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Line Statistics :

Stretching Rate of Passive Lines in Turbulence

Shigeo KIDA and Susumu GOTO

Theory and Computer Swnulation Center, Nofional Institute for Fusion Science,
322-6 Oroshi-cho, Toki, 509-5292, Japan

Abstract

Passive hines in a statistically stationary wotropic incompressible turbulent flow are tracked numernically. The
line length increases exponentially i time as exp ['\t} with the stretching rate v = 0.17 (Kolmogorov time}™*
which 15 larger. by about 30%. than the valuc estimnated hefore by the arithmetic mean of the contributions
from manv passive vector elements. The underestimation i previous studies 1s attributed to the negligence of
non-uniform probability weight due 1o non-un:form hne stretching. If the effects of non-umformity are taken
mte account, the true stretching rate is recovered in the early stage of evolution up to several Kelmogorov times.
Thereafter. however 1t 1s overestimated owing to the continual separation of mminally adjacent vertor elements.

Keywords: passive {material} lines, stretching. mixing. turbulence

1 Introduction

It 15 fundamental in mixing and diffusion problems o
understand how physical quantities accompanied with
fluid elements are transported in turbulent flows. Be-
cause of complexity of turbulent motions the measure-
ments using passively ficating particles have been fre-
quently used as convenient tools for effective estimations
of various transport coefficients as well as the convoluted
velocity field 1itself. The particle tracking velocimetry
[1] is one of the typical examples. An important point
to notice here is that there is an implicit premize that
each particle is statistically equivalent. In other words.
the histogram of velocity. for example. is obtained by
equi-weight contributions from all the particles in a ho-
mogeneous flow. This is true for an incompressible flow
s0 long as the statistics over the three-dimensional space
are concerned since the number density is invariant in
time. This is the Lagrangian volume statistics.

It is not true, however, for statistics on passive (or
material} hnes or passive surfaces {2]. which we call the
Lagrangian line statistics and the Lagrangian surface
staustics, respectively. This is because the flow is not m-
compressible in one- or two-dimensional objects even if it
is three-dimensionally incompressible. If a flow is statis-
tically homogeneous in space and stationarv in time, and
particles are assumed to migrate uniformly over some
flow domain (the uniform mixing hypothesis). then the
Lagrangian volume average may be equivalent to the av-
erage taken over this domain. The latter is the Eulerian
volume statistics. Hereafter, the adjective " Lagrangian”
in front of the line. the surface, and the volume statis-
tics. etc. will be omitted for brevity.

In this paper we focus our attention on the difference

-

between the line average and a thin limit of the volume
average, which has been sometimes overlooked in estima-
tion of the stretching rate of passive lines in turbulence
to give rise to substantial underestimation [3, 4}. In the
next section two similar but different thin limits of the
volume averages are introduced. The stretching rate of
passive lines in turbulence is investigated in Sec. 3. Af-
ter describing the numerical simulation of the motion of
a passive line in turbulence, we present the traditional
and our new averages of the stretching rate of passive
lines, and examine their difference in the statistics of the
rate-of-strain tensor, where the role of non-uniformity
of line stretching is emphasized. Section 4 is devoted to
concluding remarks.

2 Line and Thin-Tube Averages

The mean value of a physical quantity F{x,t) associ-
ated with a blob of fluid elements is expressed by the
conditional average,

(Flo = = [ Fla.nav. )

where the integration is taken over the blob of volume
V:. Hereafter, the subscript ¢ denoctes the time. This is
called the volume average. The shape of the blob gen-
erally changes in time but the volume is invariant in an
incompressible flow. The mean value of F(z.t) on a
fluid line is definred by
F v F(x,t)dL 2
. = — x,
( )l:ne Lt, th ( T ) 1 { )
where the integration is carried out over the whole line
of length L,;. This is called the line average.



This average s expressed by a thin limit of the vol-
ume average over a uniform circular tube which includes
the line as

1
. = I- —
Flige =, Jo0 5 [

Flz.ndv, (3
where dia(V;) denoctes the diameter of the tube. An-
other thin limit of volume average, which is called the
thin-tube average, is defined by

{F) Fr,t)dV, {4)

tube dia(l%/?}AO Vi Jv,
where dia(Vy) denotes the diameter of a uniform circular
tube ¥ at an earlier time ty (< ¢) of the domain V; over
which the average is taken.

It is important to note that the line average and the
thin-tube average are different in general, i.e.

(F)line # <F)tube - (5)

This may be understood most easily with reference to
figure 1 which illustrates that & uniform tube 14 sub-
merged at an initial time ¢y is advected in an incom-
pressible flow to change into a deformed tube V; with
non-uniform cross-section at a later time ¢. In this ex-
ample the tube is being pinched in the right part where
it 1s stretched most strongly along the axis. The differ-
ence between the above two averages is clear if only we
remember that the thin-tube average is the thin limit of
the volume average over this deformed tube, whereas the
line average is the thin limit of the volume average over a
uniform tube (figure 1{c)) around the center line at time
t. The contribution from narrow parts of the deformed
tube to the thin-tube average tends to be smaller than
others. In contrast, any part of the line contributes to
the line average with an equal probability weight. Note
that the effects of this non-uniformity remain even in the
limit of vanishing diameter of the initial uniform tube
Vo- Those particles chosen with equal distance apart
at the initial time (figure 1{(a)) are redistributed non-
uniformly in the tube at a later time because of non-
uniform stretching (figure 1(b)). The thin-tube average
is obtained by taking the contribution from each parti-
cle with equal weight. If, on the other hand, the effects
of the non-uniform stretching are taken into account,
i.e. if the coniribution from a particle is weighted by a
factor proportional to the distance between the neigh-
boring particles, the line average is recovered under the
condition that the particies are sufficiently dense. The
importance of this proviso will be clarified ir Sec. 3.6.
The ron-vniform weight due to non-uniform stretch-
ing should be kept in mind whenever statistics are con-
sidered on a passive line. The difference between these
two averages is especially important for such quantities
that depend strongly on the line stretching (Sec. 3.7).

{b)

{c)

7

Figure 1 Nop-uniform stretching. (a) A uniform
circular tube picked up at some initial time in an in-
compressible flow is deformed into (b) a non-uniform
tube without changing its volume. The initial cen-
ter line is deformed and streiched in general. Those
passive particles located with equal distance apart
on the center line at the initial time are redistributed
non-uniformly at a later time. The particles are
more separated at thinner parts of the tube. {c} A
new uniform circular tube with the same centerline
as in {b).



3 Stretching of Passive Lines

As a typical example of the Ime statistics we consider the
stretching of passive lines advected in a turbulem flow.
This phenomenon is of practical importance in relation
t0 turbulent mixing and diffusion. The strerching rate
has already been investigated by many authors [3. 4]
numerically. Instead of tracking passive lines they eval-
uated it by taking the arithmetic mean over a number
of passive vector elements. This may correspond to the
thin-tube average introduced in Sec. 2. Unfortunarely.
however, this method leads to a substantial underesti-
mation of the stretching rate owing to the negiigence of
the effects of the non-uniform probability weight caused
by non-uniform stretching stated in the preceding sec-
tion. Here, instead, we calculate, by the line average.
the correct stretching rate, and compare it with the val-
ues determined by the thin-tube average. The reason
of the discrepancy between these two averages will be
clarified in the subsequent sections.

3.1 Numerical Turbulence

The turbulent velocity fleld u{x, ) which we analvze
here is governed by a forced incompressible Navier-
Stokes equation,

D u(x, t) =

D —% Uplz,t) + v V2

u(z.t) + flz.t) (6)

supplemented by the continuity equation,

Voulz,t) =0, ()
where
D d

is the Lagrangian (or material) derivative, p(z,t) is the
pressure, p is the constant density, and v is the kine-
matic viscosity. A forcing term f(m,f) s imposed in
order to keep the flow statistically stationary.

The set of equations {6) and (7) is solved numeri-
cally in a periodic cube with period 2% starting with
some appropriate initial condition, the detailed struc-
ture of which is irrelevant to the statistics in the statis-
tically stationary state which will be dealt with in this
paper. The Fourier spectral method of resolution N is
employved for spatial derivatives and the Runge-Kutta-
Gill scheme for time derivatives. The aliasing interac-
tions are eliminated by the phase shift method so that
the maximum wavenumber k,,.. retained in the sim-
ulation is 0 4TN  The amplitude of Fourier modes ar
lower wavenumbers (k] < k) is kept constant at all
the time. while their phases are allowed to evalve freely
as the eguations of motion permit. This is one of the
effective forcing schemes which keep the flow field sta-
tistically stazionary with minimal contamination effects
10 the small-scale motions.

The shinulation is performed with resolution N7¥ —
1287 (hence. the grid width Ar = 27/ = 0 049). the
viseosity # = (.005, and the time step width A = 0 01
The amphrudes of the Fourler coefficients of vorticity of
wavenumbers less than or equal 10 k; = VB are set at
0 1. The turbulent flow fleld gets in the statistically sta-

tionary state after several eddy-turnover times. There-
after the Taylor miero-scale Reynolds number.

Ry=4/—F¢& 9

\/ 31/ € (9)

achieves 56 in the temporal mean, where £ is the spa-
tial mean turbulent energyv per unit mass and ¢ is the
spatial mean energy dissipation rate. The Kohnogorox
lengthnp = vie & and the Kolmogorov time 7, = ¢ 2p2
fluctuate around 7 = 0.032 (= 0.65Ar) and 7, = 0.20
(= 20At), respectively, where an overbar denotes the
temporal mean. The product k. 7 serves as a measure
of the numerical accuracy to assess whether the smallest
active motions are well resolved or not. It amounts to
1.91 which is well above the commonly accepted tolera-
ble value of 1.5.

3.2 Evolution of Passive Lines

We simulate numerically the motion of a passive line ad-
vected in a fully developed turbulent flow described in
the preceding section. The passive line is represented by
a chain of short segments. Let I; be the number of the
segments. The i-th segment (: = 1,2,--- | I;) has two
nodes z!' " and 2" which are advected by the iocal
velocity as

d €] .
T oow@y (=012, L), (10)
dt
The i-th segment vector,
lf} gu miz—l) (i=1,2,---,I). (11)
then changes in time as
a f B
S U RO BN GES RN AR
(12)

The motion of a passive Line s tracked by solving {6),
(7} and (10) simultaneously. In this simulation the
right-hand side of (10) is calculated by the 4% point
Lagrangian interpolation in terms of the velocity field
at the grid points. The time step width is taken as
At = 0.01 for (6) and (7) and Af = 0.62 for (16). The
segments generally get longer in time. The length of
each segment 15 always kept below a given threshold,
say 1.9Az, to guarantee the numerical accuracy. That
is, whenever a scgment exceeds this threshold, a new



node is inserted at the center of the segment and the
total number I; of the segments increases by one.

A straight line of the length Lo (= 2w is submerged
in a fully developed turbulent fiow, at which the ori-
gin of time is set up in the following discussion. Snap-
shots of the passive line at four time instants are drawn
at every 107, in figure 2. As time progresses, the line
is getting longer rapidly, more convoluted, and fills up
quickly the whole flow field apparently uniformly. The
total length L. of the line increases by 5.5 times every
107, (see {15) beiow). The sum of the lengths I{* = [I{*]
(i =1,2,---.1;) of the constituent segments vields the
total length of the line as

(13)

1
Lt = Z lgt) r
i=1

the temporal evolution of which is plotted in figure 3.
A nearly straight line in this semi-logarithmic plot in-
dicates that the length increases exponentialiy in time

Figure 2 Temporal evolution of a passive line.
iength increases by 5.5 times every 107,

Li=1Lg eXp{“’:L t]. (14)
The mean stretching rate v, read from the slope of this
line is

wh = % In L, =0.177,7". (15)
Note that this value of v, estimated from the total length
of a passive line should be the true stretching rate.

In the following sections the stretching rate of pas-
sive lines Is estimated by the averages over passive vec-
tor elements with and without non-uniform probability
weight factor (Secs. 3.3 and 3.6) as well as by the line
average (Sec. 3.4). Among these three averages, oaly
the line average gives the correct results. The differ-
ence between the line and the thin-tube {i.e., the simple
volume) statistics of the rate-of-strain tensor which de-
termines directly the stretching rate of passive lines will
be discussed in Sec. 3.7.

(a) t/Tp = 0, (b} 10, (¢) 20, and {d) 30. The total
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Figure 3 Exponential stretching of a passive line.
The length of the line is normalized by the initial
length. and the time by the Kolmogorov time 7,
The straight line in this semi-logarithmic scale indi-
cates thart the length increases exponentially in time
as Ly /Ly = exp [D.l?t/f:,, J

3.3 Simple Volume Average

The rapid development of complexity and uniformaniza-
tion of & passive line advected in a turbulent flow shown
in figure 2 suggests such an idea (though erroneous) that
the line average might be evaluated most easily by the
arithmetic mean of contributions from many passive vec-
tor elements * 8{x, t) distributed uniformly over the en-
tire velocity field [3, 4]. Thelr temporal evolutions are
governed by

D Sz, t) = (8l(x, 1) - V) ulz, ).

O (16)

The stretching rate v, of a vector element &1 is expressed
in term of the rate-of-strain tensor S(a,¢), the symmet-
ric part of the velocity gradient tensor Vu, as
6l- 8541

iR

Vo

D
=-—lIndl= (17)
Dt s
where &/ = [§]. This equation shows that the stretching
rate 18 of the order of the rate-of-strain tensor, which is
O(7,~ ") according to Kolmogoron's dimensional analy-
sis.

Equation (16} together with (6} and (7) is solved for
the vector elements which leave at all the grid points.
{Instead of (16) we actually solve (12) with each segment
lenpth being kept as Ax.) This kind of simulation is
called the passive-vector-clement simulation in order to
distingursh fromn the line simulation described in the pre-
ceding section. We investigate two typical cases of dif-
ferent imitial conditions. In the first case the directions
of the initial vector elemments are aligned in parallel wo a
row of the gnd points, whereas in the second thev are
distributed randomly and isotropically. The former 1s
considered as a sort of line simulations of many straight
passive lines, in which any new interpolated segments
are not inserted so that the lines are composed only of
the initial segments. Hence, the arithmetic mean of {17)
over all the elements (i.e.. the volume average) can be
regarded as the stretching rate in the thin-tube average
{sce Sec. 2). Furthermore, the volume average is ex-
pected to be independent of the initial condition at suf-
ficiently later times under the uniform mixing hypothe-
s1s that each vector element tends to migrate uniformly
over the entire flow field with unpredictable directions
in the course of evelution.

The temporal evolutions of the stretching rates ob-
tamed bv the above volume average are plotted in fig-
ure 4{a}. The mean and the standard deviation over
ten different turbulent flows, i.e. over 1 x N% vector
clements are represented by solid lines and gray zones,
respectively. A thick and a thin curves refer to the mean
values for the parailel and the random initial directions
of vector elements, respectively. The mean stretching
rate in the former is larger than that in the latter at
earlier times (invisible in this figure '), but the initial
condition dependence is lost and the two cases are in-
distinguishable after a few Kolmogorov times. The time
average over 20 < #/7, < 90 of the mean value of the
stretching rate is

(Mo = {013 2001} 7,7, {18)
where £ denotes the standard deviation over the ten
different flows. Both of the mean and the standard de-
viarion hardly change in time, l.e. they are in the sta-
tistically stationary state after 107, approximately.

The value of (18) is comparable with 0,13 ~ 0.14,
the one obtained before by essentially the same calcu-
lations {3, 4]. It is, however, substantially smaller than
the true sireiching rate (15) obtained directly by the
time-derivative of the total line length. This surprising
discrepancy will be examined in the following sections.

*Here. a vector element 1mplies a segment vector of infinitesimal Jength.

Tt is conjectured that the mean stretching rate in the thin-tube average is the largest of ali the volume average.

L



Figure 4 Stretching rate of passive lines. The
time ¢ and the stretching rate v are normalized by
the mean Kolmogorov time T, and its reciprocal,
respectively. Gray zones denote the standard devia-
tions over 10 (in (a) and (b))} or 25 {in (c)} different
turbulent flows. (a) Initial condition dependence of
simple volume average. A thick and a thin curves
denote the stretching rate for the cases of parallel
and random initial directions of vector elements, re-
spectively. After a few 7,, the two curves get in-
distinguishable, implying that the initial condition
dependence has been lost by this time. (b) Compar-
ison between the line average {thick curve) and the
thin-tube (or volume) average (dashed curve). The
thin-tnbe average underestimates the stretching rate
by 24%. (c¢) Comparison between the weighted vol-
ume average {thin curve) and the line average (thick

other only at the early stage of evolution (¢ < 0.87,).

3.4 Line Average

In the iine simulation described in Sec. 3.2 each segment
is halved every time it becomes longer than a threshold
(1.5Az). The number of times of divisions is generally
different from segment to segment depending on the to-
tal amount of stretching of each segment undergone dur-
ing the evolution. A segment has been divided into 2™
pieces after m divisions. Let M be the maximum num-
ber of divisions of each segment done by time ¢, and let
us imagine that the Iy initial segments of length I be
divided into 2% pieces of length 15 (= 27™1;). Then the
present simulation is essentially the same ar least up to
t as the one in which a passive line is composed of I~
(= 2MI,, which is fixed in time} segments with initial
length {5. The total length of the line is expressed by

-
L= 9. (19)

=1

The time derivative of the logarithm of (19) yields the
stretching rate of a passive line L, as

Iz
1 * .
‘YL — T_ Z Fff (J) lt (J) y (20)
where
d1n V)

,Y:(J) — P (j=1,2,---,I") (21)

is the stretching rate of I; P 1In terms of shose segments
léz) (1=1,2,---, 1) actually used in the simulation, the
summation (20) may be written as

N
1 T k]
n= W = (W (22)
i=1
where
o _ dingl? ‘
L ren (i=1,2,--- I} (23)

is the stretching rate of lit). In the derivation of (22) we

have noticed that a single segment 1§*> (i=1,2,---,1)

with the stretching rate 7"

is composed of j, — j;—1
segments [V (j = j,_1 + 1, , 4, where jo(= 0) <
Ji <o < --- < g1, (= 17)) with the same stretching rate
vt = 41 The second equality of (22} states that the
summation approximates the line integral (2). It should
be stressed that the line average is not calculated by a
simple sum (as in she shin-tube average, see Sec. 2) of
the stretching rate of the segmenis but by a weighted
sum multiplied by the segment length.

The expression (22) is employed here for the nu-
merical calculation of the stretching rate. Initially, N?
straight lines are placed orderly which are parallel to a
row of the grid points and separated by the grid width.
Bach line has NV nodes, all of which are put on the grid



points. This 1s exact]y the same intial condition as that
used i the pas<ve-vector-element simulation with par-
allel mitial vector elements analvred in the preceding
section The number of nodes may mcrease indefinitely
because of ever stretching of lines  In order ro fix the
number of sample points. each line 1s chopped so that the
number of nodes mayv alwavs be equal to the initial value
N This chopping of lines should not change the statis-
tics because of the flow field is homogeneous. The above
simulation was repeated ten times in different rurbulent
flows. The mean stretching rate obtained from (22} by
taking the ensemble average over 10 x N7 chopped hines
is drawn with a solid curve in figure 4(b}. After a tran-
sient period (* < 107,) it settles down around 0.177,
in the mean. which agrees with (15) as expected. A dot-
ted curve is for the thin-tube average which is replotted
from figure 4(a) for comparison. The thin-tube aver-
age underestimates the line average by 24%. The gray
zone represents the standard deviation of the stretching
rate over the ten realizations, which is also stationary
in time. The mean standard deviation averaged over
t/7n =20 ~90is 0.017, "

3.5 Stretched Factor — A Bridge be-
tween Line Average and Thin-Tube
Average

The underestimation of the stretching rate by a simpie
volume average described in Sec. 3.3 is originated from
the negligence of the non-uniform probability weight by
the non-uniform stretching of lines. As seen in the ex-
pression (20), the weight factor is the segment length
l:m (j = 1.2,--- . I") itself at time t. We normalize
the weight factor by their initial lengths I5 which are
common to all the segments as

(1)
O‘:U) =

l J i . '
— = exp {/ ’yt,(j)dt’] {3
0 o

and call o;%’ the stretched factor. The second equal-
ity of {24) has been derived by the integration of {21).
Then, the overall stretching rate of lines is written. by
using (19) and (20), as

1.2,

(24)

where the brackets { ), denotes the probability aver-
age with respect to the joint probabiiity density func-
tion {PDF} Pi{c™,~v*) of the stretched factor o7 and
the stretching rate o) of segments of a common initial

"I*) ¥

=T

fength

(i, A" frot Aty (et )

/ de” /
S0 - R

1 .
o fler

]
i

{26)

This i~ exactly the thin-tube average so that the prob-
abilitv average is eguivalenr to the thin-tube average.
i.e

(27)

If o7 and 4] were statistically independent of cach
other. then {v"¢")p = (37)p (0"}p, and the mean
stretching rate of lines would be given by {v7), , le,
the thin-tube average. If. on the other hand, they are
positively correlated as 1t is the case, the ratio (23)
should be greater than the thin-tube average. In fig-
ure 3. we plot the joint PDF P(¢™.~") at time 207,
where the abscissa and the ordinate are normalized by
the mean values of the respective quantities. The con-
tours are elongated upper-right. and the conditional av-
erage, which is drawn with a solid curve, of 7" for a
given ¢~ increases with ¢*. These indicate that o~
and +* are indeed positively correlated. In fact, we
find that {o*y*),, = 2.827,7', {¢™)p, = 17.6. and
(v*)p, = 0.127,7 1, s0 that

(G*’T*)Pf

oy, - 0.167, 7% > (7" p, = 0.127,7" .

(28)

The values 0.16 and 0.12 agree, within numerical uncer-
tainty, with 0.17 in {15) and 0.13 in (18], respectively.
The same behavior is observed at any times after 20 7,.

We have seen that both the line average and the thin-
tube average of the stretching rate 7 of passive lines
are calculated by the use of the joint PDF of 4, and
the stretched factor o;. This is applied to any physical
quantity accompanied with fiuid elements. In this sense
the stretched factor works as a bridge to relate the two
different averages.

3.6 Weighted Volume Average

The results of the preceding section encourage us to
calculate the joint PDF F,(o,v) in the passive-vector-
element simulation described in Sec. 3.3, because we can
then estimate the correct stretching rate of passive lines
through {25). In this section we shall show that it is in-
deed possible, but there is a severe restriction in keeping
the numerical accuracy.



Figure 5 Joint PDF of the stretched factor &*
and the stretching rate ~*. The PDT takes larger
values in darker areas. The contour levels are 0.02,
0.04, 0.08, 0.16, and (.32. Solid line denotes the
conditional average +* for a given ¢”. The abscissa
and the crdinate are normalized by the probability
averages (0%)p, = 17.6 and (y")», = 0.127,7", re-
spectively. ¢ = 20 7,.

To do this we calculate the stretched factor a§‘) of

cach element 819 (¢t = 1,2,---, N3} in addition to the
stretching rate 'yt(’) in the passive-vector-element simu-
iation. Under the uniform mixing hypothesis the for-
mula (25) of the mean stretching rate of passive lines
formulated on lines may be extended, at sufficiently later
times, to the weighted volume average,

NB 3 z

Y e
N3 i
Zz:l O-ﬁ(z)

The mean stretching rate obtained by the ensemble av-
erage over 25 realizations, namely, over 25 x N3 vector
elements, is plotted against time with a thin curve in
figure 4(c). The gray zone represents the standard de-
viation. The mean stresching rate in the line average is
shown with a thick curve for comparison. They agree
very well with each other at the early stage of evolu-
tion (¢t < 0.87,, say), but then the thin curve deviates
slightly upward and stays steadily above the thick curve
throughout all the subsequent times. The mean stretch-
ing rate averaged over the period 207, <t < 907, is
found to be

(’Y)m]/w = (29)

(Thvolyw = 0187, 1. (30

As seen above, the estimation of the stretching rate
of passive lines by the weighted volume average indeed
gives the correct valie at early stages of evolution, but
suffers from overestimation after about ten Kolmogorov
times. The amount of the overestimation does not in-
crease in time but stays around 6% of the true value. In
the following we consider the reason of these character-
istics of the weighted volume average by the passive-
vector-element simulation. We compare the formula
(25) in the line simulation and its counterpart,

! (=) (1)
qu:l F}/t Gt
I (2]
210:1 O’t

in the passive-vector-element simulation starting with a
straight row of Iy (= N) parallel vector eclements. Re-
call that this passive-vector-element simulation is noth-
ing but a line simulation without inserted segmenss
{Sec. 3.3) so that the summands in (31), which are com-
posed of the initial segments, are subsets of the corre-
sponding ones in (25). Henre. the origin of the over-
estimation of the weighted volume average should be
attributed te the difference between the full and partial
summations appearing in these equations

Now let us begin by considering the sums of the
stretched factor on the denominators. Variations of the
stretched factor along a passive line obtained by the line
simulation are shown in figures 6 (a) and (b). Here,
the values on three hundreds consecutive segments of
the line at {a) t = 57, and {b) ¢ = 20 7, are plotted
with a succession of steps of width lt“)/att) (0<i< I,
the initial length of the i-th segment. The number I
of the segments over the whole line is 300 at ¢ = 57,
and 3,598 at £ = 207,. Therefore, the abscissa spans
the whole line In (a}, but only the 8.3% in (b). Observe
that even the narrowest peak is composed of more than
ten steps irrespective of time, which suggests that the
step-width is sufficiently small to represent the varia-
tion of the stretched factor at all times. The area below
these steps over the whole line gives the sum Zj:l or .
The positions of the initial segments are denoted by
dots. Adjacent pairs of dots are separated by Ip. The
sum Zfil crt(a) is equal to the area below a succession of
shaded steps of width Iy over the whole line. The row of
dots seem to be marginally dense to represent the varia-
tion of the stretched factor in (a) but too sparse in (b).
A single peak contains at least five dots and the shaded
area approximates well the true areain (a). On the other
hand, each shaded step typically covers a few peaks and
the shaded area is greater than the true one in (b). This
overestimation of the area is enhanced in proportion to
the ratio of the step-width and the peak-width of the
stretched factor.

ol = (31)



Figure 6 Overestimation of the area bv sparse
samples. {a) Variations along a passive line of the
stretched factor at t = 57,. The stretched factor on
three hundreds of consecutive segments are drawn
with a suceession of solid steps of width of I{* /5",
the initial length of the i-th segment. The positions
of the initial segments are designated with dots. The
distance between adjacent dots is I. The area be-
low a succession of steps of width of I with dots
at the center of each step is shaded. The shaded
area is approximately the same as that below the
solid steps. (b} Same as (a) but at ¢ = 207,,. The
shaded area 15 wider than that below the solid steps.
{¢) Same as {b) but for the product of the stretching
and the stretched factor. The area below the shaded
steps is wider than that below the solid steps. This
overestimation is stronger than that in {b}.

ow

The same inequality also holds between the sums,
Z_‘:_l ~T e and Zfil ~1a!" of the product of the
stretching rate and the stretched factor on the numera-
tors in (25) and (31) In fipure (¢). we plot the variation
of the product on the same part of the line and at the
same tine as (b). It is seen that the product exhibits
sharper peaks than the stretched factor as anticipated
from the positive correlation between these two quan-
tities {see figure 5). More precisely. while their widths
are comparable between the two. the peaks of the prod-
uct are higher than those of the stretched factor itself.
This leads to an enhanced overestimnation between the
sums on the numerators stronger than that on the de-
nominators in (25) and (31}. which in turn results in the
overgstimation of {1f)ml/“, compared with (v);;... Fur-
thermore. since the correlation between the stretching
rate and the stretched factor is stationary (see Sec. 3.3),
the amount of this overestimation should also be invari-
ant in time.

In conciusion, the deviation at later times of the
weighted volume average is caused by the numerical
scheme itself of the passive-vector-clement simulation.
Recall that the vector elements which represent passive
line elements separate with each other exponentially in
time As soon as the distance between the neighbor-
mg elements becomes comparable with the length-scale
of the variation of the rate-of-strain tensor, these dilute
samples of the vector elements may not be able to ap-
proximate well the line statistics any more. In fact, the
characteristic length of the variation of the rate-of-strain
tensor is (}(10%) along & passive line, and the typical dis-
tance between the neighboring vector elements at time
107, around which the deviation starts, is 8.4 7. Here,
the length scale of the latter has been estimated from
the mean stretched factor exp [0.17 x 10]{= 5.5) mul-
tiplied by the imitial distance Ax{= 1.5%) of the neigh-
boring vector elements. Hence, the exponential increase
of the distance between the neighboring elements gives
a very severe constraint that makes the practical esti-
mation by the passive-vector-element simulation almost
impossible.

3.7 Statistics of Rate-of-Strain Tensor

In the preceding five sections we have seen that quite
different values of the mean stretching rate of passive
lines were obtained by different averaging. In order to
understand the origin of the difference we examine here
the statistics of the rate-of-strain tensor which directly
determines the stretching rate. As seen in (17). the
stretching rate of a vector element &l depends both on
the rate-oi-strain tensor 8§ and on the direction of &i.
In terms of the eigenvalues s1, 82, 53 (81 > 83 > s3) of
S. and the angles a1, as, a3 between &I and each of the
three principal axes of 8, the stretching rate is expressed



by
(32)

Ve = 81 COSQ1 + 82 COS¥p + 53 COS Q3.

If all the vector elements &l are distributed isotropi-
cally independent of an incompressible velocity field,
the mean stretching rate vanishes because (cosay)
{cosag) = {cosag) and s; + 52 + s3 = 0. This is the
reason why {v) starts from the origin (see figure 4).
The correlation must be established between the rate-of-
strain tensor and the direction of passive vector elements
for the non-zero stretching of passive lines to show up.
In the foliowing the PDFs of the strength of the rate-
of-strain tensor and the alignment angles with passive
vector elernenis will be examined.

The PDFs in three different statistics of the second
invariant 2 = 5,2 + 5,° + s5° of the rafe-of-strain tensor
averaged over 20 < ¢/7; < 30 are compared in figure
7. The thick and thin solid curves denote the PDFs in
the line and the thin-tube statistics, respectively. Dif-
ference between these two curves is substantial. Larger
values of s? is less probable in the thin-tube statistics,
that is, those elements having higher strain rate are less
weighted because of depopulation by stretching (see fig-
ure 1{b} aisc). This is the reason of underestimation of
the mean stretching rate in the thin-tube statistics.

A dotted curve that lies on the thin solid curve rep-
resents the PDF obtained by the Eulerian volume statis-
tics, i.e. a simple summation of the contribution from
each grid point. The perfect coincidence of these two
curves provides us with a strong support to the uni-

form mixing hypothesis thas samples restricted con pas-
sive lines and those chosen from the entire flow fleld give
the same statistics. In other words, the Eulerian and the
Lagrangian volume averages are equivalent.

[y + T Y t

Figure 7 PDFs of the second invariant s* of the
rate-of-strain temsor. A thick, a thin, and a dot-
ted curves refer to the line statistics, the thin-tube
statistics, and the Eulerian volume statistics, respec-
tively. Averaged over 20 < ¢/m, < 50.

Figure 8 PDY of the angles between passive vector elements and the three principal axes of the
rate-of-strain tensor. The number astached with each axis denotes the directions of the first, the second,
and the third principal axes. The levels of contours are 0.25,0.50,0.75,1,1.25, and 1.5 from the top line.
Averaged over 20 < ¢/7; < 50. {a} Line statistics. (b) Thin-tube statistics.
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The alignmont between the passive veator elemienis
and the prinemal axes of the rate-ol-strain tenson 1~ also
different between the hue statisties and the ilnp-tabe
statistics. In figures 80 we plot the PDFs of the direction
of vector elements relatine to the thiee prinapal anes of
the rate-of-strain tensor averaged over 20 < ¢/7, < 50
in {a) the hine ~tatistics and (b) the thin-tube statisties,
The numbers attached 1o the coordmate axes denote the
principal axes. The contour tevels are 0 25, 0,50, 0.75. 1.
1.25. and 1.5 from the top lme. The segmenrs tend to be
aligned with a plane spanned by the first and the second
principal axes in the Line statistics more than the thin-
tube statistics This alignment to larger strain direction
also contributes to the enhancement of line stretching
Incidentally. the most probable alignment of the pas-
sive vector elements to the second principal axis may
be rephrased that they tend to he directed toward the
local vorticity because the vorticity vectors are strongly
aligned with this axis [3].

4 Concluding Remarks

In an incompressible fow, the number density of passive
(or Lagrangian) particles in a passive volume remains
uniform if it was so at the initial time. Therefore. the
conditional mean of any physical quantity accompanied
with fluid elements over a passive volume may be cal-
culated by averaging the equi-weight contribution from
each particle in this volume. For example, the mean en-
strophy (vorticity squared) in a homogeneous turbulent
flow evaluated by the average at all the uniform grid
points is the same as that evaluated at all the passive
particles leaving at each grid point. However, the num-
ber density of passive particles is generally not uniform
on a passive line or on a passive surface even if 1 was
so initially, because of non-uniform stretching of one-
or two-dimensional objects. Hence. the mean stretch-
ing rate of lines or surfaces evaluated by the arithmetic
mean of the contribution {without statistical weight due
to the non-uniform stretching) from the passive line or
surface elements does not give the correct answer.

The correct statistics on a passive line is the main
theme of the present paper. We have introduced two
similar but different averages: the line average and the
thin-tube average (figure 1). Both of them are defined
by the Ximit of vanishing diameter of the volume average
over a thin tube including a passive line, but the way of
choice of the tube is quite different between the two. In
the former a tube of uniform diameter is chosen which
includes a passive line at every time when the average
is taken, whereas in the latter it is a passive tube which
evolves from a uniform tube already set up at an earlier
tirne. Note that the tube diameter can be non-uniform
at the time of averaging in the latter. which leads to a
substantial difference between the two statistics. The
line average is the correct one. by the way.

A simple anthmetic average over passive particles
which started on a line s nothing hut the thin-tube av-
erage whereas the hine average i~ obtained by taking
account of rhe statistical weight (the stretehed facror).
which 15 proportional 1o the distance between adjacent
particles. to the contribution from cach particle Here.
it is mmportant to keep in mind that adjacent pairs of
particles should alwavs be kept sufficiently close. o.g.
within the order of the Kolimogorov length, in numerical
sirmulations for the accurate estimation of the line statis-
tics. Since a passive line migrates uniformly in a station-
arv and homogeneous turbulent How (the uniform mix-
ing hypothesis). the statistics of passive particles which
started on a line 1s the same as those of passive partictes
floating umformly over the whole flow field In other
words. the thin-tube sratistics and the Lagrangian vol-
ume statistics are the same in the well mixed region (fig-
ure 1(a)]. Based on this concept. the Lagrangian volume
statistics over the passive particles with associated direc-
tion (i.e. the passive vector elemenis) were employed in
previous studies {3, 4] to estimate the mean stretching
rate of passive lines. However thev underestimated (see
figure 4(b)) the stretching rate of passive lines because
of the neglection of the fact that the number density of
particles is lower but the stretching rate is higher where
a passive line has been more stretched The correct value
would be recovered ar least in the early stage of evolu-
tion if the stretched factor were taken into account in
averaging (figure 4(c)}. However, the accuracy is dete-
riorated rapidly because of an exponential increase of
the mutual distance between initially neighboring vec-
tor elements (Sec. 3.6). That is, as soon as the distance
becomes comparable with the length scale of variation
of the rate-of-strain tensor, which is O{10n), the accu-
racy may decline quite rapidly and the mean stretching
rate is likely to be overestimated (by 6% in the present
case). This imples that the accurate estimation of the
stretching rate of passive lines is practically impossible
by the passive-vector-element simulation and that a true
line simulation as described in Sec. 3.2 is necessary.

A similar relation between the line and the thin-tube
statistics {Sec. 2) also holds in the surface statistics. The
surfoce average may be expressed by the limit of volume
average of & phvsical quantity F{x, t) over a laver 1} of
uniform thickness wid(17) as

(F) (33)

surf —

Hm i / Flx, t)dV.
Wy,

wid(Vy b —=0

On the other hand. the thin-layer average is defined by
the thin limit of the volume average over a passive layer
whose thickness is uniform at the initial time as

(5 = lun l / Fluo, 1)di, {34)
laver wid(1p)—0 I'i ./\7_,' 3 y

where wid(15) denotes the thickness of the initial layer
Note that the thickness of the layer V; is non-uniform



in general so that the surface average and the thin-layer
average are different from each other, ie.

(F)surf # <F>la.yer -

This disagreement between the two averages should be
kept in mind when statistics of various physical quanti-
ties on interfaces of different fluids is studied.

(35)
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