, ). 9)
The mean flow U obeys
JU, 4 JoP o
o gUU :—“é;' g( Rij)'f"VAUt, (10)

with the solenoidal condition V-U = 0, where R, is the Reynolds stress defined by

R, =(u'u}). (11)
From Eq. (3), the vorticity counterpart of Eq. (10) is given by
%:VX(UXQ+V(M))+VAQ, (12)

where the vortex-motive force V™) is written as

V¥ = (u' x@'"). (13)

The turbulent energy K , which is defined by

<1 2\ (14)
2
obeys

%{+V-(UK)=PK~8+V-TK, (15)



where the production rate Py, the dissipation rate £, and the transport rate Ty are given

by

U,

Py =—R; Y (16)
ou;'Y

= 1 17

-2 .
{ u'z\ .

Ty = — Lp'+7Ju + WK, (18)

respectively.

III. VARIATIONAL APPROACH TO TURBULENCE WITH MEAN-
FLOW HELICITY

A. Competition between production and diffusion effects

In Eq. (15), the production rate P may become locally negative, but its total amount

in a whole fluid region V' needs to be positive, that is,

f, PedV >0, (19)

as long as a turbulent state is sustained without the injection of K across a boundary S.
We may understand this point by integrating Eq. (15)in V/, as

% [, KdV = |, PedV ~ |, edV + [y n-(-UK + Ty )dS, 20)

and noting that |, edV is nonnegative.

The production rate Py, which is directly dependent on velocity gradients, expresses
the rate of energy drain or energy cascade from mean to fluctuating components of
motion. A retarded or reversed velocity profile in a turbulent swirling pipe flow possesses
a much steeper velocity gradient in the core region, compared with the nonswirling case.
In the sense of energy drain, large Py resulting from a steep gradient seems to be
harmful to the sustainment of such a velocity profile.

The diffusion of fluctuation effects occurs through the last term in Eq. (15). In a
sieady state, it is reduced to



Apart from the last or advection term, the decrease in positive Py tends to enhance the
importance of V- Ty, that is, the diffusion effect. Strong diffusion effect is also harmful
to the sustainment of distinct mean-flow structures. For instance, a dominant diffusion
effect is encountered near the centerline region in a nonswirling pipe flow. There we

have
V. Ty =¢, P, =0, (22)

and a flattened mean-flow profile occurs. On the other hand, the logarithmic-velocity

region with a large mean-velocity gradient is characterized by
Prz=g, V- Ty =0, (23)
leading to a weak-diffusion state.

From these arguments, we may consider that a retarded or reversed velocity profile in
a swirling pipe flow is realized under the competition or reconciliation of the production
and diffusion effects. The following analysis is based on this concept, and the

introduction of helicity is crucial to the realization of a retarded or reversed flow.
B. Derivation of vorticity equation

A retarded or reversed axial velocity in a swirling pipe flow is characterized by the
mean velocity gradient, as was noted above. As an indicator of the strength of spatial

variation or inhomogeneity of mean velocity in a region V', we introduce

2
YA P o

4

In the light of the energy production or drain rate Py, the physical meaning of & may be
interpreted as follows. Under the turbulent-viscosity { vy ) approximation to the Reynelds

stress R

ii» Dk 18 approximated as

1 JdU, JU
P, == TR d N 25
K=oVr o, o, (23)

Equation (25) may be rewritten as



T

U  PUU,
PK=VT ? +Vp ook » (26)
i

using the solenoidal condition V- U = 0. From Eq. (26), we have

U Y U
Jy PxdV = §; vT( &Cf ) dv +Jgvpn, ——2dS, 27N

o

J

L

where the spatial variation of vy was neglected. The second term on the right-hand side
of Eq. (27) is absorbed into the third term of Eq. (20}, and the first term represents the
net energy cascade from the mean to fluctuating components of motion. Therefore we

may consider that @ is an indicator of the magnitude of a total amount of Py, that is,

[y PedV .

A mean axial vorticity arising from a mean swirl velocity is an important quantity
characterizing a turbulent swirling flow in a pipe. Its combination with a mean axial
velocity results in nonvanishing mean-flow helicity. Then as a critical quantity
distinguishing between swirling and nonswirling flows, we introduce a total amount of

mean-flow helicity, which is defined by

Y=, U.QdV. (28)

Here we should stress that @ and ¥, which are defined by Egs. (24) and {28),
contain no direct effects of the molecular viscosity v. Therefore the following
discussions are relevant to flows at high Reynolds numbers and are not applicable to a
near-wall region. Special attention will be paid to global characteristics of a swirling flow

in the core region where v effects are weak.

Effects of helicity on the energy cascade in isotropic turbulence were examined with
the aid of the eddy-damped quasi-normal Markovianized (EDQNM) approximation.14 The
study shows that the helicity in the energy-containing range of wavenumber space
hampers the cascade of energy iowards smatier-scale or higher-wavenumber componentis
of motion. In the light of mean flow, this finding suggests that the existence of helicity in
mean flow suppresses the energy cascade to fluctuating parts of motion. With this point

in mind, we adopt ¥ as a constraint on @ and seek the state
@ =minimum under ¥ = constant, (29)

by the standard variational method. In mathematical terms, Eq. (29) is given by



S(®+A¥)=0 (30)

with a Lagrange multiplier 4. On applying this variational principle to seek U leading to
the minimum state of @, it is necessary to fix U at the boundary S that surrounds V';

namely, we impose
oU=0 at S. (31)

Equation (30) may be evaluated as follows. First, we rewrite @ as

U Y U U
Sl —L :28—Jia‘U :—2AU-w+2i L &6U | (32)
ox J /

o, o, o, | ox

2

We substitute Eq. (32) into Eq. (24) and have

8@ = [, (-2v,AU) - 6UdV, (33)

since the last part in Eq. (32) vanishes under the constraint (31). Here we should recall
that the present method is not applicable to a real solid boundary where molecular effects
become dominant. The boundary used in this variational method, S, is not a real solid

wall of a pipe and is virtual. Equation (33) may be rewritten as
8@ = [, (2v,Vx Q). 8UdV, (34)
where use has been made of AU = -V x(VxU).
Similarly, 6% is calculated as
8% = [, 2Q6UdV - [ (nxU)-8UdS, (35)
giving
8Y¥ = [, 2Q6UdV , (36)
under Eq. (31).
Equation (30) i1s combined with Eqgs. (34) and (36}, leading to

I, (VxQ+2Q)SUdV = 0. 37)

For arbitrary U, Eq. (37) is satisfied by



o--lvxo. (38)
2

In Eq. (38), Q is an axial vector (a vector whose sign does not change under the
reflection of coordinates), whereas V<X is a polar vector. Then A needs to be a
pseudo-scalar (a scalar whose sign changes under the reflection). Concerning A, we shall

discuss the following points:

(a) The magnitude of A is related to the distance from the centerline axis to the local-

maximum point of mean velocity (see Sec. IVB);

{(b) The sign of A is linked with that of ¥ (a total amount of helicity) (see Appendix);

(c) In the light of turbulence modeling, A is related to the turbulence helicity (u'-@') (see
Sec. IVE).

We integrate Eq. (38), and have

U=—%Q+V¢, (39)

where ¢ is an arbitrary scalar function. Here we should stress the following two points.
First, the essence of Eq. (38) manifests itself in Eq. (39). The first term on the right-hand
side signifies that the mean velocity and vorticity are aligned with each other, leading to
nonvanishing mean-flow helicity, as is consistent with the requirement for nonvanishing
¥ in Eq. (30). Second, the mean velocity may be expressed in a simple form, with the
aid of the mean vorticity. By taking the curl of Eq. (38) , we have

(A+12)Q =0. (40)

With the aid of a solution of Eq. (40), we may examine properties of the mean motion in

the presence of helicity effects. This point will become clear in later discussions.
IV. ANALYSIS OF A SWIRLING FiPE FLOW

A. Solution of vorticity equation in cylindrical geometry

We adopt the cylindrical coordinates (r,8, z), and z is along the central axis of the

cylinder. The velocity U is written as

U =(0,U,(r),U,(r). @1)



Here we should remark on the variation of U along the z axis. In the case of a swirling
pipe flow, this variation is very important in relation to the relaxation of a retarded or
reversed axial flow to a usual pipe flow. In the present variational approach, this
relaxation is dealt with through the implicit change of the parameter A. The increase in A
corresponds to the decrease in the swirling effect. This point will become clear in later

discussions.

The mean vorticity £, whose component is given by

Q = (0, 2,(r), 2,(r)). (42)
is written in terms of U as
alU
2, =- £, 43
6 ar (43)
1d
Q. =——(rU,). 44
£ rdr (r 9) (“44)

1 d¢
Uy=——0,+——, 45
8 A% roe (43)
UZ:—EQZ+§Q. (46)
A oz
Moreover, we have the relation
1de
0 == z 47
°T A dr @7

from Eq. (38).

Apart from a scalar function ¢, Egs. (45) - (47) show that U may be expressed
using the axial vorticity component £2,; namely, £2, plays a criticai roie in a swirling
flow. The z component of Eq. (40) is

d*Q, 1dQ,

+= +A2Q,=0. 48
dr® r dr z )

The solution of Eq. (48), which 1s regular at the centerline (r = 0), 1s given by



Q, = Q5 (%r), (49)
where o/, is the first-order Bessel function of the nth order, and
Q7 = ,(0). (50)
From Eqgs. (47) and (49), we have
Q, = -2 F (Ar). (51)

Through the combination of Egs. (45) and (46) with Egs. (49) and (51), U has been
expressed in terms of the Bessel function of, .

The profiles of J,; and J, are shown in Fig. 1, and their first two zero's, that is,

™ obeying o, (x| =0 (m = 1,2), are given by
n n /1]
V=24, 2V =55, (52)
x¥ =38, £ =70, (53)
respectively.

B. Estimate of retarded or reversed centerline velocity

A retarded axial flow U, in a pipe is depicted schematically in Fig. 2 (a), with the
tangential velocity U, in Fig. 2 (b) (a is the radius of the pipe). From Eq. (43), the
maximum-velocity point of U,, ry,, corresponds to the zero point of €, as is

schematically shown in Fig. 2 (c); namely, we have

Qy(ry)=0 (54)

or

Ji(Ary,)=0 (54b)

from Eq. (51). The first zero in Eq. (53) gives

|\l = 3.8. (55)



Here we should note that A may take both signs. The sign of A is dependent on that of a
total amount of helicity in the region r < ry,. as is shown in Appendix. We first choose

positive A and refer to negative A later.

From ry, < a, we have

A= —= (56)

With 4 increasing from 3.8 /@, ry approaches to the central axis, and the negative
region of €2, between the central axis and ry, shrinks. In the context of Eq. (30),
A — oo signifies ¥ — 0, that is, vanishing global or mean-flow helicity. As a result,
Eg. (46) is reduced to the usual axial velocity in a nonswirling pipe flow; namely, we

have

U,—- UY as A— . (57)

Here U™ denotes the axial velocity of a pipe flow in the limit of large Reynolds number
and is uniform across the cross section, except the near-wall region. Equation (57)

corresponds to the choice

o =U"z+¢,, (58)
with a constant ¢, resuiting in
U, =UM_ 1 Q. (59)
A
1
Uy =-——4£, 60
6= "7 %% (60)

for finite A [we should note that Eq. (60) satisfies the symmetry condition at the
centerline, namely, Uy(0) = 01].

The present variational method is not proper for the weak-helicity or large-4 case
that results in no constraint. This point may be seen in relation to the second zero of ¢/,

[the latter of Eq. (53)]; namely, we have
Q,(r)<0 (Ar=7.0). (61)

In an actual flow, €, should be always positive for r >r;,, owing to the noslip

boundary condition at the wall. In the present variational method, no molecular-viscosity



effect dominant near the wall is taken into account. This fact indicates that the present

solution should be applied to the region off the wall, that is,
r<ry. (62)

which is related to the first zero of ;. In what follows, we shall focus attention on the

centerline velocity, which is a primary interest of this work.

On the centerline (r = (), Eq. (59) is given by

U(S) Uz(o) — U(N) _?, (63)
which is written as
() (8]
o= 1- 2, 6
U AU
in nondimensional form. We use Eq. (55) for positive A and express Eq. (64) as
U(S) rMQ (&)
raw = 1-0.26 =5, (65)
in terms of measurable quantities.
The tangential velocity U, is expressed as
Q(C)
Uy =——i{Ar), (66)
from Egs. (51) and (60). Near the centerline, Uy, is approximated as
Q(C)
Ug=We(r)= ; r. (67)
We use Eq. (67) and eliminate Q‘.SC) from Eq. (65). Then we have
U((','S) =1- V) WC(r) ™ (68)
U™ r U™

where oV is the proportional constant theoretically obtained from the variational method

and is given by



oV’ =0.53. (69)

In the use of Eq. (68). we should note that r is located near the centerline. In the later

comparison with observations, we adopt r = 0.2a .

The second term on the right-hand side of Eq. (65) represents the degree of
retardation or reversal of an axial velocity on the center line. It is proportional to the mean
vorticity near the axis, 27, which is related to the swirl velocity W,.(r), as in Eq. (68).
It is also proportional to ry, (the point of maximum axial velocity). The observation

indicates that increasing Q_(ZC) leads to larger ry,. resulting in the larger retardation of the

centerline velocity or its reversal. This tendency is consistent with Eq. (65) or (68).

From the foregoing findings, we may conclude that the retardation or reversal of the
centerline velocity is tightly linked with positive QLC). In the above discussion, we chose
positive A. In the case of negative A, 2, becomes positive for r < ry, from Eq. (51) for
positive ng. From Eq. (43), such €2, arises from a retarded axial flow pointing to the
negative z direction, while keeping the same tangential velocity Uy [note that U, is

unchanged under the change of the sign of A from Eq. (66) since JJ{(Ar)/ A is an even
function of A].

C. Comparison with observations

Let us compare a theoretically-derived expression of the centerline velocity, Eq. (68),

with the observation by Kitoh.! For this purpose, we write

Uug' _ s
g X (o), (70
with
W.(r) r
7 ay=1-« Cr( ) Ujg‘”‘ (71)

An accurate measurement of a strongly swirling flow with a reversed flow is
difficult, specifically, near the centerline, owing to the highly helical motion and its
related fluctuations. In reality, the swirl velocity U, does not vanish exactly in the
observation by Kitoh. In the present use of the observational data, we extrapolated them

from the off-centerline region, and estimated Ués’ /U™ which is given as Z(S)

obsep M

Table 1. Here we should emphasize that U T approximated by the observed centerline

velocity in the absence of a swirling. In Kitoh's work,! the Reynoids number ( &),



which is defined using a and Up, (the bulk velocity, that is, the mean velocity across the
cross section), is 50000 - 80000. The centerline velocity is proper to the estirnate of U (W

since the region is subject to least effects of molecular viscosity.

We adopted three cases with reversed centerline velocity, from Kitoh's observation at
R =50000. As was noted above, the data in the close vicinity of the centerline rather
scatter. Then we use the swirl velocity at r =0.2a for the estimate of Q;C). In the
observation, the data are nondimensionalized using Uy, which is related to UWNY a5
UN = 1.1U,.

As may be seen from Table 1, the theoretical results with o = o'V’ (= 0.53) are
consistent with the tendency of the observed reversed centerline veiocity, but the
magnitude of reversal is overestimated. We reduce the numerical coefficient in Eqg. (68),
o, from 'V to about its half, ¢ = (.3, The estimate based on this alternation is also
given in Table 1, and is in fair agreement with the observation. This fact suggests that the

vorticity equation (38) captures parts of the important features of a swirling pipe flow.

From the engineering viewpoint, it is important to estimate the degree of axial-
velocity retardation or reversal in close relation to flows inside engines. In the present
work, the retardation or reversal of the centerline velocity has been shown to be linked
with the centerline axial vorticity QZ(.C) and the maximum-velocity location ry,. If an

empirical expression for ry,, such as

W - (2, R) (72)

a

could be obtained from observations or otherwise, Eq. (71) would be useful for the
estimate of flow reversal (QiC) needs to be nondimensionalized properly).

D. Interpretation of a laminarlike axial velocity in an axially rotating pipe

We may mention a turbulent flow in an axially rotating pipe as an interesting instance
of pipe flows whose mean-flow behavior is entirely different from the foregoing swirling
pipe flow. In this flow, the rotation of a pipe, which is imposed on the usual pressure-

driven flow, gives rise to the change from a flattened velocity profile to an elongated or
laminarlike profile. The axial and swirl components of mean velocity, U, and U,, are

depicted schematically in Figs. 3 (a) and (b), respectively. The elongation of U, is

enhanced with the ncreasing rotation number



N =2%r (73)
UB

where wp is the angular velocity of a pipe. The tangential velocity U, is retarded,

compared with the solid-rotation velocity r@p.

A flow in an axially rotating pipe has been examined intensively by observations,!3-
17 direct numerical simulation,!8.1% and third-order explicit algebraic®# and second-
order20:21 urbulence models. Specifically, this flow is a proper benchmark case for
testing newly proposed turbulence models since Coriolis- and centrifugal-force effects
included in the flow are generally difficult to treat properly by those models. In the
explicit algebraic models,®-# the elongation of an axial velocity profile may be explained
through the terms in the Reynolds stress le that are of the third order in mean velocity-
strain and vorticity tensors. On the other hand, in the second-order modeling, the axial
shear stress E,,, which determines the behavior of an axial velocity, is affected by the

swirl velocity through the swirl shear stress R, ,,2! causing the elongation.

Let us see the elongation of an axial velocity profile from a viewpoint of the present
variational approach. Here we should emphasize that the following discussion is not to
aim at explaining this elongation mechanism in a quantitative manner, but at abstracting a

quantity that is closely associated with the mechanism.

Helicity is a frame-dependent quantity, and the frame fixed to a pipe was adopted in
the analysis of a swirling pipe flow. In a rotating pipe flow, fluid is driven by pipe
rotation through viscous effects. Those effects, however, are not taken into account in the
present variational method. In the following discussion, we also adopt the frame fixed to
a pipe, that is, the frame rotating with @p. This choice of frame is helpful for partially

incorporating effects of pipe rotation.

In the rotating frame, we make use of the finding obtained in Sec IV, especially, Egs.

(64) and (66). After Eq. (64), we write the centerline velocity of a rotating pipe flow,
U{R), as

UER) i Q;C)

N - 1- AU (74)

which shows that the sign of the centerline vorticity has a large influence on the centerline

velocity.



Under U, depicted in Fig. 3 (a), €2, is positive from Eq. (43). Observations of an

axially rotating pipe flows13.16 show that fluid rotates with the angular velocity slower
than @p, as is depicted schematically in Fig. 3 (b). Then U, is negative in the rotating

frame [Fig. 3 (¢)], and A is positive from Eq. (60). As a result, we have

Q9 <o, (75)

from Eq. (51). Negative .Q;C) makes a sharp contrast with the case of a swirling pipe
flow in Sec. IVC. In the latter, positive Q;C) was shown to be critical for the retardation

or reversal of the centerline velocity. From Eqs. (74) and (75), we have
—=>1; (76)

namely, the velocity near the centerline is elongated, compared with the non-rotating case.

E. Towards turbulence modeling

In the present variational approach, we have some important points to be completed.
One of them 1s the incorporation of the present finding into turbulence modeling. This
point is also associated with the specification of a pseudoscalar A that occurs in Eq. (38)
etc. In general, helicity is not a Galilean-invariant quantity, as has already been noted,
whereas the vorticity equation (38) must be Galilean-invariant. Then A needs to be
related to a Galilean-invariant pseudoscalar. A representative Galilean-invariant
pseudoscalar 1s the turbulent helicity H, which is defined by

H=(u'w). (77)

A total amount of helicity, ¥, is conserved so long as there are no molecular-
viscosity effect and no helicity flux across a boundary. This property is very important in
close relation to turbulence modeling. The turbulent helicity H obeys the eguation whose
mathematical structure is clear and quite similar to Eq. (15).1213 It is written as

%IJrv.(UH):PH—eH+V-TH, (78)

where three terms on the right-hand side correspond to those in Eq. (15), respectively,
which are defined by
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H = G_)xj 1 &r_, (79)
e o du,' do,' (80)
= 4V
i c?x ox,
Ty = —((u'-@')u') +<(% u” --p')m‘>+ WH. (81)

In a previous work,12 we analyzed effects of H on R, with the aid of a two-scale
P Y (i}

direct-interaction approximation (TSDIA) and obtained

2 K? o (K* Jd (K*
R; = _K(S;‘ "Cv “_Sz +CH|:QI—[_ H)+Q _(— HJ] * (82)
y " g 4 e ¥ ox, / o; b

g e

where C, and Cy; are model constants, and

U, U
S, = —L+—*, 83
Y o " o, (85)
[4,],=4;-5 A8 (84)

This model combined with Eq. (78) was applied to the case of weak entrance swirl
intensity in a swirling pipe flow and was confirmed to reproduce retardation of an axial
velocity. The helicity effect expressed by the third term in Eq. (82), however, was not

strong enough to explain the strong-swirl case.

In the light of Eq. (12), a stationary state at a high Reynolds number may arise from
the condition

UxQ+V™ =0, (85)
From Eqgs. (39) and (85), we have

V¥ - _VoxQ. (86a)
We substitute Eq. (38) into Eq. (86a) and write

VU = Vy x (VxQ) = ~-Vy x AU, (86b)



where a pseudoscalar ¥ is defined by

xX= (87)

=

The i component of Eq. (86b) is rewritten in the form

2 2
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where g;;, is the alternating tensor. We pay speciai aitention to the first term in the second
relation of Eq. (88). Noting that v corresponds to the divergence of R,;, we model

the contribution of the first term to Rij as

U . dy U, oy
|:£t€m 2 ; > ) +£ﬂm 9 ; 9 g]D ( )

From the viewpoint of turbulence modeling, it is sufficient to medel a pseudoscalar

¥, not each of ¢ and A. From dimensional analysis, we write

K4
X=CV"£3'"H: (90)

with a constant Cy,. Equation (90) corresponds to the choice of A that is proportional to
the inverse of H . This modeling is consistent with the fact that large |)..| corresponds to a

weak-helicity case.

Equation (89) is rewritten as

1 4 74 1 74 4
5 [gifms n o + £ jgmiSim gj 5 [Eizmg in 2, + € jom S, x, R (91)

Here £2, is the mean vorticity tensor defined by

JU . .
= —— —%, (922)
which is related to € as
'Qi' = sijfgf' (92b)



We substitute Eq. (92b) into the second or QU -related term in Eq. (91) and have

1{., 9 x
1R =—+0 =
2[ Y J&I]D &3)

J

(note €,,€,,, = 6,0, —-4,.6,. ). Expression (93) with Eq. (90) coincides with the third

tmn ' ym

term in Eq. (82) that was derived on the basis of the TSDIA. On the other hand, the first
term in Eq. (91) is missing in the TSDIA model. Specifically, the fact that this new H
effect occurs through the combination with S;, 1s interesting since the S;, effect in Eq.

(82) only contributes to the destruction of distinct mean-flow structures.

We replace the third term in Eq. (82) with Eq. (89) as

£ 4 D

J

or

2
RijzzKafc‘,_ff_sﬁcS[gims A, g]
3 £ S

j ‘
o, T ok,

+ [el m$2m gx—)i + &l %] (94b)
D

as a more general expression (the numerical factor 1/2 is not essential and may be
absorbed into y) . Here Eq. (94b) with Cg =1 is reduced to Eq. (94a). Through this
procedure, we can include a new helicity effect on R ;, while keeping the previous one
that has already been confirmed to contribute to the retardation of a mean axial flow. The
test of Eq. (94a) or (94b) is left for future work.

V. CONCLUDING REMARKS

In this work, we formulated a variational approach to a turbulent flow with the
helicity arising from a global rotational motion of fluid. A solution of the resulting
vorticity equation was sought in cylindrical geometry and was applied to the discussion
about a swirling pipe flow. Specifically, we estimated the reversed central-axis velocity
and made the comparison with observations. As a result, the qualitative feature of the
observed reversed velocity was reproduced. We aiso interpreted a laminarilke veiocity

profile occurring in an axially rotating pipe, with the aid of the same solution. In both of



flows, the centerline vorticity was shown to have a large influence on the centerline
velocity. Through these findings, the concept of helicity was confirmed to be useful in
understanding of a coexistence mechanism of turbulent production and diffusion effects
in swirling flows. Moreover we also referred to helicity effects on the Reynolds stress in
the light of turbulence modeling.
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APPENDIX: EFFECTS OF NONAXISYMMETRIC MOTION

In Sec. 1V, we focused attention on the axisymmetric component of flow. This
approach is natural from the standpoint of examining the relationship with an ensemble-

mean state of flow. In order to relax the axisymmetric condition, we write
U =(U,(r,8),U,(r,0),U,(r,0)). (A1)

Q=(Q,(r,8),2,(r,0),82,(r,6)). (A2)

From the vorticity equation (38), we have

1 70
Q =— - =F, A3
" A rooé (A3)

Under the nonaxisymmetric condition, the z component of Eq. (40) is written as

Q. 1a_Q 1 920

2
52 rc')r rzaz +A°Q2, =0. (A4)
A general solution of Eq. (A4) is given by
Q, = QCOF,(Ar)+ EI(QE(;) cosn@+ 02 sin nB)Jn()J'), (A5)
n=

where .Qi_‘;‘l) and -QS:) are numerical coefficients. From Eqgs. (47) and (A3), we have

Q, = -Q°d,(Ar)+ % s (Qf;f cosn@+ QL sin n@) di J(Ar), (A6)
ot r
o J
Q = 1 by (nQ;‘;? sin n@ - n cos n@) A7) . (AT)
ll n=1 r

From Eqgs. (39) and (AS5) - (A7), U may be expressed as

1 oo
(N () (e) (s) .2
U,=U ’——I(Qz Jo(ﬂf)+n§1(—~zn cos nf+ Q) sin no}, (Af)), (A8)
. = " J (/'Lr)—i E(.Q(C) cosnf+ 02 sinnﬂ)iJ (Ar) (A9)
o At A2 & dr " ’
J_(Ar
U.=- 14 Z{nQEﬁ’ sinn@ - nQEi) cos n@) n ) (A10)
n=1" r



In order to simply see effects of nonaxisymmetric components, we retain the lowest-

order component as
Q) =298, 2 =0. (ALD)

The present solution is not valid in the near-wall region, as is noted in the main text. In
the calculation of @ [Eq. (24)} and ¥ [Eq. (28)], we limit the volume integral to the
range r < ry, per unit length of a cylinder; namely, we write

J, dV = [ dr 2" rdo. (A12)
After a lengthy mathematical manipulation, we have

@ = 220 (3 Y Ty )+ 22 (g T (g )+ 2(1- o2 ). A13)
and

2
v =" (20" + 0, (Al4)

where use has been made of Eq. (54b). Equation (A 14) shows the relation between the
eigenvalue A and the helicity of mean flow, ¥'. We can confirm that the sign of 4 is
related to that of ¥ . By use of Eq. (A14), @ is rewritten as

@ = Jo(Ary ) A + zm;§>2(1- Jo(er)2). (A15)
From Eq. (55), we have
Jo(Ary, ) = —0.36. (A16)

In Eq. (A15), the second term is positive from Eq. (A 16). This fact indicates that the
minimum- @ state under the constraint of fixed ¥ is realized for

Q9 =0. (ALT)

This result is consistent with Eq. (29) seeking the minimum state of @ under the

axisyminetric condition.
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Fig. 2. Swirling flow in a pipe. (a) Mean axial velocity U, (the dashed line represents the
case of no swirling); (b) Mean tangential velocity U, ; (c) Mean tangential vorticity £2,.
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Fig. 3. Rotating pipe flow. (a) Mean axial velocity U, (the dashed line represents the

case of no rotation); (b) Mean tangential velocity Uy, ; (¢) Mean tangential velocity Uy, in
the frame fixed to a pipe.



Table 1. Comparison with the observed rate of the reversed central-axis velocity

(Aa=3.8a/ry).

W(02a)/UN nyla  2a zgl, 29(e") £#9(03)
Case A 1.7 08 44  -08  -28  -12
Case B 1.4 085 44  -076  -21  -080
Case C 1.4 079 48  -059  -19  -062
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