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Abstract. The statistical properties of the neoclassical radial diffusion are confirmed
through direct comparision with a Wiener process by the numerical evaluations of the
cumulant, diffusion and autocorretation coefficients. Within the neoclassical framework
the origin of stochasticity exists only in velocity space. It is characterized by the
stationary, subdiffusive, uniform and Markov process. Through the drift motion of
particle guiding centers, the stochasticity in velocity space leads to that in configuration
space, i.e., the radial diffusion. It is shown that such a radial diffusion develops as an
approximately Wiener process, i.e. the statistically non-stationary, normal diffusive,
Gaussian, and Markov process in the asymptotic time region.
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1. Introduction

The neoclassical transport theory [1, 2| is the basis of the plasma transport in a
topologically torus geometry with magnetic field consisting of regular nested flux
surfaces. In this framework, the determiristic drift motion of particle guiding centers
inherent in such a geometry and the stochasticity due to the Coulomb collision
in velocity space completely determine the neoclassical radial diffusion process in
configuration space. Properties of the neoclassical radial diffusion are categorized
quantitatively according to the relative magnitude between the characteristic frequency
of the stochasticity ( Coulomb collision frequency ) v and those of the drift motion.
In axisymmetric tokamaks, the deterministic drift motion of guiding centers has two
types of characteristic frequency; one is a bounce frequency 1, and the other is a
transit frequency v;. Thus, three asymptotic regimes exist: collisionless banana, regime
(v < 1), intermediate plateau regime (1, < v < 1), and collisional Pfirsch-Schliiter
regime (v, < v). For each asymptotic regime, the diffusion coefficient is obtained by
using a variational approach [1} or a moment approach ]2].

The neoclassical transport in a torus geometry with a perturbed magnetic field has
been investigated under various circumstances {3, 4, 5, 6]. In these cases, the perturbed
magnetic field is treated as a statistical quantity, so there are two types of statistical
quantities; one is the stochastic velocity due to the Coulomb collision, and the other
is the stochastic magnetic field. The former influences the neoclassical radial diffusion
from the velocity space, and the latter does from the configuration space. In order to
clarify statistical properties of the radial diffusion in a magnetic field with a partially
or fully developed stochastic component, we must carefully examine the effect of each
type of stochastic quantity.

In this paper, as a first step, statistical properties of the standard neoclassical
transport of electrons in an axisymimetric tokamak are investigated. In this standard
case, there is no magnetic field perturbation, so that there is not a direct stochastic
source in configuration space, but an indirect stochastic source due to the Coulomb
collision in velocity space. The Monte Carlo technique, consisting of the dynamical
part (drift motion of guiding centers) and statistical part (Coulomb collision in velocity
space), is used. We clarify the statistical properties from the viewpoint of the type
of diffusive behaviour, Gaussianity, statistical stationarity, and Markovianity directly
comparing the neoclassical radial diffusion with a Wiener process. For such a purpose,
the cumulant (up to the 4th order) and autocorrelation coefficients of the radial
displacement of guiding centers are observed.

'The working model is briefly described in section 2. After statistical measures are
defined in section 3.1, they are used to declare statistics of the Wiener and pitch angle
scattering processes in sections 3.2 and 3.3, respectively. In section 3.4.1 the radial
diffusion is clarified as a Wiener like process in the long time limit. The ballistic short
time response of the system is mentioned in section 3.4.2. Finally, conclusion is written
in section 4. |
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2. Model

2.1. Theoretical development

The neoclassical transport is evaluated by the solution of the gyro-phase averaged
Boltzman equation. The distribution function of the gyro-phase averaged Boltzman
equation is the function of time {, position =, energy E. and magnetic moment g. In
this study, for simplicity, only pitch angle scattering of the linearized Coulomb collision
operator is retained as the collision term. Hence, the energy E of eack guiding center
particle is conserved and only the magnetic moment g i1s changed by the Coulomb
collision.

In such a situation, the gyro-phase averaged Boltzman equation is expressed by

of

E"F'U'Vf:C(f) (1)
where f = f(t,r, u) and C(f) is the linearized pitch angle scattering due to the Coulomb
collision. The particle drift velocity » in the magnetic field with nested regular flux

surfaces is given by [7]
pyB)
where v is the parallel velocity (vy = v - 1), py = v)/Q with the gyrofrequency {2, and
7= B/B.
Instead of solving equation (1) directly, the Monte Carlo technique is used [8].
Equations for each guiding center particle equivalent to equation (1) consist of two
parts; the dynamical part (orbit part) and the stochastic part (Coulomb collision part).

Since the characteristic equations of equation (1) without the collision term are obtained
from

= =vove 3)
equations of the guiding center in the Boozer coordinates (v, 8,¢) (¢ is the label of a
flux surface defined as the toroidal flux/2x, ¢ and ( are poloidal and toroidal angles,
respectively) become
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e2

b=p+ —pﬁ

m
with the rotational transform ¢, the magnetic moment p, the poloidal (toroidal) current
outside (inside) the flux surface 2zJ(30) (2n1(y)). The radial coordinate r is related to
1 as rfa = \/¢(r) /¢ (a) where ¢ is the minor radius.
The pitch angle scattering process in equation (1) is expressed as

af v d 3 Of

S —cn =Y (1-0%) )
where the pitch angle A = v)/v is used instead of the magnetic moment u, and v is
the defiection collision frequency. Knowing the solution of equation (5) with the initial
condition f(A ¢ =0) = 6(A — Ag), a Langevin equation giving the same mean value of
(A) and standard deviation ¢ is constructed [§]

% -+ vA = F(t) (6)
defining the stochastic source F'{t) with (F'(¢)) = 0 and the autocorrelation giving o.

From the solution of equation (6), for a discrete time step At satisfying Atv < I, A is
changed as

Ata) = Altn1)(1 — vAL) £ /(1 — X2(t,_))vAt, (7)

for one step from t,_; = (n — 1)At to £, = nAt. The symbol + indicates that the sign
is to be chosen randomly, but with equal probability for plus and minus.

Since a given magnetic field and the linearized Coulomb collision operator are
used, each guiding center particle is completely independent of others. The pitch angle
scattering due to the Coulomb collision in velocity space introduces stochastic properties
in the system or in configuration space, so that the particle ensemble allows statistical
treatment.

2.2. Numerical model

The electron guiding center equations given by equation (4) are solved using 8th order
RungeKutta method. The pitch angle scattering due to the Coulomb collision is added
following reference {4] at every particle orbit time step. In order to eliminate numerical
errors and obtain good statistics, the number of guiding center particles N is chosen to
be 10000. The energy of all electrons is fixed as E = 3keV and the relative error of the
energy conservation is tolerated up to 107*% during the calculations.

As a MHD equilibrium, an axisymmetric FCT tokamak with regular nested flux
surfaces is adopted. The boundary is circular, B = 3T, and the major and minor
radii are B = 3m and @ = 1m, respectively. The profile of the rotational transform is
specified as ¢+ = 0.9 — 0.5875(r/a)?, and 8 = (kinetic pressure/magnetic pressure) = 0.
All particles are initially started from the same flux surface with ¢ = 2/3 at r/a = 0.63,
with uniformly distributed poloidal and toroidal angles in the Boozer coordinates and
with randomly chosen pitch angles.
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The system has two types of characteristic frequencies associated with the particle
dynamics: the transit frequency of passing particles v, and the bounce frequency of
trapped particles v5. The characteristic times are 7,(= v; ') for passing and (= ;")
for trapped particles, respectively. Both frequencies and characteristic times at the
initial flux surface are {9]

LY

vy o= — = 221x108s! : =y = 435x1077s
TR
r\3/2 _ (8)
vy = (E) v, = 230x10°s !t : 7= yb"l = 452x10°%s

where v = /2E/m. According to the relative magnitude among above characterictic
frequencies (times) associated with particle dynamics and the deflection collision
frequency v (collision time, 7. = v~!) due to the Coulomb collision associated with
stochasticity, there are three types of collisionality regime:

vy Ly Or T, T, T, . banana regime
KLy, OF T, > 7. > 7 ¢ plateau regime (9)
Ky Ky or T, T > 7. - Plirsch- Schliiter regime.

In the simulation different collisional regimes are treated by choosing the parameter v
to be 10%7%, 10%~* and 107s™!, which corresponds to the banana, plateau and Pfirsch-
Schliiter regime, respectively. In order to satisfy above mentioned energy conservation,
the time step size At of the numerical calculation is adopted to be At = 0.5 10 %s.

3. Statistics of the neoclassical diffusion

3.1. Statistical measures

The statistical analysis of the radial diffusion is based on calculation of the cumulant,
diffusior and autocorrelation coefficients. They are defined with respect to the radial
particle displacement

ér(t) = r(t) — r(0)
From now, the symbol (X} denotes particle ensemble average
1 N
==Y X 10
=52 (10)

where N is the number of particles in the observed particle ensemble.
The dimensiornless n-th cumulant coefficient -y, [10] is given by

_ G(®)
Yalt) = C;/Q(t) (11)
where C,,(t) is n-th cumulant. Up to the 4th order it is calculated as [11]
Ci(t) = {ér(1)), (12)
Ca(t) = ((6r(t) = (br(®))™),  n=2,3 (13)
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Cy(t) = ((6r(2) — (67()))*) — 3C3(2)- (14)

The first cumulant is a measure of the advective effect or convective diffusion {11]. This
advective effect is eliminated from the higher cumulants. The second cumulant is the
dispersion around {r(t}), and a measure of the conductive diffusion, from which the time
dependent diffusion coefficient is defined as

(eI SEATRR USRS QT L S Lwrt ER T SLLEENL

_ Gy(2)
D(t) = = (15)

The time dependence of C;
Ca(t) = t°, (16)

determines the nature of a stochastic process [12]. The process with @ < 1,=1,>11is
a subdiffusive, normal diffusive, or superdiffusive process, respectively. Corresponding
diffusion coefficient is defined as ‘

D(t) ~ t*1, (17)

It is proved [10] that the only physically acceptable random process with a finite
number of nonvanishing cumulant coefficients is Gaussian with ;.9 = 0. Therefore,
the cumulant coefficients v, generically carry information about non-Gaussianity [13]
1. The degree of asymmetry around {r(¢)) and relative peakenness or flatness of a
particle distribution, with respect to Gaussian, are characterized by 3 (skewness), and
~s (kurtosis), respectively. A positive (negative) value of skewness signifies a distribution
with an asymmetric tail extending out towards r(t) > (r(f)) (r(t) < {(r(#))), and a
positive (negative) value of kurtosis indicates more peaked (flated) distribution than
the Gaussian one.

The autocorrelation coefficient [11, 14] is given by

A2y — _L6r®) = GroN(ere) - Ere))
V{(8r(e) — (Br(eN)((6r(¢) — (6r(E))?)
If the autocorrelation coefficient A{f,#') depends only on the time interval 7 = ¢ — £ the
process is statistically stationary. On the other hand, when A(Z,¥) is the function of
both times ¢ and ¢, the process is statistically non-stationary.
The Markovianity of a stochastic process means that the stochastic process is fully
determined by the knowledge of probability density at any fixed time and transition
probabilities from that state to the arbitrary ones. The deterministic process is of

Markov type. If one process is Gaussian and Markovian then following equality is true
[14]

(18)

Alt, Yy = A(LNAR Y fort <" <t ort >t" > ¢, (19)
and if equation (19) is true for a Gaussian process then it is Markovian.

i The non-Gaussianity is then attached to the existence of the correlation effects in the treated
stochastic process
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3.2. The Wiener process

In order to clarify the statistical measures mentioned above, those measures are applied
to the well-known Wiener process {12, 15]. The Wiener process is fundamental to the
study of diffusior processes. It is a Markov process described by the Langevin equation
as the integral of the white noise, F'(t)

i—f = F®), (20)
with
(F{t)) = 0, (F(eYF(t')y = Dé(t — 1)

where D is constant and z(t) is the particle position.
By using equations (12) and (13) for éz(t) = z(t) — zq,
Cy(t) =0, Co(t) = Dt (21)

where xg is the particle position at ¢ = 0. The second cumulant is expressed as a linear
function of time, so that the diffusion coefficient given by equation (15) is

p=2
2

Hence, the Wiener process is normal diffusive.
The skewness and kurtosis are
13 =0, vy =0
The normal diffusivity and vanishing skewness and kurtosis suggest that the Wiener
process is Gaussian. Indeed, since the values of variable z(¢) are independent random
events (from the white noise stochastic origin indicated by equation (20)), the probability
distribution and conditional probability are Gaussians as the center limit theorem shows
[13, 15]. Hence, the conditional (transition) probability is given by
F(z,1]20,0) = ———exp (M)
T (27Dt) 2D )7
which is the solution of the Fokker-Plank equation
2
2 1@, t20,0) = 2o (2, t70,0)
with the initial condition f(z,0]zq,0) = &§(z — z¢).
On the other hand, by using
{6z{1)6z(t")) = Dmin(t,'),

the antocorrelation coeflicient {equation (18)) is

At 1) = \/tz” for t<t, (22)

which indicates that the Wiener process is statistically non-stationary. The
autocorrelation coefficients satisfy equation (19). It is consistent with the Gaussianity
and Markovianity of the Wiener process.

Therefore, from the statistical point of view, the Wiener process is a Markov, normal
diffusive, Gaussian and non-stationary process.

—F —
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3.3. Statistical properties of the pitch angle scattering

The statistical characteristics of the pitch angle scattering (velocity space stochasticity
origin in the neoclassical radial diffusion } can be determined analytically by a
conditional probability f(A,#|Aq, 0) with the initial condition [15]

FOL0120,0) = 6(X — Xo) (23)

satysfying the Fokker-Plank equation {5). Therefore, the pitch angle scattering is a
Markov process, i.e. the knowledge of the general solution of equation (5) {the pitch
angle conditional probability)

£ 10,0 = 3 Z LR (0P e ( 2 (21)

where P,()) is the Legendre polynomial {16], fully determines the pitch-angle scattering.
Using the orthonormallity relations of the Legendre polynomials
1 2
m n = TS 2
f_ld/\P NPV = 5—=—bnm: (25)

average with respect to f(A, t{Ag, 0)

(X)) = [ DX to,0) (26)

and calculating the statistical measures with respect to A(t), the values of the first and
second cumulants (equations (12) and (13)) are

Cy(8) = Age™ (27)
and
Colt) = Ne™" — &) + (1= ™) (28)

The straightforward calculations (equations (11)-(14)) give the values of cumulants in
the limit vt > 1

5
¢, =0, Cy =, Yont1 = 0, 4= (29)

5
and
Ton ?é 0: n= 17 27 .- (30)

The finite constant value of C; declares the pitch angle scattering as a subdiffusive
process (in the asymptotic region v¢ > 1). On the other hand, 9,41 = 0 and finite va,
are characteristics of the symmetric broad distribution. In the asymptotic time limit
(vt > 1), it becomes the uniform distribution f{X,t) — 1/2, namely it is a uniform
process.

The calculations of two time autocorrelation functions give

(A = AMONAE) = (A = (F - é)e—vft‘w) + %euuun
_ /\%e—v(t-i-t’) ( 31)
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Hence, the autocorrelation coefficient according to equation (18) is
Alt, ¢y =e =0 ¢ >y (32)

when vt >3 1. Since A(t,1') is the function only of ¢ — ¢, the pitch angle scattering is a
statistically stationary process.

The analitically predicted statistical properties of the pitch angle scattering are
checked by the same numerical procedure as that established for the treatment of the
radial diffusion. The numerical calculations are started with ensemble of N = 10000
independent particles, whose pitch angle distribution is obtained by uniform random
number generator. For a fixed parameter v, at each time step {At = 0.5 - 107%s) the
pitch angle of each particle is changed by the Monte Carlo procedure (equation (7)).
The statistical procedure in section 3.1 gives the values of cumulants which are scattered
around the analytical ones (equation {29))

Cr() = (0.0 £107%),  Cu{t) = (% 1+0.002), ~(t) = (0.0+0.01) (33)

and
(t) = (5 +0.01) (34)

where the second number in brackets shows maximum discrepance from the analytical
estimations.

Additionally, the calculations of the antocorrelation coefficients give
At t) e D/lorr  yf >y (35)
where the correlation time is #eorr = v 1.

Therefore, the numerically obtained statistical properties of the pitch angle
scattering are consistent with the analytical ones.

3.4. Statistical properties of the radial diffusion

Since the neoclassical transport is determined by the synergetic effect between particle
drift motion [deterministic part] and Coulomb collision (in our case, pitch angle
scattering) [stochastic part], it is expected that the temporal behaviour of statistical
properties changes beyond the slowest time scale among that of the trapped and passing
particle orbits, and stochastic pitch-angle scattering. Thus, a system characteristic time
is according to section 2.2.

7. for banana regime
7s ~ ¢ 71, for plateau regime (36)
7, for Pfirsch-Schliiter regime
It is considered that the system is in transient phase for ¢ < 7,, and the time region

Lo, — o omrmaifan]l nm b Amcreiend mdia dleen masian
> Tg 15 (SPECINEU ad ull€ adyIipPurULEL uvllul 1TRIiu,
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In the standard neoclassical theory, the radial diffusion is treated as the normal
diffusive process. For each collisionality regime, the analytical diffusion coefficient is
given by [9]

Dps = Dp; : for vk vw
t
2
D, = 064xL ;’% =124x102m?/s : for m<rv<y, (37
m
D, = Dpui cfor v <€y
b

where p = muv/(eB) is the Larmor radius. In figure 1 the analytical diffusion coefficient
is plotted as the function of parameter v (solid line).

In the followings, the stochastic properties of the radial diffusion are numerically
analyzed for each collisionality regime. The corresponding collision frequencies are
shown in figure 1: v = 10%,10%, and 107 s~! for banana, platean, and Pfirsch-Schliiter
collisionality regime, respectively. The ratios among various characteristic times are
given, using equation (8), by

Ts=Tc:Tp: Tt = 1 :0.0425 :0.00435 banana regime
Ts=Tp:Te:Te = 1 :0.218 :0.095 plateau regime (38)
Ts=Tp:Te:Te = 1 :0.095 :0.0218  Pfirsch-Schliiter regime.

The normal diffusivity of the radial diffusion is proved by the numerical calculations
of the second cumulant {equation (13)), and the diffusion coefficient (equation (15)). In
figure 2, Cy(t) is plotted with respect to ¢. The normal diffusive response of system

Co(t) = ¢ (39}

in all collisional regimes is followed by the saturation of the diffusion coefficient (figure
3)

D = const., t> 7, (40)

Estimations give D = (0.0004, 0.013, 0.056)m?s~! for the banana, plateau, and Pfirsch-
Shliiter regimes, respectively. These are consistent with the analytical neoclassical
results indicated in figure 1 (dots on the curve).

The calculations of C{¢) (equation {12)) show that the convective effect is irrelevant
(IC1(1)} = {67 (t))] =~ 10 °a = py) in all collisional regimes.

The time behaviours of skewness (vy3), and kurtosis (y4) are investigated in order
to see relation with Gaussianity. The values of skewness tend to [v3] ~ 0.02 (¢t > 7} in
figure 4, which indicates a highly symmetric particle radial distribution with respect to
{r(#)) = r(t = 0) in all collisional regimes. The normalized drift widths of passing A,/a
and trapped A/a particles (electrons) at the initial magnetic surface are given by

Ay _ By 5

Ze_ Al _g9.

L= = 9210
and

Bt _ Pl _g4.10-4

a 1243
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where ¢ = r(f = 0)/R = 0.21. These values are so small that electrons could not
feel asymmetry of the system, even if their orbits are asymmetric around their initial
magnetic surfaces.

Figure 5 shows tendency of kurtosis to reduce to || ~ 0 in asymptotic time region,
t > 7, or more strictly, { > 207, in the collisionless, and ¢ > 57, in the collisional
regimes. Thus, the obtained time behaviour of +, illustrates the particularity of the
collisionless regime, or generally, of the time regions where the stochastic scatterings
weakly affect the particle orbit motion (transient time regions in all collisional regimes).
The particle orbit effects strongly affect the radial diffusion in the collisionless regime
by slowing down relaxation of kurtosis to v,(¢t) ~ 0. The transient positive value of
kurtosis in the collisionless banana regime (solid line in figure 5) indicates a more peaked
(at 7(t) = (r(¢))) distribution function than Gaussian (rare stochastic scatterings vet
can not produce the significant radial displacement of ensemble constituent majority
from the regular drift surfaces). On the other hand, the negative transient values of
kurtosis observed in the collisional Pfirsch-Schliiter regime (dotted curve in figure 5),
correspond to a more flated distribution than Gaussian (particles wander across areas
in the neighbourhood of the earlier regular drift surfaces).

Note that the vanishing ;4 in the asymptotic time limit ¢ > 7,, only suggests the
Gaussianity of the radial diffusion [10,13] in the long time limit.

To investigate the statistical stationarity in figures 6{a), 6(b), and 6{c) the
autocorrelation coefficients A(Z,1') given by equation (18) are plotted with respect to 7 =
t'—¢, and starting time, ¢, chosen to be (2x1073,1.6,3.2,...,12.8)7,, (4 x 1073, 1, ..., 8)7,,
and (2 x 1072,1,...,8)7,, for the radial diffusion in the banana, plateaun, and Pfirsch-
Schliiter regimes (solid lines), respectively. As t increases the form of A(z,t') curves
changes (figures 6(a), 6(b), and 6(c}). This inidicates the statistical non-stationarity
of the radial diffusion. Additionally, the fine structures are observed in the power-law
like autocorrelation curves. In the collisionless (banana) regime (figure 6{a}) they are
the result of the characteristic trapped and passing particle periodic motions, which are
weakly affected by rare stochastic events (7, = 7. 3> 7 > 7;). As the stochastic small
particle deflections from the regular drift orbits become more frequent {(Te =Ty > Te, Tt
the collisional regimes), the autocorrelation curves become more smooth {figures 6(b),
and 6(c)).

From the statistical analysis up to now, the radial diffusion has been regarded as a
normal diffusive and statistically non-stationary process, whose the first cumuiant C; (),
the third and the fourth cumulant coeflicients s 4 almost vanish in the asymptotic time
limit. These statistical properties are a part of those of the Wiener process mentioned
in section 3.2. Therefore, it is meaningful to directly compare A{t, ¢’} of the neoclassical
radial diffusion with the corresponding Wiener ones in the asymptotic time limit ¢ > 7,.

5.4.1. Compansion with a Wiener process In figures 6(a), 6(b), and 6(c) the
autocorrelation coefficients A(t,t') for the radial diffusion in the banana, plateau and
Pfirsch-Schliiter regime (solid curves) are compared with the Wiener ones (dotted
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curves) which are given by equation (22). The time behaviour of the autocorrelation
coefficients is well approximated by the Wiener process with the increase in ¢ in all
collisional regimes. Namely, in the asymptotic time limit, the neoclassical radial diffusion
tend to become a Wiener like process. This is more clear with the increase in 7 =¢' —¢.
According to the absence of any time correlation effect in the Wiener process the
deviations of A(f, %) in the asymptotic time limit from the Wiener ones may be related
to the existence of the short time correlations. Also, figures (6(a),6(b), and 6(c)) show
that tendency of the radial diffusion A(%,t') curves to fit to the Wiener ones is slower
in the collisionless than in the collisional regimes. It appears since the particle orbit
motion is less affected by collisions in the banana regime with 7. > 7, > 7; than in the
plateau and Pfirsch-Schliiter regimes with the characteristic time ordering 7, > 7. > 7
and 73 > ¢ > 7., respectively.

In order to confirm above observations from figure 6, the coefficient y, associated
with equation (19), is calculated

AR AR, )

ALY
For a Wiener process y = 0. The numerical values of A(t, ') are collected or time scale
whose unit step and starting time are At = 0.17, and ¢ = (0.5, 1,2, 3, 5)7s, respectively.
Therefore, " = t-+mAt and ¢ = ¢ +nAt, where m,n = 1,2.... In table 1 the maximum
values of |y| are shown for the banana (v = 10%™!), plateau (v = 10°%7"), and Pfirsch-
Schliiter (v = 107s™") regime, respectively. The radial diffusion process in the plateau
regime is the best approximated by a Wiener process (Te =75 > 7c > Ta)-

Generally, the values of |y|mez(t) decrease as the starting time ¢ increases and
average values of deviations, (y), given in table 2 tend to the Wiener one (y} = 0 in all
collisional regimes.

It supports above mentioned tendency of the radial diffusion A(t, ') curves to fit
better to the Wiener ones in the asymptotic time limit £ >> 7,.

Therefore, the neoclassical radial diffusion developes as a normal diffusive,
statistically non-stationary, Markov and Gaussian process in the long time limit, i.e.
it is a Wiener like process.

1, t<t' <t (41)

3.4.2. The short time ballistic phase The short time , t = 7 < 75, ballistic phase

characterized by

iiiha LB

Cot) =t and  D(t) =t (42)

is detected in all collisional regimes (figures 7 and 8). During it particles ”freely” follow
corresponding regular drift orbits. The collisional effects, which introduce stochasticity
in the system, can not enough affect the particle motions as long as 7. is higher or the
same order as 73, and the ballistic phase is observed. In the banana (7. = 10~%s), plateau
(7. = 107%), and Pfirsch-Schliiter (7. = 107 "s) regimes, 7. > 7, 7. > T, and 7. = 7,
respectively. Hence, the short time (f & 7;) ballistic behaviour is found in all collisional
regimes.
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4. Conclusion

The radial diffusion in the destroyed magnetic field topology is a realization of
stochasticity in both the velocity space (collisional effect) and configuration space
(magnetic field perturbation). Hence, in order to examine the statistical properties
of the radial diffusion, the influence of two types of stochasticity must be investigated
carefully. As the first step the statistics of the radial diffusion in a regular nested
magnetic field configuration is studied. There, the stochasticity origin exists only in
velocity space. It generates stochasticity in configuration space, i.e. the radial diffusion
through the drift particle motion.

The system of the test electron particle ensemble and stationary plasma background
(whose characteristics are denoted by free parameter v), which influences the behaviour
of the test ensemble throught the pitch angle scattering (stochasticity origin from
velocity space), is established by the Monte Carlo guiding center particle model.

Statistically, the pitch angle scattering is developed as a Markov, stationary,
subdiffusive and uniform random process in the long time limit. Corresponding
correlation time is the collisional time, 7. Without collisions guiding centers draw
periodic trapped and passing motions in the configuration space whose characteristic
times are the bounce time, 7, and transit time, 7, respectively. The stochasticity of
pitch angle scattering interferes with those deterministic trapped and passing particle
motions. Since the system relaxes beyond the slowest characteristic time scale, it is
shown that according to the parameter 7, = 1/v, the system relaxation time 7,, is 7, and
73, for the collisionless (banana) and collisional (plateau and Pfirsch-Schliiter) regimes,
respectively. It is numerically found that in the asymptotic time region (¢ 3> 7,) the
radial diffusion in a regular magnetic field topology develops approximately as a Wiener
process. Thus, the neoclassical radial diffusion is recognized as a normal diffusive,
statistically non-stationary, Markov and Gaussian process. When the stochastic pitch
angle scattering becomes rare, the relaxation to the Wiener process is only slowed
down. This affects the particle radial distribution function through the transient non-
Gaussianity and short time correlation effects, as is clearly shown by calculation of the
cumulant and autocorrelation coefficients in the collisionless regime (1, = 7. > 7 > 7).

Finally, the short time (f =~ 73 < 7,) ballistic response is found in all collisionality
regimes. It is result from a chosen 7, which is larger than (banana) or the same order as 7
{collisional cases), so that the collisional effect has not enough affected the deterministic
particle orbit motion during ¢ ~ ;.

The next step will be to see how the coexistence of velocity and configuration space
stochasticity origins govern the radial diffusion from the view point of statistical theory.
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Tables and table captions

Table 1. The maximum deviation of the autocorrelation coefficients, |yl. from the

Wiener value y = 0 in the banana, plateau and Pfirsch-Schliiter regimes. with respect
to the different starting times /7.

t/r, v=10%"" » =101 p=107s""

0.5 0.2014 0.1009 0.0772
1 0.1753 0.0548 0.0744
2 0.1157 0.0383 (.0729
3 0.0970 0.0426 0.0438
5 0.0553 0.0181 0.0251

Table 2. The average value of the deviation y from the Wiener one () = 0 in the
banana, plateau and Pfirsch-Schliiter regime with respect to the starting time £/7,.

i/ v=10%"1 »=108"1 »=10"s"

0.5  0.0407 0.0050 0.0190
1 0.0567 0.0137 0.0274
2 0.0525 0.0061 0.0275
3 0.0416 0.0122 0.0162
3 (.0283 0.0001 0.0115
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Figure captions

Figure 1. The comparision of the numerically and the analytically calculated [9]
neocla‘ssica.l diffusion coefficients (solid and dotted curve, respectively) for starting
particies position r/a = §.63 is shown. The numerical curve is obtained for ensembie
of 10000 electrons, and only the pitch angle scattering is included. The values v, and
v, correspond to the bounce frequency and transit frequency, respectively. The axes

are plotted in log-log proportion.

Figure 2. The 2nd cumulant time behaviour for the collisionless (v = 10%s71),
intermediate (v = 10%~') and collisional regimes (v = 107s™') is plotted by the
solid, dashed and dotted curve, respectively. Time is normalized with respect to the
gsystem characteristic time 7.

Figure 3. The diffusion coefficients saturate to D = 0.0004,0.013, and 0.056m”s~*
for observed collisional cases v = 10%,10%, and 10757}, as is indicated by solid, dashed
and dotted curves, respectively.

Figure 4. The asymmetry of the particle distribution function is measured by the
skewness, 7. In the banana (solid curve), plateau (dashed) and Pfirsch-Schliiter
(dotted curve) regimes, deviations of s from the normal Gaussian distribution are

small.

Figure 5. Kurtosis, 74, is the measure of the narrowness of the particle distribution
function. The positive value of kurtosis in the banana regime (solid curve) indicate
more peaked distribution function than Gaussian. On the other hand, the transient
negative values of 74 in the Pfirsch-Schliiter regime {dotted curve) show more flated
distribution than the Gaussian one. Kurtosis goes to zero in the asymptotic time limit.

Figure 6. The autocorrelation coefficients A(t,t') vs 7 = t' — £ for the banana (6(a)),
plateau (6(b)) and Pfirsch-Schliiter (6(c)) regimes. The solid curves are obtained by the
numerical Monte Carlo procedure. The dotted ones which correspend to the Wiener
process are calculated from equation (22). Starting time i is:
t=(2x107%,16,3.2,..,12.8)7,, banana regime
t=(4x107%,1,2,..,8)7;, platean regime
t=(2x107%,1,2,.,8)7,, Pfirsch-Schliiter regime.

Figure 7. The short time ballistic phase of the second cumulant for the banana {solid
curve), platean (dashed curve) and Pfirsch-Schliiter (dotted curve) regimes. The time

is normalized with respect to the transit time (t/7:).

Figure 8. The diffusion coefficient equivalent in the banana, plateau and PS (solid,
dashed and dotted curves, respectively) during the ballistic phase vs time f normalized

with respect to the ;.
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