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Abstract

Two semi-Lagrangian schemes that guarantee exactly mass conservation are proposed. Although
they are in a non-conservative form, the mass of each cell is employed as an additional variable
that is advanced in a conservative form. One of them (CIP-CSL4) is the direct extension of the
CIP method into the 4-th order polynomial to incorporate mass conservation. In another scheme
(CIP-CSL2), the CIP principle is applied to integrated mass and the interpolation of the value
becomes quadratic. The latter one can be readily extended to multi-dimensions. These schemes
are applied to the non-linear advection problem with large CFL number.
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1 Introduction

Solving atmospheric problems together with oceanic
ones and/or solid structure is a grand challenge to the
field of computational mathematics. For these types
of problems such as snow melting and deformation,
and water evaporation , we need to treat topology
and phase changes of the materials simultaneously,
where the grid system aligned to the solid or liquid
surface has no meaning and sometimes the mesh is
distorted and even broken up. A universal treatment
of all phases by one simple algorithm is thus essential
and we are at the turning point of attacking this goal.

Even withcut phase change, problems of surface
capturing and structure-fluid interaction are not easy
task. In most of cases, the grid can not always be
adapted to those surfaces. Therefore, the description
of moving surfaces of complicated shape in the Carte-
sian grid system will be a challenging subject .

In order to attack the problems mentioned above,
we must first find a method to treat a sharp inter-
face and to solve the interaction of compressible gas
with incompressible liquid or solid. Toward this goal,
we take Eulerian-appreoach based on the CIP(cubic-
interpolated propagation) method[l, 2, 3, 4] which
does not need adaptive grid system and therefore re-
moves the problems of grid distortion caused by struc-
tural break up and topology change. The material sur-
face can be captured by almost one grid throughout
the computation[, 6, 7]. Furthermore, she scheme can
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treat all the phases of matter from solid state through
liquid and two phase state to gas without restriction
on the time step from high sound speed[8].

Pressure-based algorithm coupled with semi-
Lagrangian approach like the CIP proved to be sta-
ble and robust in analyzing these subjects. The only
disadvantage of this method was the lack of conserva-
tive property. Recent version of the CIP-CSL4[9] can
overcome this difficulty and povide exactly conserva-
tive semi-Lagrangian scheme. Since these scheme do
not use the cubic polynemial but use different orders of
polynomial, we re-define the name of these CIP fam-
ilies as "Constrained Interpolation Profile” and stili
keep the abbreviation, CIP. This means that various
constraints such as the time evolution of spatial gra-
dient, that is used in the original CIP method, or spa-
tially integrated conservative quantities can be used
to construct the profile. In this paper, we shall give
a brief review of the CIP method and then propose
a method to incorporate the conservative property in

semi-Lagrangian schemes.

2 Review of the CIP method
2.1 Numerical difficulty

Although the nature is in a continuous world, digitiza-
tion process is unavoidable in order to be implemented
in numerical simulations. Primary goal of numerical

algorithm will be to retrieve the lost information in-
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of numerical schemes proposed before, however, did
not take care of real solution inside the grid cell and
resolution has been limited to the grid size. The CIP
method proposed by one of the authors tries to con-
struct a solution inside the grid cell close enough to
this real solution of the given equation with some con-
straints. We here explain its strategy by using an ad-
vection equation,

af af

5 +u B 0. {1)
When the velocity is constant, the solution of Eq.(1)
gives a simple translational motion of wave with a ve-
locity u. The initial profile (solid line of Fig.1(a})
moves like a dashed line in a continuous represen-
tation. At this time, the solution at grid points is
denoted by circles and is the same as the exact so-
lution. However, if we eliminate the dashed line as
in Fig.1(b), then the information of the profile inside
the grid cell has been lost and it is hard to imag-
ine the original profile and it is natural to imagine a
profile like that shown by solid line in (¢). Thus, nu-
merical difusion arises when we construct the profile
by the linear interpolation even with the exact solu-
tion as shown in Fig.1(c). This process is called the
first-order upwind scheme. On the other hand, if we
use quadratic polynomial for interpolation, it suffers
from overshooting. This process is the Lax-Wendroff
scheme or Leith scheme.

What made this solution worse ? It is because we
neglect the behavior of the solution inside a grid cell
and merely follow after the smoothness of the solution.
From this experience, we understand that a method
incorporating the real solution into the profile within
a grid cell is quite an important subject. We propose
to approximate the profile as shown below. Let us
differentiate Eq.(1) with spatial variable x, then we

8t k) 8 &
g g __ ou
£ + Ua— = Bmg’ (2)

where g stands for the spatial derivative of f, 9f/0z.
In the simplest case where the velocity u is constant,
Eq.(2) coincides with Eq.(1) and represents the prop-
agation of spatial derivative with a velocity v. By this
eguation, we can trace the time evolution of f and
g on the basis of Eq.{1). If g could be predicted to
propagate like that shown by the arrows in Fig.1(d},
the profile after one step would be limited to a specific
profile. It is easy to imagine that by this constraint,
the solution becomes mruch closer to the initial pro-
file that is the real solution. Most importantly, the
solution thus created gives a profile consistent with
Eq.(1) even inside the grid cell. Importance of this
consistency will be demonsirated in the next section.

if both the values of f and g are given at two grid
points, the profile hetween these points can be inter-
polated by cubic polynomial F{z} = az®+bz?+cz+d.
Thus, the profile at n+1 step is readily obtained
by shifting the profile by uAt like f**! = F(z —
ulAt), g" ! = dF(z — ult)/dz.

= Gi +g2z'up + z{fz - {iup)

‘ Ax? Az? 7
. S(fzup - fz) 291 =+ Giup
b = Az? Az, ®

AL, = Tonp — T;
iup = i — sgn{u,)

2 = a8 + 0,8 + gl + T,
Q:H-l = 3“%‘5? + 264, + gzna (4)

where we define £, = —u, At and sgn{u) stands for the
sign of w. Figure 2(a) shows a profile after 1000 steps
with this CIP method for the propagation of a square
wave.

Although there exist various polynomial funciions
such as linear, quadratic Lagrange, cubic Lagrange,
cubic spline and quintic Lagrange [10], all of these
schemnes (except those using the linear interpolation
function) need at least three points in constructing in-
terpolation approximations in one dimension. A more
compact scheme by which one can construct interpo-
lation function of high accuracy with less computa-
tional stencils is desired in many situations, such as
the calculations of discontinuities or large gradients.
Moreover, in a model with a limited computational
domain, different approximations for the derivatives
have to be used at the grid points close to boundaries;
these approximations are usually of lower order than
the approximaiions used deeper in the interior. Thus,
a scheme which uses less stencils may be advanta-
geous in treating computational boundaries since less
boundary points need to be handled. Another attrac-
tive feature of reducing stencils may be the reduction
in data transfer in parallel implementations on dis-
tributed memory architectures. In this sense, the CIP
seems to be attractive since it uses only one cell for
computation even in three-dimensions.

The CIP is completely different from conventional
semi-Lagrangian methods regarding the computation
of derivatives. In the latter methods, as mentioned
above, the gradient 1s calculated based on the function
values at neighboring grid points by either assuming
the continuity of the quantity, the first and sometimes
the second order derivatives of the quantity at the
mesh boundaries [11] or using approximations based
on local grid points {12]. By special treatment of the

—_2 —



first derivatives of the interpolation function. the CIP
achieves a compact form that uses only one mesh cell
to construct the interpolation profile and provides sub-
cell resolution.

2.2 Phase error of CIP

It would be interesting to examine phase error of vari-
ous schemes using the method proposed by Purnell[11]
and Utsumi et.al.[13]. Figure 3 summarizes those re-
sults. As is well known. phase speed of conventional
schemes departs from the exact one, that is shown by
the solid lne, around kAz = 7/2. Surprisingly, how-
ever. the CIP can reproduce the correct phase speed
even up to kAx = w. This is remarkable because
kAz = 7 means that one wavelength is described by
three grid points. Let us consider the case shown in
Fig.4, where values of the three points are zero. Even
in this case, one wave can exist as shown in the fig-
ure. The CIP gives correct spatial gradients, which are
non-zero at these points, and therefore it recognize the
existence of the wave inside the grid cell. Any code
that uses only the information of the value, that is
ZEro now, can not correctly recogmze the wave even if
higher order polynomial is employed.

The importance of Eq.(2), that predicts the prop-
agation of gradients, can be clearly demonstrated in
comparison with the cubic spline[ll] and the PPM
[14] both of which have the third-order accuracy. Al-
though the cubic spline uses the same cubic polyno-
mial as the CIP, it can not reproduce the result of the
CIP, because the gradient of the spline is determined
merely from smoothness requirement. As is easily rec-
ognized, such a constraint that is indepencent of the
original equation will not help to retrieve the profile
inside the grid cell.

2.3 Interface tracking

Treatment of interface that lies between materials of
different properties remains a formidable challenge to
the computation of multi-phase fluid dynamics. Eule-
rian methods have proven robust in simulating flows
with interfaces of complex topology. Generally, Eule-
rian methods use color function to distinguish the re-
gions where different materials fall in. To accurately
reproduce the physical processes across the interface
transition region, keeping the compact thickness of the
interface is of great importance. The finite difference
schemes constructed on an Fulerian grid, however, in-
trinsically produce numerical diffusions to the solution
of advection equation by which the interface is pre-
dicted temporally. Thus, the direct implementation
of finite difference schemes (even of high order) can
not maintain the compactness of the interface.

Varigug kinds of methods have heen developed so

far to achieve & compact and correctly defined nter-
face by introducing extra programming. Among those
mostly used algorithms are the level set methods and
the VOF{volume of fluid) methods for front capturing,
and others for front tracking [15]. Level set method
that was firstly proposed by Osher and Sethian[16]
gets around the computation of interfacial discontinu-
ity by evaluating the field in higher dimensions. The
interface of interest is then recovered by taking a sub-
set of the fleld. Practically. the interface is defined
as the zero level set of a distance function from the
interface.

In a VOF kind method on the other hand, the in-
terface needs to be reconstructed based on the volume
fraction of luid. VOF methods are mainly classified as
SLIC(simple line interface calculation)algorithm and
PLIC(piecewise linear interface calculation) algorithm
according to the interpolation function used to repre-
sent the interface. The SLIC[17] makes use of piece-
wise constant reconstruction and the interfaces are ap-
proximated by lines aligned with mesh coordinates.
A significant progress in VOF method was made by
Youngs as the PLIC algorithm([18]. Since then, some
improvements on the reconstruction of the VOF in-
terface have been reported[19] [20] [21]. The PLIC
estimates the interface with a truly piecewise linear
approximation that improves largely the geometrical
faithfulness of the method.

A comparison of different methods for tracking in-
terface can be found in]22]. Tt is evident that sophisti-
cated methods such as particle method, PLIC method
and level set method(with reinitialization)i23] are rel-
atively computational expensive.

In [5] and [6], we devised an interface tracking tech-
nique which appears efficient, geometrically faithful
and diffusionless. The method is a combination of the
CIP advection solver and a tangent function transfor-
mation.

Consider impermeable material occupying closed
area ({t) , we identify it with color function or density
function ¢(z,y,z,t) by the following definition

1 (z,y.2) € §2¢),
0. otherwise.

¢muaﬂ:{

Suppose this material moves at the local speed, the
color function evolves then according to the following
advection equation
d¢
Lol = — -Vé =0, 5
¢]= 5 +u-Vo )
where u is the local velocity.

It is known that solving the above equation by finite
difference schemes in an Eulerian representation will



produce numerical diffusion and tend to smear the ini-
tial sharpness of the interfaces. In our method, rather
than the original variable ¢ itself, its transformation,
say T(d), is calculated by the CIP. We specify T'{¢)
to be a function of ¢ only then we have

LIT(@)] = 5 L161 = 0, ©

which ig correct only for linear operator L such as
L =3/8t+u-V in Eq.(5). Thus, the solution ¢ of
LiT(¢)] =0, that is

) vrg) -0, ™
ot

satisfies the equation L[¢] = 0 and all the algorithms
proposed for ¢ (schemes for advection equation) can
be used to T{¢). Hopefully, by the considerable sim-
plicity, this kind of techniques would be very attrac-
tive for practical implementation. Furthermore, quite
variety of functional transformation can be used to
obtain desired properties of solutions. For example,
logarithmic and exponential function pair can be used
to deacribe a density change of several orders of mag-
nitudes and to avold negative values. We here use a
transformation of a tangent function for T{¢), that is,

T(¢) = tan[{1 - e)m(¢ — 1/2)], (8)
¢ =tan'T(¢)/I(1 - e)7] +1/2, (9)

where ¢ is a small positive constant. The factor (1—¢)
makes us get around —oc for ¢ = 0 and oo for ¢ = 1
and enables us to tune for a desired steepness of the
transition layer.

Although ¢ experiences a rapid change from 0 to
1 at the interface, T'(¢) shows a quite regular behav-
ior. Because most of the values of T'(¢) are concen-
trated near ¢ = 0 and 1, the function transformation
improves locally the spatial resolution near the large
gradients. Thus, the sharp discontinuity can be de-
scribed quite easily. The transformation of this kind
is effective only for the case where the value of ¢ is
limited to a definite range throughout the calculation,
like the color function defined before.

This method does not involve any interface con-
struction procedure and is quite economical in com-
putational complexity. It should be also notified that
the presented method is more attractive in 3-D com-
putation since the extension of the scheme to 3-D is
straightforward.

Figure 2(b) shows a 1D square wave propagation
computed by the CIP method together with the tan-
gent transformation, which we call "digitizer”. The
initial sharpness is well preserved and the discontinu-
ities are advected with a correct speed.

3 Toward Conservative Semi-Lagrangian
Scheme

The CIP method treats the advection term sepa-
rately from other terms in general hyperbolic equa-
tions. This enables us to use a large CFL num-
ber {= uAt/Az) simply applying the procedure of
Eq.{4} to the far-upstream grid cell from which the
Lagrangian particle started to the present position of
concern. Thus Eq.(4) is modified to be

it e, < €53 4+b, < €5 +g7 < £> +17,
gt = 3am < €% +2b, < £ > +g7, (10)
where m is the point determined by

for ©u<Q
for u >0,

Tm < ZTp < Tmtl;
Tm—1 < .’I:p < Ty,

and z, is the particle position of upstream departure
point calculated by

t
Tp =1z, + / udt. (11)

SNl

This time integration is performed along the particle
trajectory. Thus, < £ > is the distance between these
two points :

CE>P=2, — Ty {12)

It should be noticed that ¢ is neither —uA¢ nor
fir Az 4@t In Eq.(10), Gm, by, are given by simply re-
placing 7 by m in Eq.(3).

Even in multi-dimensions, the strategy to find this
upstream departure point is common to all other semi-
Lagrangian schemes. Although the semi-Lagrangian
algorithm can significantly reduce the computation
time particularly in parallel computation, the loss of
exact mass conservation stemming from the separate
treatment of the advection term inhibited itself from
long-term atmospheric and oceanic applications. In
this section, we shall propose a method to recover this
mass conservation in such semi-Lagrangian schemes.

3.1 CIP-CSL4[9]

‘We discuss at first how to compute conservation law
such as

of , Buf)

Er + B 0. {13)
As already seen, the CIP adopted additional con-
straint, that is spatial gradient, to represent the pro-
file inside the grid cell. For being endowed with the
conservative property, we here add another constraing
as

Ti
Py = [ frds, (14)
Tio1



Therefore the spatial profile must he constructed to
satisfv this additional constraint. If this could be re-
alized. f would be advanced in the non-conservative
form with exact conservation in a form of p which
could be advanced mnaintaining mass conservation

Keeping this point in mind. then the ith function
piece F,(r) must be determined so as to satisfy the
following constraints:

Fz(It——l) :f(Iz-l) - Fz(xi) :f(Iz)
OF (x, 1)/07 = g(z,—1), OF{z,)/0z = g(x.}
m‘ —_

f.-,;=71 FI(I)dI = Pr-1/2-

{15)
In order to meet the above constraints, a fourth-order
polynomial can be chosen as the interpolation func-
tion Fy{z). Thus the time development of f and g is
caleulated simply by shifting the interpolation func-
tion F,{z) by uAt in the same way as Eq.(4) of the
CIP methcd as follows;

fr= Flz, — ulAt) = al€ + 008 + e + 976 + 17
(16)
g = 8F{z, — ulAt) 0r = 4al €2+ 307 + 26+ g7
(17
where £, = —ulAt, and
a; = {75{6(fmp + fi)Az, — (gwp - Qz)Azzg
+123gn(u?)piAsgn(u:‘)/2}]/2'/—\"7;?:
b = [4{{Tfoup + 8fi)Ax; — (Goup — (3/2)91)A$f
+15sgn(uf)pl_sgn(u:z)/2}]/Azf, (18)
ey = [-3{{4(2fip + 3f AT — (Givp — 392']A$f
+2039n(u?)91usgn(u:‘)/2}]/zﬁxfJ
Ar, = Loup — Lo,

iup =1 — sgn{uy)

The problem left for us is to calculate the time de-
velopment of p. If we defire the flux passing through
z,—; and x, during [t,t + Af] as Ap,.1 and Ap, 1e-
spectively, the time development of p is calculated by

Pty = Pl + Al — Ap] (19)

With the aid of Fig.5. it is clear that Apl is defined
by

spr= [ Frae (20)

c—ult At
ar br et g
== (;&:‘ SRR S T s ff") &

where each coefficient is equivalent to Eq.(18) at the
timne step 7.

Therefore. the solution of Eq.{13) is given by
Fqs.(16)~{20). The result of square wave propaga-
tion is shown in Fig.2{c). Extension to more general
equations is similar to the CIP Method [3].

3.2 CIpP-CSLz2

The previous section gave a method to incorporate
the mass conservation into semi-Lagrangian scheme
by simply extending the CIP to 4-th order polynomial.
Although the increase of the order of polynomial im-
proved the accuracy of the solution, the extension to
multi-dimensions may become expensive in computa-
tional cost. We here propose an alternative method
keeping the polynomical be cubic. We shall use the
same system of equation as Egs.(13),(14).

In the CIP, the time evolution of f and g = 8f/0zx
is used as constraints to define a cubic polynomial,
while in the CIP-CSL4, constraints are now f,8f/0c
and [ fdx giving 4-th order polynomial. It would be
intresting to find a way to apply the CIP to the inte-
grated value of f instead of f itself. The motivation
to employ this analogy stems from the following ad-
vection equation.

oD aD
—5? + Ua—z =0 (21)

Interestingly, if we take a spatial derivative of Eq.{21)
and define D' = 0D/0z, we obtain a conservative-
type equation

S_D’ 4 HuD")
Ot Ox

— 0. (22)

Since £q.(22) is the same as Eq.(13), then we come to
an idea touse D' = fin Eq.(22) and D = [ f dz in
Eq.(21). This procedure is exactly the same as Eq.(1)
by simply replacing f by [ f dz, together with Ecq.(2)
in which g is replaced by f. Thus zil the CIP proce-
dure can be used for a pair of [ fdz and f instead of
f and 8f 0z

By this analogy, we shall introduce a function :
Do)~ [t (23)

in view of Eq.(Z0}, [}, (x) is merely —Ap; if « is set to
z, —ulAt, therefore D;(x) represents the accumulated
mass from z, to the upstream point. We shall use a
cubic polynomial to approximate this profile.

D,(z) = ALX® + A2, X% + I X (24)

where X == z — 1,. The role of spatial gradient g in
the CIP method is now played by f that is spatial
gradient of D(z) in the present scheme. By using the



above relation, a profile of f(x) between z, and x4,
is then given by taking the derivative of Eq.(24);
8D;(x)

flz) = 2 = 341, X2 4+ 242, X + f  (25)

From the definition of I? in Eq.{23), it is clear that

Dz} =0, Di(@p) = —sgn(u,) pleey (26}

where p?_,, is the total mass of upwind cell defined at
the cell center 7 +1/2 and icell = i — sgn(u,}/2. Since
8D /8z gives a functional value f, it is also clear that

6D1'(Ii) o aD,;(.’Eiup) s
8z - f i O — Jiup (27)
Therefore, the coefficients Al; and AZ2; are deter-
mined so as to satisfy the constraints Egs.(26) and
{27). As a result of above simultaneous equations,
the coefficients are determined explicitly without any
matrix solution as follows ;

P+ fhe  2sgn(u;)p?
AL = z up icell 28
i Ax? + Az? (28)
2f + flp  Ssen(un)pley
— — 29
AZ Ax; Az? (29)

where Ax; = Tyup — T:- Then, Ap; is calculated as,

T

" f@')de' = ~Dy(a; + £)

Ap, =
zi+E€
= —(ALL® + A2,67 + 76, (30)

the time development of p can be calculated from
Eq.(19) with the aid of Eq.(30). It is interesting to ob-
serve by comparing Eq.{28) with Eq.(3} that the role
of f,¢ in Eq.(3) is played by D, f, respectively, be-
cause D,(z,) — D, (%,up) = sgn(u,)pll..; from Eq.(26}.

Then, let us turn to the time evolution of the phys-
ical value f. We calculate the physical value f in the
same way as the original CIP scheme. Conservative
equation is rewritten as

8f /8t + udf )9z = G, (31)

where G = —f0u/8z. Equation (31) is a simple ad-
vection equation for f. On the basis of the time-
splitting algorithm of the CIP scheme [3], we split the
solution of Eq. (31) into two phases;

advection phase : 8f/ot +wof /0 = (32)
non — advection phase: 9f/t=G {33)
After the advection phase is solved, the non-advection

phase is calculated with the result of the advection
phase.

In the advection phase, we make use of the local
analytic solution of Eq.(32), that is well known as the
Lagrangian invariant solution fl=z;, &+ At) = f(zx, —
u, AL, t). Since the profile of f{x) between z; and z;y,
is given by Eq.(25), the solution of the advection phase
F* is calculated as

fr 0Dz +0)

’ oz

After the advection phase is calculated by using above
Eq.(34), the result of the advection phase f~ is ad-
vanced to the value of the next time step f**! in the
non-advection phase. The non-advection phase can
be solved by conventional finite difference method as
follows,

=3ALE* + 2426+ 7 (34)

P = £+ GAt (35)

where G = —f7(8u/dx); and the spatial derivative
of the velocity 8u/dz is approximated by the simple
centered finite difference. Figure 2 (d} shows the result
of the square wave propagation after 1000 time steps.
We see from Fig.2, the CIP-CSL2 scheme provides
quite similar result to one of the original CIP.

Er

3.5 <Generalization

It would be useful to summarize all the procedure here
although the procedure is available in other references
and was already given in the previous sections. The
basic equations are now

P T Sl S S TS — {
a.t .ua = fa S =G, (36)
af af’ 1pt '

= +u—= _uf + & (37)

where G includes a part of mass flux d(uf)/dz in
Eq.(13) and/or various source terms like diffusion.
These equations are split into two phases:

(1)Advection phase

af  of _
E + Ua = 0,
af af
5 +u B 0 (38)
(2)Non — advection phase
af
B
affjot=—-u'f +& (39)
The advection phase is solved by
forCIP — CSi4

fE=aiet + 0P + e+ R+ I

fi = 4a3€] + 3036 + 276 + fI7,
forCIP — CS1.2

fr =3ALE + 2426 + fT7



The non-advection phase is written as

= £ Gat
fzn-H = fz‘ - (ul‘flw)‘ﬁt
1 - +1 =
171;1 BEEES N 1n—1 + f:-—l
2Az

-

, {CIP — CSLA4 only)

For the calculation of p (= [ f dzx), we use the con-
servative form of Eq.(36). Therefore it is solved as

Pi_1ja = Py T AP — Ap (40}
Ty
p?jf/z = 9:41/2 + SdrAt. (41)
-1

In the calculation of Eq.(40), Eq.(20) and Eq.(30) are
used.

It is important to note that the mass conservation is
recovered in a form of spatial profile within a grid cell
every time step when the polynomial is re-constructed
under the constraint of Eq.(14),even if mass flux is
separately treated in the nonadvection term.

3.4 Numerical tests

We shall present some sample calculations to test the
procedure given in the previous sections. The first ex-
ample is advection with variable velocity and Eq.(13)
is solved under a given velocity fleld;

u =1+ 0.5sin(27xz/100), (42)
with the following initial condition,

_J1 if40 <z <60
£(0,2) = {0 otherwise,

where equally spaced grid points of Az = 100/{N —1)
and time step size of At = 10/{N — 1) are used, N
being the number of grid points.

We repeated the calculation by changing the total
grid points to N=101, 301 and 1001 to test grid depen-
dence of the scheme proposed here and the resulis are
shown in Fig.6. All profiles are those after 10(N — 1)
time steps that corresponds to t=100.

We confirm that the accuracy has been improved at
the discontinuity by the CIP-USL4 shceme, because
it uses 4-th order polynomial and the CIP-CSL2 gives
quite a similar result to the CIP. It is important to
note that the first order upwind scheme needs 10,001
grid points to obtain the same result as the present
schemes or the CIP of 101 grid points, which already
converged to one solution regardless of grid size. Fur-
thermore, it has aiready been shown that most of the
maodern schemes like TVD and ENQ fail to reproduce

the result with 101 grid points[24].

The following one-dimensional Burger’s equation is
an interesting example of application to non-linear
equations.

bu  Bu | Bu _
5? +TLEE'— AEEE =5 (43)

Since the CIP and CIP-CSL4 need to calculate spa-
tial derivative of u, we differentiate Eq.(43) as

—u'? + 5. (44)

The generalized procedure in the previous section is
then applied to these equations.

For the calculation of p (= [udz), we transform
Eq.(43) into the conservation form as follows,

du 4 8 (u?/2)
ot Oz

Therefore it is solved as

=5 (45)

Proijz = Pim1p T D01 — Apl, (46)

n . AAL . .
o = Pirj2T 7z (Pr1/2=207 1 o T3] (47)

We should note that in the calculation of Eq.(46),
Eq.(20) and Eq.(30) are used but with £ = —uAt/2
must be used in view of convection velocity u/2 of
Eq.(45). Finite difference approximation for viscous
term is used in Eq.(47) since it is conservative.

Figure 7 shows the calculation result at ¢=100 with
A = 0 and the initial condition:

1 (0,z) = 0.5 + 0.4 cos(27x/100), (48)

and equally spaced grid points of Az = 1.0, time step
size of At = 0.1, and mesh number N = 101 are used.

In order to check the exact speed of a shock wave,
we show the result of the calculation by the first-order
upwind scheme with N=1001 in the conservative form
of Burger’s equation .

In this calculation, although viscosity term is not
included, the speed of a shock wave is exactly repro-
duced by the present schemes.

4 Semi-Lagrangian Calculation

As already stated, the CIP can be used for a large CFL
number if the particle trajectory could be successfully
traced according to Eq.(11) through variable velacity
fields. Various methods have been proposed to find
this trajectory [10, 25]. We shall use the 4-th order
Runge-Kutta method for time integration of Eq.(11)
although it is not necessary in one-dimension .



After the particle trajectory has been f{found,
FEq.(10) is applied to advection phase. Most impor-
tant procedure is to estimate the change of mass dur-
ing such time interval. Let us imagine a procedure
given in Fig.8. In this case, we must estimate how the
mass develops according to Eqs.(19),(20). It would be
complicated if we must compute the mass flux over the
entire domain that the particle passes through. For-
tunately, however, we can reduce this procedure with
the help of Fig 8. Let us define the shaded regions by
A, B and C, and then we can easily find that

P?—1/2 = A,
Apt= | F(o)dz = A+ B,
Tp—1
A, = / Flz)e=B+C.  (49)
Tm2

Therefore, the new mass is simply given by

P?jll/z =P T AL —Apt =C = / F(z)dz,
Lm2
(50

whick means the new mass is given by integrating the

funcrion value over the two grid points corresponding
to the upstream departure points.

The target equation (13) comtains two different
parts ; one is advection that can be treated by the
above-mentioned semi-Lagrangian procedure but an-
other is the compression part like

af fB'u,

at oz’
The use of large time step sometimes leads to unsta-
ble solution owing to this term but usually it must be
avoided because then the term should be solved accu-
rately enough to realize physically reasonable solutiozn.
Thus, the use of large CFL number in Eq.(13) is al-
lowed when the velocity variance Awu is quite small.
This semi-Lagrangian approach is favorable when it is
applied to the high-speed flow that could limit the
time step but would not change the physical pro-
cess even if large time step would be used. There-
fore we should always keep in mind that the semi-
Lagrangian scheme should be used under the limita-
tion AuAt/Az < 1, although the limitation from
uAifAz < 1 can be eliminated.

(51)

We apply the above procedure to the problem of
variable velocity field of Eq.(42}. Figure 9 shows some
results containing various CFL munbers. Even up to
CFL=5, the scheme works well.

-

Fal T :
2 LOonclision

We have proposed new algorithms that make non-
conservative schemes be exactly conservative. In the

mass conservation law, mass is used as an additional
variable and it corrects the conservation error origi-
nated from a non-conservative formulation by contin-
uously changing the shape of interpolation function.
By this method, the total mass, which is defined to
be the integrated value of f over the space, is exactly
conserved.

This scheme has been tested by linear advection
with variable velocity field and Burger’s equation. Al-
though further investigation would improve the result,
the present scheme can provide a useful tool to solve
nonlinear equation in a non- conservative represen-
tation which has been proven to be qguite stable for
multiphase flow calculations.

The extension to multi-dimensions may need a little
concern about the introduction of integrated value of
f and will be given in another paper appearing shortly.
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Fig.6 Propagation of a square wave with a given velocity field by (a) CIP-CSL4,
(b) CIP-CSLZ, (¢} CIP and (d) the upwind scheme at t=100.
The number of grids is 101(circle), 301(triangle), 1001(square),
10001(diamond, only for upwind scheme).
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Fig.7 The result of Burger's equation without viscosity by (a) CIP-CSL4
and (b) CIP-CSL2 with 101 grid points at t=100. For comparison, the result
of the first order upwind scheme with 1001 grid points at t=100 is shown by
the solid line.
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Fig.8 A method to evaluate the time evolution of mass fiux.
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Fig.9 The same simulation as Fig.6 but with large CFL number,
(a) CFL=2, (b) CFL=5, by CIP-CSL4(circle) and CIP-CSL2(triangle).
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