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Effects of multiple-helicity magnetic fields on ion temperature gradient (ITG) modes in toroidal
helical systems like the Large Helical Device (LHD) are studied by means of the linear gyrokinetic
theory. Especially, dependence of the real frequency, growth rate, and the eigenfunction of
the ITG mode on sideband-helicity fields added to the main helical component is investigated.
Comparison between multiple-helicity effects on the ITG mode with those on the neoclassical
ripple transport is presented, and optimization of the magnetic configuration for better plasma

confinement is discussed.
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Many theoretical studies have been done on the ion
temperature gradient (ITG) modes™? as a cause of
anomalous ion heat transport in tokamak plasmas. Also,
recently, several works®> ™) have begun to investigate the
ITG modes in helical systems since high ion temperature
plasmas with T,(0) ~ 3.5 keV® were experimentally pro-
duced in such systems as the Large Helical Device (LHD)
of the National Institute of Fusion Science.?) The helical
systems can make various three-dimensional configura-
tions with different helical magnetic components, which
influences plasma stabilities and transport processes. In
our previous paper,® we treated the ITG modes in the
LHD-like helical configuration, where we used a simple
model of the magnetic field strength with a toroidal com-
ponent and a single helical component. In the present
work, we investigate how linear properties of the ITG
modes are affected by addition of multiple-helicity fields.
So far, multiple-helicitiy effects on the neoclassical ripple
transport have already been systematically analyzed by
several authors.’%12) Then, it is meaningful to compare
the muitiple-helicity effects on the ITG modes with those
on the neoclassical transport from the point of view of
optimizing the magnetic configurations for better con-
finement of helical plasmas. Such a comparisen is also
presented in this report.

Here, we use the following model of the magnetic field
strengih B,

B/By=1— ¢ cos8 — ep cos(LE — M()

—e_cos[(L — 1)8 — M{] — e cos[(L + 1}8 — M(]

(1)
where By is the magnitude on the magnetic axis,  and (
denote the poloidal and toroidal angles, respectively, and
M (L) is the toroidal {main poloidal) period number of

ilhn bwline] 8ald. Tlae +LTTITY T ") nnA AL 10N ey
S GELCH BEIUS. £0T Lae BrkNis, B/ == L I LVE T 3. A.Lexo,

&({r) =r/R <« 1 ( r: the minor radius, R: the major ra-
dius) and e (r) o 7 are the parameters associated with
the toroidicity and the main helical component, respec-
tively, while e_(r) o< r£~! and €, (r) o« rZ*! represent
sideband helical components. For example, the absolute
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values of ¢, and e_ become large when the magnetic
axis is shifted from the standard position by changing
the vertical field.!®

We use a kinetic integral equation to obtain the linear
dispersion relation and the mode structure of the ITG
mode in the same way as in ref. 3 (see also refs. 14--16).
The kinetic integral equation is derived from using the
collisionless ion gyrokinetic equation,'”>1® the adiabatic
electron assumption, and the quasineutrality condition in
the ballooning representation.’®?® Effects of the mag-
netic configuration are taken into account only through
the V. B-curvature drift frequency term in the ion gyroki-
netic equation. Trapped particle effects are neglected
here since mainly the passing ions drive the ITG modes.
For the magnetic field strength given by eq. (1}, the ion
V B-curvature drift frequency is given by

wp = 2ALa/r)ewni (v + v /2)vr] Go(8)
with the curvature factor,
G.(6) = cosf + 8(6 — ) sind

L1

+ Y Ue/e)

i=L-1

(2)

[ cos({l — Mq)8 — M)

+ 3(6 — 6)sin{(l - Mq)6 — Ma) ji, (3)

where €, = €5, €1 = €_, and €, 1 = €. Here,
L, = ldng{r) /dr]_ is the background density scale
1ength Wyi = —T, ‘e i5 the ion diamagnetic drift fre-

quency, 7. = 1./T; is the ratio between the electron
and ion temperatures, w.e = ckgT./(eBLy,) (kg: the
poloidal wavenumber) is the electron diamagnetic drift
frequency, v” {v) )} is the ion parallel (perpendicular) ve-
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= (r/q)dg/dr (g: the safety factor) is the magnetic
shear parameter, & is the poloidal angle parameter asso-
ciated with the ballooning representation, and o = {—g#
is the label of the magnetic field line. The curvature fac-
tor (7.(#) represents the structure of the VB-curvature
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drift frequency along the magnetic field line. Since, in
the ballooning representation, the poloidal angle variable
# is used as a coordinate along the field line, G(#) is not
a periodic function of # but a function defined on the so-
called covering space, —00 < 8 < 0.1%29) It should be
noted that G.(f) > 0 (< 0) cotresponds to bad (good)
curvature regions, where destabilization (stabilization)
of the modes occurs.

The kinetic integral equation for the electrostatic po-
tential ¢, which contains a complex-valued frequency

@ = w, + i as an eigenvalue, is written as®1%)

(+E)swi- [ I kK)o k) (@

oo V2
with
0 \/§€_in 2
K(k,k :-if W@ —ei g~ (kR )T/2A
w 3 ni(k — k')?
1— g+
X[w,eTe+ CXCR vy S
21’]1 ki+kf k_]_kg_ ' R
— — || Tolky, k% ),
1+a) (1 2 ram T @raml)) otnR
(5}
where I, = L(kik) /[l + a)7)) § = 0,1} are

the modified Bessel functions of j7-th order, 7, =
(dinT;/dr)/(dInng /dr), A = (weeT)?(8€n/q)?/Teq, €n =
Ln/R, k = 8ke(0 — 64), & = k(8" — 83), TolkL, k) =
I koKL /UL + a)m) ) expl—(8 + K2)/2r(l + @),
kﬁ_ = kg + K2, and kf = kg + k2. Here, the wavenum-
ber variables ky, k, and & are normalized by p;!
(ps = \/2To/m./Q; = 722 prs). The effects of the VB-
curvature drift frequency given by egs. (2) and (3) are
included in the kernel K(k,%') through the variable a
defined by

. T o 4 i
a:1+1m/;r dae UJD(G )
=1 —12(La/r)T tet/ (8 — 9)
x( et[(§+1)(sin945in9’)

—5{(6 — 8x) cos 8 — (9 = ) cos¢'} |

L+1

LZ o Eiwq[ (uquH)

-1 - L \¢

x { sin(t ~ Mq)8 - Ma]
~ sinf(l - Mq)#' — Ma] }

—g{ (8 — 63) cos( (I — Mq)0 — Ma: )

(8 — 6x) cos( (I — Mq)¢ — Ma ) } ] )
{6}

Hereafter, results from numerical solution of the in-
tegral equation {4) with the boundary conditions ¢(8 —

+00) = 0 are shown for the helical system with L = 2 and
M =10 (corresponding to the LHD case}. Qur numeri-
cal code can calculate both positive and negative growth
rates with proper analytic continuation of the dispersion
relation in the complex frequency plane.?~2%) Detailed
procedures for the analytic continuation are shown in
ref. 23. Parameters used here are the same as the stan-
dard parameters in ref. 3 (see Table I) except for e, and
¢_. The standard parameters q, §, 6k, @, and ¢, /e in
Table I are chosen such that they correspond to the mode
localized in the outside of the torus along the field line,
which passes through the point with the lowest mag-
netic field strength on the magnetic surface r/a = 0.6 of
the LHD plasma. In Table I, kgppr, = 0.65 is the nor-
malized poloidal wavenumber, which correspond to the
largest growth rate for the case of no sideband compo-
nents, € = e_ = 0 (see Fig. 10 in ref. 3).

Table I. Standard parameters

& & o

2 -1 0 0

kg pr, T € Te Gh/Ef_ L M
0.65 3 0.3 1 1 2 10

Figure 1 shows effects of the sideband helical ripple
parameters €, /¢; and €_/e; on the normalized real fre-
quency w./w.. and the normalized growth rate +v/w.. of
the ITG mode. The growth rate depends on the side-
band helical components more strongly than the real
frequency. In order to see more clearly the sideband-
helicity dependence of the growth rate, we plot in Fig. 2
contours of the normalized growth rate 4 = /oo on the
{e_/es, €4 fer )-plane, where ypp = 0.183 w,. is the growth
rate for the case of ¢, = e_ = 0. The stable region
(v < 0) appears for large €y, and the peak of growth
rate (¥ = 1.5) exist at (e_ /e, e /€)= (—1.0,—0.4).

It is interesting to compare the effects of the side-
band helical components on the ITG mode shown
above with their effects on the neoclassical trans-
port. For this purpose, we use the geometri-
cal factor for the neoclassical ripple transport,11:12)
which is given by Goeo = fo~ dd €3)° [G1(Ber/99)? —
2G2(Ber /00 Oeyy [08) + G3{Oer/08)?] with Gy = 16/9,

G2 = 16/15, and G5 = 0.684. Here, er = —e cosd,
ey = (C?2 + DHY2 C = —¢, — (€4 + ¢_)cosd, and
D = —{ey — ¢_)sin# for the magnetic field strength

given by eq. (1). Figure 3 shows contours of the nor-
malized geometrical factor Greo = Greo/{Grneo)oo 00 the
(e.. /€, €4 /et )-plane, where (Greo oo represents the value
of Greo for €5 = €. = 0. We see from Figs. 2 and 3
that the sideband-helicity parameters around the peak
of the growth rate (9 = 1.5) correspond to a dip of theé
neoclassical geometrical factor {Greo < 1), and that the
stable region for the I'T'G mode (§ < 0) gives the large
neoclassical transport (éneo > 3).

In order to physically understand the relation between
the ITG mode, the neoclassical transport, and the mag-
netic structure, we plot the eigenfunction ¢{@) = ¢, +i¢;
of the ITG mode, the curvature factor G.(#), and the
magnetic field strength B(f) along the field line for
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Fig 1. Eflects of €4 /et and €_ /et on the normalized real fre-
quency wyr/wse and the normalized growth rate ~/w.. of the
ITG mode.

(e ferecfe) = {0.0), (—1.-0.4} (—0.4,-2). (1,—-0.8).
and {1,1), in Figs. 4 (a), (b), (¢), (d), and (e), respec-
tively. For convenience, these sideband-helicity parame-
ters for Figs. 4 {a)—(e) are plotted by the crosses labeled
as a-e on the (e_ /e, eq /e )-plane in Figs. 2 and 3, re-
spectively. Using the normalized parameters Gpeo and 4,
we obtain (%, Gneo) = (1,1) for Fig. 4 (), = (1.5,0.177)
for (b), = (-0.019,0.54) for (c), = (1.25,3.58) for (d),
and = (--0.151,708) for (e} Then, s larger ITG mode
growth rate and a smaller neoclassical (NCL) transport
are given for the case of Fig. 4 (b) than for the case of
no sideband components in Fig. 4 (a), which :s denoted
by (ITG, NCL) = (bad, good) for (b). In the same way,
the rest of combinations JTG, NCL) = {good, good),

T L ) T—_Jos
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Fig. 2. Contours of the normalized growth rate 4 = +/4gp on the
{e—/et,e4./et)-plane. Here vpo = 0.183w,, is the growth rate for
the case of ¢4 = . = 0.

(bad, bad), and (good,bad) are given for {c), (d), and
(e), respectively.

Fig 3. Contours of the normalized geometrical factor é’neo for
the neoclassical ripple transport on the (e /e, €4 /€:)-plane.
Here, Gpreo =1 for e, =¢e_ =0

We see from the profile B(#)/5y in Fig. 4 that the
bottom of the magnetic ripple is nearly constant in the
case of (b}. This magnetic profile is favorable from the
viewpoint of neoclassical transport because deviations of
orbits of deeply trapped particles from magnetic surfaces
are small for such a profile.1012) Also, in the case of {b),
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the profile of G.(#) have a clear bad curvature region in
the outside of the torus (—n/2 < 8 < 7/2) like that for
the tokamak case. Then, the ecigenfunction ¢(f) resem-
bles that in the negative-shear tokamak case (see Fig. 2
in ref. 3), and the growth rate is larger than in the no
sideband-helicity case of (a).

In the case of (c), B(#) has nearly constant bottoms
like in the case of (b}, while G.(#) gives larger amplitude
oscillations than for (a). Then, significant good curva-
ture regions also exist around & ~ 0, which is favorable
from the viewpoint of the ITG mode stabilization. Con-
sequently, a lower ITG growth rate and smaller neoclas-
sical transport are simultaneously realized for {¢} than
for (a).

For (d) and (e), the bottom of magnetic ripple is far
from constant and is unfavorable for neoclassical trans-
port. The curvature factor G.(@) has small but positive
values around @ ~ 0 for (d) while it has large oscillations
around # ~ 0 for (e) like for (¢). Thus, we have (ITG,
NCL) = (bad, bad) for (d), and (good, bad) for {e).

Here, it is recalled that 8y = 0 and o = 0 are used for
the calculations in Figs. 1-4. For the multiple-helicity
fields considered here, we have also confirmed stabilizing
effects of increasing |#;| and weak dependence of the lin-
ear ITG mode properties on « in the same way as in ref.
3 {see Figs. 7 and & in ref. 3%

In summary, this work have shown how the ITG mode
properties depend on the sideband components of the
multiple-helicity fields in the LHD-like helical system.
Effects of the multiple-helicity fields on the I'TG mode are
compared with those on the neoclassical ripple transport.
Mechanisms of these effects are physically explained from
profiles of the curvature factor G.(¢#) and the magnetic
field strength B(f)} along the field line. Adjustment of
these profiles as shown in Fig. 4(c) can reduce the ITG
mode growth rate and the neoclassical ripple transport
simultaneously, which may give a clue for optimization
of the magnetic field configuration for better plasma con-
finement. It should be noted that the linear ITG mode
analysis here have neglected effects of trapped particles,
which may affect the ITG mode growth rate. Also,
effects of collisions, nonadiabatic electrons, impurities,
magnetic fluctuations, and sheared radial electric fields
have not been taken into account. Investigation of these
effects remains as future tasks.

Acknowledgements

The authors thank Dr. M. Yokoyaima for useful dis-
cussions and comments on the multiple-helicity fields.
They also appreciate continuous encouragement of this
work by Dr. R. Kanno, Prof M. Okamoto, and Prof.
K. Itch. Numerical calculations in this study are per-
formed on the computer system of the Computer Cen-
ter in the National Institute for Fusion Science. This
work is supported in part by the Grant-in-Aid from the
Japanese Ministry of Education, Culture, Sports, Science
and Technology, No. 12680497.

1) W. Horton: Rev. Mod. Phys. 71 (1999) 735.
2} W. Horton, M. Wakatani, and A. J. Woocton: in fon Temper-

efe=1,eje=—04
— 7T

efe~0.4,e/e=-12
LA B L B

ITG:nad

ITG.good
HCL: GO0 — 1= (C) n

WCL:good—

i ®

efe~l, e/e~0.3
I I ITGI .bad

L @ e |

R |
- 0 = T =w

AR
-VWUIWVV-

Fig. 4. The cigenfunction ¢(8) = ¢ -+ id, of the ITG mode,
the curvature factor G.(f), and the magpetic field strength
B{#)/Bg along the field line. Here, (e_/er,e4 /&) = (0,0) for
(a), (—1,—-04) for (b), (—0.4, —2), for (¢}, (1,—0.8), for (d), and
(1,1) for (e}, which correspond to the crosses labeled as a, b, ¢,
d, and e in Figs. 2 and 3, respectively. Note that only G{#)} is
plotted in the range —n/2 < 8 < /2, where ¢(8) is dominantly
localized.

_4_



6)
)
8)
9)
10)

11)
12}

13)
14)
15)

16}
17)

18)
19)

20}
21)

22)

23)

ature Oradient Driven Turbulent Transport, (American Insti-
tute of Physics. New York. 1994)

T Kuroda, H. Sugama, R. Kanne, M Okamoto J Phys Soc
Jpn 69 (2000} 2485

T. Kuroda, H Sugama, R. Kanno, M (Okamoto Journal of
Plasma Fusion Research SERIES 2 (1999) 105

G Rewoldt, L-P Ku, W. M Tang, H Sugama, N Naka-
pma, K Y Watanabe, S. Murakam:, H Yamada, and W. A
Cooper Phys. Plasmas 7 {2000) 4942.

G Rewoldi, L -P Ku, W M. Tang. and W A Cooper Phys
Plasmas 6 {1999) 4705

J. L V Lewandowsku: Plasma Phys, Control Fusion 40
(1998) 283

N Ohyabu,et al : J Plasma and Fusion Res 786, 425 (2000}
A. Iryoshi,et al- Nucl Fusion 39 (1999)

B E Mynick. T K Chu, and A H Boozer Phys Rev. Lett
48 (1982) 322

K C. Shaing and 8. A. Hoking: Phys. Flu:ds 26 (1983) 2138.
M. Wakatan:. Stellarator and Heltotron Dewnces (Oxiord Uni-
versity Press, 1998} p 271.

M. Yokoyama private commumecation

F. Romanelli, Phys. Fluids B 1 (1989} 1018.

J. Q. Dong, W Horton, and J. Y Kim Phys Fluds B4
(1992) 1867

C Z. Cheng and K. T Tsang: Nucl Fusion 21 (1681} 643
P. H Rutherford and E. A Frieman. Phys. Fluids 11 {1668}
569.

J. B. Taylor and R J Hastie: Plasma Phys 10 (1968) 479
R. D. Hazeltine and J D. Meiss Plasma Confinement
{ Addison-Wesley, Redwood City, California, 1992) p. 208

R L Dewar and A. H Glasser Phys. Fluds 26 (1983) 3038
J. Y Kim, Y. Kishimoto. W. Horton, and T. Tajima, Phys.
Plasmas 1 (1994) 927.

T. Kuroda, H. Sugama, R. Kanno, M. Okamoto, and W. Hor-
ton, J Phys. Soc. Jpn 67 (1998) 3787

H. Sugama: Phys. Plasmas 6 {1999) 3527.



NIFS-663

NIES-664

NIES-665

NIFS-666

NIFS§-667

NiFS-668

NIFS-669

NIFS-670

NIFS-671

NIF5.672

NIFS-673

NIFS-674

NIFS-675

NIF5-676

NIF5-677

NIFS-678

NIFS-679

NIFS-680

NIFS-681

NIFS-682

NIFS-683

NiI's-684

NIFS-685

NIFS-686

NiF5-687

Recent Issues of NIFS Senigs

H Nahamura and T Sato H Kambe and K Sawadaand T Saik
Dessgn and Opumizanon of Tapered Structure of Near-field Fiber Probe Baswed on FDTD Simulation Oct 2000

N Nakajima,
Three Dimensional ldeal MHD Stability Analysis o L=2 Hehoror Sysaems Ot 2000

5 Fupwara and T Sate,
Structure Formanen of a Single Polymer Chain 1 Growth of trany Demains Nov 2000

5 Kida.
Vorucal Structure of Terbulence Nov 2000

H Nzkamura, 5 Fupwarz and T Saro
Rigidity of Onientavonally Ordered Domains of Short Chain Molecules Nov 2000

1 Mutoh. R Kumazawa, T Seki. K Saito. Y Tomn. F Shimpo, G Nomura. | Watan, D A Hartmano, M Yokota. K Akaishi, N
Ashikawa, P deVries. M Emoto. H Funaba. M Goto, K 1da. H lder K lkeda. § lnagaki. N Inoue. M Isobe. O Kaneko, K
Kawahata, A Komon, T Kobuchi, § Kubo, 5 Masuzaks, T Monsaki. § Monta. ) Miyazawa 5 Murakam, T Mmami, S Muto, Y
Nagayama. ¥ Nakamura. H Nakamsh, K Nanhara, N Noda, K Nismmura. K Obkube. N Ohyabu, S Ohdach:. Y Oka, M Osakabe. T
Ozaki. B] Peterson. A Sagara. N Sato, § Sakakibara. R Sakamote H Sasac M Sasac, M Sato. T Shimozuma, M Shop. S Sudo, H
Suzuks, Y Takerr. K Tanaka. K Tor, T Tokuzawa. K Tsumori. K Y Watanabe. T Watanabe., H Yamada, t Yamada, S Yamaguchi. K
Yamazahi. M Yokoyama. Y Yoshimura, Y Hamada O Motopima. M Fupwara,

Fast- and Slow-Wave Heanng of Jon Cyclotron Range of Freguenciges in the Large Heheal Device Nov 2000

K Mimz. M S Jovanovic. Y Semicku. Z£-M Sheng. MM Skonc and T Sato
Sumulated Photon Cascade and Condensale 1 Relatmaistic Laser-plasma Ineracthion Nov 2000

L Hadzievski. MM Skonc and T Sato.
On Omigin and Dynanucs of the Discreie NLS Equation Nov 2000

K Ohkube, § Kube H lder. T Shimoruma, Y Yoshimura F Leuterer. M Sato and Y Talata
Analysis of Oversized Shiding Wavegude by Mode Maiching and Mulu-Mode Network Theory Dec 2000

C Das. § Kidaand 5 Goto.

Overall Seif-Smmilar Decay of Two-Dimensional Tubulence Dec 2000

L A Bureveva, T Kato, ¥5 Lisautsa and C Namba.

Quasiclassical Representauon of Autoonization Decay Rates in Parabolic Coordinates Dec 2060
L. A Bureyeva. VS Lisitsa and C Namba,

Radiauve Cascade Due to Dielectromic Recombinanon Dec 2000

M FHeyn, SV Kasilof, W Kernbichler. K Matsuoka, VV Nemov $ Okamura. O.S. Pavhichenko.
Configurational Effects on Low Collision Plasma Confinement i CHS Hehotron/Torsatron. Jan 2001

K. Itoh.
A Prospect at 11th Internanonal Teki Conference - Plasma physics, quo vadis”, Jan 2001

S Satake. H Sugama. M Okamoto and M Wakatan,
Classificanon of Particle Orbits near the Magnetc Axis o a Tokamak by Using Constants of Motion, Jan 2001

M Tanaka and A Yu Grosberg.

Giant Charge Imversion of a Macroion Due 10 Muluvalem Countentons and Monovalent Corons Molecular Dynamics Studyz, Jan. 2001
K Akaishi, M Nakasuga, H Suzuki, M ima, N Suzuki. A Komon. O Motopma and Vacuum Engineening Group.

Stmulanon by a Diffusion Model for the Vartauon of Hydrogen Pressure with Time between Hydrogen Discharge Shots in LHD, Feb
2001

A Yoshizawa, N Yokoi. § Nisizima. § -] hob and K lioh

Vanatienal Approach to a Turbulent Swirling Pipe Flow wuh the Aid of Helieiy. Feb 2001

Alexander A Shishkin
Estaferte of Dnft Resonances. Stochasucity and Control of Parcie Motion 1o a Torodal Magneuc Trap, Feb 2001

H Momota and G.H Maiiey.

Virtual Cathode 1n a Spherical Inernal Electrostane Confinement Device. Feb 2001

K Saig R Kumazawa. T Mutoi. T Sehr. T Waian Y Tom., DA Hargnann Y Zhae A Fukuyama. ! Shimpo, & Nomura, M Yokola, M Sazsac, M
Iobe. M Osakabe. T Osaki K SNdnhara ) “agayama, S Inagakr K ftoh. § Monma AV Kraulmkov, K Obkubo. M Sale, § Kubo. T Smumozuma, H 1des.
Y Yoshimura. () Kancko. Y Takern, Y Oka K Twwmon K Theda A Komor H Yamada H funaba K'Y Watanahe S Sakakibara, M Shon, R. Sakamoto,
1 Miyasawa K Tanaka B ) Peterson N Ashikawa S Murakami T Minami § Ohahacht § Yamamot S Kado, H Sasan, H Susuki. K Kawazhata., P

devnes. M Emoin H Nakamshi T Kobuwchi N fnoue N Ohyvabu Y hakamura 8 Masuzaki & Muio. K Sato T Monsaki. M Yokoyama T Watanabe, M
Gota 1 Yamada K lda T Tokusawd N Noda § amaguchs K akashi A Sagara K Ter K Nishimura, K Yamarsaki, S Sude Y Hamada, O Motonma,

M Iujtwara.

lon and Electron Heating im ICRF Heanng Expeniments on LHD Mar 2001
S Kidaand S Gote

Line Stausucs Stretching Rate of Passive Lies in furbulence Mar 2001

R Tanaka, T Nakamuraz and T Yabe

Exactly Conservairve Semu-Lagrangian Scheme (CIP-CSL) in One-Dhimension Mar 2001

S Todaand K ltoh,

Analysis of Structure and Transition of Radial Elecine Field in Helical Systems Mar 2001

T. Kuroda and H. Sugama,
Effects of Muluple-Helicity Fields on Ton Temperature Gradient Modes Apr 2001



