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1. General Introduction

The theoretical study of turbulence in electrically non-conducting fluids has been
undergone a development very different from its counterpart of plasma turbulence. In
fluid flows, the growth of disturbances imposed on the laminar state of each flow is
investigated on the basis of linear and nonlinear stability analyses [1.1, 1.2]. In those
analyses, the effects of global boundary conditions such as wall boundaries often play
an important role. compared with stability analyses of plasma micro-instabilities. In
the case that the laminar state is unstable, it is not rare that initial small disturbances
rapidly revolve into a fully-developed turbulent state. In the presence of a solid wall,
a steep gradient of velocity is generated there, and this inhomogeneity of the velocity
field plays an important role of supplying small-scale components of flow with energy
[1.3, 1.4]. The fully developed state of turbulence is sustained by the continuous supply
of energy, for instance. through the imposition of pressure. In this situation, the fully
developed state of turbulence may be studied in distinct separation from the initial stage
of growing disturbances.

In the history of the theoretical study of turbulence. much attention has been paid
to homogeneous, isotropic turbulence free from a spatially-varying mean flow [1.5, 1.6].
Such turbulence is ideal and is difficult to realize in laboratory experiments. The flow
state similar to isotropic turbulence may be observed in the small-scale components
of motion in atmospheric and oceanic flows. Especially. the famous —5/3 power law
for the energy spectrum, which is derived with the aid of the concept of the inertial
range, is a primary target of the theoretical study of turbulence, greatly contributing
to the formulation of statistical theoretical approaches. In other words, the structural
simplicity intrinsic to isotropic fluid turbulence has greatly helped the development of
turbulence theory.

A big incentive for developing an inhomogeneous-turbulence theory on the basis of
the accomplishments of isotropic-turbulence theories is turbulence modelling {1.7]. In
the study of real-world turbulent flows, the non-dimensional parameters such as the
Reyrolds number are very large. and a computer experiment based on the direct use of
the fluid equations is not possible. As a result. the smali-scale components of turbulent
motion are eliminated, and their effects are taken into account through the concept of
turbulent or renormalized viscosity etc. This procedure is called turbulence modelling,
which is a very useful tool in the study of flows encountered in engineering and sciences,
but its applicability is not sufficient in the presence of a three-dimensional mean flow.
A systematic approach to the study of inhomogeneous turbulence is indispensable for
improving the current turbulence models and constructing new turbulence models. This
situation has stimulated the study of inhomogeneous-turbulence theory.

In contrast to fluid turbulence, the fully-developed state of plasma turbulence is
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not always a matter of theoretical concern. specificallv. in fusion plasma. for such a
state is what is to be avoided for efficient plasma confinement. Then the primary target
of the theoretical study of plasma turbulence is the stage of instability growth and
the following highly nonlinear regime subject to strong inhomogeneity. Turbulence in
plasmas has several characteristic features. One is that the fluctuation level becomes
high through the instabilities driven due to the inhomogeneity. The turbulent level and
spectrum are highly influenced by the spatial inhomogeneity and plasma configuration.
Inhomogeneities exist for plasma parameters (e.g., density and temperature) as well as
for the fields (e.g.. magnetic field and radial electric field). These inhomogeneities couple
so as to drive and/or suppress instabilities and turbulent fluctuations. In particular. the
anisotropv along and perpendicular to the strong magnetic field induces a variety in the
nature of possible fluctuations: fiuctuations often have a very long correlation length
along the magnetic-field line and are quasi-two-dimensional. In addition, mobilities
of electrons and ions differ prominently. The inhomogeneities. the anisotropy due to
the strong magnetic field, and the difference of ion and electron mobilities have strong
influences on the linear properties of plasma waves as well as on the turbulent transport
in the plasma. In manv cases. instabilities develop into strong turbulence. so that the
decorrelation rate caused by the nonlinear interactions is usually of the same order of or
much larger than the damping rate (growth rate} of the linear eigenmode. A theoretical
method developed for fluid turbulence is helpful for the study of these phenomena. In
some cases. on the other hand, only a few modes are excited, and an analysis based on
the weak turbulence suffices.

In the quest of understanding anomalous transport in confined plasmas,
investigation of turbulent fiuctuations has been a central theme [1.8-1.13]. In particular,
after finding the H-mode in ASDEX tokamak [1.14], it has been widely recognized that
the plasma profile could have a variety of forms, and changes between them occur
as sudden transitions (see reviews of experimental observations [1.15-1.21]). One of
the keys to understanding the structural formation and transitions in plasmas is the
study of mutual interactions of the plasma inhomogeneity, electric-field structure, and
fluctuations. Advances of theories in this direction have been reported in a series of
reviews [1.22-1.34] and in a monograph [1.35]. It is emphasized that this theoretical
progress is based upon the development of turbulence theories in fluids and plasmas. It is
necessary and timely to survey the basis and recent development of turbulence theories in
order to establish a perspective for the future research of turbulence, turbulent transport
and structural formation.

In this review article, we illustrate both the characteristics that fluid and plasma
turbulence have in common and those that are different. The article is organized
as follows. In §2. we give the fundamental equations for electrically non-conducting
and conducting fluids and for plasma, as well as their reduced sets. In §3. we
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give a review of the theoretical approaches to homogeneous turbulence and the
phenomenological methods for inhomogeneous turbulence, that is, turbulence modelling.
An inhomogeneous turbulence theory is explained in relation to the theoretical
derivation of turbulence models. The approach to electrically non-conducting fluid
is extended to magnetohydrodynamic flow, and the turbulent dynamo is discussed in
the context of astronomy and fusion. In §4, various theoretical approaches to plasma
turbulence are illustrated with examples of applications. Emphasis is put on the way in
which turbulence theory is applied to systems composed of components with different
mobility due to strong inhomogeneity and anisotropy. The connection with the current
fiuid-turbulence theories is also sought for shedding light on the similarity and differences
between fluid and plasma turbulence. A summary is presented in §5.
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2. Fundamentals of Fluid and Plasma Motion

2.1. Flwid Fquations

2.1.1.  bquations for electrically non-conducting flutds The motion of an electrically
non-conducting fluid may be described by the conservation laws for the mass,
momentum, and internal energy [2.1]:

dp
— ApV) =10, .
5 +V - (pV) =0, (2.1)
d s, dp
YoV L VYV = oK —
pridi axijzVJ pK; Bz,
9 av, 8V, 2

+ 6_3’;} I:p:f (82’3 =+ amj - gv - Vé}j) -+ ,ubV - Vdﬁj:l . (22)

2,

Here p is the mass density, V is the velocity. K is the external force per unit mass. p is
the pressure, pr is the viscosity, yy is the bulk viscosity, 6 is the temperature, Cy is the
specific heat at constant volume, g is the heat conductivity, and ®p, is the dissipation
function expressing the conversion rate of kinetic to thermodynamic energy per unit
volume (its details are omitted here). The summation convention is applied to repeated
subscripts. Equation (2.2} is specifically called the Navier—Stokes equation. In order to
close the system of Eqgs. (2.1)-(2.3). we need a thermodynamic relation connecting p, p,
and 8. For a perfect gas, it is given by

p=p{v—1)Cy0, (2.4)

where v is the ratio of Cp (the specific heat at constant pressure) to Cy .

In §3 devoted to fluid turbulence. we shall focus attention on the incompressible
case and neglect the spatial variation of p, y¢, and pg. In this case. the foregoing system
of equations is reduced to

V-V=0. (2.5)
(9, > :
kaﬂ»’-v V=K-Vp+vVV, {2.6)
o >

5TV V|0=rV0, (2.7)

where v(= 11/ p} is the kinematic viscosity, and &[= pg/{pCy)] is the thermal diffusivity.
Here and hereafter, p/p in incompressible flow is simply denoted by p.
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In the presence of the buovancy force pg as an external force. Eq. (2.6} is replaced
with

J
(5?+V'V)V=_v(P+»5)—aah(9—9ﬁ)g+uv2v. (2.8)

under the Boussinesq approximation in which the change of density is taken into account
through the buoyancy force only [2.2]. Here - is the gravitational potential (g = —V¢),
oy 1 the thermal expansion coefficient. and 8y is the reference temperature. The
Boussinesq approximation may be interpreted from a different viewpoint. For p =
p(0.p). we have §p = (Op/08),00 + (Op/Ip)edp. which indicates that the approximation
corresponds to the case of large Young's modulus.

2.1.2.  Magnetohydrodynamac equations As an application of the theoretical approach
to magnetohydrodynamic flow, we shall discuss the turbulent dynamo or the generation
mechanism of magnetic fields due to electrically conducting turbulent flow. We shall also
refer to the occurrence of flow by magnetic effects. In these discussions. we shall neglect
effects of fluid compressibility to concentrate on the fundamental aspects of dynamo
processes. and adopt Alfvén velocity units.

The magnetohydrodynamic (MHD) system of equations consists of the incompress-
ible Navier-Stokes equation with the Lorentz force added [2.3],

(%+V-V)V:—Vp+JxB+vV2V. (2.9)
the magnetic induction
%_]tB = -V x E, (2.10)

and the Ampeére law combined with the Ohm’s law,
J=VxB=(1/m)(E+V xB). (2.11)

where B is the magnetic field. J is the electric current density, E is the electric field,
and n[= 1/{oue)] is the magnetic diffusivity (o is the electric conductivity, and g is the
magnetic permeability). In Alfvén velocity units. the original magnetic field, electric
current. and electric field are divided by \/piio, 1/p/to, and |/pig, respectively.

2.2, Plasma Equations

2.2.1. Flud picture One distinet feature of plasma as a continuous media is that
the responses of electrons and ions are not identical so as to induce a collective
electromagnetic field in it. The dynamical equations of plasma in the fiuid limit

11 PR N TN o I 15 DRSS IS SR T A4~ [ S Ny
dale usually consiiucied Dy use Or e wWo-tid piciure. 111 aQditiOn, IInomogencivies
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often exist in plasma number density, pressure and velocity, and they have important
roles in the evolution of turbulence. Therefore various plasma quantities together with
electromagnetic fields must be simultaneously calculated to understand the turbulence
dynamics in plasmas. The number of relevant variables is much larger than in the case
of neutral-fluid turbulence. The large number of independent variables is one of the
reason why a variety of processes could occur in turbulent plasmas.

A representative set of equations is the Braginskii equations [2.4]. In this set
of equations, variables are chosen as density ng, velocity v, and temperature T, for
each species (s =1,e). The higher order moments, i.e., the fluxes of number density,
momentum, and energy [[, IS, and q, where the superscript d stands for the deviatric
part (traceless part)] and the exchanges of momentum and energy between different
species, Ry and @, are expressed in terms of ng, V; and T, ie., the flux—gradient
relations are given. Explicit formula for the flux—gradient relation are given in [2.4] and
are not reproduced here. These flux—gradient relations are the closure equations for
deducing the fluid equations from kinetic equations. Two-fluid equations are:

%ns +V-(nsVs) =0 (s=1i,e), (2.12a)

nimi%Vi — einl(E + Vl X B) + Vpl + V- H;i = —R.eg, (212b)
d

nemeave + en(E+ V. x B) + Vp, + V- II! = Ry, (2.12¢)

3 d d .

§RSETS +pV-Vy=-V.q, I :VV,+ Qs {s=1c¢) (2.12d)

(see [2.5] for details). Combining these equations with the Maxwell equations

eoV-E= > emn,, (2.13)
B 19 E

VxB-— ey tiod = fo S:Zl-e €sNs Vs, (2.14)

o8- _vxE ' (2.15)

ot ’ (2.15)

the dynamics of plasma and electromagnetic field are described.

As will be seen in the following, there are a variety of plasma dvnamics with different
characteristic time scales and length scales. Therefore, the choice of normalization unit
[e.g.. the Alfvén unit in MHD equations Egs. (2.9)-(2.11)] may not be unique for plasma
turbulence. Instead, characteristic scales are chosen case by case in order to easily
understand complicated plasma dynamics. Therefore plasma equations in this review
will be either expressed with explicit dimensions or normalized to convenient units
depending on the problems.
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2.2.2.  Reduced set of equations  The set of two-fluid equations is deduced from kinetic
equation in a collisional limit. Some processes. which could be important in real plasmas.
e.g.. Landau damping. are neglected. Nevertheless. it is a set of nonlinear equations
with thirteen independent variables and is still too complicated. For further analytic
transparency in investigations. various efforts have been made for a further reduction of
variables. There are several characteristic wave frequencies in MHD equations: the
compressional Alfvén wave. the shear Alfvén wave. and the ion sound wave. The
compressional Alfvén wave has high frequency, so that it is decoupled by use of the
time-scale separation. (The temporal change of magnitude of the strong magnetic field is
neglected.) Eliminating the high frequency oscillation associated with the compressional
Alfvén wave, simplified models have been proposed to analyze the nonlinear evolution
of global MHD instabilities in tokamaks {2.6-2.8]. This method is also extended to
cover the cases of pressure-gradient-driven turbulence. electrostatic perturbations. or
microscale fluctuations. Various reduced sets of equations have been derived. Some of
them are:

(1) Yagi-Horton; seven-field model {2.9]

2) Romaneli-Zonca,; six-field model {2.10]

3) Drake-Antonsen; five-field model {2.11]
4) Hazeltine; four-field model {§7.4 of 2.12]

{

(

(

(5) Strauss; three-field model [2.13], [2.14]

(6) Ttoh et al.; electron inertial three-field model [2.15]
(

)
7) Rosenbluth et al.: MHD two-field model [2.8]
8) Hasegawa- Wakatani; two-field model [2.16]

)

(
(9) Hasegawa—Mima; one-field model [2.17]

Examples of reduced sets of equations are briefly illustrated. The conservation properties
of equations are discussed in §4.1.4.

A Yagi-Horton equatrons For the study of low frequency and pressure-gradient driven
turbulence, Yagi et al. have proposed a seven-field model of piasma dynamics 12.9]. As
independent variables, density (n = n. = e;e”'n; is assumed), electrostatic potential ¢,
stream function @, ion velocity in the direction of the magnetic field vy, vector potential
in the direction of the magnetic field. A;. electron and ion pressures. p. and p,. are
chosen. A set of equations for variables (n. ¢, ®. v}, pe.pr. 4)) are given as

d s X7 L7 __ N 1 3
EJ& + v * ¥ — u. COLLLL.JU,Ity - L }
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nm, d 1 B B d
V.- (?Egv CI)) = VHJ“ +V,- {E x [V_L(pe ‘!“Pi) + V- Hi })
equation of motion (2.16Db)

d -
nm;—vj + Vi!(Pe —i—pi) +b-V,- H;i =0,

dt
equation of motion {2.16¢)
%) 0.71
N Vet —Vupe =t - —ViTe.
Ohm’s law (2.16d)
J, =2 V(pe+p)+V nd]V”m‘—v o,
L= g De Tt i B at 't
drift motion (2.16e)
30

3
agPitaVe eV)+pV - V=-V.q+Q I VV,

ion energy balance (2.16f)

33 1 ] 1
Sopet s 3v.. [e(V—aJN%—peV'(V—aJ) — V-Gt Q.

electron energy balance  (2.16g)

where the Lagrange derivative

d
z = V-V (2.17)

is used, b = B/B (B = |B|). In this set of equations, the velocity and current are
expressed in terms of (n, @, ®. vy, pe, pi. A4))) as

b x VL(I) ~
V = B ’U“b’ (2.18&)
Jy = —Vi4, (2.18b)

and the relation between stream function ® and potential ¢ is given as

, 1 3
Vi®-V,.¢-— a(-h XB—-Vip)=mJ +-

2 eWeeTe
perpendicular Ohm’s law  (2.18c¢)

bxV,T..

With the help of the flux-gradient relations, that describe II¢, qe, qi. Qe, @i, n and
n. [2.4], Egs. (2.16)-(2.18) form a closed set of equations that describes low frequency
turbulence in inhomogeneous plasmas. {n and 7, : resistivity in the direction to b and
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that perpendicular to b. respectivelv. w..: electron cvelotron frequency. 7.: electron
collision frequency).

The Yagi-Horton equation could describe a wide variety of plasma turbulence.
Depending on the subject of the analysis. a much simpler version of reduced set of
equartions is emploved.

B Hasegawa-Mima equation  The investigation of nonlinearity of £ x B motion is the
central subject of plasma turbulence. The study has been performed for electrostatic
perturbations by keeping only one variable. The static potential ¢ is chosen as the
relevant variable.

A simple model of a two-dimensional magnetized plasma s that charged elements
move with the guiding center velocity Veyp = E x B/B? in a constant magnetic field
[2.18]. This is expressed by
d_., .

EVJ_oz 0. (2.19)
which expresses the conservation of the z-component of vorticity w =V x Vg, g. The
convective derivative is given by the E x B drift velocity as

d d .
%= 5 +Vgug-V ie.. (2.20a)
d a i
where the Poisson bracket is defined as
6, F]=(V.¢x V. F) b (2.21)

The noniinear term is expressed in terms of the Poisson bracket. Model equation (2.19)
describes the advection change of vortex, and dees not include plasma responses that
generate electric field. In plasmas. various mechanisms cause the screening (or anti-
screening) of the electric field.

The simplest model equation that describes the electrostatic turbulence in
inhomogeneous plasmas is the Hasegawa—Mima (HM) equation [or Hasegawa—Mima-—
Charney (HMC) equation]. In this model, the density response is assumed to be
adiabatic, n = e¢/T.. and pressure and magnetic perturbations are assumed to be
small. The Hasegawa—Mima equation (or HMC equation) is a dissipationless system for
two-dimensional E x B motion [2.17],

%pﬁvia - %@ = 0. (2.22)
The plasma property is included in the HM equation Eq. (2.22) through the polarization
d adinhat

Avift Aot Ann tn +ho Anita inortia
LEL L v

~ wrhinh 3 " "
11 CHCCL, WLl 15 Ul O bal GiniT T uia

~F ;(\hs o nhnatin nonse nf olontran
U1 10ILS, Al SEREIR O i

VL CrUOLELED,

&
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The latter appears as the second term of Eq. (2.22). In the presence of density
inhomogeneity in the z-direction, the density perturbation is caused by the £ x B
advection of the background profile. In this case, Eq. (2.22) takes the form

d 5 a3 0

ey VH | - = % V e A @ — U, .
where V. is the electron drift velocity,

Vie = To/(eBL,) and L;'=|-V#a/al, (2.24)

and w, = Vgek, is the drift frequency. The HM equation is an analog to the vorticity
equation which is deduced from the Navier-Stokes equation. In the neutral-fluid
dynamics, an equation with the same structure has been derived [2.19]. Note that
HM equation can also derived via gyrokinetics, which is sketched in [2.20}.

C Hasegawa-Wakatani equattons Global scale transport is described by cross-
correlation functions. For instance, the cross-correlation function between the internal
energy and velocity controls the fluctuation-driven energy flux. Analysis of a cross-
correlation function requires at least two variables. The simplest set of model equations
which allows the study of cross-field transport by electrostatic drift wave is the
Hasegawa Wakatani (HW) equations [2.16]. These model equations describe £ x B
motion and density perturbation, in order to investigate the collisional drift waves.
A set of dynamical equations for the normalized potential and normalized density
(¢ = e¢/Te,n = 7/i) is given for the collisional drift wave in the electrostatic limit
as

7,

5 Vie+ [0 Vi] =dj(6 —n) + peVio, (2.252)

d O

pries [¢,n] =dj(¢p—n) — a_é; + D.Vin, (2.25b)
where dp = kﬁDi[waanp; and Dy = vd v5'. (Ue: electron thermal velocity, ve:

electron-ion collision frequency, wq: ion cyclotron frequency, u. and D.: collisional
viscosity and diffusivity, respectively. Time and length are normalized to ps/Va = La/¢s
and p;, respectively.) The parameter dj, being the ratio between the parallel diffusion
rate and the drift frequency, controls the phase difference between potential and density.
In the collisionless limit of vy /w, — 0, i.e.. dil — 0, the electron motion is not impeded
and the plasma response tends to be adiabatic, i.e.,n ~ ¢. This limit, with g, D; — 0,
Eq. (2.25b) gives

0] 3}
dij(¢ —n} = §¢+8_§

Substitution of this relation into Eq. (2.25a) leads to the HM equation Eq. (2.23).

+0{d ).
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In the opposite limit. d. — 0. Egs. (2.25a) and (2.25b) are decoupled. The density
perturbation then becomes a passive scalar quantity. It must be noted that the variable
n is not a perturbed densitv in its rigorous meaning [2.20]. This set of equations is the
simplest one which allows the study of both the auto-correlation function and cross-
correlation function. Not only the cascade of the turbulence spectrum. but also the
transport. which is induced by the inhomogeneity-driven turbulence. can be studied.
An intensive study has been performed.

D Reduced MHD equations For the study of the evolution of MHD instabilities, which
are caused by the inhomogeneity of plasma current and/or pressure gradient. another
set of variables is chosen. namely the electrostatic potential and the vector potential in
the direction of magnetic field B. (0. 4;). A reduced set of equations is:

o

Hét*VQLQ + [Q. Vi@] — VH Jli = (. (2.26a)

0 ,

00T Ve =mdJj. (2.26b)
with Jy = —V3 4. In this set of equations, the length. time. electrostatic potential.

and vector potential are normalized to the plasma radius a. the poloidal Alfvén transit
time Tap, = a/vap = R/va. Ba?/R. and Buaa®/R, respectively.

2.2.3.  Kinetic equations

A Vlasov equation When the motion of individual particles is essential, a kinetic
equation must be used. A typical example of the kinetic equation is:

0 €s o
§+V~V+E(E+VXB)-V‘, fs(v:t)y=C (2.27)

where C is the collision operator. In the case of C = 0. it is the Vlasov equation. Solving
Eq. {2.27) and attaining the plasma density and current, and using Maxwell’s equations
Eqgs. (2.13)-(2.15). plasma turbulence can be investigated.

B Gyro-average equations In many cases. the scale length of fluctuations is in the
range of the gyroradius, but the time scale is much longer than the cyclotron frequency.
In such a case, resonances associated with the gyromotion are unimportant, and the

distribution function becomes a function of {vy.vy). f(v:t) = f(vi.v 1 t). so that the
kinetic equation is deduced to

3 . ) )

Efs + (yyb+vp) - Vs

do B B BA\_Q_
/

-+ (pw—' =+

\vaat'#sat SH.E

f.=0C, (2.28)
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where
vy = b,
vp is the particle drift velocity defined by
vp =B 'E x b+wz'b x (m; VB + vk + v;0b/0t).

U= msvﬁ/z + €s¢ + :ufsBs

{ts 1s the magnetic moment, and & is the curvature of magnetic fleld. An explicit form
for non-uniform plasmas is seen in, e.g., §4.3 of {2.12] and [2.21, 2.22].
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3. Fluid Turbulence and Dynamo

3.1. Towards Mode Reduction

In turbulent flow at high Revnolds number (Re). the spatial scale of included modes
ranges from the reference scale characterizing the global geometry of each flow, L, to the
energv-dissipation scale £p[= O(LRe™®/*)]. as will be shown in §3.2.2. From this result.
the total number of modes included in the flow is N = O[(L/ép)*] = O(Re**). In the
case of large Re. a method for reducing the modes is the use of an ensemble averaging
procedure. Under this procedure. the modes whose spatial symmetry coincides with
the geometrical one are retained. and highly time-dependent. asymmetric properties of
motion are masked.

In the numerical computation of fluid equations, the ratio of each grid size to {p
becomes critical. In the case that the ratio is much larger than unity, as is often
encountered in turbulent flow at high Re. we need to use spatial filtering and smooth
out the Auctuations whose scales are smaller than the grid size. To compensate for this
mode reduction, we supplement the eliminated energy dissipation mechanism with the
aid of the so-called subgrid-scale (SGS) modelling.

3.1.1. Ensemble averaging We divide a quantity f into the ensemble mean f={f
and the fluctuation around it. f = f — f. The ensemble averaging of Eqs. (2.5)-(2.7)
results in

V-V =0. (3.1)

DV; & - _ op 0 .

— =\l5 : ;= — = (R Vi, :
’ (at+V \7’)% 8I2+a$3( R.,)+ vV (3.2)

Do .

L=V (- 6. .

0 V- (—H)+ &V (3.3)

Here R,, and H, which are defined as
Ryj = {U:%;) . (3.4)
H = (3%), (3.5)

express the turbulent momentum and heat fluxes, respectively. The former is specifically
calied the Reynolds stress.
The fluctuation v obeys
D1, - - a . . op
_ +(V-V)M+B—(viv} — Ry} == —,"p

T, ) Jda,

+ vV (3.6)
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with the solenoidal condition V - ¥ = 0. From Eq. (3.6), we have

DR; 0T,
Dt-? = ‘Plj + H“‘j — &gy + (923'2 + sz-Rij% (37)
where
av, _ am
B, = —Rma—xf - ijgg;, (3.8)
Jv; Oy
iI,, = pﬁ( 4 ’)) {3.9)
I < dr, Oz,
. Ov; 07,
£ = 2V <a$£a—$£> ; (3.10)
Tije = — ({000 + (U3} 03¢ + (BF;) be) - {3.11)

The turbulent energy K is related to R;; by

K ={(¥%/2) = R,/2. (3.12)
Taking the contraction of Eq. (3.7), we have

% =Py —e+V-Tg+vV?K, (3.13)
where

P = ~Ry3, (3.14)

= y<(ng)2> (3.15)
e {5

Let us see the role of R;; in the generation process for K. We integrate Eq. (3.13)
and the mean-field counterpart obtained from Eq. (3.2} over the whole fluid region V,
and have

a 5 . 7

= | Kav - /; PidV — [ eV - /S (Tx + vVK) - ndS, (3.17)
8V PdV—/u v, 2oﬂ/

oty 2 o v ¥ v oz,

s s
+ /é (—ﬁ\_f — yi-\—f —RV+ I/VV?) -ndS, (3.18)
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where R = {R,;). S is the surface of V. and n is the outward unit vector normal to
S. On the right-hand side of Eq. (3.17). the second part is always non-positive. The
third part is the energy inflow or outflow rate across S due to turbulence effects. In
the absence of the mean velocity V, Px vanishes. and K decays so long as there is no
specific mechanism for keeping such energy flows. Thus. a turbulent state is maintained
by Py, which is usually called the turbulent energy production rate.

On the right-hand side of Eq. (3.18). the first or ’x-related term plays the opposite
role, compared with its counterpart in Eq. (3.17}. The former expresses the rate of
the energy that is drained from V and is supplied eventually to v. The primary energy
source of V is the p-related term in the last part of Eq. (3.18}, which expresses the energy
supply through the imposition of pressure. In these processes. R,; is the intermediary of
the energy exchange between the mean and fluctuating motions. The clear mathematical
relationship between Egs. (3.17) and (3.18) arises from the fact that the total amount
of energy. f,,(V?/2)dV, is conserved in the absence of v.

A prominent difference between Egs. (3.7) and (3.13) is the pressure/velocity-
strain correlation IT,;. which disappears in the latter. owing to the solenoidal condition
V - v = 0. This fact indicates that IL,, contributes to the exchange of energy among
three turbulence intensities (22}, (77), and (22). but not to the change of K. From this
property. I1,, is also called the energy redistribution rate.

3.1.2. Filtering We introduce a filter function G and smooth out a flow quantity f
as

f=7"= [ Gty - x)i(y)dy. (3.19)

The deviation around f is denoted by f' = f - f. We apply the filtering to Eq. (2.6)
with K dropped. and have

B Dy B D () e G
where the subgrid-scale (SGS) stresses 'rign) {n = 1-3) are defined as

AR 4 (3.21)

D = Vit V. (3.22)

& T (3.23)

Here Tz(f) corresponds to the Reynolds stress in the ensemble-mean system, R,;, whereas

the other two have no counterparts and arise from the relations intrinsic to the filtering
procedure,
—G

77£T7° T #0 (3.24)
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In order to close Eq. (3.20), we need to relate Tff) and Ti(J,?J
V {note that TiE,l) is written in terms of V). The use of either Tz(f) or Ti(:,.-s) leads to the

breaking of the Galilean invariance as we will refer to later.

to the grid-scale (GS) velocity

3.1.3.  Fourier representation Some important turbulence properties still remain in
the absence of a mean flow. In this case, it is useful to introduce the Fourier
representation and its inverse

Fix) = [ f<) exp(—ik - x)dk, (3.25)

Flk) = (2m)° f F(x) exp(ik - x)dx. (3.25b)
with the counterpart for the Dirac delta function
3(x) = (27)73 f exp(Lik - x)dk. (3.26)

We apply Eq. (3.25) to Eq. (2.6) with vanishing V, and eliminate (k) with the aid
of the solenoidal condition k - ¥(k) = 0. Then we have [1.5-1.7]

(g N uk2) 5:(k) = iMye(k) ([ 5()(@d(k —p -~ @)dpda,  (3.27)

with

Mige(k) = Migj(k) = (1/2) [k, Dye(k) + ke Dy (k)] - (3.28)
Here D;,;(k) is the solenoidal operator defined by Dy;(k) = &; — (k:k;/k?), leading to
kizwijg{k} = {}

An abbreviated form of Eq. (3.27), which keeps its second-order nonlinearity, is
given by [1.5, 3.1]

[% -+ "',-’(Z):| Xi =/ iijjXE: (329)

where y(7) is the damping rate of mode X, and the coupling coefficient Ni;e is prescribed
to be symmetric with respect to 7 and £, just as for Mi;(k) (note that the summation
convention is applied to repeated subscripts only). This simplified expression is useful
in the study of statistical approaches to Eq. (3.27).

3.2.  Homogeneous Turbulence

3.2.1. Fundamentel concepts By homogeneity, we mean that the correlation functions
of any order are independent of the choice of the origin of coordinates. For instance,
the second-order velocity correlation obeys

{@(x)5,(x)) = (Bi(x — x)#;(0)) . (3-30)
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The homogeneity holds only m an infimite fluid region. and the velocity profile of the
mean flow is greatly limited. Such a representative flow is the homogeneous-shear
turbulence. in which the mean velocity is unidirectional and varies linearly in the
direction normnal to the mean flow. Under the homogeneity assumption. R,; |[Eq. (3.4)]
and H [Eq. {3.5)] mayv survive. but thev have no influence on V and 8 since V- R
and V - H vanish in Eqgs. (3.2} and (3.3). The simplest homogenous turbulence is
isotropic turbulence without anyv preferred direction. In current theoretical studies of
homogeneous turbulence. much attention has been paid to the isotropic case.

In three-dimensional homogeneous turbulence lacking a mean flow, the mechanism of
energy supply due to P is lost. and the energy-containing component of motion plays
the role of the energy reservoir for smaller-scale ones. In this situation, the primary
targets of homogeneous turbulence theoryv are the energy transfer mechanism among
modes and the energy dissipation mechanism at fine scales. The turbulent transport
mechanism related to the occurrence of R,, etc. is beyond our scope and is left for the
study of inhomogeneous turbulence theory.

Using Eqgs. (3.253) and (3.26). we have

(5,(k)5,(K)) = (27)° / ] Q.,(x — x)expu(k - x + k' - x')]dxdx’

= (2m % (k + K ] Q,,(r) exp{ek’ - ridr, (3.31)
with

Qi {x — x') = Qy{r) = <ﬁz(x)£‘;r(x,)> ; (3.32)
where r = x — x'. In Eq. (3.31), Dirac’s delta function appears. This is due to the
assumption that the fluid region is infinite. In the case that the cubic region is adopted
with the cvelic boundary condition, é(k + k') is replaced by Kronecker’s delta symbol.
The inverse of Eq. (3.31) leads to

1 1 g @k k))

K=3Qa00=3 5(k + k')
Here the expression 1/6{k +k’) is not correct in the strict mathematical sense of a
generalized function [3.2]. The use of Eq. (3.33) with the foregoing point in mind
introduces no errors to the final results even if it is treated as a normal function.

The most general isotropic expression for (7,(k)#,(k’}), which obeys the solenoidal
condition k- v{k) =0, is

LD — D, 10QM) + SH e (330
with k = [k|, where @ and H are functions of k and ¢;;, is the alternating tensor. From
Eq. (3.34), we have

(3.33)

K= j/ E(k)dE, (3.35)
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with the energy spectrum E(k) defined by

E(k) = 47k*Q(k). (3.36)
In Eq. (3.34}, the pseudo-scalar H(k) does not contribute to K and is related to the
turbulent helicity (v - @) as

(V-@) = f smk2H(k)dk, (3.37)
where w(= V x v} is the fluctuation vorticity.

From Eq. (3.27), E(k) obeys

OE(k
—aiu-)- + 2k E(k) = S(k), (3.38)
where the transfer function S(k) expresses the contribution from the nonlinear term

and plays the role of transferring the energy among the modes v(k). Because energy is
conserved by the nonlinearity, S{k) 1s subject to the constraint

/ ~ S(k)dk - 0, (3.39)
0
resulting in

dK

- = f D(k)dk, (3.40)

where D{k) is the dissipation function defined as

D(k) = 2vk*E(k). (3.41)

3.2.2. Kolmogorov scaling In homogeneous turbulence with no mean flow, the low-
wavenumber range of the energy spectrum plays the roie of an energy reservoir for
smaller eddies. At high Re {Reynolds number}, the contribution of the low-wavenumber
range to the energy dissipation rate ¢ is negligible, and the fine-scale or high-wavenumber
components of motion is totally respounsible for . In this situation, a clear spectral gap
may occur between the dominant ranges of E(k) and D(k), and a universal property
free from the energy input and dissipation mechanisms is expected to exist in the
intermediate range. The range is usually called the inertial range.

The extent of the spectral gap may be stated in more mathematical terms. We
denote the characteristic scale of the energy-containing range (energy reservoir) and the
intensity of related velocity fluctuations by ¢ and vc, respectively. The dissipation rate
is charactierized by v and ¢, in terms of which ¢p (the energy-dissipation scale) and the
corresponding wavenumber kp may be written. From dimensional analysis, we have

to=ky' = (/)" (3.42)
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apart from numerical factors. This relation may be derived from the consideration that
¢ is the energy in the dissipation range. (vk)%. divided by the time-scale counterpart
(vk?)-L.

In the equilibrium state. £ may be also regarded as equivalent to the energy outflow
rate from the reservoir. and {¢ is estimated as

bo =3 /e. {(3.43)
From Eqgs. (3.42) and (3.43), we have

¢n/tc = Ry, (3.44)
where Rt is the Reynolds number characterizing the energy reservoir. It is defined by

Rt = vcbe/v, (3.45)

which also expresses the relative magnitude of the inertial term (v - V)¥ to the viscous
term vV2v on the basis of v¢ and ¢¢. Equation {3.44) gives a measure for the degree of
separation between the energy reservoir and the dissipation range. It is more proper to
call £ the energy transfer rate passing through the inertial range since it is assoclated
with both the energy-input and -dissipation processes.

We adopt £ as the primary quantity characterizing the inertial range, and write

E(k) = Koe23k™%/3, (3.46)

from dimensional analysis. This is the Kolmogorov's —5/3 power law {3.3-3.5], and the
Kolmogorov constant Kq is around 1.5 in observations [3.6, 3.7]. In close relation to
Eq. (3.46), the characteristic time scale intrinsic to the inertial range is

T o e M3, (3.47)

which signifies that smaller eddies have shorter life times.
In physical space. the Kolmogorov law may be written as

{av(n)’) = ([v(x +1) = ¥(x)*) o (er)”. (3.48)

with the aid of the velocity difference at two locations (r = |r|). Equation (3.48) may
be extended to the moment of an arbitrary order n as

Col¥} = (AT(E)") o (r)2. (3.49)
which should be compared with {¢/v)r? for small r.

The Kolmogorov spectrum is directly related to neither the energy production nor
the energy dissipation. Such a fact seems to suggest the minor importance of the
spectrum in the study of real turbulent flows. However, this is not the case. The lower
end of the spectrum joints to the higher-wavenumber part of the energy-containing
spectrum. This property indicates that parts of the characteristics of the energy-

containing region may be abstracted from the Kolmogorov spectrum. This merit will
be fully utilized in the inhomogeneous-turbulence theory presented in §3.3.4.
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3.2.3. Breaking of Kolmogorov scaling The Kolmogorov scaling (3.49) has been
subject to extensive tests based on observations. Atmospheric and oceanic observations
have provided important information about the validity of the scaling, for flows at high
R guaranteeing the separation between the energy-containing and -dissipation ranges
are realized there.

Through the comparison with observations, Eq. (3.46) or Eq. {3.49) with n = 2 is
affirmed, but the small deviation from it is also detectable, resulting in

E(k) = Kpe?3k=33 (kL) 7#2, (3.50)

with K§ a non-dimensional coefficient. The exponent y» is about 0.02 [3.5, 3.8]. What
is important here is the occurrence of the other length scale L. In the equilibrium state
arising from the balance between the energy input and dissipation, the details of the
energy input mechanism has little influence on the inertial range. but their memory may
still occur in E{k). In this sense. L should be regarded as

L fc. (3.51)

and K, is not a universal constant since the choice of L is not unique.

The breakdown of the Kolmogorov scaling for the energy spectrum is minor from
the practical viewpoint, but it becomes serious with increasing n. The moments C,{v}
for higher n are linked more tightly with the small-scale components of motion. This
tendency may be also seen from Eq. (3.50), which shows that the deviation from the
—5/3 power law becomes clearer for ¥ >»> L~!. The breakdown of the Kolmogorov
scaling, however, does not always arise from only the small-scale components only. The
scaling (3.49) is founded on the validity of the equilibrium state in which the energy
dissipation balances the input one. A breakdown in such a balance is another cause for
deviation from Eq. (3.46).

A Intermittency effects In order to see a cause of the breaking of the Kolmogorov
scaling in the light of small-scale properties, we write

AT = [F(x+1) =9 o (er)3, (3.52)
where £’ is the instantaneous energy dissipation rate given by
87, \
e=u ( SUJ) (3.53)
T
(e = {¢’}). The moment C,{v} is
Cuf¥} o (£72) /2, (3.54)

Equation (3.54) is reduced to Eq. (3.49) as long as (¢™?) & £%3 holds, that is,
the fluctuation of & around ¢ is negligible. In turbulent flows at high R¢ (turbulence
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Revnolds number). both observations and computer experiments show that larger £ is
spotty in the spatial and temporary senses. From Eq. (3.54). the deviation of C,{Vv}
from the Kolmogorov scaling (3.49) is lughly dependent on the probability distribution
of ¢/, P{'} 13.9. 3.10]. In order to obtain a scaling law consistent with observations,
various elaborate models for P{¢'} have been proposed and are still under intensive
studv. Readers may consult 13.5. 3.8] for such recent developments, and [3.11] for quite

a new attempt using the Tsallis statistics.

B Shell model In the foregoing discussions on the Kolmogorov scaling and its breaking.
no direct. use is made of the Navier-Stokes equation (3.27), although the concept of the
energy cascade is an important propertv. As a dynamic approach to intermittency
effects. we may mention shell models. There we divide the wavenumber space into
successive spherical shells. whose radii are denoted by k,(= kog") (kg is the reference
wavenumber, g > 1. and n is a positive integer). By V), in the range &k, < k < kn-;. we
denote a one-dimensional model for v(k) in Eq. (3.27). Under the constraint k = p+q,
v(k) interacts with all other modes. In shell models. however, the interaction is usually
restricted to the nearest and second-nearest ones [3.12-3.15]. A representative example
is

dv,

dt

+ vk*V,
= 1 (CriVar1Viaz + CroVi1 Va1 + CouzVoi Vo)™ + fa. (3.55)

where Cp,’s are real constants, f, is the external force maintaining a turbulent state,
and A* denotes the complex conjugate of A [3.15].

Equation {3.55) does not correspond to Eq. (3.27) straightforwardly, but the former
possesses some properties similar to the latter. For instance, the energy, which is defined
by 5=, V/2/2, is conserved in the absence of v and f,, under the proper choice of Cpp.
One of the interesting consequences of Eq. {3.55) is the intermittency effect on the
structure function

Sp(ka) = ([Val?) . (3.56)

which is the shell-model counterpart of C,{¥} in Eq. (3.49). For small p, Eq. (3.55)
gives a scaling property close to the Kolmogorov one, but the so-called intermittent
behavior becomes prominent with increasing p.

C Non-equilibrium effects A typical non-equilibrium effect on the energy spectrum may
be seen in the homogencous-shear turbulence with the mean velocity V = (8y,0.,0) in
Cartesian coordinates. In this case. Eq. (3.13) is reduced to
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The first term plays a role of abstracting energy from the mean field. In homogeneous
turbulence, the fluctuating field has no feedback effect on the mean field. As a result,
K continues to grow without limit, and Eq. (3.57) does not have a stationary solution.
This fact signifies that the energy input from the mean to the fluctuating field is not in
the equilibrium state, unlike the premise of the Kolmogorov scaling.

A parameter characterizing such a non-equilibrium effect is the temporary variation
of the energy input rate that is defined by é(= 0z/0%¢). An instance of the é-related
effect on the energy spectrum is

E(k) = Koe®3k™/3 [1 — Cysgn(€)(kéx) 2], (3.58)

where the length scale £ = £2/3/¢7%/? is associated with the non-equilibrium effect, and
sgn(é) is defined as 1 and —1 for &€ > 0 and € < 0, respectively {3.16]. In the case of
£ > 0, Eq. (3.58) signifies that the energy dissipation cannot catch up with the growing
energy input, resulting in the eventual decrease in the transfer rate. This effect becomes
important only for low wavenumbers, in contrast to the foregoing intermittency effect.

3.2.4. Two-dimensional turbulence As the other example of scaling in homogeneous
turbulence, we may mention two-dimensional turbulence with special reference to the
inverse energy cascade and the formation of coherent vortices. Besides its tractability in
a numerical simulation, two-dimensional turbulence is considered to provide an idealized
model for geophysical and atmospheric flow phenomena. Such flows, subject to a
rotation, are often confined in a thin layer, where the fluid motion is characterized
by a horizontal scale length much larger than the vertical counterpart. Even in the case
that the mean or large-scale flow is two dimensional, the fluctuation or turbulent motion
is still three dimensional. In this sense, purely two-dimensional turbulence is not realized
in nature. Nevertheless, the presence of a strong rotation around the vertical axis may
suppress the vertical variation of fluid motion. Then the two-dimensional treatment
may serve as a first step to the modelling of geophysical and atmospheric turbulence
subject to strong rotation [3.17].

From Eq. (2.6), the equation for the vorticity w(= V x V} is given as
-dﬂx(g—i—V-V)w:(w-V)V+VV2w, (3.59)
dt ot
with the solencidal condition V-w = (. Here and in this section, the external force K in
Eq. (2.6) is dropped for simplicity of discussion. The first term in Eq. (3.59) represents
the vorticity-amplification (-reduction) effect due to the stretching (shrinking) of the
vorticity and is called vortex stretching. Vortex stretching is strongly connected to the

vorticity-maintenance and energy-transfer mechanisms in turbulent motions. In two
dimensions, however, vortex stretching always vanishes;

(w- V)V =0. (3.60)
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It follows from Eq. {3.59) that in two dimensions the vorticity is conserved along the
fluid motion in the inviscid limit { — 0). The absence of vortex stretching and resultant
vorticity conservation constitute prominent features of two-dimensional fluid motion as
compared to three-dimensional motion.
The conservation of vorticity leads to the conservation of any function of vorticity.
In the following argument, we consider the squared vorticity called enstrophy since the
detailed-balance relation between the spectral modes is simplest for such a quadratic
invariant. From Egs. {2.5) and (3.59). the equations for the energy V2/2 and the
enstrophy w?/2 are given as

dl . v\ 1.,

d_t§V = -V (a_’[;a) +V- {APV#‘VV (§V )jl . (361)
4l e 2y, 1.

£ wh =~y (VW) +V [yv (2w )] (3.62)

Equations (3.61) and (3.62) show that in two dimensions the enstrophy as well as the
energy is conserved in the inviscid limit.

The dual conservation of the energy and the enstrophy in two dimensions gives rise
to the possibility of an inverse energy cascade from smaller scales to larger ones {3.18,
3.19]. In wave-number space, the conservation of the energy and enstrophy correspond
to the constancy of

Kg

<%e2> — / Eap(k)dk, (3.63)

Ko = <%a?> _ f EL (k)dk = / k2 Eop (k)dE. (3.64)

respectively. Under the nonlinear interaction, the profile of Esp(k) in wave-number
space changes as the energy is transferred between larger and smaller scales with the
total energy or Ky being constant. If some portion of energy is transferred towards
the small scales (large k), it results in an increase of the enstrophy [note that the
enstrophy spectrum is Eop(k) multiplied by k? in Eq. (3.64)]. In order for the total
enstrophy to be conserved, a larger portion of energy should be transferred towards
the large scales (small k), and balance the increase of the enstrophy due to the energy
transfer towards the small scales. As a consequence, Fop(k)} is shifted to the larger
scales. This is a picturesque expianation of the origins of inverse energy cascade in
two-dimensional turbulence. As is seen below. however. we should note that the energy
transfer identically vanishes in a large-k or enstrophy-cascade range while the enstrophy
transport vanishes in a small-k or energy-inverse-cascade range [3.18].

Because of the dual conservation, the inertial-range properties in two dimensions
may differ from their counterparts in three dimensions in which the energy (for non-
helical fiow} is the sole quadratic quantity conserved in the inviscid limit. The possibility



32

of the inverse energy cascade in two dimensions was first pointed out for a two-
dimensional forced turbulence with the energy injected at the intermediate scale [3.18].
Since the enstrophy contains higher derivatives than the energy does, the enstrophy has
a stronger k dependence than the energy. Thus, the enstrophy cascade is expected to
play a dominant role in determining the inertial-range characteristics in the high-wave-
numnber range (enstrophy-cascade range). As can be seen from Egs. (3.63) and (3.64),
Esp(k) is related to the Fourier amplitude of velocity, @x. as Eop(k) ~ k7'0%, and the
enstrophy spectrum is expressed as FiL{k) ~ kv2. In the enstrophy-cascade range, the
enstrophy fiux in wave-number or k space, kix[kESH(k)]. should be balanced by the
enstrophy dissipation rate eq in the equilibrium state;

kgﬁi ~ E£q. (365)
Then the two-dimensional energy spectrum in the enstrophy-cascade range obeys
Bon (k) ~ k2. (3.66)

On the other hand. the energy cascade plays a key role in the low-wave-number range
(energy-cascade range). In the energy-cascade range. the energy flux in & space, ko 5.
is balanced by the energy transfer rate o in the equilibrium state. This situation is
the same as the ordinary energy cascade in the three-dimensional inertial range and
the Kolmogorov scaling Eq. {3.46) is obtained. The sole difference is the lack of the
energy sink or dissipation in two dimensions. In this sense, c,p is not the dissipation
rate but the energy injection rate. The injected energy inversely cascades towards the
large scales until the accumulation of energy stops owing to some saturation mechanism
such as the back-scattering. Consequently, the two-dimensional energy spectrum in the
inverse-energy-cascade range obeys

Ep(k) ~ 2Bk, (3.67)

These argumenis concerning the enstrophy cascade and the inverse energy cascade
were confirmed through high-resolution direct numerical simulations (DNS's) of decaying
two-dimensional Navier-Stokes turbulence [3.20].

The inverse energy cascade and formation of coherent vortices in two-dimensional
turbulence have heen extensively studied by means of numerical simulation. The
systematic DNS’s of the two-dimensional decaying turbulence shows that coherent
vortices can be formed from random initial conditions, and that such structures are
sustained for a long time as a stationary state [3.21].

In atmospheric and oceanic turbulence research, a system of shallow-water equations
rather than the Navier-Stokes equation has been extensively investigated, with special
emphasis on the formation of structures such as the stripe or band patterns observed at
the planetary surface. One of the representative shallow-water equations is the Charney
equation [3.22]. This equation is equivalent to the Hasegawa~Mima equation for the drift
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wave in plasmas [Eq. (2.23)] with the electrostatic potential replaced by the variable
part of fluid depth [3.23]. The pioneering work in the numerical investigations of the
shallow-water equation was performed in a one-eighth region of a rotating sphere. which
successfully reproduced the striped pattern on the Jovian surface [3.24]. With advances
in computer capability, high-resolution DNS's for the full region of a rotating sphere at
relativelv high Revnolds numbers have been performed. With the resort to a modified
viscosity or hyperviscosity, the formation of coherent vortices in the polar region and
the emergence of zonal jets in the low-latitude region have been reproduced [3.25].

3.2.5.  Statistical theories In this article, we view the study of homogeneous isotropic
turbulence as the first step towards understanding realistic complicated flows, and
give a brief account of some representative statistical turbulence theories that are
usually called closure theories. In this context, we shall put an emphasis on the
direct-interaction approximation (DIA) for the following two reasons. One is that the
mathematical procedures in the DIA are the basis of other theories. and the other is
that the inhomogeneous-turbulence theory explained in §3.3 is founded on the DIA. The
intermittency effects remarked on in §3.2.3A are small on turbulent fluxes such as R,;.
Thus no reference will be made to them.

A Direct-interaction approzimation The statistical theory which has a profound
influence on the study of turbulence. specifically, homogeneous isotropic turbulence, is
the DIA [3.26, 3.27]. We first give a simple overview, and then proceed to its relationship
with other approaches. Detailed discussions on the DIA are given in [1.5-1.7, 3.28].

Al Formal procedure The instantaneous second-order correlation function
(T, (k. t)7,(k'.t)} is a primary turbulence quantity in homogeneous flow, in relation
to the energy spectrum FE(k). We bear a characteristic time such as Eq. (3.47) in
mind. and introduce the two-time counterpart (o,(k, t)9;(k’.t')), which is denoted by
Xy {t 1) = (Xi(t)X,{¢')) in the abbreviated form based on Eq. (3.29). Then x;,(¢,t)
obeys

|—a £ £ 2
lgt‘ =+ ,r"\E)J XU\L, A

) = N A XD Xl t) X, = Nitmxems (L. ¢, 1) (3.68)

In order to relate the two-time triple correlation function Xem,(t.f.t') on the right-
hand side of Eq. (3.68) to the two-time second-order one, we start from the simple
perturbational solution of Eq. (3.29). We assume that a random force g(¢) was imposed
on the fluid motion in the past, that is, for —oco < t < 0. This effect is removed from

kg. {3.68), for we are concerned with the turbulent state for ¢ > . The formal solution
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with the nonlinear part as an inhomogeneous source is given by

Xi(t) = XF(t) + Nim fj _XP [—y(2){t — 1)) Xo($1) X (E1) dt4, (3.69)
with the linear solution X} t) defined by
XH) = [ e}t - )l gl)dns (3.70)

namely, X obeys Gaussian statistics. We expect that this assumption brings no critical
inconsistency into the final result since the past memory of turbulence is lost rapidly
owing to intense mixing effects. In reality, the numerical simulation of turbulent flow
indeed shows the independence of the fully-developed state from initial conditions.

In Eq. (3.69), we perform an iteration with the linear solution X7(t) as the leading
term and have

t
X,(t) = XH(t) + Nam | _exp ()t — )] XF() X (t)dt

2NN [ [ exp i)t — 1) = w0t — )]
x XE(to) X5 () XL (t1)dtydty + - - - (3.71)

where use has been made of the symmetry of Ny, concerning £ and m. Equation (3.71)
may be regarded as an asymptotic expansion of X;(t) in the turbulence Reynolds number
Rc, and the order of Ny, corresponds to that of Rc. The truncated solution at a
finite order in Niz, is not straightforwardly applicable to turbulent flows at high Hc.
A method for alleviating this difficulty is renormalization. In this method, we make
use of the first few terms in Eq. {3.71) and incorporate parts of the contributions of
infinite order in R¢ into Xem;(f.f.t'). Reader may see [1.34] for detailed discussions on
renormalization.

From the assumption about the Gaussian distribution of X}(t), we have
(X ) X5 ()X (ts) -+ Xn(tn))
_ ( Z <X‘,£‘(tf_,)X§‘(tb)> . <X;‘(tp)X:,‘(tq)> for even n; (3.79)
0 for odd =,

where the summation is made over all the combinations concerning the second-order
correlation functions.
From Egs. (3.71) and (3.72), we have

2490 xste.)

t!
= 2NimNjos [ _exp [0 — t0)lilt 1)l 0)s



t
+ 4Ny Neas [ exp [—=y{m)(t — t1)]xma{f. 1) x5, (1 1)t

+ O (INT*), — (3.73)

where x5 (1) = (X}{t)X} (')} expresses the contribution of the linear solution to
X {t.t'). and the numerical factors 2 and 4 arise from the symmetry of N,;, concerning
j and €.

To perform a renormalization, we now replace the linear part x%(£.#') in Eq. (3.73)
with its full counterpart x,,(f,t'). and have

0 ()

= Z.Nzgmjvjab ~ eXp[—’j/(j)(t’ — tl)b(fa(t« tl)Xm,b(ttl)dtl

i
+ 4-[V1€mAM€ab]; exp[—*y(m)(t - tl)]Xma(ts tl)ij‘ (tlatl)dtl- (374)

In the light of the perturbation solution (3.71). Eq. {3.73) corresponds to a truncation
at the second order in N,. whereas Eq. (3.74) contains contributions of infinite order
in Njg,. although their inclusion is partial.

On the right-hand side of Eq. (3.74}, exp{—~(7)(¢’ — t1}], in which ~(j) corresponds
to vk? in the original expression, represents the extent of the duration of past turbulent
effects on x;;(£,¢'). At high Re, v(j) becomes very small since it is proportional to v.
In Eq. (3.74), the effects of past events have an equal influence on x,;(¢,t'), unlike the
expected effects due to turbulent mixing. The explicit occurrence of exp[—~(7) (' — ¢1)]
is not adequate for expressing those effects.

For the proper treatment of past turbulence events, we introduce the response or
Green's function for Eq. {3.29), Gy;(t, '}, which obeys

d ' Y ! T !
[«5% + ﬂf-(z')] Gy (1) — 6,0{t — t) = 2Ny X (8) Gy (E. ). (3.75)
This equation expresses the response to an infinitesimal disturbance applied to Eq. (3.29)

at time t’. Averaging of Eq. (3.75) results in

ot
with Gy;(¢,t) = (G, (¢,t')). Its formal integration leads to
Gyt 1) =Gyt 1)
+ 2o [ D0} = )] (Xelt Gy, s, (BTT)
(t,t") is a deterministic function and is given by

G (£, #) = 6,5 expl—(i) (¢ — £)]0(t — 7). (3.78)

P + v(z)} Gyt t) — 6,8t = 1) = 2N (Xe(8) Gy (1)) . (3.76)

where G}}
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with the Heviside step function

o) = { 1 for ¢>0, (3.79)

] for t<O0.
Here we should note that what represents as the memory effect on Eqa. (3.74) is G (. /)
rather than G;;{t,t').

The right-hand side of Eq. (3.76) may be calculated in exactly the same manner
as for Eq. (3.68). We construct the perturbational solution of Eq. (3.77) with GL (¢.t')
as the leading term, and substitute it into the right-hand side. We use Eq. (3.72), and
then renormalize the resulting expression; namely, we replace X%(t, t') and G‘% (t,t') with
their full counterparts x;;(¢,¢) and G;;(¢, ). Finally, we have

a N ’ !
{a + fy(z)] Gy (1) — 6;,;6(¢ — t)

T _
= 4] TiEmNnab l’ Gmn (t t‘:l)c‘\:bj (tla tl)XEa(ta tl)dti- (380)

At the same time, we renormalize Eq. (3.74) concerning exp|—v(7)(# — #)] and
exp{—y(m)(t — t;)]. and obtain

J ) v
Iia + A/(Z)] Xz'j (t, t,) = 2Nz£mNnab L Gjn(tja tl)XEa(ts tl)me(ta tl)dtl

t

+ 4M£mNnab/ Gen (t: tl)Xma(t~ tl)ij (tlw t’)dtl- (381)

—oC

Equations (3.80} and (3.81) constitute the so-called DIA system.

A2 Isotropic form The abbreviated DIA system, Egs. (3.80) and (3.81). may be
translated simply into the full version based on Eq. (3.27). In this context, the full
version of the response equation (3.75) is given by

% 2 ) d
(& + vk ) Gy(k;t.t') — Dyy(k)s(t — ')

= iMigm(K) [[ 56(p1t)Grms(@:£,#)5(k — p — a)dpda. (3.82)

In Eq. (3.34), we drop the helicity-related part, and extend it to the two-time
expression

(O:(k; 1)5;(k; 1))
5k + k)

The counterpart of Gy;(k;t,t') is

= Qyu(k; t.t) = Dy (k)Q(k;t. t'). (3.83)

Gij(k;t, 1) = Dy (k)G(k; t. 7). (3.84)
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The DIA system of equations for Q(k:¢.¢'} and G,,(k:t.t') is written as

(5 + ukz) Qlkt.t') = K2 /fo(k— p — q)dpdq

tl

9 [NQI(k.p. 0 [ Gkt )@t w0l 1)

— Ngo(k.p. q) f_; Glg:t,6)Q(p; t,1:)Qk; t1,')dty |, (3.85)

9 2V Arg AN ’ 2
(E—f—uk)G(k,t,t)——o(t—t)—k/(5(k—p—q)dpdq

t_
x Ne(k, p, q) ft, Glg:t. )G (ks 1y, t,)Q(th:tl)dtl- (3.86)
The geometrical factors Ng; etc. are defined as

Ne(k.p.q) = Noa(k.p.q) = Ne(k.p. q)
= N(k.p.q) = (g/k) (zz + %) . (3.87)
where z, y, and z are the cosines of the angles opposite to the sides k, p, and g of a
triangle, respectively.
The one-time covariance Q(k;t)[= Q(k;t,t)] obeys

(% + 2vk2) Q(k;t) = 2k? ff 6(k — p — q)dpdq

t _

x ‘N(k'.pa q) L[ G(k;tttl)Q(p;tetl)Q(k; t:tl)dtl

—CC

- [ GlatnQptnekitu)n] . (38

We should note that the symmetry of the DIA system guarantees statistical energy
conservation by nonlinear terms of Eq. (3.88).

A3 Quasi-normal approvimation In the history of turbulence theory, the
predecessor of the DIA is the quasi-normal approximation (QNA) [3.29], whose primary
concern is Q(k;t). The QNA system may be derived from Eq. (3.88) through the
replacement

Qlk; t,t') = exp(—vk®|t — )Q(k; 1), (3.89a)
Gkt t') = exp[—vE(t — t)1O{t — t'), (3.89b)

At high Rc (turbulence Reynolds number), exp{—vk?|t—t'|) becomes nearly one, and
the past effects of Q(k;t,t') give equal contributions to the development of Q(k; ¢, ), in
spite that those effects in the distant past are smaller than their near-past counterparts.
As a result, the QNA tends to overestimate the memory of past events or the energy
transter to small scales, resulting in the occurrence of negative E(k).
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A4 Relationship with the Kolmogorov energy spectrumn In order to examine the
relationship of the DIA system with the Kolmogorov energy spectrum, we seek an
approximate solution of the system in the form

QUkst.#) = o(k) expl—w(R)it — ¥ (3.90s)
G(k; t,t') = exp[-w(k)(t — )]0 - 1), (3.90b)

where o{k) and w(k) will be specified below. We substitute Eq. (3.90) into Eq. (3.88),
and integrate the resulting expression under the condition that £ falls in the inertial
range, that is, £5 < k < £5" [for £c and ¢y, see Egs. (3.42) and (3.43)]. Then we have

£=2 [ | [ [ Nk, p, ) -2R)o0) = 90N 5 — p - q)dpda, (3.91)

w(k) +w(p) +wlq)
where use has been made of
2 2 dng 2E(r)dr = e. 3.92
uJ[Dk’r o(r)dr = 2v rzo(kn)r (r}dr=¢ (3.92)

Next, we consider the response equation (3.86). The approximate solution {3.90)
cannot satisfy it exactly. Since these expressions are proper for t—t not small, we adopt
it in the sense of a weak solution; namely, we integrate Eq. (3.86) from ' + 0 to infinity
in time, and have

p)
wik =Vk2+j/Nk,p,q—g-g—ék—p-qdpdq. 3.93
(k) (k.. ) sl ) (3.93)
From the Kolmogorov spectrum (3.46) and the related time scale (3.47), we write
o(k) = o?BE3, w(k) = we' PR, (3.94)
where o and w are numerical factors. We substitute Eq. (3.94) into Eq. (3.91), and have
wjo? = 30.1. (3.95)
The response equation (3.93) leads to
w2 p—11/3
-~ [ N(k.p. )0~ — Q)dpda (3.96)

with the v effect dropped. In Eq. {3.96), we encounter a serious difficulty in that the
integral diverges at the lower limit or p — 0. In physical terms, this divergence may
be interpreted as an overestimate of the effects of the energy-containing motion on the
inertial-range one. This point is a critical weakness of the DIA or, more exactly speaking,
that of the DIA in the Eulerian frame.

In mathematical terms, the cause of the above sweakness of the Eulerian DIA system
may be explained as follows. In the nonlinear part of Eq. (3.27), the contributions from
p or g of O(451) (K k) gives

v(k;t) x exp(—ik - V¢t). (3.97)
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Here v¢ is the velocity arising from energy-containing eddies defined by

Vo= ¥(p; t)dp. (3.98)
[pi<0O(i/ec)

whose temporal variation is considered to be much slower than that of v(k:t). From
Eq. (3.97). we have

Qkit.t') x {exp[—ik - v (t — )]} . (3.99)

Equation (3.99) suggests that the characteristic time scale of Q(k;¢,¢') is proportional
to k~! which differs from the Kolmogorov counterpart (3.47) [3.30-3.32].

B Alternative approaches to the Kolmogorov scabing We have seen that the cause of
the inconsistency of the DIA with the Kolmogorov energy spectrum is the overestimate
of the effect of energy-containing eddies on inertial-range ones. In what follows. we shall
give a brief account of the methods for recovering the spectrum.

B1 Eddy-damped quasi-normal Markowvian (EDQNM) approzimation The difficulty
encountered by the DIA arises from the two-point quantities such as Q(k;t,t') and
G{k;t,t'), whereas Q(k;t) is free from it. as is seen from Eq. (3.95). The method using
only Q(k;t) is the eddy-damped quasi-normal Markovian (EDQNM) approximation
[3.33, 3.34]. There we approximate

Qk:t,t') = Glk; t.1)Q(k; t). (3.100)

for t > ¢t'. Instead of solving the equation for G(k;t.#), we write w(k) in Eq. (3.90) as

1/2
w(k) =, [/: riQ(r; t)dr} + vk?, (3.101)

from dimensional considerations. Here the numerical factor C’, is determined so that
Eq. (3.88) combined with Eqs. (3.100) and (3.101) gives the Kolmogorov constant Ko
around 1.5.

The choice of w(k) is not unique, and the EDQNM approximation is subject to
some theoretical ambiguity. Its merit, however, lies in its simplicity and applicability.
This method has already been applied to the study of hemoegenecus-shear turbulence,
effects of frame rotation on turbulence properties, etc. [3.35, 3.36]. In the latter case,
the rotation effect on w(k) needs to be included.

B2 Lagrangian formalism In order to properly treat the effect of energy-containing
eddies sweeping away smaller eddies, we consider the evolution of a fluid blob or an eddy
al time s, which was located at x at a previous time ¢.The velocity of the blob is denoted
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by v(x,t|s). The Eulerian velocity v(x,t) is given by V(x,t{t) [3.27, 3.37, 3.38]. The
condition that this blob also passes the location x at time t'(t <t < s) gives

t.’

x =x+ / V(x.t|t1)dts, (3.102)
i

v(x'.t'|s) = v{x.t]s), {3.103)

For infinitesimal |t — ¢'|, Eq. (3.103) is reduced to
av(x,t|s)

ot
In the Eulerian frame, (#;(x,#)¥;(x,¢)} for (f > t') corresponds to the correlation
between one blob located at x at time ¢’ and another blob that was located at x— f/* Vdi;

at time ¥ and occupies the location x at time ¢. The Kolmogorov energy spectrum is
linked with the energy cascade process in which one eddy s split into a number of smaller

+ [¥(x.1) - VIV(x,t}s) = 0. (3.104)

ones, and our concern is the historical development of those eddies. This process may
be pursued properly with the aid of the Lagrangian correlation function

EA(x.t;x, ')y = 5,(x, t}t)7;(x', ¥'). (3.105)

Here v(x, #'|t) expresses such a historical evolution of eddies.

In correspondence to Q% (x, t; x, '), we introduce the response function for v(x, t\t),
G}jA(x., t;x’,t') and apply the renormalization procedures that are used in the Eulerian
DIA. The Lagrangian method succeeds in reproducing the Kolmogorov spectrum with
a reasonabie estimate of the numerical constant.

B3 Renormalization-group method The renormalization-group (RNG) method was
originally developed in the study of critical phenomena such as the phase transition of
many-body systems [3.39]. The basic concept of the method may be summarized as
follows. We consider the wavenumber range (0 < k£ < A), and divide it into two ranges,
(0 < k < bA) (Range I) and (bA < k < A) (Range II}, where 0 < b <1 and b is usually
chosen to be close to 1. In correspondence to Range I and Range II, the velocity v(k)
is expressed as

v({k) = ¥'(k) + v1(k), {3.106)
where v1(k) = v(k)O(bA — k) and Vv{k) = ¥(k)©(k — bA}. Following Eq. (3.27), we

write

[% + u(k)ng (k)

= /il + iMie(1) [[ 5(p)7e(@)0(k — p — q)dpda. (3.107
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In the original equation (3.27). v(k) is equal to the molecular viscosity v. and a random
force f(k) has been newly inserted {3.40}.
We substitute Eq. (3.106) into Eq. (3.107). and obtain

[g + u(k)kgl (81 (k) + 8!" (1)}

— fu(k) + iMie(K) / 5(k - p — q)dpdq
x [B(p)i(a) + 28 ()l (a) + T (P)E (@] . (3.108)

We focus attention on the interaction among the ¥'’s. dropping the interaction between
the ¥! and ¥'! because the main interest of the RNG lies in the effects of the interaction
among small-scale fluctuations on large-scale fluctuations. Using the perturbational
solution of ¥v'(k) of the type (3.71). we evaluate the interaction among Vs, and
incorporate the effect into the v{k)-related part. obtaining new vy (k). In this evaluation,
the dimension of the k space is extended to d{# 3). Next, we extend Range I into the
full one, that is, 0 < k& < A, through the transformation k - b~'k. Considering that
Eq. (3.98) is the equation obtained by repeating this procedure many times, we may
seek the fixed point of the resulting equation from the condition

v(k) = va (k). (3.100)

In this mathematical manipulation, the lower limit of the integral is bA, leading to the
escape of the infrared divergence encountered in the Eulerian DIA [3.40}.

The RNG method is originally intended to abstract the power laws concerning k,
as is suggested by the transformation k¥ — b k. The deduction of the Kolmogorov
—5/3 power spectrum is within the scope of this method, but the estimate of the
proportionality constant, that is. K¢ in Eq. (3.46), is not so. A method of estimating it is
the use of the energy equation in the DIA system, Eq. (3.91). The original application of
the RNG method to turbulence has been subject to quite a few corrections and criticisms
since its first attempt [1.6, 3.41-3.44]. The method has also been applied to the study
of inhomogeneous turbulence, specifically, the analysis of the Reynolds stress R;; [3.45,
3.461.

C Probability-distribution formehsm In methods such as the DIA and RNG ones, the
direct concern is the correlation functions of velocity. The closure formalism has also
been sought on the basis of the probability distribution functional. In what follow, we
shall refer to a self-consistent approach based on the Fokker—Planck equation.

the probability distribution functional P{X.{} for X. The prob

=1 PR B4 B
(W} llV ulbhill}ubl\)ii

)

C1 Liouwnlle equation We denote the set of (X;. Xy, X3,---) by X, and consider
ob
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functional P{X;t} obeys the Liouville equation

OP{X:t} 9 (9Xe_ .o .\
X8 2 (Bpxin) -0, (3.110

which expresses the conservation of the probability density in phase space.

We first consider a simple system

9X; )
= - Xi + w;, 3.111
5~ OXitw (3.111)
where w is a random white noise fulfilling the constraint

In what follows, the w-attached overbar denotes the ensemble averaging concerning w.
We substitute Eq. (3.111) into Eq. (3.110), and take the average concerning w. Then
we have
OP (Xt} & &*PYX;t}

T T X, 5‘—X§ =0. (3.113)
This equation is called the Fokker—Planck equation, and the random noise corresponds
to the diffusion effect in light of the probability distribution function (PDF). The time-
independent solution of Eq. {3.113) expresses the Gaussian state, as will be seen below.

The Liouville equation for Eq. (3.29) is

bl 8; V(€)X P{X; t}1+5% (NernXm Xn P{X:1}) = 0.(3.114)

[HOXP{X;t}] — n(e)

C2 Characteristic functional The characteristic functional ¥{Y;t} is defined as
T{Y; 1) = (exp(iX - Y)) = f exp(iX - Y) P{X; }dX. (3.115)

The relationship between P{X;t} and ¥{Y;¢} is similar to the Fourier representa-
tion (3.25). In terms of W{Y;f}, the correlation function (X;X,) may be calculated
more simply as

PR Yl Vol [VVPI’V J_Tdv (821D{Y;t}\ fa 110N
VAGAG = NAGAGE{AGTJOA = — | — a5 ) \2-110)
A WdY; )y
compared with P{X;t}.
From Eq. (3.113), ¥{Y;{} obeys
FV{Y;t T {Y;t w0
AR SIUNY) LI £ ST VO (3.117)
at Yy
The stationary solution of Eq. (3.117) is given by

TV} = exp {_ > @y@)} , (3.118)
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which obeys the condition ¥*{0;¢t} = 1 that arises from Eq (3.115). Here the
summation convention is not applied to parenthesized subscripts, and

o{£) = n(€)/~(€). (3.119)
From Eq. (3.119). we have

(X X;) = 0(i)d,, (3.120)

(X X; X Xm) = 0(8)0(£)8,,0em + 0(2)0(5)0u0ym + 0(2)0(7)0umbye, (3.121)

and vanishing (X, X;X,} etc. Namely, Eq. (3.118) is the characteristic functional for the

(Gaussian probability density functional leading to Eq. (3.72).
For Eq. (3.114), we have

. i o2 i

P oL i 2

This equation is linear in W{Y:¢} and seems to be more manageable, compared with

the original equation (3.29). The latter mathematical difficulty. however, is merely
transformed to the difficulty in treating the second-order derivatives in Eq. (3.122).

= 0. (3.122)

C8 Self-consistent approach of Fokker-Planck type In methods such as the DIA,
Gaussian statistics is used at the stage before the renormalization is performed. In
the context of a characteristic functional, the Gaussian-distribution approximation
corresponds to the use of an equation of Fokker—Planck type such as Eq. (3.113). As
a method in this line, we may mention a self-consistent Fokker-Planck/type approach
[3.1. 3.47).

For investigating the stationary state of Eq. (3.114). we first rewrite it as

o
LY = |wlllYegsr + + (Y7 ¥
ov \
= [w{f) — ()] Ygay + zNémnY}aY i + ()Y, (3.123)

on the basis of newly introduced functions w(¢) and nr(i). Here w(z) corresponds to
~(2) in Eq. (3.29) or (3.111), and represents the nonlinear modification of the molecular-
viscosity effect. The other function nr(7) corresponds to n{¢) in Eq. (3.112), and indicates
that the property of turbulence which cannot be deseribed by only the effects of w(i),
is approximated by the random noise. In short, we try to renormalize the nonlinear
effects of turbulence in terms of these two factors, and shall treat the right-hand side of
Eq. (3.123) as a perturbation term to the left-hand side.
We expand ¥ around the Gaussian characteristic functional ¥y as

v=>"0, (3.124)
=0
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where ¥q obeys

LT, = 0. (3.125)
Namely, ¥, is given by Eq. (3.118) with o(£) replaced with

o{€) = nr(£)/w(f). (3.126)
The higher-order solutions ¥,(n > 1) may be obtained using formulae such as
LYY, Y%0) = [o(3) + 0(j) +0(€)] V.Y, Yelg. (3.127)

In order to determine w(z) and nr(i) [or o(2)], we need two relations. As one relation,
we require that the turbulent energy (X2/2) may be evaluated using only the leading
term W [3.47]; namely, we write

P &
3 lIfn) =0. (3.128)
(aKQ n=1 Y =0

This requirement is reasonable from the viewpoint that the lowest approximation is most

significant in the perturbation expansion. Using the solution up to the second-order in
Niye and to the first order in w and 7y, we evaluate Eq. (3.128). and reach the same
equation as FEq. (3.91) in the representation based on Eq. (3.27).

The unknown w{i) represents the enhancement of resistive or memory-loss effects due
to the nonlinear interaction, as was noted below Eq. (3.123). In the context of Eq. {3.29),
N;;0X; X is replaced with —w(#)X;. In order to guarantee that this approximation is
optimal, we require

§ , >
0] { Nemn XX — [—w(O)X]}7) = 0, (3.129)
which leads to

w(i) = — Ngymn (X XmXn)/ (XFy) (3.130)

(the summation convention is not applied to parenthesized ¢). As the simplest
approximation to the estimate of (X XmXy,), we may use the first-order solution ¥,
13.481.

Equations {3.128) and (3.130) are based on the one-time correlations such as (X7,
and {(XuXmXy,), and are free from the infrared divergence that the Eulerian DIA
encounters. As a result, the Kolmogorov —5/3 power law may be reproduced in the
full version based on the Navier—Stokes equation (3.27).

3.8.  Inhomogeneous Turbulence

3.3.1. Inhomogeneity effects In §3.2, attention was focused on homogeneous
turbulence, specifically. an isotropic one. Homogeneous turbulence lacks the feedback
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effect of fluctuations on the mean field since d(—R,;)/dx, vanishes in Eq. (3.2). Real-
world turbulent flows are always inhomogeneous. and the mean field and the fluctuation
around it interact with each other inseparably. It is difficult to analyze those flows by
a resort to computer experiments only. In the presence of mean flow, £ and ve in

Egs. (3.43) and (3.44) are replaced by the reference length and velocity characterizing
each flow, L and Vy. respectively. Equation (3.44) is rewritten as

fp/Lc = Re ¥4, (3.131)
with

Re = VRLR/V. (3132)

In the numerical computation of Egs. (2.5) and (2.6), a flow region is divided into a
number of grids. In order to resolve the energy-dissipation process essential in turbulent
flow, the number of necessary grids is

N =0 (Re"), (3.133)

from Eq. (3.131). In real-world flows, it is not rare that Re is of O(10°), resulting in
N = O(10%). The computer that can meet this requirement is not probable in the
foreseeable future.

Inhomogeneity effects on turbulence arise from the mean-velocity tensor OV;/dz, in
the second term on the left-hand side of Eq. (3.6). The tensor may be divided into the
mean-strain and -vorticity tensors, 5,, and Wy, as

av, 1,
811 = 5 (Si] + wi_;,‘) . (3134)
with
ov, &v, 8V, oV,
& oz, + oz, ' dr, Oz, ( )
The time scale characterizing the mean straining motion is given by
s = |15~ (3.136)

where the magnitude of tensor A;; is defined by ||Al|(= ,/A%). As representative
quantities characterizing the fluctuating motion, we may mention the turbulent energy
K [Eq. (3.12)] and its dissipation rate £ [Eq. {3.15)], which constitute a characteristic
turbulence time scale

On the left-hand side of Eq. {3.6), we estimate the relative magnitude of the second
linear term to the third nonlinear one. We scale v by vV K, and x in the nonlinear term
by £¢, where £ is written as

EC = K'}"’?/’g: (3138)
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from Eq. (3.43). The relative magnitude is estimated as

_[(&-V)V] _ Kljsh
A T (139

where [[X]] denotes the magnitude of X based on the above order of magnitude estimate.

For strong inhomogeneity or large ¥, the nonlinear term in Eq. (3.6) may be
discarded, leading to a linear equation. This approximation is called the rapid-distortion
theory (RDT), which is useful in the analysis of the fluctuating motion in the presence
of the steep change of mean flow [3.49]. Such a change is often generated by boundaries.
As the initial large distortion of the fluctuating motion relaxes, the nonlinear term
gradually becomes important. As a result, the validity of the RDT is limited to a short
time interval after the imposition of inhomogeneity on the fluctuating motion. The
extension of the RDT to the nonlinear regime is a challenging task. In a sitvation with
weak inhomogeneity or small 9, the linear term plays the role of bringing anisotropic
properties into the isotropic fluctuating motion. Heuristic modelling based on small 9
will be explained in §3.3.2.

3.8.2. Heuristic modelling The numerical computation of the Navier-Stokes
equations is very difficult for real-world flows at high Reynolds numbers, as was stated in
§3.3.1. Under the situation, we have two approaches to the analysis of those flows. One
is to focus attention on global properties represented by the mean flow, under the use
of Eq. (3.2). Another is the use of Eq. (3.20) that is founded on the filtering procedure.
In the latter approach, we eliminate only the fluctuating motion whose spatial scale is
smaller than the computational grid size, at the cost of increasing computational burden.
The eliminated effects are compensated for through Egs. (3.21)-(3.23). This procedure
is called the subgrid-scale (SGS) modelling, whereas the former approach based on the
ensemble averaging is named the Reynolds-mean modelling.

The Reynolds-mean model is further divided into two categories. In ome category,
we model the Reynolds stress R;, [Eq. (3.4)] and the turbulent heat flux H [Eq. (3.5)],
and relate them directly to the mean velocity and temperature, V and 6. This type of
modelling is called turbulent-viscosity and -diffusivity modelling. In another category,
we deal with the transport equation (3.7) for R;; and the counterpart for H. There the
modelling of T1;; etc. is a central task. This category is called second-order modelling.

A K-¢ model The simplest model of R;; is the K— model based on the concept of
turbulent viscosity or enhanced momentum diffusivity {3.50]. It is written as
2
It),ij = gKCiJ — VTgij: (3.140)

with v as the turbulent viscosity. Considering the energy-containing components of
fluctuations to contribute mainly to the momentum transport, we adopt K as the
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quantity statistically characterizing those components. Moreover we use occurring in
the K equation (3.13). In terms of them. we express

vr = C,K?/z. (3.141)

where C, = 0.09. Here and hereafter. we give a typical choice of model constants for
understanding their approximate magnitudes. In correspondence to Egs. (3.140) and
(3.141). the turbulent heat flux H [Eq. (3.5)] is modelled as

H = —(vr/oy) V8, (3.142)

with oy = 0.7.

In order to close Eqgs. {3.1), (3.2) and (3.140). we need transport equations for X and
¢. The mathematical basis of Eq. (3.13) for K is clear in relation to the kinetic-energy
conservation law in the case of solenoidal inviscid flow (recall the discussion in §3.1.1).
The sole term to be modelled is Tx. Apart from the p-related part, Tg is the energy
transport rate of the fluctuating motion by itself. and the energy may be considered to
be transported from the high -K region to the low-K one, as is similar to heat transport,
leading to

TK' = — (I/T/O'K) VK (3143)

with O = 1.
All that remains is equation for €. The mathematical structure of the £ equation
derived from Eq. (3.6) is much less clear, compared with Eq. (3.13). for we have no
conservation relation for . The model equation for ¢ is constructed in quite a heuristic

way. This point is one of the bottlenecks in the development of turbulence models. The
simplest model is given by

De £ g2 vr
e Cy—Pg - Cae + V- £). 14
e~ CagePr = Caz +V (Usv ) (3.144)

with (C.1, Ce.0.) = (1.4,1.9,1.3). The basic concept of Eq. {3.144) is that K and ¢
should obey similar equations since large K and = often occur togather spatially.

The foregoing model is called the K-« one, and is the prototype of all the current
turbulence models.

In inhomogeneous turbulent flows, the energy-input process due to Px is always
important, as well as the dissipation process. Hence we pay attention to these two, and
write

Py . (3.145)

This situation corresponds to the equilibrium state assumed in the discussion on the
inertial range. Equation (3.145} is combined with Egs. (3.138), (3.140), and (3.141),
giving

K o (£cl|3]))* . (3.146)
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resulting in
v o E21[3]). (3.147)

This is the mixing-length representation for v, although it was derived originally in an
entirely different way. The present derivation indicates that it is deeply based on the
assumption of the equilibrium state. Physically, £¢ is the spatial scale characterizing
the energy-containing eddies contributing to the momentum transport.

A deficiency of the turbulent-viscosity representation (3.140) occurs typically in
wall fiows. In a channel flow between two parallel walis whose mean velocity is given
by (7:(y).0,0), we have

=2 ~2 -2
(72) = (32) = (i), (3.148)
where z and z are the streamwise and spanwise directions while y is normal to the wall.
Observation, however, indicates the anisotropy of turbulent intensities

(82) > (82) > (i) (3.149)
and the intensity normal to the wall is highly suppressed. Thus, the normal intensity is
overestimated under Eq. (3.140). The overestimate is a defect intrinsic to the turbulent-
viscosity model, which arises from the fact that Py is always positive in the model. This

defect gives rise to a serious problem in the analysis of engineering turbulent flows in
which the mean flow impinges on a solid wall.

B Second-order modelling The representative method of alleviating the shortfall of the
K ¢ model is the use of the transport equation (3.7} for R;;. The method is called
the second-order modelling [3.51, 3.52]. There the primary term to be modelled is the
pressure-strain correlation function I1,,. which does not occur in the K equation (3.13).
Rather, it contributes to the energy exchange among three turbulent intensities, as was
noted in §3.1.1.

In the K—¢ model, R;; was modelled using K and ¢ in addition to the mean-velocity
strain §;; (note that w;; does not enter Ry; from the symmetry of the tensor). In the
second-order modelling, the counterparts of these quantities are

K, & B, 3 @y, (3.150)
where B;; denotes the deviatoric part of R, defined as
T 1
By = |Ryjp = 1t — §R£€5ija (3.151)

and indicates the degree of anisotropy of R,; (note that By; = 0).
In order to see the primary role of IL;;, we consider the situation that the turbulent
state has no mean flow and is highly anisotropic at the initial stage. In this case,
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Eq. (3.7) is simplified to

0B,
5= o~ el (3.152)
We adopt the simplest model for II,,
I, = —-Cm (¢/K)} B,,. (3.153)

with Cpp = 1.8. In the absence of the mean flow that is the cause of the anisotropy
of fluctuations. the turbulent state will relax to the isotropic one as time elapses.
Equation (3.152) fulfills this property for positive CII1 (note that £, associated with
viscous effects does not contribute to the occurrence of anisotropy).

For incorporating the effects of mean flow into Eq. (3.153), we retain the terms of
first order in each of B,;. 8. and @,;. and model II,, as

£
Hig = - CH]E

+ Cna (Bigloyy + By, . (3.154)
with (Crnz, Cns. Cra) = (0.4,0.3,0.1) [3.53]. We usually rettain the terms up to the
first order in 3,; and &,, because the Poisson equation for p, which is derived by taking
the divergence of Eq. (3.6), is linearly dependent on 3, and &,,. However it is not
mathematically guaranteed that II,, is really free from nonlinear dependence on those
quantities.

Concerning the dependence of II,, on B,;, the maximum order is the second order
from the Caley—Hamilton formula

Bzg + CH2K:§23 + CIIS [Bzfgfj + Bjégfi]D

1 1
BB By = 533,,131} — §BmB,ﬁ,me,ﬂféij. (3.155)

From this result, the effects of the third or higher order in B,, are incorporated into
the non-dimensional coefficients, and Cp,,’s become functionals of B2 and By B Bne
[3.54].

What remained to be modelled in Eq. (3.7) is the destruction term &,; [Eq. (3.10)]
and the transport term T;,, [Eq. (3.11})]. For £,;, we may make the same discussion as
for I, and reach a similar mathematical expression. Then we may extend the foregoing
modelling to IL,; for II,, — ¢;;.

In Eq. (3.11), we pay attention to (3,37}, as is similar to the modelling of T
[Eq. (3.16)]. It expresses the transport rate of the stress 9,7 by #,. Further we consider
the symmetry concerning suffices, and write

vr aRjg aRgz asz,
Tig = —— . 3.15
5t oT ( ox; + dz, + Oxg | ( 6)
with or as a positive constant (note that R,; = (#,7)). A more complicated model
i aRz j
132 - *CT_ (Rzm(?\RJE Tm?—RE- ; Rim”r’\""_‘? (3157)

m Ol /
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has also been proposed (Cr is a positive constant) [3.53]. Equation (3.156) may be
obtained from Eq. (3.157) by replacing R;; with its isotropic part (2/3)Kd;;.

Compared with the turbulent-viscosity modelling, the foregoing second-order
modelling may give better results in the analysis of inhomogeneous turbulence,
specifically, in the case of a simple flow geometry. In complicated flows in engineering
devices, one often encounters computational difficulties such as numerical instabilities.
They are related to the fact that those models do not always obey realizability conditions
such as

R(i)(i} > 0, R(,_-) i}R{j}(j) > er-\rj), etc. (3.158)

AR

(the summation convention is not applied to parenthesized subscripts).

C Nonlinear algebraic modelling The turbulent-viscosity modelling often fails to
recover some basic properties of turbulent flow, whereas the second-order modeling
Jeads to a heavy computational burden in analyzing turbulence subject to complex
flow geometry. As an intermediate form of modelling, we may mention the nonlinear
algebraic one.

We first rewrite Eq. (3.7) as

OB;; A [Tije
By _ (P + 1y~ leyly + 25202, (3.159)
where the v-related part has been dropped, and
2 1 1
[Pylp = —gK 555 [Bie3e; + BjsBail, — 5 (Biawe; + Bjgwss) - (3.160)

We substitute Eq. (3.154) into Eq. (3.159), and regard the resulting expression as
an equation for B;;

2 Ch2 K? 1 Cos\ K _ _
B;; = —( _““—_)—i' (—— —)"—Bi i + BjeSu
I Cm  Cm) e T20m T Om [Beses + BieSeily

g £
1 Cru\ K _
- Z 2 (Byty; + B
- ( 201'[1 - Cnl) € ( wwej—'_ Jﬂwz)

1 K DB 1 K 3Ty

" Cme Db Cme Oz

We solve Eq. {3.161) by an iteration method with the first term as the leading one. In

the first iteration, the first three parts on the right hand result in the nonlinear algebraic
model

(3.161)

K2 K3 _ K3 -
Bij = _Cy?gij -+ CNI_&E [gifs.‘ij]n -+ CN25—2 (Sigfz)gj + %g@gi) y (3162)

with C, and Cxn(n = 1,2) related to.Cn, (n = 1-4) [1.7, 3.50, 3.55, 3.56]. This model
may alleviate the difficulties of the K—= model such as Eq. (3.148) [3.50, 3.57].



51

3.3.3.  Subgrid-scale modelbing One of the prominent features of mode elimination
due to filtering procedures is the occurrence of the computational length scale. that is.
the width of a filter. Ap. in addition to the length scales intrinsic to turbulent motion
such as £¢ in Eq. (3.43). The numerical computation of turbulent flow using Eq. (3.20)
is called large eddy simulation (LES). In LES. the grid-scale (GS) components. that
is. the components of motion whose scale is larger than Ar. are treated directly, and
what needs to be modelled is the subgrid-scale (SGS) stresses. The critical difference
between the SGS and ensemble-mean modelling is that in the former, Ay becomes more
important than f¢ as long as Ap < f¢.

A Smagorinsky model We first consider Eq. (3.23), and then refer to Eqgs. (3.21) and
(3.22). We define the SGS velocity intensity
—G
Ks=1i/2=v"" /2 (3.163)
Under the SGS-viscosity (v5) approximation, 71{33) is modelled as

(3 _ L

T:] = .‘3'?)%6:3 - VS'§1_7~ (3164)
with
v, oV,
5,, = —3 . 3.165
S dr; + oz, ( )

Considering that Ap is an important factor in the SGS modelling. we write
vg = Cyo Arvs (3.166)

where (. is a positive model constant.
For estimating vs in Eq. (3.166), we make use of the equation for K5. which is given
by
_—<
0Ks

- 1
st (V-V) 57 = Prs—es+ Rs. (3.167)

Here Py, and eg are the SGS counterparts of Py and ¢ in the ensemble-averaging
procedure. They are given by

—G N «
8Vz GBVi {(2) BVZ
Py, = —vlvt— = —vlt) — = 7" , (3.168)
s v 6&2‘3 v, 0% Ty 535}' L )
A
(8
£g = V(a:cj) . (3.169)

In obtaining the second relation in Eq. (3.168), use has been made of the approximation

-G ., G_n N
fo =7 7" (3.170)
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The mathematical basis of this approximation is not so firm, but it is often used in SGS
modelling and is usually called the scale similarity relation [3.58]. The residual part Es
is not used below, and its details are omitted.

In the ensemble-mean modelling explained in §3.3.2, Py and e are always the
impertant ingredients in the K equation (3.13). The retension of these two terms,
that is, Eq. (3.145) results in the so-called mixing-length expression for the turbulent
viscosity, Eq. (3.147). In Eq. (3.167), we adopt a similar approximation and equate P,
and e5. We model eg using vs and Ap, as

gs = Cogva/ A, (3.171)

with a positive model constant C., [see Eq. (3.43)]. We combine the approximation
with Eqgs. (3.164), (3.166), and (3.171), and have

vs = /Cus/ (2C5) 131 Ar. (3.172)

where ||3]| = /8%, From Eq. (3.166) with Eq. (3.172), we have

vs = (CsAr)? /52 /2. (3.173)

with Cs = (C3,/C.,)"/*. Equation (3.173) is the so-called Smagorinsky model and is
still the representative model in LES of engineering flows [3.59. 3.60]. The most familiar
choice of the Smagorinsky constant is Cs = 0.1.

The Smagorinsky model is not applicable in the vicinity of a solid wall since
Eq. (3.173) is not dependent directly on v. In order to include this effect, we usually
introduce Van Driest’s wall damping function

Fp, =1—exp(—y'/A), (3.174)
where A = 25, and y*{= »,y/v) is the wall-unit coordinate [y is the distance from the
wall, and 1. is the friction velocity defined by u, = +/v(8V/ By)y:O].

The features of the Smagorinsky model combined with Van Driest’s wall-damping
function may be summarized as follows.

(i) The balance of the SGS-energy production and dissipation processes is assumed,
which means that the advection effect represented by the second term on the left-
hand side of Eq. (3.167) is negligible.

(1) The wall-unit distance y* is introduced. As its typical {ailing, we may mention
the following two points. One is that Eq. (3.174) is not proper at the separation
point of flow leading to vanishing ., and another is that the identification of the
distance from a wall is not unique in the case of a corner and a highly curved wall.

(iii) The effect of a filter function occurs only through its width Ap, and the difference
of filter functions does not enter the computational results.
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B Non-equilibrium model In the application of the Smagorinsky model combined
with Van Driest’s wall-damping function. the distance in wall units, y*, may be a
stumbling block. as was noted above. In order to construct a non-equilibriurn SGS
model alleviating this problem. we first examine the correct behavior of vg near a solid
wall. We choose the coordinates z and y along and normal to the wall, respectively, and
denote the corresponding velocity components by V. and V,,. In the vicinity of a solid
wall. we have V; = O{y) and V, = O(y*). which suggests TS’) = O(y®). As a model
obeying this requirement, we write

vs o vd/ (1317 Ar) - (3.175)
A simple expression connecting Eq. (3.166) with Eq. (3.175) is [3.61]

vs = CoAps (1 — exp {_ [Curs (1131 AF)-I}Q}) (3.176)

with C, being a constant. What remains to be modelled is vs. For its estimate, we
make use of the approximation (3.170) in place of the SGS equilibrium assumption, and

have
— N 282
vs = Vv 2/ (v - V) . (3.177)

The two model constants are chosen as C,, = 0.03 and Cy = 20. This model makes
no use of the wall-unit coordinate and is applicable to flows subject to separation.
For channel flows, Eq. (3.176) gives results better or comparable to those by the
Sraagorinsky/Van-Driest model (3.173) and (3.174) [3.61].

C Dynamic modelling In the SGS models described in §3.3.3A and B, the model
parameters are fixed and optimized through applications to some typical turbulent flows.
A method of estimating those parameters in a self-consistent manner is the dynamic SGS
modelling [3.62, 3.63].

We introduce two filter functions G5 and Gy, whose characteristic filter widths are
denoted by A and Ag, respectively. We apply Ga to Eq. (2.6). The counterpart of
Eq. (3.20) is

A
ovi 0 prapA op* 0 A Py
B v v/ B A 178
gy +8I}V Z 8:rz_+amj( ) + vV, (3.178)
where the SGS stress T} is given by
A TrATFA
TG =ViV; -V (3.179)

The consecutive filtering due to G4 and Gy is defined as

PP = [ Galx - v)T (v)dy (3.180)
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(Ap > As). We apply Eq. (3.180) to Eq. (2.6), and have

GVi" | 3 -aB-AB g8 9 R ap
S T = ¥ gy (T +VT (318D

with the SGS stress T} entirely similar to Eq. (3.179). The two SGS stresses T} and
TAP are connected through the so-called Germano identity

_TB
Li; = TAB B TA AVJZ.-A

+ABT+AB

VPV (3.182)

The last part of Eq. {3.182) is composed of GS quantities and may be calculated without
any modeliing in the course of LES. This identity may be used for the estimate of model
coefficients in SGS models.

Following the Smagorinsky model, Eqgs. (3.164) and (3.173), we write

[T4] = —céailssh, (T57], = ~CaPakels s (3.183)

i i.? ?

with two non-dimensional coefficients C£ and C8®. As a simple method of estimating
these coefficients, we assume C$ = C§P. We substitute Eq. (3.183) into the Germano
identity (3.182). The identity is a six-component relation, but the only unknown
coefficient is C2. Then we use the least-square method [3.64], and estimate CS as

a 2
aCE ([ij]n - C§ Mij) =0, (3.184)
where
My = MAJFATES — A3|AB |48, (3.185)

Equation (3.184) gives
C = My [Lyly /M (3.186)

A great merit of the dyna.mic SGS modelling based on Eq. (3.186) is the avoidance
of a wall damping function of Van Driest’s type. In actual application of Eq. (3.186),
however, the dynamic model is not always superior to the Smagorinsky one, at least
in a channel flow between two solid walls. A method for alleviating this difficulty is
the inclusion of Egs. {3.21) and (3.22). Here it should be stressed that the retention of
either Eq. (3.21) or (3.22) is not allowable since Eq. (3.20) does not become invariant
under the Galilean transformation X — x+ V¢t and t — ¢ [3.65]. In retaining Eq. (3.21),
Eq. {3.22) also needs to be retained and modelled. For instance, we make use of the
approximation (3.170}), and model
ViA’U;A ~ ViAA (VzA . —V}—AA) _ (3-187)
The model combining Egs. (3.21) and (3.22) with Eq. (3.174) is called a mixed 5GS
model [3.66-3.68].
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3.3.4.  Statwstical theory and turbulence modelling In §3.2.5. we gave a review of some
homogeneous-turbulence theories. In §3.3.2. we discussed heuristic models that are
useful in analyzing realistic turbulent flows such as engineering flows. There is a wide
gap between these two methods. A prominent feature of inhomogeneous turbulence is
the concurrence of slowly-varying mean and rapidly-varying fluctuating motions. Their
simultaneous treatment is a primary cause of the difficulty encountered in the formalism
of inhomogeneous-turbulence theory.

A Two-scale direct-interaction apprommation (TSDIA) A theoretical method for
bridging the gap between turbulence theories and heuristic models 1s the two-scale direct-
interaction approximation (TSDIA). which is the combination of the DIA explained in
§3.2.5A with the multi-scale approach in a singular perturbation method [1.7. 3.49]. In
the TSDIA, emphasis is put on the nonlinear interaction among fluctuations, and the

effect of inhomogeneity is taken into account in a perturbative manner based on small
J [Eq. (3.139)1.

A1 Mathematical formalism In order to distinguish the rapid variation of a
fluctuating motion from the slow variation of a mean field. we introduce a small artificial
parameter &, define two space and time scales as

¢(=x), 7(=1t); X(=dx), T{= dt), (3.188)

and write
f=FXT)+ fl&.7X,T). (3.189)

The O(6%) change of x corresponds to the O(&) change of X. which indicates that X is
appropriate for expressing the slow variation of f. The same situation holds for T. The
fluctuating field f depends on both the slow and fast variables. (X.T) and (£, 7). since
it is connected to f through the equations for R,, and K. Eqgs. {3.7) and (3.13).

We apply the two-scale variables to Egs. (2.5) and (2.6). and have

VE -V = 5(—VX -V, (3.190)
o5, .. -
s +(VVX) Uer“aﬁé__]UzUJ-i—a—&z—-VVg@z
- Dy
=0 |—(v- - . 191
6[ - Va)Vi— 551 (3.191)

where Ve = (8/8¢€,), Vx = (0/6X,), and D/DT = 8/8T +V - Vx. In order to clearly
see the key procedures of the TSDIA, we retained two typical terms on the right-hand
side of Eq. {3.191), and discarded the terms such as 0{#;0, — R,,)/0X; as well as the
v-dependent ones.
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In homogeneous-turbulence theory, we make full use of the Fourier representa-
tion (3.25). In the presence of the mean flow V, we introduce a somewhat different
representation concerning the fast variable &, as

FEeX:nT) = / Flbe, Xo, T) exp [~ik - (€ — Vr)] dk. (3.192)

This is the Fourier representation in the frame moving with the velocity of the mean
flow, V, and the fluctuating motion is expressed as the aggregate of eddies or waves
observed there. We apply Eq. (3.192) to Egs. (3.190) and (3.191). and have

k-V(ki7) = 8 {—iVix - ¥(k; 7)] , (3.193)
?ﬁ%lfl)- + vk*5;(k; ) — ikip(k; T)
— ik, f f o(p; 7)%;(q 7)0(k — p — q)dpdq
:5{;[&(1(;7)-%]1‘4— %;T)}. (3.194)
with
(D/DT;,Vix) = exp (—ik - V1) (D/DT. Vx)exp (ik - V7). (3.195)

Here and hereafter, the dependence of f on X and 7' is not written explicitly, except
when necessary.

In Eq. {3.193), we note that v does not obey the solenoidal condition concerning k.,
unlike the homogeneous case. We rewrite

v(k; 1) = Vs(k;7) + 6 l'—i%VIX - v(k; T)J - (3.196)

The first term obeys [3.69]
k-vs(k;7)=0. {3.197)

We expand the fluctuating field in 4, as
[ o]
Vikit) =3 Fonlk7), (3.198)
n=0

and similar expressions for vg(k; 7} and p(k; 7).
We substitute Eq. (3.188) into Egs. (3.193) and (3.194). The O(8°) system of
equations is given by
6’50,_,,(1{, T)
or
— ik; f / §(k — p - q)dpdqto:(p; 7)o (q; 7) = 0, (3.199)

+ UkQ’E’{}Q(k T) — anﬁg(k, T)
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with k - vo(k:7) = 0. where we should note that vo(k: 1) = vgo(k: 7). The elimination
of po(k: 7) results in

Ot (k; 7]
—
— Mk / / o, (p: 7 )70e(q; 7)8(k — p — q)dpdg = 0. (3.200)

where M,,¢(k) is defined by Eq. (3.28). Equation (3.200) is the same as for the
homogeneous counterpart {3.27). apart from the implicit dependence of vo on X and T.
The O{d) system of equations is given by

+ ng'l.‘m(k: 'T')

Vilk;7) = Ve (kiT) — z—VX vo(k;7), (3.201)
1. {k:
BtlT) | 2k 7) — ek (ki 7)
or
— ik, [[ (o203 7oy (@57) + o (03 7), (@ 7)} 8k ~ p — @)dpda
- > D, (k;
— (ki) - V]V, — —%. (3.202)
with k - vg; = 0. After eliminating f; from Eq. (3.202)., we have
U1, (K
or
— 2iMye(k) [ 0,03 7)Bs0e(@ )8k ~ p — Q)dpda
. _ Diog;k;r
= —Dy(k) [to(k:7) - Vx] Vi — D,, (k)———o—"’—(——). (3.203)

D

The formal solution of Eq. (3.203) may be obtained using the Green’s or response
function for the O(6") equation (3.200). G,,(k,X; 7.7, T), which is simply written as
G, (k; 7,7'). It obeys the same equation as for Eq. (3.82), except the iraplicit dependence
on X and T, which is given by

e ' :
(5 N Vk2) Gy(k; 7, 7') — Dy(kjo(r — 7')

= iMum (k) f / Toe(P; 7)Gm; (a3 7. 7')8(k — p — q)dpdq. (3.204)
The O(4) solution is given by
. k .
Vvi(k;7) = var(k; ) — zFVIX -vol(k; 7)), (3.205)
with
N oV [ N
tgu(k;T) = — B_Xi . Gulk; 7, 71)00;(k; 7y )dTs

Di’gj (k-‘ ’7'1)
DT;

— [ Gukim,m) dr. (3.206)
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A2 Ewaluation of correlation functions In the TSDIA, the Reynolds stress f2;; is
written as

Ry = (B(x:1)0;(x: 1)) = (%:(&, X5 7. T)5; (€, X; 7, 7))
= fsz(k,.X; 7,7, T')dk, (3.207)
where
Ok, X1, Tk, X; 7, T))
d(k + k') ‘

Hereafter R;;(k, X;7,7,T) will be abbreviated as R;;(k).
We define the Reynolds-stress spectrum Ej; by the average of R;;(k) at the spherical
surface of radius &, S(k):
1

By(k) = 1z [, R ()aS. (3.209)
Using Eq. (3.198), R;,(k) up to O(8) is
{Doi(Ie; T)00; (K5 7))

}ﬁlj‘ (kr X'n 7.7, T) -

(3.208)

Ri] (k) =

d(k + k')
(D1 (k; T)00;(K; 7)) (Bou (ks 7)0 (K5 7))
d [ dk+Kk) S(k+k) (3.210}

The first term in Eq. (3.210) is essentially the same as Eq. (3.83) for homogeneous
isotropic turbulence, and is written as

{t0i (k; 7) Ty (K5 7)) _

50k + i) Dy (k)Q(k; T, 7). (3.211)
In correspondence to Eq. (3.211), the mean Green’s function @ij(k; T,7') is
Gij(k; 7. 7') = (Gy(k; 7, 7)) = Dy(K)G(k; 7, 7). (3.212)
From Eq. (3.205), the first part of the O{5) terms in Eq. (3.210) is
(D13 (ke 7)o (K5 7)) _ _QVL f’r {Gielk; 7, 71 )Tiom (; 71 )05 (K'; TDdT;
dk+ kY sk + k)
) Dior(kiry)
- / Culki T(g(;iﬁ; oKi7) dry.  (3.213)

Under the DIA formalism explained in §3.2.5A, the first part in Eq. (3.213) may be
evaluated as

d’T]_

3Vg /‘ (Gie(k; T, T1 ) om (k; 71 ) o (K5 7))
5k + k')
_ o0
09X, /-

" ook T, 1) Qo (7, ) (3.214)
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Here we expanded vy(k: 7) and G,,(k: 7.7") in the form of Eq. (3.71). substituted them
into the left-hand side of Eq. (3.214), and kept only the lowest-order contributions. By
renormalization. we attained the right-hand side. The second part of the O{d) terms in
Eq. (3.213) may be evaluated similarly.
Finally, we have

Ry(k) = Dy(k) [Q(k:r, - [ Gtkir 2R E T 0lyr,
~ Dl Dy () + Dok Dy 0] 5
X /_T Glk; 7. 1)Q(k;7.m)dry. (3.215)

Here the dependence on the scale parameter 4 disappears automatically through the
replacement of (X, T} with (dx. t). From Eq. (3.209). we have

k. 1)
Ezj(k):ﬂ[ ) - f lekT.l)—Dt—I—- ’
- hg [_OC C—?(k:’r. )@k T Tl)d’rl] 5. {3.216)
Here use has been made of the formulae
- é_% [ax (3.217a)
koo bk, 1 R
f “}ﬁ: dk = g (61353771 + 51561711 + Ozméjf) /dk (3.217b)
The energy spectrum E(k) is
E(k) = 47k* |Q [ (kir.7) ] Glk DQ(A ;— Tl)drl} . (3.218)
from the relation E{(k) = E, (k)/2. Finally, we use Eqs. (3.207) and (3.215), and have
2 .
R, = SK6, - vrs,. (3.219)
where
— . T A o DQUCa 7, Tl)
K= ] Q(k:7.7)dk / dk ] _Glkirm) =20, (3.220)
vr = 15fdkf Glk;7.m)Q(k; 7,71 )dm. (3.221)

Equation (3.219) is the so-called turbulent-viscosity representation for the Reynolds
stress from the viewpoint of the TSDIA.
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Equation (3.219) for R,; is expressed using the two-time statistical quantities in
wavenumber space, Q(k;7,7') and G(k; 7, 7'). It is of interest to know how it is related
to the counterpart in the K¢ model, Eqgs. (3.140) and (3.141). Through the elucidation
of this relationship, we can derive various types of turbulence models and extend
them to magnetohydrodynamic flows for the study of astrophysical and fusion-plasma
phenomena.

A method of estimating Eq. (3.219) without delving into the details of Q(k; 7, 7)
and G(k;7,7'), is the full use of the inertial-range concept. For simple inertial-range
expressions, we adopt

Qk.x; 7,7, t) = ok, x; t)exp [—w(k, x;t)|7 — T']], (3.222)
Gk x;7.7.t) = O(t — ) exp [—wik,x;t {7 — 7')], (3.223)
where

ok, x;t) = oe(x; ) PR3, wik, xit) = we(x; t) 2R3 (3.224)

We should note the dependence of Egs. (3.222)-(3.224) on x, compared with the
homogeneous counterparts (3.90) and (3.94).

As long as the response equation is dealt with in the Eulerian frame, we encounter
the overestimate of effects of much larger eddies on small ones, as was detailed in
§3.2.5A3. In order to avoid this difficulty, we make use of the observational result for
the Kolmogorov constant Ko in Eq. (3.46), which is related to ¢ through Ko = 4mo.
From observations, Ko is around 1.5, whereas we have Eq. (3.95) between ¢ and w.
Then we have

=012, w=042. (3.225)
We substitute Egs. (3.222)-(3.225) into Eq. (3.218), and have
D
E(k) = Koe?3k™5 — KN5'2/3F?—?/3. (3.226)

Equation (3.226) corresponds to Eq. (3.58) in the case of homogeneous-shear flow, and
the second part represents the non-equilibrium effect on the energy spectrum.

Next, we substitute Egs. (3.222)-(3.225) into Egs. (3.220) and (3.221). In the
TSDIA, the low-wavenumber components of turbulent motion mainly belong to the
mean field. Then we may consider that the contribution of those components to Ii,; is
small. Then we terminate the integral as

/ dk — ]k L dk (3.227)

Here k¢ is the wavenumber characterizing the largest eddies of the fluctuating motion,
and it is related to their size {¢ as

kc(x:t) = 2 /lc(x; ). (3.228)
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Here we should note the dependence of k¢ and 4 on x and £.
We perform the integration in Eq. (3.220) under the constraint (3.226) to obtain

s De

& 57— Crse 3gyaDlc (3.229)

K = Cx1e36 — Cype™%4 ¢ B

vy = Cee PEH°, (3.230)

where (Ko, Kx) = (1.5.0.90). (Ck1. Cra, Ck3) = (0.67,0.058,0.47) and C,, = 0.054.
Equation (3.229) was derived in a perturbative manner with the first part as the
leading term. We solve it for £¢ in such a manner, and have

DK . De
b = O K321 J L et 5/2,-327€ 9
c=Cn + Cepy i CaK? e Dr (3.231)
where (Cgl, ng, ng) = (18, 4.4, 26)
We substitute Eq. (3.231) into Eq. (3.230), and have
K? K:DK K?® De

with (C,,Cux, Cue) = (0.12.0.15,0.093). The first part in Eq. (3.232) is the turbulent
viscosity in the K—¢ model, which is given by Eq. (3.141). The second and third parts
correspond to the expressions that may be obtained from the DB,;/DT-related term
in Eq. (3.161), in the perturbation expansion with the turbulent-viscosity term as the
leading one. The nonlinear model (3.162) is derived from the O(4%) analysis of the
TSDIA, although the mathematical manipulation is a little tedious [1.7, 3.49. 3.65].
The TSDIA may be used for the theoretical derivation of various types of turbulence
models. Some of those findings may give a mathematical basis to the models that were
proposed in a heuristic manner. The others may be used for constructing new models
in complicated turbulent flows. A typical instance is the dynamo model that is needed

specially for the study of astronomical magnetic fields. This point will be discussed in
§3.4.

B Turbulence model and flow-structure generation In homogeneous turbulence with no
mean flow, the most prominent feature is the enhanced energy transfer from large to
small eddies; namely, large eddies break up into small ones, and the memory or specific
structure of large eddies is rapidly lost in this process. From this feature, we are apt to
consider that effects of fluctuations always destroy ordered structures of flow. On the
contrary, some ordered structures can exist only in the presence of strong fluctuations.
As an interesting example of structure generation in fluid turbulence, we may mention
the flow in a long square-duct pipe, which is driven by an axial pressure gradient. In
a long circular pipe, the uniform axial pressure gradient generates a turbulent flow

[N ——

JURELI, T, St tn dTem macial Alamndla alelcemb b lia cralasddsr mmadR o a0 aeannlh Bodd e
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compared to the laminar case. In a square-duct flow, on the other hand, a secondary
flow occurs in the cross section (Fig. 3.1). The magnitude of its velocity is at most a
few percent of the mean axial velocity, but the occurrence of the secondary flow has a
drastic influence on the profile of the mean axial velocity.

z

Figure 3.1. Illustration of secondary Hows in the one-fourth cross section of a square
duct {the primary flow is in the z direction}.

In the application of the K—¢ model to a square-duct flow, the initially-imposed
secondary flow is rapidly lost, and the mean flow relaxes to a simple flow in the axial
direction. This finding contradicts observations. This fact indicates that the observed
secondary flow in a square duct survives the structure-destruction process arising from
the turbulent-viscosity effect. Asin §3.3.2C, we referred to the nonlinear algebraic model
given by Eq. (3.162), in which the Reynolds stress R;; includes the nonlinear effect of a
mean velocity gradient. The balance between the nonlinear effect and the one from the
linear turbulent-viscosity leads to the generation of the secondary flow in a square duct
13.50, 3.71]. This point may be actually confirmed through numerical computation of
the nonlinear model.

3.4. Dynamo and Structure Occurrence in Magnetohydrodynamic Turbulence

The mechanism for the generation of magnetic fields due to the motion of electrically
conducting Huids is called a dynamo. In astro/geophysical phenomensa, the Reynolds
number is always very large, and the related flows are highly turbulent. The magnetic-
field generation process in such a turbulent state is specifically named the turbulent
dynamo. The present section is devoted to a review of the turbulent dynamo [1.7,
3.72-3.74]. In this countext, special attention will be paid to the geomagnetic field, the
solar magnetic field occurring as sunspots, and the high collimation of astronomical
bipolar jets ejected from an accretion disk around a high-mass astronomical object.
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The magnetohydrodynamic (MHD} system of equations is the starting point for the
study of these phenomena. Throughout §3.4. Alfvén velocity units are adopted for the
magnetic field, electric current. and electric field. as was noted in §2.1.2.

The generators of magnetic fields in thermo-nuclear fusion devices are an external
coll and an external coil and the plasma current generated by the loop voltage. An
interesting phenomenon in this situation is the occurrence of global plasma flows.
Recently, such flows have been shown to be closely related to a dramatic improvement
in plasma confinement. This phenomenon may be called the flow dynamo in contrast
to the foregoing magnetic dynamo. Phenomena in fusion plasma are very complicated,
and many of their properties are beyond the scope of the MHD system of equations.
The system, however. is expected to shed light on some restricted aspects of the flow
dynamo in plasma confinement.

3.4.1. Magnetohydrodynamic turbulence modelling The change of mass density often
plays a critical role in various phenomena due to electrically conducting fluid flows. The
importance of compressibility is recognized in the study of turbulent flows of electrically
non-conducting fluids. A typical instance is compressibility effects on the suppression of
the growth rate of a free-shear-layer flow caused by the merger of two parallel lows with
different velocities. A study of the suppression mechanism in the flow is in progress
and is still at a premature stage. No definite conclusion has yet been drawn on the
mechanism. Considering this situation, this section will be devoted to discussions based
on the solenoidal or constant-density system of the MHD equations.

A Elsasser’s variables From Egs. (2.10) and (2.11), we eliminate the electric field E.
and have the magnetic induction equation

%?_ =V x (V x B} +V®B. (3.233)

Considering that B in Alfvén-velocity units has the same dimension as V. we introduce
Elsisser’s variables

¢$=V+B, =V -B. (3.234)

With the use of Eq. (3.234), the MHD system of equations is written in a highly

symmetric form

d¢, 0 Opy v+, V=179

oy = —~ — V9, V-, 3.235
ot i dz; G oz, T 2 Pt 2 b ( )
af + ,\iu’)id)? = —2:@ T/t Y g2, (3.236)
ot e - ox, 2 2
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with pu = p + (B?/2) and the solenoidal conditions V - ¢ = V - ¢ = 0. The important
property of Elsdsser’'s MHD system, Eqs. (3.235) and (3.236), is that [ ¢*dV and f WAV
are conserved in the absence of v and 7.

In correspondence to Eq. (3.132), the magnetic Reynolds number Ry is defined by

RM = VRLR/T] (3237)

In astronomical and fusion-plasma phenomena, both Re and Ry are very large.
Specifically, in the case that the difference between them is not so critical, Eqgs. {3.235)
and (3.236) are reduced to the quite symmetric system

a¢z d _ ap M

2
g, = + vV, 2
ot Ba:jqﬁ% ot; vV, (3.238)
; 0 Opm 2.,
b, = — 2y 2
at axjwléj Oz; Y (3:239)

This system of equations is helpful to the understanding of turbulence effects.

B Primary turbulence effects We apply the ensemble averaging in §3.1.1 to the MHD
system, Eqs. (2.9) and (3.233), and have

DV, 8 ¢ la, - -\ ORwy .

Tt = " 3e. (P+2B)+(J><B)i— o VT (3.240)
oB o oo

5 = Vx (VxB+Ew) +nV'B, (3.241)

where Ryg;; and Ey are the MHD Reynolds stress and the turbulent electromotive force,
defined by

R, = (% — B.B,), (3.242)

Ey = (v x B). (3.243)
The latter is also related to the mean electric current J as

J=0/n(E+VxB+ Fu) - (3.244)

In Elsisser’s MHD system. the counterpart of Ryy; and Ey; is given by

R = <€51’¢~13> - (3.245)
In terms of Rg,;. By and Ey may be written as

Ry = (1/2) (R + Reji) {3.246)

By = —(1/2)ei56REse- (3.247)
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This fact indicates that Rp,, is the quantity more fundamental than Ay and Ey.
As some scalar relationships. we have

Ky = <{r? + B"’) /2= <q'52 + 1,7)2> /4, (3.248)

W={(v.B)= <<?f - {zf} /4. (3.249)

Here Ky; and W are called the turbulent NHD energy and the turbulent cross helicity,
respectively. The importance of W is clear since ¢ and 1 are independent of each other
except in the special case. The role of the cross helicity has long been missing in the
history of dynamo research.

From the fact that [ (1/2)(V? + B?)dV and [V - BdV are conserved in the absence
of v and n, K and W obey equations whose mathematical structures are firm and clear:

DG
o = Fo—ec+V-Te (G=Ky or W), (3-250)
where
. v,
Py, = —Epn-J— R-"‘”&c_j’ (3.251)
83,\* oB,\’
EKnm EENI=U<(8—$’Z) >+n<(a$j) >., (3252)
Twy = WB + Tk, + vV Ky, (3.253)
OB
Py = ~Ey - @~ RE:’ja—Ij‘-, (3.254)
01, OB,
Ew — (1/ + ’I]) <—6—I—': a.’Ez > N (3255)
Tw = KyB + Ty + VW, (3.256)

with the mean vorticity @ = V x V. Equations (3.251)-(3.253) and (3.254)-(3.256)
correspond to Egs. (3.14)-(3.16) for an electrically nonconducting flow. In Egs. (3.253)
and (3.256), TKM and TW consist of third-order correlation functions concerning ¥ and
1~3, whose details are omitted here.

C Modelling of turbulence effects based on the TSDIA For closing the MHD system:.
Egs. (3.240) and (3.241), we need to relate Ry,, and Ey to the mean field and the
quantities characterizing the MHD turbulent state. A systematic method of finding such

PPy o b emda,

rrlatimime im Flhn vy dlam beren 1o Ao e T it SITOITRT A Y 1. 1
L3AGUIALLS 15 LU USS O LUG TWU-SCaie UITECL-INteracClion approxXialion {1 oA ) explained
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in §3.3.4. In what follows, we shall omit the details of the TSDIA analysis of Elsasser’s
MHD system [1.7, 3.75], and give the simplest dynamo model in the physical-space
representation applicable to various interesting realistic phenomena.

The important procedure in dynamo modelling is the choice of proper characteristic
turbulence quantities, entirely the same as for the electrically nonconducting case in
§3.3.2. Turbulence theories such as the TSDIA suggest that the most fundamental
turbulence quantities are

Kx, W, Hy(= (—ir-a;ﬂé-j)), M, (3.257)

where Hg is called the turbulent residual helicity (@ =V x v). Of these four, W and
Hy, are pseudo-scalars. At least, two pure scalars such as Ky and gy are indispensable
for the construction of a characteristic time scale. The important inequality

[W|/Kn <1 (3.258)

holds between Ky and W.
The simplest modelling of Ry, and Ey is

Ry = (2/3)Krbi; — vr8iy + My, (3.259)
Ey = aB — 87 + @, (3.260)
where Kr(= (¥2 — B?)/2) is the turbulent residual energy, and the mean velocity-strain
tensor 3;; is defined by Eq. (3.135), and the magnetic-counterpart my; is obtained by

replacing V in §; with B. Among the coefficients vy, vy, 8, and 7, the TSDIA gives
the simple relationship

vr = (7/8)8, va = (7/5)7. (3.261)
Using expression (3.257), a, 3, and v may be modelled as

a= C,7Hg, (3.262)

8 = Cat Ky, (3.263)

v = CyTW. (3.264)

with the characteristic time scale 7 = Ky/en. Here the numerical coefficients Cy,, Cg,
and C, have already been estimated as [3.76]

C, =0.02, Cs=005 C,=0.04 (3.265)

In what follows, no use will be made of the details of the magnitude of these coefficients.
In Eq. (3.250), we need to model Tk, [Eq. (3.253)], ew [Eq. (3. 255)], and Tw
[Eq. (3.256)]. Their simplest models are

Tk, = (vr/ox) VK, (3.266)
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EW = Cqu/'T, (3267)

Tw = (vr/ow) VW, (3.268)
where the numerical factors oy etc. are chosen as

o = ow = 1, CW = 1.1. (3269)

As for the remaining two quantities £y and Hgi, we have no conservation rules
corresponding to f(1/2)(V2+B?)dV and [V -BdV or [¢?dV and [4%dV. As a
result, the modelling of their equations is inevitably phenomenological. The following
discussion will not be based on the details of their modelling.

D Physical meanings of turbulence effects MHD turbulence effects occur through Ry,
and Ey. We are in position to understand the generation mechanism of those effects in
physical terms.

D1 Effects on the magnetic field We substitute Eq. (3.260) into Egs. (3.241} and
(3.244), and have

B o _ ;
%=V><[VxB+aB—(n+ﬁ)J+’y@], (3.270)
; 1 - - _ B
J=n+ﬁ(E+VxB+aB+7w). (3.271)

First, the physical meaning of 3 is clear from Eq. (3.270) or (3.271). It expresses
the enhanced effect of the resistivity due to fluctuations, which is called the turbulent
or anomalous resistivity. The effect tends to destroy ordered structures of the magnetic
fields. In order that the structures continue to survive, some other effects need to balance
the [ effect and effectively suppress it.

As such factors, we have two effects in Eq. (3.270) or (3.271). One is the a-related
term. It generates J aligned with B in sharp contrast to the original term V x B.
This mechanism, which is called the alpha effect, is very familiar in the long history of
the turbulent dynamo [3.72-3.74]. The coefficient « consists of two effects. One is the
contribution from the turbulent kinetic helicity (v - @). The mechanism is illustrated in
Fig. 3.2. The other is from the turbulent current helicity (B - J} [3.77]. Nonvanishing
(B - J) is an indicator of nonvanishing B - J.

A prominent feature of the alpha effect is that the resulting equation, that is,
Eq. (3.270) with the y-related term discarded, is linear and homogeneous. As a result,
the saturation level of B is not determined from the equation alone. The saturation
process of B is a major problem in the alpha dynamo. A method of investigating the
process is the incorporation of nonlinear effects of B into the alpha coefficient o [3.78].
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Figure 3.2. Alpha or helicity dynamo.

This method is also extended to the inclusion of the similar effects in the turbulent
resistivity (3) and the turbulent diffusivity of a passive scalar {3.79, 3.80].

Another ingredient possessing the potential to balance the turbulent-resistivity effect
is the ~v-related part in Eq. (3.270) or (3.271) [1.7, 3.75]. In this effect, a J aligned with @
is generated, which is equivalent to the occurrence of a B aligned with V. This process is
shown schematically in Fig. 3.3. The balance between the cross-helicity and turbulent-
resistivity effects may determine the saturation level of B within the framework of the
induction equation, unlike the method based on the alpha effect.

The cross-helicity effect 7@ is sensitive to the effect of frame rotation. In the frame
rotating with the angular velocity QF, @ is subject to the transformation

@ — @+ 2. (3.272)

This fact indicates that the cross-helicity effect may play an important role in the study
of the astronomical dynamo that is associated with rotational motion.

D2 Effects on fluid motion We substitute Eq. (3.2569) into Eq. (3.240), and discard
the spatial variation of the coefficients vy and vy for the understanding of basic
turbulence effects. Then we have

DV, 8 (. /B?\ 2 -
Di *'EE(I)+<?>+§KR)+(JXB)1-

+ vr V2V, — v V2B, (3.273)

Here the turbulent-viscosity (vr) effect is entirely the same as for electrically non-
conducting flows. Ordered magnetic structures are usually linked with ordered flow
structures. In such a case, the eventual cancellation of diffusion effects due to vt is
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Figure 3.3. Cross-helicity dynamo.

essential for the persistence of ordered magnetic structures. The last term on the right-
hand side of Eq. (3.273) is a promising candidate as the ingredient giving rise to such a
cancellation.

The vy-related term in Eq. (3.273) arises from the tension intrinsic to magnetic-field
lines. In the case that a fluid blob moves in the direction normal to magnetic-field lines
at high magnetic Reynolds numbers, the field lines move locally with the blob from the
frozen-in property, and bending of the lines occurs. The further movement of the blob
is suppressed by the tension of the bent magnetic field lines. This process is the cause
of the ns-related term.

The alpha effect has no direct influence on the fluid motion since J generated by
the effect results in vanishing J x B. In the absence of the vy-related term, we often

encounter the difficulty that the saturation level of B cannot be determined, as was
noted in §3.4.1D1.

3.4.2.  Astro/geophysical dynamo Dynamo researches were started originally for
understanding the generation and sustainment mechanisms of the geomagnetic field
[3.72-3.74], the solar magnetic fields represented by sunspots [3.81], and galactic
magnetic fields [3.82, 3.83]. Magnetic effects have also attracted much attention in close
relation to the occurrence of high-speed jets observed ubiquitously around protostars,
active galactic nuclei, binary X-ray sources, etc. and the high collimation of such jets
[3.84).

A Geomagnetic and solar magnetic fields

A1 Characteristic magnetic behavior The interiors of the earth and the sun are
depicted schematically in Figs. 3.4 and 3.5. The earth interior consists of the mantle,
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the outer core, and the inner core, whose main constituents are silicon, molton iron,
and solid iron, respectively. The geomagnetic field originates from the motion of molton
iron, specifically, its turbulent motion, as will be mentioned below. The interior of the
sun is divided into the convective zone, the radiative zone, and the core. The origin of
the solar magnetic field lies in the convective zone that is in the fluid state of hydrogen.
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Figure 3.4. Earth’s interior with the outer core as the magnetic generator.

The outer core of the earth is covered with the electrically non-conducting mantle.
As a result, the toroidal component of the geometric field that is normal to the rotation
axis is masked, and only the poloidal component is directly observable. On the other
hand, more detailed observational data are accumulating on the solar magnetic field
since the field is generated in the outermost zone.

Both the geomagnetic and solar fields are generated in a spherical shell region, apart
from a difference in the location of the shells. The properties of the generated magnetic
fields, however, differ much from each other. Some typical features of the geomagnetic
field are summarized as follows [3.85, 3.86]:

(G1) Of the poloidal field, the dipole component whose axis is nearly along the rotation
axis is strongest, and its magnitude is a few Gauss (G) at the surface.

(G2) The velocity of the molton iron is not observable, but it is inferred to be O(1074)
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Convective Zone

0 025 070 1
Figure 3.5. Solar interior with the convective zone as the magnetic generator.

ms~! in a frame fixed at the earth. This inference indicates that the Reynolds

number in the outer core is O{107), and that the fluid motion is highly turbulent.

{G3) The polarity of the dipole component repeats a reversal in an irregular manner.
The typical period of the duration of one polarity is (){10%) ~ ((10°) vears, whereas
the transition from one polarity to the other occurs in a period within O(10%) vears.

The intense toroidal component of the solar magnetic field is observed as sunspots.
The toroidal magnetic flux tubes in the convective zone rise up under buoyancy effects
and break through the photosphere adjacent to the zone. Sunspots represent the cross
sections of these tubes and appear in pairs. Many important features of the solar-field
generation process can be understood from the sunspot behavior. The primary behavior
of sunspots is summarized as the following sunspot rule [3.81, 3.87]:

(S1) The occurrence of sunspots is limited to the middle- to low-latitude region. The
polarity of sunspots reverses quite regularly, that is, in about 11 years.

(52} At the start of the sunspot cycle, the polarity of the leading sunspot of the pair
in one hemisphere is coincident with the polarity of the polar field or the poloidal
field near the pole of the hemisphere (Fig. 3.6). The latter is of a few G and is very
weak, compared with the magnetic field of sunspots whose intensity may become a,
few kilogauss (KG).
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Figure 3.6. Sunspot’s polarity rule.

From the foregoing characteristics of geomagnetic and sunspot fields, we may see
a large difference between the irregular geomagnetic reversal period and the regular
sunspot-polarity counterpart, O(10°) ~ O(10°%) and 11 years, although both the
magnetic fields are generated in a spherical shell region. It is appropriate to say that
the geomagnetic field with a dipole axis nearly along the rotation axis is quite stable,
compared with the solar field.

In the case of molton iron, 1 G corresponds to a velocity O{1073) ms™!. From the
geomagnetic feature (G2), the energy of the dipole field alone is some hundred times the
kinetic energy of the fluid motion. The toroidal field is not observable, but it is inferred
to be of O(10) ~ O(10%?) G. Then the geomagnetic field may store an energy that is
0(10*) ~ O(10°) times that of the fluid motion generating it. It is probable that the
stability of the geomagnetic field is linked with the storage of such high energy. The
elucidation of this linkage is a major target of the turbulent geodynamo.

The origin of sunspots is the toroidal magnetic field generated in the convective zone.
The intensity of large sunspots is O(10°) G, and it is inferred to reach O(10%) G near the
bottom. The poloidal component is weak and is of a few G, which is comparable to the
geomagnetic dipole field. This weak poloidal field is considered to be associated with
the periodic reversal of the solar polarity. In the context of fluid motion, the rotation
of the convective zone is highly differential. The deviation of the angular velocity from
a solid rotation reaches about thirty percent near the bottom of the zone [3.88]. Such
high differential rotation is inferred to generate a very strong field near the bottom.

A2 Turbulent geodynamo The differential rotation in the outer core is very weak,
compared with the solar convective zone. From Egs. (3.270) and (3.272), a sufficient
condition on the stationary magnetic field is given by

V xB+aB—8J +v(w+20) =0. (3.274)

The helicity effect is closely associated with the formation of convection columns along
the rotation axis. We place an emphasis on the helicity effect [3.89], and rewrite
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_ _ 2 1- _
(@ + 20%) + %v x B = _.B’Inp +5VxB. (3.275)

We discard the last term on the right-hand side of Eq. (3.275), which will be justified
below. We substitute Eq. (3.275) into the frame-rotation counterpart of Eq. (3.273),

and obtain
av V2 /B? 2
——-V(p+?+<7>+§KR)

Lo (v _ %B) % Qo + rp 2 (\7 _ %B) | (3.276)

‘The duration of the ordered magnetic structure is equivalent to that of the flow structure,
for the change of the latter distorts the former. On the right-hand side of Eq. (3.276),
the last part destroys such a flow structure as long as the B-related part is absent. The
near balance between the turbulent-viscosity and cross-helicity effects, that is,

V—%Bzo or Bz Z27My (3.277)

may alleviate the structure destruction due to the vy effect. Equation (3.277) justifies
the approximation of dropping V x B in Eq. (3.275). Equation (3.277) also indicates
that the frame-rotation or Colioris effect is reduced effectively.

In Eq. (3.275) with V x B discarded, the frame-rotation effect occurs as the
ingredient perturbing the so-called force-free state

J=(a/8)B. (3.278)

In the geodynamo, this force-free state corresponds to the o? dynamo. There the
toroidal field generates the toroidal current through Eq. (3.278), and the current induces
the poloidal field according to Ampeére law. The poloidal field generates the poloidal
current from Eq. (3.278), regenerating the toroidal field through Ampére law. From
expression (3.258), Eq. (3.277) indicates that the energy of the induced magnetic
field is larger than that of the fluid motion. For the probable parameter range of
IW|/Ky = O(1072) ~ O(107!), the magnetic field may become much larger, as in the
geomagnetic case.

A recent computer experiment of the MHD system of equations mimicking the
geomagnetic field indicates that the dynamo resembles the o? dynamo, and the frame-
rotation or Qp-related effect is effectively reduced to the level of the other terms [3.90].
These findings are consistent with the foregoing dynamo that is the combination of
helicity and cross-helicity effects. The reversal of the dipole field is now under intensive
study based on computer experiments in the context of the geomagnetic reversal [3.91,
3.92].
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A3 Turbulent sunspot dynamo The solar polarity rule has been investigated
intensively with the aid of the so-called a—w dynamo [3.93, 3.94]. In this dynamo,
a properly chosen differential rotation generates the toroidal field from the poloidal
field. The toroidal electric current occurs from the toroidal field under the alpha effect,
resulting in the regeneration of the poloidal field. The stretching of magnetic lines by
the differential rotation is the cause of the oscillatory behavior of this dynamo.

The solar convection zone is rather thin, compared with the outer core of the earth.
This fact suggests that the helicity effect resulting from the formation of convection
columns along the rotation axis is weaker in the sun, compared to the geodynamo. In
contrast to the a—w dynamo, let us suppose that the magnetic-field structure occurs
from the balance between the 8- and y-related terms in Eq. (3.274) [3.95], resulting in

_ _ W -
B= %v - %";-K—MV. (3.279)

In the convective zone, the primary motion is the toroidal differential rotation.
Equation (3.279) indicates that the toroidal field is induced in the convective zone, and
that it is in the opposite direction in the northern and southern hemispheres since the
cross helicity W is a pseudoscalar. Such a magnetic field leads to the sunspots depicted
in Fig. 3.6. ' : '

From the toroidal field given by Eq. (3.279), the alpha effect in Eq. (3.271) induces
the poloidal field, whose primary component is of the dipole type. This field is shown
to contribute to the annihilation of W that is indispensable for the generation of the
toroidal field through Eq. (3.279). Instead of giving the details of this process, we
explain the polarity reversal with the aid of an illustrative model

By = 4*Vr, (3.280)
dB . s

d—t" = a'Br, (3.281)
d~* — :

= —0Br. (3.282)

Here Eq. (3.280) expresses the generation of the toroidal field Br due to the rotational
motion V¢, and ¥* plays the role of the turbulent cross helicity W. Equation (3.281)
shows the occurrence of the poloidal field Bp from By under the alpha effect.
Equation (3.282) expresses the annihilation of the turbulent cross helicity through the
poloidal field.
In Egs. (3.280)-(3.282), we neglect the temporal variation of «* in addition to Vr
and 4, and focus attention on that of By, Bp, and v*. We retain Br, and have
& By

EoE — —u, By, | (3.283)
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with wp, = a*8Vy. Equation (3.283) shows the periodic oscillation of Br with the
reversal frequency wy.. In this model. the phase difference between Br and By is 7 /2.
It is noteworthy that some phase difference is confirmed in the observations concerning
sunspots and the poloidal field near the poles.

B Collimation of astronomacal jets Around a high-mass body such as active galactic
nuclei. protostars. etc., gases exist in a disk form and accrete onto them while rotating
(Fig. 3.7) [3.84). The angular momentum of gases needs to be released for the accretion.
Orne possible mechanism is the transfer of the angular momentum towards the outer
part of the disk through the turbulence transport effects, and the other is the release
through the rotating jets that are observed ubiquitously around an accretion disk. They
are bipolar and normal to the disk. and are highly collimated; namely. they go straight
on without diffusing, in sharp contrast to the jets observed in laboratories.

>

Figure 3.7. Illustration of an accretion disk and an accompanying jet.

'The primary factors to be clarified concerning accretion-disk jets are the driving and
collimation mechanisms. The driving mechanism has been investigated by computer
experiments on the MHD system of equations [3.96, 3.97]. The turbulent dynamo based
on the cross helicity was also applied to the study of the generation mechanism of a
magnetic field that is intense enough to release gases against the gravitational energy

e 2 anl
{3.39, $.97).
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In what follows, we shall seek the collimation mechanism on the basis of the MHD
system. The velocity of the jets from active galactic nuclei may reach some ten percent
of velocity of light. In such a case, it is probable that the relativistic effect has a large
influence on the collimation mechanism. Here we focus attention on the non-relativistic
jets that are observed for protostars. In this case, we may consider two factors as the
cause of the collimation [3.100]. One is the effect of magnetic fields, and the other is
the effects of fluid compressibility. In electrically non-conducting flows, it is wellknown
that fluid compressibility reduces the growth of turbulence. A typical example is the
suppression of the growth rate of laboratory flows such as mixing-layer flows and jets.
The astronomical jets, however, are often collimated over a long distance of O(10) light
vears. For such extreme collimation, effects of magnetic ficlds are considered to play a
great part in addition to effects of fluid compressibility.

In the light of magnetic-field effects on the jet collimation, we seek the stationary
state of Eq. (3.270) {3.101], which is guaranteed by

VxB+aB-8l+yo=0, (3.284)
with the molecular resistivity # discarded. From Eq. (3.284), we have
_ _ Y = _ 1 /- _ _
JxB=—-—-Bx&+-({VxB)]xB 3.285
3 5(VxB) (3.285)

We substitute Eq. (3.285) into the equation for & that is derived from Eq. (3.273).
Here we drop the second part in Eq. (3.285) (this procedure will be justified below).
Then we have

9 o4y 4

— = V--B IV--=B}|. 3.286

50 Vx[( 3 )xw+VTV ( 3 )} ( )
The stationary state of & exists under the condition

V= %B, (3.287)

which justifies the foregoing discard of the second part in Eq. (3.285).
Equations (3.287) indicates

B/2 > V?¥/2, (3.288)

from Eq. (3.258). Specifically, the magnetic energy becomes much larger under the
probable condition that {W]/Ky < O(107'), just as for the geomagnetic field. One of
the prominent features of a magnetic field is the tension force, under which magnetic
field lines resist their distortion due to fluid motion. A jet possessing an intense magnetic
field inside may strongly resist the bending and go straight on. This is the collimation
mechanism deduced from the turbulent dynamo based on both cross-helicity and helicity
effects.
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3.4.3. Turbulent dynamo and fusion plasma We consider the relationship of the
turbulent dynamo with plasma confinement based on reversed-field pinches (RFP’s)
and tokamaks. Here we should stress that the MHD approximation is applicable to a
limited range of fusion plasma behaviour.

RFP’s and tokamaks belong to the category of magnetic confinement in symmetric
torl. These confinement methods are characterized typically by the safety factor

q = {a/R) (Brr/Bpr) - (3.289)

Here R and a are the major and minor radii of the torus, and Brr and Bpg express
reference magnitudes of the toroidal and poloidal components of the magnetic field. The
primary part of the toroidal field is sustained by an external coil, whereas the poloidal
counterpart is due to the plasma current generated by a loop voltage etc. In the light
of MHD stability analysis, RFP’s and tokamaks are characterized by ¢ < 1 and ¢ > 1,
respectively.

A Magnetic dynamo and RFP’s The confinement of plasma in RFP’s is realized in the
situation

R>a, |Brg/Bpr| = 1. (3.290)

The latter condition gives rise to a turbulent state of plasma, owing to strong pinch
effects due to Bpgr. A prominent property of RFP’s is the reversal of the toroidal field
in the outer part of plasma [3.102, 3.103]. As a result, the long duration of RFP’s
hinges on the sustainment of the reversed toroidal field by the toroidal plasma current.
This toroidal alignment between the electric current and the magnetic field is the most
typical manifestation of the alpha effect.

In RFP’s, we have no global plasma flow. In Eq. (3.270), we drop the V-related
terms, and have

B -aB-E=0. (3.291)

The loop voltage driving the plasma current comes from the toroidal component of E.
We assume that the first two terms in Eq. (3.291) are primary, and that their difference
balances E. Then we approximate Eq. (3.291) as

Qo |

= xB, (3.292)

with ¥ = /3 [1.7. 3.96].

From the first relation of Eq. (3.290), we adopt the cylindrical approximation to
a torus, with the coordinates (7,8, z) (# and z correspond to the poloidal and toroidal
directions, respectively). We take the curl of Eq. {3.292), and have

(V*+x)B=0. (3.293)
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The axisymmetric solution of Eq. (3.293) is given by

B.(r)/B.(0) = Jo(|x|r), Be(r}/B:(0) = Ji(|x|r), (3.294)

where J,, is the Bessel function of the nth order. The Bessel function Jy behaves like
cos(|x|r) for small r, and the sign of B, reverses at the outer edge of plasma under the
condition

Ix|a > 2.4. (3.295)

Equation (3.292) was originally derived by an entirely different approach [3.105].
There A - B is adopted as the quantity expressing the helical property of the magnetic
field, where A is the magnetic potential and is related to B as B = V x A. In the
absence of the resistivity, [ A - BdV is conserved. Equation (3.292) is obtained using
the variational method under the condition that f{B?%/2)dV is minimum with constant
fA-BdV. This property of A - B seems to indicate that it is more adequate than
B - J, in turbulent dynamo. From the dimensional viewpoint of Alfvén velocity units,
however, B-J is linked more tightly with the kinetic helicity v-w. The indication of the
importance of B - J from turbulence theories such as the TSDIA is the manifestation of
this point.

In the variational derivation of RFP’s, we have no theoretical way to estimate the
value of x. In the turbulent dynamo, it is possible to construct model equations for Ky,

Hpg, and ey in o, and discuss the properties of both B and the turbulence characteristics
[3.106].

B Flow dynamo and tokamaks Plasma confinement in a tokamak has been improved
through the discovery of two types of transport barriers, that is, edge and internal ones.
One type is observed in the so-called high-confinement (H) modes, and the transport
barrier is formed in the close vicinity of plasma edge [1.14]. The occurrence of H modes
is spontaneous. The modes are characterized by a localized radial electric field [1.17,
1.19, 1.25] and poloidal plasma rotation. H modes are considered to arise from the
plasma behavior intrinsic to the edge, as is explained in §4, and are beyond the scope
of the MHD approximation.

The formation of internal transport barriers is observed in reversed-shear (RS),
negative-central-shear (NCS), and enhanced-reversed-shear (ERS) modes (hereafter,
they are simply called RS modes) [1.20, 3.107-3.109]. Those modes are characterized by
the local safety factor

g = (r/R) [B.(r)/Be(r)], (3.296)

under the cylindrical approximation (this approximation is used only for a simple
explanation of phenomena, and the toroidicity is an important ingredient in tokamaks}).
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In RS modes, the ¢ profile has a local minimum in the core region. and the heat
transport barrier is formed there. The poloidal rotation and the radial electric field are
also observed simultaneously, as is similar to H modes.

We consider the generation of poloidal plasma flow in RS modes from the viewpoint
of turbulent dynamo [3.110]. In Eq. (3.273). we may discard V in the initial stage. The
candidates for the force driving plasma flow are J x B and the wy-related term since the
vr-related term always contributes to the retardation of such a flow. In J x B, the main
component of J is toroidal, and the counterparts of B are toroidal and poloidal. Thus
J x B may not give rise to the poloidal flow. The remaining candidate is the wy-related
term.

We take the curl of Eq. (3.273). The z componernt of the mean vorticity, &,. expresses
the poloidal plasma rotation, and obeys

0w,

ot
In order to see the w, generation process due to the wny-related effect, we write

O, 50, Ky

ot - 7 EM
where use has been made of Egs. (3.261) and (3.264), and R, denotes the remaining
contribution.

The quantity W is generated by Pw [Eq. (3.254)]. At the onset of &,, the second
term in Eq. {3.260) is dominant, resulting in

= V2@, — v V3. (3.297)

WV2J. + R... (3.298)

Ey 2 -3 (3.299)
We combine Eq. (3.299) with Py and have
Pw = 8.0, (3.300)

We focus attention on the contribution of Eq. (3.300) to the W equation {3.250), and

have
ow _ BJ.w. + Rw = Caﬁijz@z + Rw. (3.301)
ot Y
where Eq. (3.263) was used, and Rw denotes the remaining contribution.
We eliminate W from Eqs. (3.298) and (3.301), and connect &, directly with J,.
Here we focus attention on the temporal variation of W. and discard that of Jao Ky

and £y;. Then we have

0o, _
o X2z, = R,s. (3.302)
where
3
Yo = —ig?—a’ K“’I J.V2T.. (3.303)

. ‘,—! A =
\ -
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and R, represents all the remaining contributions. Equation (3.302) indicates that @,
may grow under the condition

3
B rvig >0 (3.304)
Em

A typical example of the plasma current J, in RS modes is shown in Fig. 3.8 [3.111].
The location of large negative J,V2J, may be confirmed to coincide with that of a.
minimum ¢;. Equation {3.304) suggests that the poloidal rotation starts to be driven
there. This finding is consistent with the fact that a poloidal flow in RS modes is
observed near the minimum-g; point where the transport barrier is formed. In short,
there is a close relationship between the plasma rotation and the spatial profile of the
plasma current, specifically, its curvature.

2.0 -
15

J, 104
0.5~
0.0

1 | | I
00 92 (64 06 08 1i.0

ria
Figure 3.8. Typical plasmna current in the RS mode.
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4. Plasma Turbulence

Turbulence in plasmas have several characteristic features. One is that the fluctuation
level becomes high through the instabilities which are driven owing to the strong
inhomogeneity. The turbulent level and spectrum is strongly influenced by the spatial
inhomogeneity and plasma configuration. Inhomogeneities exist for plasma parameters
(e.g., density and temperature) as well as for the fields (e.g., magnetic field and radial
electric field). These inhomogeneities couple so as to drive and/or suppress instabilities
and turbulent fluctuations. In particular, the anisotropy along and perpendicular
to the strong magnetic field induces the varieties of nature of possible fluctuations:
Fluctuations often have a very long correlation length along the magnetic field line
and are quasi-two-dimensional. In addition, mobilities of electrons and ions differ
prominently. The inhomogeneities, anisotropy due to the strong magnetic field, and the
difference of ion and electron mobilities have strong influences on plasma turbulence as
well as on the linear properties of plasma waves. In many cases, instabilities develop into
strong turbulence, so that the decorrelation rate caused by the nonlinear interactions
is usually of the same order of or much larger than, the damping rate (growth rate} of
the linear eigenmode: the theoretical method like the fluid turbulence is required. In
some cases, only few modes are excited, and an analysis based on the weak turbulence
suffices. (General discussion is given in, e.g.. {4.1-4.4].}

In order to illustrate the common features and different characteristics between
neutral-fluid and plasma turbulence, various theoretical approaches are iilustrated with
examples of applications in §4. Emphasis is put on how the theory of turbulence is
applied to a strongly inhomogeneous and anisotropic system which is composed of
components with different mobility.

One important difference of plasma turbulence from neutral-fluid turbulence is that
plasma particles sometimes respond as ‘collisionless’ particles. In neutral fluids, like
liquids or gasses, molecules and atoms collide each other in a short distance. (These
collisions are the origin of molecular viscosity that causes real dissipation in the energy
dissipation scale £p.) The mean-free-path of atomic and molecular collisions in neutral
fluid is usually much shorter than the characteristic ‘wavelength” of fluctuations. In
contrast, the Coulombic collisions between ions or electrons, which are the origins of
the real dissipation, are rare in high temperature plasmas. The mean-free-path can be
longer than the typical wavelength. In such cases, particles can traverse many wave
periods along the magnetic field line without losing the memory by collisions. The
wave-particle interaction occurs, and the internal freedom of particle distribution can
influence the plasma turbulence.

The objective of this review Is to illustrate the methods which could be common to
neutral-fluid turbulence and to plasma turbulence. Therefore emphasis is made on the
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analyses based on fluid (moment) equations.

4.1.  Inhomogeneity and Turbulent Intensity

In this subsection. linear waves are described first. A few characteristic examples of
linear modes are introduced. Next. the methods of weak turbulence are explained, and
conditions for strong turbulence are illustrated. Some cases are discussed on the basis
of reduced sets of equations.

4.1.1. Linear stabuity There are many characteristic waves in magnetized plasmas.
In this article. the discussion is limited to those perturbations whose frequencies are
lower than the ion-cyclotron frequency.

A Dispersion relation The spatio-temporal patterns to appear (either stationary or
propagating) are called modes. The property of mode is a characterizing information
in the continuous media. If one imposes an external perturbation of the form
E.. expl(ik-x — iwt) {where k. w can be complex). then the charged elements of plasma
are displaced so as to generate a response field Eiyq exp(zk-x —iwt). If there is a relation

of (k,w) as
w = wik), (4.1)

for which the ratio Eyg/Eeq becomes very large, then a pattern explik - x — w(k)i] is
expected to have a large amplitude and to be selectively observed. Such a pattern is
called mode, and the relation (4.1) is called dispersion relation.

The dispersion relation is determined by the electric conductivity tensor., ok,
where the suffix s stands for the species of plasma elements, i.e., electrons and ions

(s = e,i). The perturbed current which is carried by the s-th component, J; ., is
expressed as

Js.kw = o's,kwﬁkw- (4.2)
The perturbed current is given as j;w = (> as_kw)lzf)k_,-, and the dielectric tensor is
5
introduced {according to the convention} as
;2
elkw)=1- £H {Z o) : (4.3)
w A /

where 1 is the unit tensor, pg is the magnetic permeability of vacuum, and ¢ is the
velocity of light. Substituting Eq. (4.3) into the Maxwell equations, i.e., Egs. (2.14) and
(2.15), one has the relation

ety (5) (1) | b = 2. a8
L W/ R b
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where jexto 1S an externally-imposed current perturbation of the Fourier component
(k,w). Equation (4.4) predicts that the perturbed field E,, can take a finite amplitude
even without the external perturbation, if the condition

o ol | 43)

is satisfied. The dispersion relation (4.1) is given as a solution of Eq. (4.5).

Plasma dielectric tensor is discussed in text books [4.3, 4.5-4.7]. The study of the
linear instability in plasmas is reduced to the calculation of the conductivity tensor
and the solution of the dispersion relation. Varieties of low-frequency instabilities are
reviewed in the literature [4.1, 4.2, 4.8-4.18].

B Vlasov equation and linear dielectric tensor The perturbed distribution function is
caleulated within a framework of linear response theory. The distribution function is
written as the sum of the average and the fluctuating parts as

Foxv,t) = fi(x,v, 1) + folx, v, 1), (4.6)

where the time dependence is stow for f, and fast for fs. The fluctuating part is given
by a path integral of the Vlasov equation {Eq. (2.27) with C = (] as

- 1 ~ -
fo(x,v,t) = -;is f_ 5 dt’ [E(x’, Y+ v x B(x, t’)] % f(x,v. 6, (47)

where x’{t') and V(') are the particle position and velocity along the unperturbed orbit
of particles with the boundary condition

x=x(t) and v=v'(t}) at t' =t (4.8)

The (k, w)-Fourier component of the perturbed distribution function, Feres(v) explik -
X — iwt), is given from Eq. (4.7) as

Foral¥) = ;—S " dt'exp {ik- (x' —x) —iw(t’ — 1)}
a r P V! i
X -a‘_v—;fS(X gV) (I -+ 'u—J X kX) Ekw’- (4_9)

The perturbed current J. 1, is calculated as
js,kw = € /st,kw(v)dv- (410)

Once the distribution function of the average part f.{x',v’) is given, then the dispersion
relation is obtained from a direct manipulation.

Before illustrating some of typical examples, we briefly discuss the relation between
the analyses based on fluid equations (like the MHD equations) and those on kinetic
equations.
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Figure 4.1. Comparison between fluid approach and kinetic approach. Solutions
of dynamical equations in the presence of perturbing electromagnetic field and the
velocity-space average are shown by the dashed arrow and solid arrow. respectively.
Solution of dynamical equation and velocity space average are not necessarily
commutable.

Figure 4.1 illustrates the difference between fluid and kinetic approaches. Dynamical
equations can be employed as fluid equations as in §3. In the fluid approach, the kinetic
equation (the Boltzmann equation or the Vlasov equation or others) is first integrated
over the velocity space, and the higher-order moments are modelled. The velocity-space
integral gives equations of moments (e.g., mass density or number density, velocity,
pressure, etc.). Then the fluid equations are solved in the presence of the symmetry-
breaking perturbations. The perturbed current is calculated, and dispersion relation
is obtained. In the kinetic approach. the dynamical equation is solved first, and the
perturbed distribution is obtained. Then the velocity-space integral is performed to
yield the perturbed current.

The process of ‘solution of dynamical equation’ and ‘velocity-space average™ is not
necessarily commutable. The propagator in Eq. (4.9) contains a term like (kjvy —w) ™.
The weighted average of it is not recovered, if the velocity-space average is taken before
solving the dynamical equation. The contribution for the average of {kyv; —w)™! comes
from the particles, the velocity of which satisfies the relation &jvy = w, i.e., the resonant
particles. The fluid approach ignores the information that the resonant particles have.
The Braginskii equations. Egs. (2.12a)-(2.12d), which use the lowest-order closure for
the flux—gradient relation, are derived in a collisional limit. In order to extend an
applicability range of the fluid equations to less collisional cases, efforts have been made
by employing higher-order closure models. See, e.g.. discussions in [4.19-4.23]. Such
approaches are called gyro-fluzd modeis. As long as the Iinear response of the plasma is
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the issue, the kinetic approach is a more precise one. Nevertheless, the fluid approach
is relevant and useful on many occasions to study turbulent plasmas. A basis of the
relevance is discussed for the study of strong turbulence in the later subsections.

C Ezamples of modes We consider a strongly magnetized plasma slab, and show typical
examples of modes in the presence of inhomogeneity. We take the z-axis in the direction
of the main magnetic field. Plasma parameters (number density. temperature) are
inhomogeneous in the z-direction.

C1 Ion sound wave, drift wave, and convective cell Sound wave in the plasma,

w? = kg, (4.11)

5

with the ion sound speed ¢ = (21w +¥Ti0)m; ! where v is a specific heat ratio of ions,
is modified by a density gradient. The drift wave appears with the dispersion relation

w? —ww, — kﬁcﬁ =0, (4.12a)
where
k,Tedn/dz
L= — - 4.12b
“ eB @ ( )

is the drift frequency. The drift mode, w 2= w,, exists under the condition of
|kyvsmi] <€ w < |kyvine|. The dispersion relation is shown in Fig. 4.2(a).
From Fig. 4.2(a), one sees that there is other low-frequency branch satisfying
2
ke

Wy

112

(4.13)

W

In the long-wavelength limit, the real frequency in Eq. (4.13) vanishes, i.e., this mode
is not propagating. This branch of perturbation is called the ‘convective cell’ [4.2, 4.24,
4.25]. In the linear theory, the convective cell is a damped mode with damping rate of
p1 k2, where pi) is the viscosity for motions in the perpendicular direction. A convective
cell for an electromagnetic perturbation is discussed in [4.26].

C2 Shear Alfvén wave and drift Alfvén mode Shear Alfvén wave w? = kjvy, with
the Alfvén velocity v = B?/mifipio, is modified by a density gradient. The drift Alfvén
mode is generated. Its dispersion relation is

ww — w.) (W + lwal)
kﬁvi

w? — ww, — kﬁcf = , (4.14)

where w,; = —(Ti/T.)w.. The dispersion relation is Hlustrated in Fig. 4.2(b).



89

T T T

Drift Wave
W/ 0
(5/_

a
0 CK
Cell .
-1 I 1 '
o} as k”(-S/m‘ 1

(a)

B Re(w/]w*rf) --'~-_“ 7
-4 I 1 1 .

kycSiwwr] 4
© 15/t Way}

Figure 4.2. Dispersion relations for drift wave and convective cell {a), drift Alfvén
waves together with drift wave (b) and ion temperature gradient mode (c).

C38 Interchange mode When both the pressure and magnetic-field strength are
inhomogeneous in the z-direction, the drift Alfvén mode is modified to yield the reactive
instability. The dispersion relation is given as

(4.15)

where 1/L, = |- Vp/p! and 1/ Ly = |-V B/B|. The combination of the inhomogeneities
of the plasma pressure and magnetic pressure causes an instability [2.12, 4.8]. This
instability is an MHD analogue to the Rayvleigh-Bénard instability. In toroidal geometry.
its counterpart is the ballooning instability [4.27-4.301.
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C4 lon temperature gradient mode The influence of the temperature gradient of
ions is coupled to the parallel ion motion. The ion-sound term kjvg;/w? is modified in
the ion response as [4.8]

7y ki wer\ €0

T (- T (£:16)
where

wur, = ky(dT,/dz)/(eB) (4.17)

is the ion temperature gradient drift frequency. Electrons have the Bolizmann response,
fie/Tt % ed/T,. The dispersion relation of the ion sound wave is modified as

) - Hie (1 - wT) , ‘ (4.18)

w2 w

The motion of ions drive instability in the regime of long parallel wavelength as is shown
in Fig. 4.2(c). This instability is called the ion temperature gradient (ITG) mode [4.8)].

C5 Dissipative drift mode A drift wave becomes unstable if dissipation exists. The
electron response to the electrostatic perturbation is close to the Boltzmann distribution,
ie., A/l = eq~5/ T., but is not completely so. If there is a small but finite phase difference
in the electron response as

e L ep
;_l:“(l zcsd)Te ; (4.19)

the drift wave becomes unstable as

w=w, (1 +12d4). (4.20}
4.1.2. Weak turbulence theory

A Ansatz of weak turbulence A simple approach in the nonlinear theory is to assume
that the nonlinearity is weak so that the excited fluctuations are composed of the linear
eigenmodes, e.g.,

(Ey(k,w)Ey(K, o)) = 210y 11w d(w + )0 — w(k)] L, (4.21)

where w satisfies the dispersion relation w = w(k). The spectral function (auto-
correlation function) is non-zero on the hyper-surface w = w(k) in the four-dimensional
space (k,w). In other words, the nonlinear terms in the dynamical equation of the wave
mode fe.g., the (3/0z;)(%;0; — R;;) term in Eq. (3.6)] are assumed to be much smaller
than the linear ferms. Nonlinear interactions are often truncated at the lowest-order
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correction. In the dynamical equation for the [k.w(k)] mode, nonlinear interactions
with the (k. w(k')] and [k”.w(k")] modes are retained only if the relation

k=k'+k" and w(k) = w(k’) + w(k”) (4.22)

holds. In calculating the nonlinear terms of [k,w(k)] modes. linear eigenmodes are
substituted for the [k’.w(k')] and [k”, w(k”)} modes. This belongs to the methods of the
truncation of nonlinearlities.

B Wave kinetic equation The wave kinetic equation is derived by the ansatz of weak
plasma turbulence. It takes the form [4.1, 4.31, 4.32]

110 d
5 {Tﬁel(kw)} EIk = — %E‘l(k,UJ)Ik

+> Al + Y Brwelewr (4.23)
k/ k'+k’"=k

. J.
Wt =w

where £1(k,w) is the linear dielectric constant, and the linear growth rate is given as
i = —Se1(k, w)[(8/0w)Re, (k, w)] L. {4.24)

The relation w(k) = w(k') +w(k") is abbreviated as w = ' + w".
Equation (4.23), which is derived based on a strong assumption of the weak
turbulence, has been used to study the statistical property of plasma turbulence. If

one calculates the stationary state, dlyx/dt = 0, an order of magnitude estimate of the
solution is

I ~0 [A;;,gal(k’, w’)] . (4.25)

The ansatz of weak turbulence means that the nonlinear interactions are weak and the
linear dispersion relation is not modified. That is, the condition

Z Akkr Ik.'
kf

< Jw(k)] (4.26)

must be satisfied. Therefore. one of the necessary conditions for the applicability of the
weak turbulence theory is

e < (i) (4.27)

C Integral, Lyapunov function, and thermodynamics Although the applicable region
of the weak turbulence theory might be narrow, it has been successfully applied to
such problems as one-dimensional turbulence [4.33] or excitation of toroidal Alfvén-
wave eigenmodes (TAE modes) [4.34]. It also gives some perspective on the analysis of
plasma turbulence [4.31, 4.35. 4.36].
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The second term in the right-hand side of Eq. (4.23) is linear in Iy, and acts as
the change of growth rate for the mode (like an eddy-viscosity term). The relation of
anti-symmetry holds as

Axer = — Ak, (4.28)

reflecting detailed balance in, e.g., the induced scattering process. The induced wave
scattering is the process with wyg — wyr = (k — X/) - v where v is a particle velocity.
Details are explained in [4.31]. The third term, By Il is considered to be the
‘noise-source term’ when many linear modes are independently excited, as is explained
in [4.32]. An integral and Lyapunov function could be constructed within the framework
of a quasi-linear theory [4.35, 4.36].

If one first neglects the By fio Iyr term (noise source), Eq. (4.23) has the integral.
From the anti-symmetry of the coefficient Ayy, one can derive an integral of motion

d -
dz_4 (4.29)
= , (4.29)
where F is defined as
.1 a E
F=: % [a—wéﬁel(k, w)] (he — foacIn k) , (4.30)

and fo,k is the solution of the stationary equation } Akkff[;:kf = Se;(k,w) without
noise. The trajectory of {I}} in its phase space is confined on the hyper-surface
F = const.

The ‘noise-source term’ By Iy Iy modifies the trajectory of {fi} in the phase
space. Writing the source term symbolically, > i B Jiw fir — €noise k> 0ne defines

1 o
F=3 % {a—wéﬁal(k, w)} (5 — ToxcIn i) (4.31)
with the stationary solution Iy in the presence of the noise-source term as
—3e1(k, W)Io,k =+ Z Ay Io,kffq,k + Enoisek = 0. (4.32)
kr

For this F one has

d (Ik — Iy k)2
dt §k noise, k IkI(),k = 0 ( 33)

for positive or zero noise sources. Now JF is the Lyapunov functional of the dynamics
of {Ix}, and is minimum if Jx = Iy holds for all k. The noise-source term £y k acts
as a friction, and all trajectories finally approach, as an average,

{h} — {Iox}- (4.34)



93

The thermodynamical relationship is now explained. The number density of the
mode. Ny. is introduced as

Ny = (8/0u)Re (k. w) ) /87. (4.35)
By adding a constant value — ¥ wpe Noy to Eq. (4.31). F is transformed to Fy as

Fu=F =3 wiNow = 3 wic [Nic = N {In N +1)] - (4.36)
k k

The internal energy of the wave is £ = 3 wi N, and the wave entropy is defined as

Swave ~ k5 »_ (In Ny + 1) (4.37)
k

in the large-Ny limit. If wy Nyy is common to all k {ie.. equipartition holds). it is
written as a ‘temperature’,

wiNox = kpTyave (for all k) (4.38)

and Fgy is written as
fH =& — kBTwaveSwave- (439)

In this case, the quantity Fy corresponds to the Helmholtz’ free energy [4.36].
Equation (4.34) is considered as the approach to the minimum of the Helmholtz’ free
energy of the fluctuation state, if equipartition (4.38) holds. In realistic cases, however,
the stationary solution Eq. (4.32) does not satisfy the equipartition law {Eq. (4.38)].

D Transport matriz and symmetry The evolution of averaged distribution function
is caused by the back-interactions of fluctuations. The quasilinear diffusion of the
distribution function is induced. The cross-correlation functions are related to the flux of
giobal quantities, which are expressed in terms of the gradient and fluctuation spectrum
{Ix}. The transport matrix of fluxes and gradients is symmetric in the framework of
quasilinear theory [4.37-4.41]. Details are explained in Appendix A.

4.1.3.  Regime of strong plasma turbulence In the presence of fluctuating fields, plasma
elements (particles) are subject to £ x B motion. The Doppler shift of mode k due to
a fluctuating velocity Vews, Wexs = VeExs - Ko, can substantially influence the mode
characteristics if the condition

WEwEB = [Wk| (44‘0)

holds (k. : wave vector perpendicular to a main magnetic field). When the fluctuations
are quasi-electrostatic, (which is a relevant assumption for the low-{ plasmas, § being

- — - e [ s M S U -~
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given in terms of the potential perturbation as Vgxp = —ik’ 1¢/B (K. and ¢ being
the wave vector and potential for the background fluctuations, respectively) and the
condition (4.40) is rewritten as

eq~5 1
T kL,
for the range of the drift frequency. Condition (4.41) is easily satisfied for the foregoing

(4.41)

fluctuations listed in §4.1.1 as is discussed later. In this section, ‘strong turbulence’ is
used for the case when Eq. (4.40) is satisfied.

It is noted that strong plasma turbulence occurs even if the ‘Reynolds number’
remains of order unity. The Reynolds number Re might be evaluated as the ratio
between the convective nonlinear term (V - V)V and the viscous damping term. The
molecular viscosity p. is of the order p. ~ 1402, where v; is the ion-ion collision frequency
and p; is the ion gyroradius. Note that . could be enhanced by an order of magnitude in
toroidal plasmas [4.42-4.44]. Such details are, however, not the subject of this heuristic
argument. For turbulence which is pumped by the instabilities in the rage of kp; ~ 1,
one has an estimate for He as

VExB k Wy

— IBXBW Ay T 4.42

fe vaptk? vy (442

where the fluctuating E x B velocity was estimated for the fluctuation level of Eq. (4.41)

as k¢/B ~ T/eL,B. The value of Re can remain of the order of unity (e.g., example

of resistive drift-wave turbulence is given in [4.45]). The strong plasma turbulence,

characterized by the condition {4.40), develops without requiring the large Reynolds

number. For fluctuations on the global scale length, k& ~ 1/L,, one has
W J‘_r;;?z 7

Re™ —— 4.43
¢ Vi p12 ( )

for the level of Eq. (4.41). For such a case, Re becomes greater than unity.

In the regime of the strong turbulence, nonlinear interactions of various gradients
become noticeable in the formula of a flux. The transport matrix is no longer linear in
the wave spectrum. The symmetry of the transport matrix does not necessarily hold.

4.1.4.  Reduced sets of equations and conservetion property In order to analyze the
nonlinear interactions in strong plasma turbulence, various reduced sets of equations
have been used. Representative ones are listed in §2.2.2. Some basic properties of these
reduced sets of equations are explained below.

A Hasegawa—Mima equation The simplest model equation that describes electrostatic
turbulence in inhomogeneous plasmas, i.e., the Hasegawa-Mima equation {or the
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Hasegawa—Mima- Charney equation). is derived for two-dimensional E x B motion as
Eq. (2.23). which is given in dimensionless form as

%vi@ + 0. V36| - %cb - (%;5 = 0. (4.44)
Here. time, length and potential are normalized using ps/Vy = L, /cs. the ion gyroradius
at the electron temperature. ps, and T./e respectively. Plasma properties are included
in a form of the polarization-drift effect due to the finite ion-inertia (the first term).
the electron adiabatic response (the third term), and the density inhomogeneity (the
fourth term). The adiabatic limit of response for dissipationless plasmas, fi/n = qu/Te.,
is studied.

When the Debye length becomes longer, an equation similar to Eq. (4.44) can be
derived for fluctuations in the range of the Debye length. In this case, the length is
regulated by the Debye length, not by the ion gyroradius {4.46].

The HM equation conserves the ‘energy’, ‘enstrophy’, and "mass’ of the vortices
which are defined as

£ =(1/2) f dx [¢2 + (Vo). (4.45a)
U= (1/2) [ ax[(V.0)* + (AL0Y]. (4.450)
M= f dx (¢ - V26). (4.45¢)

Note that the integral fdxf[f,g] vanishes for the periodic boundary conditions. One
can deduce that the inverse cascade is possible from Eq. (4.44) [4.13, 4.47]. This is
one of the most important contributions of the HM equation for the understanding of
plasma turbulence. That is, micro-scale fluctuations can generate a structure which has
much longer scale length in comparison with the fluctuations. The structure with longer
scales can also be induced by turbulence. Effects of turbulence on the formation and
destruction of global structures are recognized clearly in the study of the HM equation.
This aspect of turbulence is discussed in §4.3.3. The thermodynamical equilibrium limit
is discussed in the Appendix B.

The HM equation is an analogue to the vorticity equation in a neutral fluid,
which can be applied to the case of atmospheric dynamics cn a rotating planet. The
atmospheric flow on the horizontal plane is governed by the equation

%V = —gVh+ RcV x 2, (4.46)

where g is the gravitational acceleration, h is the atmospheric depth, and RcV x 2 is the
Coriolis force. The gradient (in the latitudinal direction) of the vertical component of
the Coriolis force plays the role of the density gradient in Eq. (4.44). The Rossby wave
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in a neutral fluid corresponds to the drift wave (see, e.g., [4.47}). The inverse cascade has
been discussed in fluid dynamics; See, e.g., the discussion in [4.24] and related references
therein {4.48, 4.49].

B Three-field eguations Plasma turbulence is often investigated in more general
circumstances, ie., for the case of electromagnetic turbulence, or the case subject to
multiple gradients {those of temperature, density, and magnetic field. etc.). Fluctuations
like the drift wave, ion temperature gradient mode. resistive MHD mode, interchange
mode, ballooning mode, current-diffusive interchange mode, ete., are studied by three-
or four-fields models.

As an example, a set of three-field equations is given as [1.35]

ST - . }
5 V16 + (6. V18] = Vi + (b x k) - Vi + V6. (4.47)
8- & (8- - =1\ S _

AT 22 (gdﬁs + |o. Jn}) = =Vio —mydy + AV Ly, (4.47b)
at

where & denotes the gradient of magnetic-field strength, and wy, is the plasma frequency.
The suffix ¢ in the transport coeflicients stands for the collisional dissipation process. In
this set of equations, length, time, static potential, and vector potential are normalized
using the plasma radius @, the poloidal Alfvén transit time 75, = a/vay, = R/va,
Buaa®/R, and Ba?/R, respectively.

A conservation relation is derived as

a1 -2 o =2 "
55 UdVngp[ + (1 +wga2) detJ;” —i—dep
dﬁ e ~ lem = 2
=#C/JV(K¢+E) [dV(p ) —,ucdeIVLgél
.2 ~ 12 — .
—m f dV}v’i;} — A f dv ;VJ_JH% — Xe Jf dvV IV, pP. (4.48)
In addition to the dissipation by collisional transport coefficients (viscosity, resistivity,
current diffusivity, thermal conductivity), the fluctuation energy is induced by the energy

release associated with the global turbulent-driven flux ¢, = —ﬁ*qug. In a stationary
state,

(fix + g) /dVQa: = ucdeIViéiQ + 7 /dV!j“iQ

-~ [2
+Ac/dV|VLJ”, +chdvlvjj|2 (4.49)
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holds. The right-hand side is semi-positive definite. Non-trivial solutions. i.e.. finite
amplitudes for fluctuations (o} # 0. etc.). are induced and sustained by the turbulent-
driven flux in the direction of the giobal inhomogeneity.

C Yuq-Horton equations In the reduced set of equations with a small number of
fields {e.g.. the HM equation. the HW equation, and the three-field models, etc.),
"energy’ includes the quadratic terms of perturbations. The quadratic term of perturbed
internal energy also appears. For instance. the integrand of "energy’ in the HM equation,
Eq. (4.45a), is essentially #i? + v, 5 (with proper normalization). The perturbation of
internal energy contributes to € in a quadratic form. By this fact. conservation relations
for some reduced sets of equations are not directly comparable with the conservation of
energy. Such a difficulty is resolved in a reduced set of equations with a large number
of fields [2.9, 2.10]. In the case of the YH equations, the energy conservation relation is

given as
2 o)+ (En)+ nm; |V, 9
gt \\2P* b 2 B

+ <%zﬁ> + <%|VLAMi2>) =0, (4.50)

in the invicid limit {no collisional dissipation), where { } indicates the average within
a volume, and the flow across the surface is assumed to vanish. The perturbation of
internal energy appears in a linear form, as in the energy conservation relation. The
conservation property of the gyro-averaged equations is discussed in [4.50].

4.2.  Inhomogeneous Strong Turbulence

4.2.1. Concepts to describe turbulent plasmas Although there are many common
features between the neutral-fluid turbulence and plasma turbulence. there are specific
aspects in the turbulence of magnetized plasmas. Concepts that characterize turbulence
in inhomogeneous plasmas are briefly surveyed below.

A Gradients and magnetic geometry Magnetized plasmas are associated with the
strong anisotropy between the motion along the magnetic field and the one perpendicular
to the magnetic fleld. Global plasma parameters, say the temperature T, tend to be
constant along the filed line. Plasma confinement scheme is to form nested and closed
magnetic surfaces {as an average) so as to insulate the high temperature plasma from
cold surrounding materials. One example is toroidal plasma confinement, for which
one uses the quasi-toroidal coordinates, (r.8.{) (r. minor radius, 6: poloidal angle, {:
toroidal angle} (see Fig. 4.3). An overview of toroidal plasma is given in, e.g., {4.2, 4.4,

Pt
d.41].
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Figure 4.3. Geometry of toroidal plasma. Local Cartesian coordinates (z,y, z) are
taken where r-axis is in the r-direction and z-axis is in the direction of magnetic field.

The inhomogeneities, that drive {(or suppress) instabilities” and turbulence, exist
primarily in a perpendicular direction to the magnetic field. The gradients in the
number density, pressure, and temperature, are in the direction across the magnetic
surfaces. The global flow vector V is on the magnetic surface. The gradient of V across
the magnetic surface, dV /dr, influences the turbulence strongly.

The inhomogeneity of the electromagnetic field is also important for plasmas. The
global plasma velocity across the magnetic field is related to the radial electric field
through the relation

—eni{(E4+ VxB)+Vp+V-II¢ =0, (4.51)

where II9 is the traceless part (deviatoric part) of the stress tensor. The inhomogeneity
of E is related to that of V and changes the turbulence. Details are discussed in §4.3.4.
The gradient of the magnetic field structure V|B| also influences the free energy, which
generates instability and turbulence as is shown in Eq. (4.15). There V|[B| plays the
role of effective gravity, being an analogue to a buoyancy force in fluid dynamics. It is
a convention to name ‘magnetic hill’ if

VIB|V?E >0 (4.52)

holds so that the V|B| term contributes to instability. If V|B|Vp < 0, it is called a
‘magnetic well’. The pitch of the magnetic field line, 1/¢ = RBy/(rB;) plays a role in
selecting the wave vector, where R is the major radius of the torus. The wave vector in
the direction of B, kj = k-B/B, has the form &y o [kc+kgr/(gR)]. For the combination
of kg/k; = —qR/r, it vanishes (ky = 0). A surface, on which &y = 0 holds, is called a
mode rational surface. The variation of the magnetic field direction (in the r-direction)
is called the ‘magnetic shear’, and

s =rq 'dq/dr (4.53)
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is called the shear parameter. If the magnetic shear exists. the condition ky = 0 for a
given vaiues of {kg.k¢) holds. in a narrow region (whose width is in proportion to s~
near the mode rational surface.

These geometrical and inhomogeneous structures play an important role in the
evolution of turbulence in confined plasmas.

B Mode, wave, and vortex As is illustrated in §4.1.1, plasma turbulence could be
pumped in a scale length which is much smaller than the global gradient scale lengths.
The wavelength of such instabilities can be much shorter than the system size. Therefore.
fluctuations could be observed as a ‘mode’ or a ‘wave’, if the spatial correlation length
is longer than the wavelength. Same arguments apply to the temporal evolution.

Example of this view is the weak-turbulence picture as is explained in §4.1.2. In the
limit of Eq. (4.21), the observed correlation function takes the form

(E@) EW) = 3 Ik o) expl—ia(t - ¢). (4.54)
k
Le., a wave feature (a pattern that satisfies w = wy) is observed. In the case where
Eq. (4.27) is satisfied, fluctuations might be observed as waves.

The wave-like feature is barely observed if the correlation length becomes shorter.
When the spectrum becomes broader, so that

. - Aw
7y* : s , 4.
(E(W) EWw)) : dw—-u) — (w— w2+ Aw?’ (4.55)
the auto-correlation time becomes shorter
(B E(t)) — exp [t — ) ~ Awlt — 1] (4.56)

If the auto-correlation time is comparable to or shorter than Wy ! the wave-like feature
is not observed. When one measures. say, the static potential é, the transient peak of
& could disappear in a short time Aw™*. so that the perturbation is no longer seen as
a wave. When the broadening in k& space becomes larger and the width A% becomes of
the order of the representative mode number, the perturbation is no longer seen as a
wave but as a small-scale vortex {with short life time). When the turbulence becomes
strong, the perturbation might be seen as being composed of vortices.

In some occasions, a solitary vortex appears. The life time of isolated potential
structure can be much longer than the eddy turn over time. See Appendix B.

C Convective cell, zonal flow, and streamer By the words ‘mode’ and ‘wave’, one
describes the patterns that change in space and in time. There is mode that is not
propagating and is subject to growth or damping. The typical example is the convective
cell which is discussed in Fig. 4.2(a). This has a very small wave number along the
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magnetic-field line and is associated with the electric field across the magnetic-field
line. Two limiting cases have a special importance in the turbulence of inhomogeneous
plasmas.

One limit is that the perturbation is almost constant on a magnetic surface, and is
localized in the vicinity of the particular magnetic surface. The perturbed electric field
is in the radial direction, as

k = (k,.0,0) and E = (E,.0,0) (4.57)

[see Fig. 4.4(2)]. The perturbed flow on the magnetic surface is associated with the field.
The flow is strongly localized in the vicinity of the particular magnetic surface. This
perturbation is called a zonal flow. The presence of the zonal flow has strong impacts
on the developments of micro-scale turbulence as is explained later in §4.3.4.

The other limit is that the perturbation is rapidly changing in the poloidal direction,
but is almost constant in the radial direction,

k 2 (0,ks.0) and E = (0, By, 0) (4.58)

(see Fig. 4.4(b)]. The perturbed flow due to this electric field perturbation is in the radial
direction. For this perturbation, the localized radial flow is generated in the vicinity of
a particular poloidal angle. This perturbation is called a streamer. An analogy holds
between the ‘streamer’ in plasma modelling and ‘streak’ in fluid dynamics. Both of them
are caused by convection in the direction of the gradients of global parameters. Once a
streamer is generated, the radial fiow of plasma (energy, etc.} could be enhanced. This
has also strong impact on the transport phenomena in plasmas.

D Reconnection, island overlapping, braiding, and mizing A topological change of the
magnetic field is a key issue for plasma turbulence, because plasma particles move almost
freely along magnetic-field lines. In particular, the motion of electrons along the filed
line is much faster than that of ions. Once the topology of magnetic-field lines changes,
there arises a sudden global variation of plasma parameters. This global change becomes
complicated if a substantial velocity difference exists between the electron and ions. Not
only the plasma parameters, but also the electromagnetic fields are modified rapidly.
A topological change takes place owing to the reconnection of the magnetic-field
lines. When the system with nested closed magnetic surfaces is subject to the symmetry
bresking perturbations, magnetic surfaces are deformed. Their topology is preserved in
the beginning owing to a high electric conductivity of plasmas. By the deformation
of magnetic surfaces, a strongly localized current is generated near the mode rational
surface. The current is subject to the impedance (either due to the collisional resistivity,
electron inertial impedance, or current diffusion within a collisionless skin depth)
and a small but finite perturbed electric field is inevitable near the rational surface.



(a) (b)

Figure 4.4. Examples of convective-cell formation are illustrated in a poloidal cross-
section of toroidal plasmas. Zonal flow (left) and streamer (right). In these examples
plasma is charged pesitive in the hatched region and negative in the dotted region.
Radially-inhomogeneous poloidal flow occurs for the zonal flow (a), and poloidally-
inhomogeneous radial flow happens for streamer (b).

This localized electric field (in the direction of the magnetic-field line) induces the
perturbed magnetic field that causes reconnection. Through this reconnection process,
the topology of magnetic-field lines and magnetic surfaces changes. Magnetic surfaces
are nto longer nested nor isolated. but they have many islands between isolated surfaces.
In the case that many magnetic islands are generated on various magnetic surfaces,

interactions between islands on different magnetic surfaces induce the global variation
of the plasma. If the width of magnetic islands, wi, becomes larger than the radial
distance between magnetic islands, di. i.e.,

Z= > (4.59)

dis
a global stochastization of magnetic fields can take place [4.51. 4.52]. Field lines become
stochastic and meander diffusively over a wide area. Mixing in the phase space occurs,
and large transport are possibly occurs [4.53]. Under such circumstance, the electron
temperature and pressure tend to become uniform in this region of stochasticity. Ions
tend to move as well: however. the mobilities are different for electrons and ions. There
could arise the difference between the electron response and ion response, so that a
selective loss of electron energy and momentum can be induced. See also [4.54-4.56] for
applications to plasma physics.

E Plume and avalanche (time intermittence) A perturbation like the streamer might
not be constant in time but could take place intermittently. A heat flux associated with

+ 1 U I A S P SRR N i e - m n o e 1 L.
ine peridroallons nappens abrupily from time to blie, 1he [How across the magnetic
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surfaces can occur as an avalanche. Non-stationary features of the fluxes are seen as
a plume or avalanche. These are also characteristic features of inhomogeneous and
strongly turbulent plasmas.

F Micro- and meso-scale structures and competition A ‘meso-scale’ is an intermediate
scale length between the global inhomogeneity and microscopic fluctuations [1.35].
Its typical example is the electric domain interface, which is illustrated in Fig. 4.5.
Two radial regions of different radial electric fields touch across a thin layer, and a
steep gradient is established in this layer. It is called a domain interface. Ome of
the central themes of recent turbulence theory in plasmas is the mutual interaction
of the macro- and meso-scale inhomogeneities and turbulent fluctuations that are
regulating each other, leading to the anomalous transport, transitions, and improved
confinement [1.22-1.35]. Microscopic fluctuations generate the convective cells and meso-
scale structures. The convective cells, including the electric-field domain interface, zonal
flow, and streamer, cause the suppression and excitation of micro instabilities (Fig. 4.6).
Thus, stabilizing and destabilizing influences of meso-scale structure on turbulence cause
complex dynamics, inciuding the subcritical excitation of turbulence. These nonlinear
features are surveyed in the later subsections.
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Figure 4.5. Electric-field domain interface as a typical example of meso-scale
structure. {Radial electric field as a function of radial parameter is illustrated).
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G Crumps The Balescu-Lenard collision operator includes the collective nature of the
plasma dynamics through the form of the dielectric constant [4.3]. Thus, important
plasma characteristics, which arise from the long-range interactions mediated by the
electromagnetic field, could be described by this collision operator. Under some
circumstances, the initial condition (ballistic term) can affect the relaxation. If the
deviation of the initial condition from the equilibrium distribution is large, it can
influence {accelerate) the relaxation. The ballistic effect is usually analyzed in terms
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Figure 4.6. Generation—destruction mechanisms between microscopic turbulence and
meso-scale structures like electric-domain interface, convective cells, zonal flow and
streamer.

of the concept of a clump, because a clump (cluster) of particles behaves together as a
macro particle with a finite life time [4.57, 4.58]. An explanation of the clump concept
is briefly given in Appendix C. The description of clumps is limited in this article: Here
we stress the fluid (moment) description of plasma turbulence, because we emphasize
the mutual relationship between the plasma and neutral fluid. More detailed discussion
of the clump formalism, with particular emphasis on its application to nonlinear fluid
theory, can be found in, e.g., [1.34] and references therein.

4.2.2. Methods for strong turbulence The perturbed electromagnetic field in plasmas
is coupled with the perturbed current as Eq. (2.14), i.e.,

1 & - - d -
—E+ VX (VXE)=—u=J
2 6t2 + x ( x ) )u'Oat
As in Eq. (4.10), the perturbed current
J= > explik - x — iwt)es / V fo g (V)dV (4.60)

8. kw

is determined by the dvnamical equation like the Vlasov equation. The properties of
fluctuations, particularly their nonlinear behaviour is solely determined by the response
of the plasma-current perturbation to the perturbed electromagnetic field, J [E,E].
Therefore the analysis of the dielectric tensors is of primary importance. The study
of nonlinear dielectric tensors has been a central issue for plasma turbulence.

A Resonance broadening and renormalization n kinetic propagator
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A1 Renormalization of propagator When one describes plasma dynamics through
the kinetic equations, the perturbed velocity distribution function is obtained by
solving the Vlasov equation. In the framework of the linear-response theory, the
perturbed distribution function, against the electric perturbation of the form E x
Ep. explik - x — iwt), has the form

foc ——t 46

O(wﬂkn?luﬁ“iv ( ) 1)
where v is the rate at which the particles lose the memory of phase through collisions.
The particles which satisfy the condition vy = w/kj, i.e., the resonant particles,
contribute the energy exchange between waves. In the presence of background
fluctuations, resonant particles are scattered by fluctuations. The mean free time ['~!
can be much shorter than the Coulomb collision time. Then the resonance in the
response function is broadened as

—_——— P 4.62
O(.’.d——k‘”v\iﬂ-ir k ( )

The resonant condition is rewritten as jw — kyoy| < T.

The rate of scattering of resonant particles by the background fluctuation, T,
depends on the magnitude of the fluctuations. One can calculate the resonance
broadening by means of the renormalization. A brief sketch is presented here.
Systematic description of renormalization is given in, e.g., [1.34. When one
perturbatively solves the Vlasov equation

fun) = 2 [ expli (= ) — il — 0] 5 f V) - B
+ % /t dt’ exp [ik - (X' — x) — dw(t — )] %fp(x’, v)-Bx p
el (4.63)

one obtains fi(v) in a series of £”. The n-th order terms with £" diverge like
(w — kyvy)™™. If one collects the most secular terms among these divergent terms at
each order, one obtains a renormalized dielectric tensor. In the case of electrostatic

fluctuations, E = —Vé, an explicit formula for the dielectric constant is given as
o2
Epe, = 1 — < / dv
. s:ze.i kas

X{afs lilofue) (0 B (XD

(4.64)

W  w— k'”'UH + il oW B Wes

where W = m (v} +v7)/2 is the kinetic energy of a particle, b is the unit vector in the
direction of the magnetic field, w,, is the cyclotron frequency, and Jy is the 0-th order
Bessel function of the first kind. The nonlinear turbulent decorrelation operator I is
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determined by a recurrent formula [4.4. 4.59]. See also [4.60-4.63]. Formal theory and
more complete form of the renormalized dielectric function than Eq. (4.64) are given in
[4.60]. The recurrent formula is explicitly given as

JD (kll 'U_L/Wci)
Fewlvov)= -9 = -
ralv ) prar = (kg = vy 4 il
(k x K b) |ow |’
B? )
In the case that a separation is made between the scales of the test mode (k.w) and
the background modes (&', w'):

X

(4.65)

|k, w] < 1K, W] (4.66)

the damping rate of the (k.w) component is expressed through the diffusion operator
D as I't., = k- D - k. The recurrent formula is then given in terms of the diffusion
operator as [4.64]

Jo (k’l_vl/wa)
P & kﬂ'vn +ik'-D K

o (K X B)(K = b) |dwr|”

D{vi,v)= -

I (4.67)
In the absence of turbulence, Eq. (4.67) reduces to the quasi-linear formula as
-1 |EL g |2
D(z,,vy) = Jo (K, 1 ) X —. 4.68
(vi,p) E o (kv fwa) S (w, “Ho + iy) 2 (4.68)

Kinetic equations could describe the wave-particle interaction. Substitution of the
renormalized operator (4.65) into the formula (4.64) gives the renormalized dielectric
constant. The combination of the dielectric constant with the Maxwell equation
{or the charge-neutrality condition for the case of long-wavelength and electro-static
perturbations) would provide a solution for the turbulent state. In this turbulent state,
the orbit of plasma particles is modified by the turbulence. Main emphasis of the analysis
of the renormalized propagator has been put upon the calculation of the dielectric tensor
which is screened by the background turbulence. The incoherent noise has often been

A2 Strong-turbulence limit and fluid model The broadening of the resonance in
response function is one of the basis for the use of fluid equations in the study of
plasma turbulence. If the turbulent scattering becomes stronger and the parallel wave
number is small, |kyuv,| < T, all the plasma particles respond in the same way with

g . T

n e VRN B . . s, . . 1. .o T ~
one decorrelation rate I’ {wgy. thermal velocity). In this Hmit, the individuality of a
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particle has no influence on the dielectric tensor. A fluid description is valid in this
limit. This approximation is a basis to employ a fluid approach for the problems of
plasma furbulence.

A3 Strong-turbulence limut and Kubo number The Corrsin approximation [4.65]
in strong turbulence is also related with this simplification. In the limit of strong
turbulence, {w—kjvy| < T, the k’-D-k’ term dominates in the denominator of Eq. (4.67).
Then Eq. (4.67) gives
81
B
In this expression, diffusivity is a linear function of the Kubo number K if the
decorrelation rate and wavelength are specified as being independent of the diffusivity,
where X is the ratio between the £ x B velocity to the wavelength divided by the
decorrelation rate, (i.e., the correlation time divided by the eddy turn-over time) as
[4.66]:

D (4.69)

K9]
K= T5 - (4.70)
See also discussion on the role of the Kubo number in [1.34, 4.67].

The assumption that the nonlinear decorrelation dominates for all particles, |w —
kyoy| < T, is a simplified limit. Equation (4.67), which is a closed equation for D
for given fluctuations, is derived by use of Markovian approximation. These analytic
simplifications (i.e., the Markovian approximation as well as the neglect of the wave—
particle resonance} do not necessarily hold in all circumstances. For example, when
trapping of particles exists, the X dependence of D becomes weaker [4.68, 4.69]. A
weak dependence on K is also recovered in transport due to a percolation process [4.70-
4.73).

Even though the renormalized formulae have these limitations, they provide a way
to determine turbulence and turbulent transports self-consistently. In the case that the
nonlinear decorrelation rate I' caused by damping through the diffusiv.ity {or viscosity
of the same magnitude), [ = Dk?, Eq. (4.69) means that

K (4.71)

The strong turbulence state, which is governed by the fluctuating £ x B motion, is
specified by Eq. {4.71).

Noting these facts in mind, analyses based on fluid models are discussed in the
following.

B Nonlinear response in fluid-like equations A system of renormalized kinetic equations
is usually too complicated for the study of plasma turbulence. The renormalization
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approach to moment equations (fluid equations) has been applied. By using the fluid
(moment) equations. one can study in detail the property of interactions through the
convective nonlinearlity. by sacrificing the wave-particle interactions. Here. the analysis
of passive advection is briefly discussed in the following [4.74, 4.75]. The statistical
reduction of the dynamical equation for plasmas is discussed in the next subsection.

A model equation which describes the passive advection of a scalar quantity X in
the presence of a statistically-specified background velocity ¥ with an external statistical
source 1s given as

(%X +(V+9)-VX — D.V2X = §oxt, (4.72)
where D is the collisional diffusion coefficient. The fluctuating field quantity X has its

own characteristic scale length £.. Two categories of background fuctuation fields are
considered in Vv, le.,

V=V + V. (4.73)

where v, has much shorter wavelength than £., while v, has much longer wavelength
than £.. The static and inhomogeneous flow V is a special limit of ¥,. The separation
of background flows is shown in Fig. 4.7.

Spectrum
A
;o

~
v
1

<3

-

k

Figure 4.7. Schematic illustration of background fluctuations, o, and #, and
inhomogeneous flow V. They are assumed to be statistically independent.

B1 Short-wavelength fluctuations First, shorter-wavelength components are
studied. When the background fluctuation velocity changes very rapidly, one takes
the rapid change model (RCM) [4.76] in which the correlation functions are assumed to
have the form

~

T
—
L
-

fice
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(St x4+ £, + )59, £)) = S (£)8(T). (4.75)
The auto-correlation time of ¥, Tac, is assumed to be much shorter than the eddy turn-

over tirme of the perturbation X. With the help of this model, a statistical equation for
the passive scalar perturbation is derived. The correlation function

C, )= (X(z+4,t +7)X (1)) (4.76)

is then governed by the equation

0 2 0 J
o2 %prip nZo= g (4.77)
5" et POzt ) (4.77)
with
D_(t) = Do+ 7Y (1- 8) (), (4.78)
k

and d stands for the space dimension.
From the relations (4.77) and (4.78), an estimate for the intensity of Huctuation,
I = limy_q C(£), is made as

I ~ 7olim $%(4)], (4.79)
£
m ~ 5, (4.80)
and
D= gljm D_(E) = D¢+ Tac Z(Ii}s,kp)‘ (4'81)

The diffusion time 7y, over the scale of £, is a time scale that determines the lifetime
of the perturbation of the passive field [4.75]. Note that Eq. (4.79) is one form of
the fluctuation—dissipation relation in turbulent plasmas. The Huctuation—dissipation
relation, which is discussed in several places of this review, is an extension, to non-
equilibrium plasmas, of the fuctuation—dissipation theorem (FDT) which has been
established in the thermodynamical limit [4.77]. The fluctuation-dissipation relation
is also called ‘extended FDT".

Equation (4.81) agrees with a limiting form of Eq. (4.67) which is derived by kinetic
approach: in the limit of &' p;/we and jw — vy < I, Eq. (4.67) with 7, = I'™" reduces
to Eq. {4.81).

B2 Rapidly-changing, long-wavelength components Next the influence of longer-
wavelength fluctuations is discussed. As for the case of v, the fluctuation velocity v
is also assumed to be rapidly changing in time. The influence of ¥, is introduced as a
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rapidly changing Doppler-shift. 22, X, = ¥; - VXi. Then, from Eq. (4.72), the forced
stochastic oscillator equation

o - - - -
EXA + e X — Dkszk = SE“ (482)

is obtained for a Fourier component. The diffusion coefficient I} is obtained from
the contribution of random shorter-wavelength components, v, in Eq. (4.81). Its
contribution is evaluated through the damping rate I's = Dyk?. The impact of the
stochastic frequency shift is characterized by the parameter

1 = Taca{@i), (4.83)

where 7..; is the auto-correlation time of the longer-wavelength fluctuations v;. The
statistical property of the response function of Eq. {4.82)

Glt:¢) = exp [— ]; dr (i + rs)] (4.84)
has been studied when the correlation (@ (1)0:{0)} decays as [4.77]

{@r (D)0 (0)) = {2F) exp (=8| /Taca) - (4.85)
In the limit of rapidly changing background fluctuations:

Tacl K TDs (4.86)
one obtains

(G(t;0)G(t;0)) = exp [-2(Th + T)|t — '] (4.87)

with Ty = 755°. The decorrelation of the test field occurs at the rate I's 4+ Ty = 7o 4T
The statistical average of the fluctuating field X is given as

i
7'51 + 1 1 + ol
Comparing Egs. (4.79) and (4.88). one finds that the level of fluctuations is suppressed
by the stochastic Doppler shift due to the longer-wavelength fluctuations by the factor
1 1
L+ 70 1+ TDTact (D})

assuming that the source lim;_o S™*(¢) is unchanged. In the large-amplitude limit of

I~

[TD lim o (E)} . (4.88)

i—

for 7ac1 <€ ™, (4.89)

random oscillations (or long correlation time 7,.). 72 (@2) > 1, the Gaussian response
is given as

(Gt 0)G(t'; 0)) o exp [—2(23) (£~ #)?] . (4.90)
Equation {4.90). being compared to Eq. (4.87), is calied the motional narrowing. This
results in

i : e
I~ \Ew__ lim §(2). (4.91)

1
— oy
BRANT
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Compared to Eq. (4.79), a reduction by the factor 1/ TD\/@ is obtained.

The statistical quantities @y and 5’,“3’“ might be independent or be correlated. The
influence of a cross-correlation between @, and Sg* has also been studied [4.74]. An
example of the results is

Ix1—enZ? (4.92)

where «; is a numerical coefficient, and Z is the ratio of cross-correlation to auto-

correlation, Z = (0S8 /y/(@2){S&2). The cross-correlation between the Doppler
shift and the external noise source suppresses the fluctuation level.

B3 Static but sheared flow A Doppler shift by the sheared static velocity V - V
also influences in the level of the perturbation of the passive field. For a case of sheared
flow, one takes V' = [0,V,(z),0]. The contribution of short-wavelength turbulence is
modelled by the turbulent transport coefficient D, and Eq. (4.72) is rewritten as

9~ - a ~
=X +V,(z)=—X — DV2X = 5%, 4.93
The sheared static fiow induces the stretching of a vortex, and the correlation time of
the test field X is modified. The influence on statistical properties is discussed, in detail,

in the later subsection, §4.3.4.

B4 On rigorous upper bound Equations in §4.4.4B are useful basis for the analysis
of plasma turbulence. For some cases, a rigorous upper bounds of the turbulence-driven
transport could be calculated [4.67]. A rigorous upper bound might have a different
parameter dependence compared to the true value. However, it would be a firm basis of
the understanding of turbulence. For instance, one could find a boundary in a parameter
space, below which the upper bound is zero for steady states. Such a criterion might be
called ‘energy-stability criterion’ for turbulence: perturbation of any amplitude (either
subcritical or supercritical ones} decays in time [1.31, 1.34, 4.78]. A brief description on
the rigorous upper bound is given in Appendix D.

C Renormalization in reduced set of equations The nonlinear dispersion relation is
derived by use of the renormalized dielectric tensor. This method is illustrated by
taking the example of a reduced set of equations. The reduced set of equations (see
§2.2.2) has the form

%f +LOF = N(£) + S, (4.94)

where f denotes the set of variables

fT = (¢,n), (4.95a)
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ff = (. J.p). (4.95b)
fF = (0.J,u,.p). (4.95¢}
fT = (n-@»@‘@'H-Pe-.Pn- A”), (495d)

for the two-field (HW) model. three-field model. four-field model, and seven-field (YH)
model. respectively. The linear operator £{°) is the N x N matrix for the N-field model
and controls the linear modes. A/{f) is the nonlinear terms, e.g..
V%6 Vig]
N{f) = - [0, J] (4.96)
[¢. 7]

for the case of (4.95b). The term Sy, stands for the thermodynamical excitation induced
by the interaction with a heat bath.

Theoretical models have been developed in order to separate the nonlinear
interaction term into two terms as

NE) = Nooherem () + 8. (4.97)

where Monerent (£) is a coherent part, which changes with the phase of test mode, f, and
S is the incoherent part (noise part). The noise part S could change very rapidly in time.
For a basis of rapid change, see a discussion in §4.2.3C. Explicit forms of NMherent ()
and S are given by modelling. Various modellings for the coherent and incoherent parts
have been analyzed. For detailed discussion, see. e.g., {1.34]. A sampie is explained in
the following.

A test mode fi. is chosen, and the terms M onerent (fi) and S, for f; are estimated.
The coherent part is estimated by renormalization when the background fluctuations
have a smaller scale length than the test perturbation. The coherent part A oherent(f)
is modelled by a matrix form for the N-field models. In a case of two-field model (HW
equation), explicit form of the matrix is given in [2.20]. A case of three-field model
is discussed in [1.35]. A diagonalization approximation is often used for the analytic
insight, based on a view that the parameter dependence of the obtained result is little
influenced by off-diagonal terms. The contribution of the off-diagonal elements must be
included for the quantitative conclusion. The diagenal terms are approximated by the
the diffusion terms with the turbulent viscosity {ux for ion viscosity, pxe for electron
viscosity, and &y for thermal diffusivity), or by the eddy-damping coeflicients (v, for
ion momentum, -y for parallel electron momentur, and -3 for thermal energy). as

uxV?2 fi Ty f1
Ncoherent (fk) — #NevifQ =1 72 f2
\xnVifs /, \ vy f3/ &

(4.98)
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{note that nonlinear damping rate 71, ¥(2), and ) could be different). Within this
diagonal approximation, the renormalized operator £ is given as

Lij = L + 765, (4.99)
and one has a renormalized reduced set of equations {with a thermodynamical noise
source) as

3 - -

'é’t'fk + L, = S + Sin, (4.100)

where k denotes the test mode.
The renormalized transfer rates are given as [1.31]

Yok = = 3 MirpgM gy Tigiep Fil- (4.101)
A

Here, suffix ¢ denotes the field component, (i = 1,2,3) for three-field modeis, and k,
p, g stand for the interacting Fourier modes. In these expressions, the summation A
indicates the constraint k+ p+q = 0. The triad-interaction time 7; p, obeys the same
linear and nonlinear physics as the test mode, as is explained in [1.31]. By employing
Markovian approximation, the triad-interaction time is approximately estimated by the

relation

Tikpe = [L(K) + L(p) + L] 'L, (4.102)
where I is a unit vector. Note that 7; 3, might be different for different 7, and is often
approximately estimated by Typy = Tigpe- More thorough argument in a full matrix

model of Mooperent Iz} is given in [2.20]. The explicit form of the nonlinear interaction
matrix is given as, e.g., M3y = (P X q) - b.

Equation (4.100) shows that the amplitude of the fluctuation |[fy| becomes large in
the vicinity of the pole of the renormalized operator £. Thus the nonlinear dispersion
relation

det(AI+L) =0 (4.103)

describes the characteristic features of the turbulence, where I is a unit tensor, and —A
is the clg,t:uva}uc of the operator L. The mgl’i is chosen so that A < 0 for unstable cases.
In a steady state, the fluctuation level does not grow. This state could be evaluated
from the condition,

R = 0. (4.104)
In a case of purely growing/damping modes, one has A =0, i.e.,
det(L) = 0. (4.105)

Equation (4.103) is a simplified nonlinear dispersion relation, in which the effects of
noise source are neglected. This describes a dispersion relation of a test mode which is
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screened by the eddy-damping-like effects of background turbulence [1.35]. The screened
test mode 1s also called the dressed test mode. Equation (4.105) gives a rough estimate for
the level of turbulence. because £ is a functional of the turbulence spectrum through the
renormalization relation. e.g.. Eq. (4.101). It is used to understand the role of various
non-equilibrium parameters {e.g.. gradient. magnetic-field configuration. etc.) on the
plasma turbulence. This analytic simplicity is given at a sacrifice of mathematical rigour.
This simplified relation neglects the noise source and thus the nonlinear conservation of
the quadratic invariants like energy is not guaranteed. The validity of the solution of
Eq. {(4.105) must be examined. a postertori, by more accurate modelling in which the
renormalized operator £ and the noise source S are determined self-consistently. The
modelling including the noise sources is explained in §4.2.3, and the relevance of solution
is discussed there.

D Scale wnwariance method The method of scale invariance is an alternative approach
to understanding turbulence properties. The method and applications to plasma
turbulence are reviewed in [4.79].

D1 Fluad models There are two well known examples in fluid dynamics: One is the
analysis of the drag force acting on a body in a flow [4.80, 4.81], and the other is the
Kolmogorov spectrum [4.82].

The drag force is discussed in terms of the scale invariance property. It has been
shown that the Navier-Stokes equation for an incompressible fluid;

p [%V + (V- V)V} = —Vp+ V3V (4.106)
is invariant under the following three transformations:

T: VoV, t—aj't. p—oalp, v—aw, (4.107a)

To: X — agXx, t—+aqgt, v— agl, (4.107b)

Ts: p-—azp, p— agp, vV — agb. (4.107¢)

The drag force F. which acts on a sphere of radius L in a fluid with velocity V', has
the dimension of pVz3t~!, so that F/(pV2L?) is invariant under transformations 7,
T>, and 73 {p: mass density, L: system size). The Reynolds number Re = pLVr1is
also invariant under these transformations, so is an arbitrary function of Re, F,(Re).
Therefore the ratio [pV2L?F,(Re)]™'F is invariant. The drag force must be given in
such a form as

Ju— ]
Py

F = pV?L*F,(Re). (4.108)
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The scale-invariance method is also useful in determining a turbulent spectrum.
Let us consider a homogeneous system and assume that the dissipated power per unit
volume, ¢, is given. The change of scales is applied as

I.H( : T — 1T and t— azt. (4109)

By noting the fact that the viscosity p, the dissipation €, the energy spectrum of the
fluctuations, F(k), and the wave number are transformed as

p—aija;'n, & — dlay®s, E(k) — ata;?E(k), k— ailk, (4.110}

one finds the following two ratios

E(k) k

psl4gl/4 an p—31g1/4” (4.111)

are invarient under this transformation 7x [Eq. (4.109)]. From this result, the
spectrum is independent of a choice of coordinates if it is expressed as E(k) =
pPAe AR (kud/*e=1/1) where F(z) is an arbitrary function. The essence of the inertial
range is that the wave energy is independent of viscosity. The factor g/ F{ku3/4:=1/4)
is chosen as being independent of y; ie., F oc u=>%. By use of this form factor, one
finally has

E(k) o k75328, (4.112)

Scale invariance approach is also applicable in the presence of external forces. For
instance, the counterpart of Eq. (4.112) for the gravity waves (w; x k/2) and capillary
waves (wr, o k¥?) in a fluid are

E(k) o k752 (4.113)
and
E(k) x k73, (4.114)

respectively [4.33].

D2 Plasma models This scale invariance method is also applied to plasma
turbulence. From general cases to specific ones, representative examples are shown
[4.79].

Let us first show a case of electrostatic perturbations, which is valid in the limit
that the plasma pressure p is low compared to the magnetic pressure B2/(24). In this
case, the Vlasov equation takes the form of

{£+v-v+ =

5 p— (E—l—v X E) %} fs(x,v;t} =0 (s =1i,e), (4.115)
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where B is a constant magnetic field, and the distribution function f., and the
electric field contain fluctuating components. In the limit that the scale length of the
perturbation is longer than the Debve length Ap. |Apk| <« 1. the Maxwell equations are
simplified under the charge-neutrality condition

3 es/dvfs = 0. (4.116)

There are three (and only three) independent transformations that leave these equations
[Egs. (4.115) and (4.116)] invariant:

/1-1 N f_:, i a’,lfJ (4117&)
To: v-—awv, B—aB, t—a,'t. E— dlE, (4.117b)
T3: X —azx, Boa;'B, t—>ast. E—a;'E (4.117c)

(note that the temperature scales as T — a3T by 75). Under this set of transformations,
one finds that quantities ¢{B and Ta 2B 2 (T being the plasma temperature, a being
the plasma size) are invariant under the transformations 7;. 75, and 7. That is. the
quantity such as a confinement time 7z must satisfy

=5 () s
(F,: an arbitrary function). This form is a general constraint that turbulent state which
is governed by Eqgs. (4.115) and (4.116) with a constraint |Apk! < 1 must satisfy. Some
forms of F, have received particular interest. In the history of the plasma confinement
research, importance of the Bohm diffusion, for which the diffusivity has a dependence
like Dy x T/(eB), and the gyro-Bohm diffusion D  {p,a~!)Dg. has been recognized
empirically (see, e.g., [4.2, 4.4]). If the function F, has the form F,(z) ~ 2!, one has
the so-called Bohm diffusion, i.e.,

2

a'B
TE X . 4.119
B X — (4.119)

For another power form of F,(z) ~ 27%2, one obtains

3p2

a’B
TE X g {4.120}

which is called gyro-reduced Bohm diffusion.

It should also be noted that there could be multiple characteristic time scales. For
instance, the energy confinement time (the time scale of the transport across a global
scale length), auto-correlation time of microscopic fluctuations could have a different
dependence in general. In such a case, F, takes a different form depending on the choice
of characteristic times.
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When the electromagnetic perturbations are considered, iike those in a family of
MHD turbulence, the electromagnetic dynamical equations (e.g., ideal or dissipative
MHD equations) are used. A different choice of dynamical equations leads to a different
invariant transformation. The invariant relation is given as

nT
TEB = (TLUQG) Fa (ﬁ,TGIIQ) . (4121)
By selecting particular type of instabilities in specific circumstances, a more explicit
form of turbulence transport can be derived. See exhaustive references in [4.79]. For

instance, one has the transport coefficient x = a®/7% as
T32 rna\e
_ na\? 4122
X = B (T?) (4.122)
The index g is summarized for various drift-wave range instabilities in {4.79]. Summary
is quoted in Table 4.1.

Table 4.1. Summary of scale-invariance relations for various specific turbulence
models. (Quoted from [4.79] with suppiement.) Reference 1-11 corresponds to [4.83-
4.85, 4. 45, 4. 86-4.92], respectively.

Instability modes Index ¢ Reference
collisional drift 1 1,2, 3

0 2,3

2/3 4

1/3 2
dissipative trapped electrons -1 2,3,5 6

-4/3 7

-2 8
collisionless trapped electron 0 2,35
dissipative trapped ion -1 2
ion-temperature-gradient 0 3.5,6,9 10
current-diffusive turbulence 0 11

It is noted that the scale-invariance method gives the same result as the mixing-
length estimate for supercritical instabilities [4.93].

A discussion of the fluctuation spectrum is also feasible for plasma turbulence. For
the current diffusive interchange mode (CDIM) turbulence, a model basic equation is
given as

i V3e 0 —ikysz  1k,Go ¢
— | 7 + | tkysz 0 0 jt=0 (4.123)
dt .
P tky 0 0 P
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where d/dt = 9/0t + [o. |. Here. normalization follows N[HD models [4.94]. It should
be noted that the driving source of fluctuations. which is represented by parameter
Go (Go = Vinp - VIn B} in this problem, is also to be transformed. The system of
Eq. (4.123) is found to be invariant under the transformation [4.92]

T > axr. t—ajlt (4.124)

with (6, ].p) — (ajo.alj.a1p) and Go — a?Gy. The turbulent transport coefficient D
is transformed as D — a}D. and D/Gg/ ? is found to be invariant. We see that the
dependence D x G¢/* is satisfied.

Constraints for a spectrum is also deduced from a scale invariant property. From
the scaling properties of ¢ and k. 3*Gy? and k+/G, are invariant. As a result, ¢*Gg?
is expressed as a function of kv/Gy as ¢*Gg® ~ Fep(v/Gok), where Fep is an arbitrary
function. For quasi two-dimensional turbulence in magnetized plasmas (d = 2), the
energy spectrum E(k) = [k? |¢(k)1?]k4! is given as

E(ky) ~ GiFep(y/Goko )k, . (4.125)

If the energy spectrum is expressed as a power law, E(k) x k7. Fep(z) has a
dependence Fp(z) x 277, By use of this form, Eq. (4.125) is rewritten as

E(ky) ~ Gy, (4.126)

The index v = 3 has been obtained for a nonlinear stationary state, in the wavelength
regime where turbulence is excited {1.35].

4.2.3.  Randomness and stafistical picture A fundamental origin of randomness is
collisions in plasmas. Parts of the nonlinear interactions of the background Aluctuations
are treated as a random noise source for a test mode. Modelling and effects of the
random noise source are discussed in this subsection.

A Estimate of random source term  Consider a generic form of equation [1.31, 4.95];

(% + Wk) X = %%: M X3 X7, (4.127)
where X} is a fluctuation quantity. wx 1s a complex linear wave frequency, My, is the
coefficient of nonlinear interactions, (k, p, q} are the wave vectors of interacting modes,
and >4 means the summation with the condition k+p-+q = 0 (notation follows [1.31]).
Its counterpart in fluid dynamics is given in Eq. (3.29). This equation is modelled by
the Langevin equation

[‘fj + 2wy + Fk(t)} Xk(t) = gk(t), (4_128)

LUL
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where IT'x(t) is the nonlinear damping rate, which is discussed in §4.2.2C, and Se(t) is
the nonlinear noise. The assumption {S(t)S(#)} o« &(t —t') is often employed in order
to ensure the Markovian approximation. The nonlinear noise term is treated by use of
the white Gaussian model

4(6) = 9(6) 3 VT (4.129)

where @(t) denotes the white-noise function, T, is the Markovianized nonlinear
propagator (the long-time average of 7, gives the interaction time that plays the role
of auto-correlation time), and gyp, is the average amplitude of the instantaneous noise
source;

(SOSEYY = 8t — ') Thpq (Frpaliepq) - (4.130)

The quasi-normal picture of turbulence is that background fluctuations are almost
normal. That is, when the noise amplitude gipq is expressed by the use of a statistically-
independent variable  (virtual field) as

Grpg = MipaCCC (4.131)

the correlation functions for the virtual field {, is identical to the one for the fluctuating
field

(GG = (X X5)- (4.132)

B Dynamical equations for correlation functions A set of dynamical equations for
correlation functions, called the realizable Markovian closure (RMC), has been discussed
[4.96, 4.97]. A two-time correlation function

Cilt,t) = (X () X2 () (4.133)
is given in a form
Cilt, ¥') = CY2(0)R(t, )T (). (4.134)

Here, Ci(t) is the one-time correlation function, and Ti(t,t'} is related to the
Markovianized nonlinear damping I'x as

exp [— v’PI‘(T)dT] for t>¢,
Pt ') = » (4.135)
exp {— 'P[’(’r)*dfl for t<¢,
2

where the operator P is defined as

PT — RIO(RT) + 13T, o | (4.136)
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and O(RT) is the Heaviside step function. As discussed in [4.96]. the role of P is to
ensure the realizability. i.e.. to guarantee that the correlation function remains positive.

With the help of this Markovianization. a set of dynamical equations for the
correlation function €' and the normalized triad-interaction time Trpe Can be derived
as

a3
[51_ + QERF;C(t)} Cilt) = 2F (1), (4.137)
and
0
[E + Te(8) + PTL(t) + PFq(t)J Thpg(t) = Ca/2()Ch2(t). (4.138)
where the damping rate I'y and the source term are given as functions of € and Thpg:
Pe = e — ZMkpqﬂf;qkT;mC;/QC;1/2~ (4.139)
A
1
F = 53%; | Mipg[*Tipa Cy 2 C2, (4.140)

and 7. is the collisional damping rate. This model equation is realizable, i.e., the
correlation function C, remains positive [4.97).
In a stationary state, one has
Fi(t)

C(t) = 3, 5 (4.141)

which is a fluctuation—dissipation relation (extended FDT) for the turbulent state.

C Langevin equations The Langevin equation (4.100)

o .

is constructed with Eqgs. (4.130) and {4.131) as the model form of nonlinear noise
functions [4.98, 4.99].

In order to solve Eq. (4.100), an ansatz of a large number of degrees of freedom
in random modes, N, is introduced. The renormalized term Y, in £ arises from the
statistical sum of contributions from N components, so that its variation in time becomes
O(N~Y2) times smaller in comparison with that of f,. Therefore, in solving the time
evolution of fluctuating fy, £ is approximated to be constant in time in the limit of
N — oc. With the help of this ansatz. the general solution is formally given as

kY

t -
£(t) = 3" exp(—A1)f0™ (0) + Jf exp | L£{t — )| &(=)dr. (4.142)
0

m
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where —Ap,, (m = 1,2,3,-+- and R\ < Ay < RA3 < ---) represent the eigenvalues
of the renormalized matrix £, and are determined by Eq. (4.103). Here, f™/{(0) is
a representation of the initial value which is transformed into a diagonal basis. The
eigenvector with the eigenvalue —A; corresponds to the least stable branch (mode),
the decay time of which is longest. Others with {—Xg, —A3,---) denote highly-stable
branches, which decay much faster. For the case of the N-field model, Eq. (4.103) is
a N-th order equation of A. Equation (4.103) provides a relation between A, ~;, and
global parameters such as Gy = V(Inp) - V(In B), 5, = |V(In TH|/|V(Infe)], ete.

C1 Ezample of three-field model The matrix exp|—L{t —7)] in Eq. (4.142) could be
explicitly expressed in terms of parameters that specify the inhomogeneous turbulent
plasmas. For example, the elements of exp|—L(t — 7)] for the three-field model of
Eq. (4.47) are expressed in terms of three discrete eigenvalues of Eq. (4.103), A1, Ag,
and As, as

{exp[—L{t — T)]}U = Az(-;) expl—X(t —7)] + Ag) exp [~ Aot — 7)]
+ Aﬁf-) exp [—As(t — 7)], (4.143)

where the elements of matrix A are given in Ref. [4.98]. By introducing a projected
amplitude of noise source as

(m) . _ikli _ikyQ, . g - -~ 4
5(5) = 1 e B S+ Su)], @i
where 7. and 1, stand for (s and s in Eq. (4.98), respectively. the fluctuation field
is given as
(m) ey — At | =€ [ (m)
@) = AT | 45 | [ epl-An(t — TS ()dr (4.145)
ikyp’g 0
Tp—Am

on neglecting the initial condition which is ineffective in determining the statistical
average [4.100]. Superscript (m) denotes the m-th branch of Eq. (4.103).

The long-time average of the decomposed amplitude is obtained from Eq. (4.145).

For the decomposed amplitude, one has

iy = | Al (s mngm) 4.146

(fl 1 ) 2&()‘7“)[ 11 I ( )' ( - )

This is the fluctuation dissipation relation (extended FDT) in the case of strongly

unstable plasmas. The estimate of Eq. (4.146) is made for a noise source with the

magnitude

(SW*SMY = Cyvy, A Fi fl(lk) } + thermal excitatidns, | (4.147)
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where 7, Is the nonlinear damping rate of the vorticity {eddy damping rate}. and Cp
1s a numerical factor of the order of unitv. This is a crude estimate of the noise level.
and the modeling of Cy that can preserve a conservation property of Eq. (4.146) has
not been established. With this estimate. the fluctuation-dissipation relation (extended
FDT) [Eq. (1.146)] is rewritten as

M Coyy
=
In the limit of strong turbulence. i.e., the fluctuation level is much larger than the
thermodynamical fluctuations. Eq. (4.148) is simplified as

RA; = %1«\,. (4.149)

(fl(‘lk)* 1“2) (A7 1y 4 thermal excitations. (4.148}

Both the nonlinear decorrelation rate A; and the eddy damping rate -, depend on
the fluctuation spectrum as Eqgs. (4.101). (4.103), and (4.149); these are the equations
that determine the fluctuation level together with the decorrelation rate. A schematic
explanation of the foregoing mathematical procedure is given in Fig. 4.8. The
fluctuation level that is determined by the fluctuation—dissipation relation (extended
FDT) [Eq. (4.148)] is higher than that determined by the nonlinear marginal stability
condition A; = 0.

Aj

0 Y,

Figure 4.8. Balance between the nonlinear decorrelation rate A; (solid line) and the
noise source rate Cov;/2 (dashed line). These two are written as 2 function of ~,.
The cross point determines the statistical averages of the nonlinear decorrelation rate
and eddy damping rate. A indicates the self-consistent solution for the turbulence

decorrelation rate. 7y is the eddy damping rate in the self-consistent solution.

D Fokker-Planck equation By use of the decomposed elements, a Fokker—Planck

quation may be derived. A case of Eq. {4.100) is iilustrated by taking an exampie

fes]
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of the three-field model. A projected variable
—ik — ik,
FO() = |1, T
O =" BTt ) Be -0
is introduced. Then the Langevin equation is decomposed as

9 pw + A EY =8 4.151
at k

where projected noise source S,(cl) is modelled by a white noise. Statistical independence
between different & components holds, and we write

(SPHSP (1)) x G 8wt — ). (4.152)

(1) (4.150)

From this property, the Fokker-Planck equation for the probability density function
(PDF) P(F1) is derived [4.101, 4.102] from this dynamical equation (4.151) as

% 9 (1) L.m (1

BEPZZ g k)\l + 59 3F mg ) - (4.153)

k

Equation (4.153) describes the PDF for the one from three branches of fluctuation
modes.
The equilibrium PDF is given as

F ox (FY
P({FY) = H o0 exp[ / #fﬂf b (4.154)

The presence of the nonlinear noise term, g(” # 0, allows access to the equilibrium
PDF. One defines the H-function as

P(FU: 1)
M) (¢ FOPFD: f)n | 2——2 .
H / d |5y | (4.155)
and obtains the inequality
i?{(” (£) <0 (4.156)

which showing that the PDF relaxes to the equilibrium one in the long-time limit. The
irreversibility of evolution, Eq. (4.156), is due to the nonlinear noise term, g“) # 0,
which is enhanced by the turbulence. The microscopic origin of the irreversibility is the
Coulomb collisions, and the Lyapunov exponent of individual particles has been analyzed
[4.103]. The irreversibility associated with the renormalized diffusion coefficient Q,{cl)z
includes the cascade of energy which leads to an enhanced irreversible dissipation by
the Coulomb collisions.

A tail component in the PDF is another feature of nonlinear plasma turbulence.
In the equilibrium PDF [Eq. (4.154)], the ‘effective temperature’ that determines the
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width of Peq(F,f.”) is given by QL”Z. If the fluctuation amplitude becomes high. the
turbulent noise amplitude g{.” increases. As a result. 2)\1.kF,£1)Q,(‘_])‘2 in the integrand
of Eq. (4.154) has the F,EU dependence

DY
g(”z x F
k

(4.157)

in the large-amplitude limit. The integral in Eq. (4.154) has a logarithmic dependence
on F, and Eq. (4.154) predicts a power-law distribution in the large-amplitude limit.
This power-law dependence of the PDF originated from the fact that the diffusion
coefficient G, is renormalized [4.98].

One may compare the above analysis with those in fluid theory. The work by [3.48]
is an example of detailed analysis of neutral-fluid turbulence. In this case, however, the
integrand of Eq. (4.154} is expanded with respect to the fluctuation amplitude. Once
the integrand is expanded, exponential forms are deduced.

E Memory effects and non-Markowvan property  As is discussed for fluid turbulence. the
memory effect could also be important for plasma turbulence. The statistical procedure
used for the reduction of variables makes the resulting equations have a non-Markovian
nature. A proper treatment of memory effects is necessary [4.104. 4.105]. For instance,
the quasi-normal approximation (QNA) kept only the decorrelation due to the molecular
viscosity and turned out to be inadequate owing to the too long memory effect. Analytic
expressions which are used for the evaluation of inhomogeneous plasma turbulence, e.g..
Eqgs. (4.69) and (4.105) or (4.149), are derived by use of the Markovianization.

Memory effects could be important when the Kubo number is large. Examples
are given in §4.2.2A3. If the fluctuation amplitude A becomes large, fluid elements
circurmnavigate the fluctuation eddy many times during the decorrelation time of
fluctuations, 7.. The correlation function along the path of fuid elements (Lagrangian
correlation function) becomes different from the correlation function at one time slice
(Eulerian correlation function). A method named ‘decorrelation path method’ has been
applied to obtain the Lagrangian correlation function [4.68]

Cyltr ta) = {wlz(tr)ita]uyz(ta)ita]) 4 j = (z.9). (4.158)

In stationary homogeneous turbulence, it is given as C,{t,,t,) = Cp{t; — t2)8,,. For
small X, the quasi-linear limit is recovered as

CL(At) = (?) exp (—JA“) for K <1, (4.159)

Te

where £. is the correlation length of the fluctuating field, A is an appropriately
normalized amplitude, and the Kubo number is defined as K = Ar, /{’f in this case.
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In the large K limit, an asymptotic formula for Cy(At) is given as [4.104]

2 —1.42

Cr(At) ~ 10.32(é) (ICIA—ﬂ-) for KM >3 and K > 1. (4.160)
£e Te Te

A slow power-law decay is demonstrated.

This power-law decay of the correlation function demonstrates the limitation of
theories that use Markovianization. The Markovianization approximation is valid in a
certain range of Kubo number, and the investigations into the non-Markovian property
are surveyed in [4.104]. The appearance of the ‘subdiyffusive process’ and its related
discussion for a transient response is given in §4.5.2. The dispersion evolves in time as
[4.106]

{iz(t) — r(O)F) o gt (4.161)
with the index
i = 0.58. (4.162)

The index ay,y is smaller than unity, and this process is subdiffusive. The initially-
localized perturbation, however, develops a long tai] in space. An application to drift-
wave turbulence has been recently discussed [4.107].

4.2.4. Model based on reduced variables By a reduction of variables, specific processes
in inhomogeneous turbulence may be studied. First is the influence of boundary
conditions. When the wavelength of perturbation is comparable to the system size,
global perturbations which are selectively chosen by boundary conditions are excited.
In such a case, a truncated model is often used, and a few degree of freedoms for the
global perturbations are kept. A typical example is the Lorenz model in fluid dynamics
[4.108]. An application to plasma is described. The second is that a cascade plays a
dominant role. In such a case, the shell model is a useful approach [3.12-3.15]. An
application of the shell model to a system with linear instabilities is shown. In plasmas,
the competition between the instability and cascade causes anisotropy of spectrum. An
example to extend the shell model to two-dimensional systems is illustrated. The third
is the K— model [3.49, 4.109]. In many cases the coherence length of turbulence is
shorter than the system size, but the influence of the boundary condition could appear
through the spatial transport of turbulence. The K—¢ model based on TSDIA is used
for the study of such situations.

A Lorenz model Perturbations in a thin bounded region are analyzed by keeping only
a small number of Fourier modes. Higher harmonics are truncated. One of the most
famous models is the Lorenz model, in which only three components are kept, i.e., the
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fundamental mode (most unstable one). the second harmonics. and the background
profile modification [4.108]. A closed set of equations has been derived for these three
scalar quantities. Extension to a model with truncation at five modes was made to study
the role of a standing wave {4.110]. A model with eight-mode truncation was proposed
to introduce the effect of travelling waves [4.111].

The method of Lorenz model has also been applied to the study of plasma
instabilities in a thin region. For instance. perturbations in the scrape-off layer (thin
plasma region that surrounds a plasma surface) are sometimes investigated by this
method [4.112-4.116]. In an application to plasmas, five variables are often taken into
account: the fundamental mode (X for potential and Y for pressure perturbation). the
background profile modification for plasma pressure (Z). the zonal flow component (V)
and the second harmonics of the static potential (W). The equations for the truncated
components are:

%X =Pr(-X+Y)+VW, (4.163a)
d
EY =-—XZ+r,X-Y, (4.163b)
d
—Z=XY —-bZ, (4.163c)
dt
d
d_tv =—XW —yV. (4.163d)
d
EW = —cXV — ywW, (4.163e)

where Pr is the Prandtl number.

7o = Ran *k2(1 + K2) 7%, (4.164a)
b=4(1+k5™ (4.164b)
= Prl+ k)77, (4.164c)
w=Prid+ k(1 + k)7, (4.164d)
c=(3/0k2(1+ KDL (4.164¢)

and k, is the inverse of the wavelength in the y direction being normalized by the
thickness of the layer. Here, Ra is the Rayleigh number defined by

6(L) — 6(0)
Ko ftg

Ra = L*gam, (4.165)
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with #(L) — 6(0) being the temperature difference. The influence of VW term in
Eq. (4.163a) shows the stabilizing influence of sheared flow.

It is shown that this set of dynamical equations for five variables shows a chaotic
nature. Only one positive Lyapunov number exists in a certain region of Rayleigh
number [4.115]. The effective Rayleigh number for the magnetized plasmas is defined
by using the magnetic gradient in stead of gravitational acceleration as is explained in
§4.3.2. Even though the number of variables increases from three to five, the number
of positive Lyapunov exponent remains one. This approach of truncated Fourier modes
captures some feature of chaotic behaviour due to the nonlinearity, but not necessarily
the turbulent feature of excited Huctuations.

B Shell model

B1 One-dimensional model The energy cascade in the Navier-Stokes equation has
been studied by shell models. In particular, a choice of nonlinear terms called the
Gledzer-Ohkitani-Yamada (GOY) model is often employed [3.12-3.15]. A shell model
has also been discussed for passive advection [4.117]. With these shell models, a system
of pressure-driven instability (like the Rayleigh-Bénard instability or flute instability)
may be described [4.118]. A set of model equations for the fluid velocity and temperature
is:

du - * * * * * *
dtn = Z(aﬂ?‘r"n-i—lun%ﬁ + bnun—lun-@-}. + cﬂun-l“ﬂ—?)
+ Pré, — Prkiu,, (4.166a)
d@ - * b3 * * * L * *
d—: =1 [en(“n—i w1 ~ Unyabn1) + gnlug_o0n | +un (65 ,)
thn(uf 1Oy — Uy oU)] + Ra, — k265, (4.166b)
where * represents the complex conjugate, n = 1,..., N is the number of each shell,

kn = C2*71, u, is the fluctuating velocity, 6, is the fluctuating temperature, and Pr is
the Prandtl number [see Fig. 4.9(a)]. Oue takes a, = ky, by = —ky_1/2, ¢n = —kn_» /2,
€n = n/2, Gn = — n—1/2: hy = n+l/2-

One may use this system to examine the linear instability with growth rate

—k2(1+ Pr)+ k%1 — Pr)? £ 4PrR
L _ TR+ Pr) \/nz( r)’ +4PrRa (4.167)

This conservation relations for the kinetic and internal energy of Auctuations:

d 1 N . N 9 5 N .
=13 D lunl?} = —Pr Y. Eu,)? + Pr > Ol (4.168)
n=]

n=1 n=1
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{a) (b)
Figure 4.9. Shell in the £ space for a one-dimensional model (a) and for a multiple-bin
model (b).
and
i N N N
4 (52 ): S RO+ Ra S unt (4.169)
n=1 n=1 n=1

show that competition takes place between the viscosity damping and excitation through
the cross-correlation between velocity and temperature. The latter is related to the
transport of the net heat. A power-law solution of the form

u, = Ak;'® and 6, = VRaAk'? (4.170)

is obtained for the steady state.

This set of model equations (4.166)} has a large degree of freedom with the positive
Lyapunov experiment, and describes the chaos. In a nonlinear steady state, quantities
are fuctuating around their long-time average. resulting in the power spectrum

(Junl® + 16417} o k7%, (4.171)

and a dependence on the Rayleigh number as
AT

/Z !un|2\ x Ra and /Z 19n|2> x Ra’ (4.172)

\nzl \n_l
Figure 4.10 shows an example of the fluctuation spectrum, and the maximum Lyapunov
number A; scales as

A; o< Ra®". (4.173)

It becomes larger as the Rayleigh number becomes higher. The stronger the gradient,
the larger the nonlinear decorrelation rate. This dependence is stronger than that of
the linear growth rate v, o« Ra®®. In a large Rayleigh number limit, the nonlinear
decorrelation rate dominates the linear instability growth rate.



128

E(k }

10" ‘
10 10" 10° 10’ 10° 10° 10°

Figure 4.10. Time-average spectrum of the shell model (taken from [4.118]).

B2 Multiple-bin model In the presence of anisotropy, the shell model may be
extended to a two-dimensional multiple-bin model. Figure 4.9(b) illustrates the division
of segments in the absolute value of the wavenumber and the direction with respect to
the global density gradient.

A system of Hasegawa-Mima (HM) equation (4.44), with a linearly unstable term

(1-AV2) o + Vaig-0+ = [6.4VA0] = mo (4.17)
added, has been analyzed by use of the multiple-bin model. The right hand side shows
the additional linear instability term. According to Ref. [4.119], the numerical results
for the fluctuation encrgy were compared under a properly chosen +y, in [4.97]. Further
reading about the derivation of the bin-averaged mode-coupling coefficients and the
results is given in [4.97) and references therein.

C K-+ model The K— model has also been applied to plasma turbulence model. For
an interchange mode, the fluctuation energy K and the dissipation rate £ obey {4.120]

oK K2 1 K? K?

—_ = Cn g— — & — C_]’—2_ + V- (CK——VK\ , (4.175&)
ot e p e \ € J

Je g2 1 K?

E = CEICPQQK — CEQE - sJCJ"O?Kz + V- (CE?VE) . (4175b)

where the specific properties of plasma turbulence are included in the geometrical
coefficients of the production terms (the first terms on the right-hand side), gy =
(VpVIn B)p~!, and the Ohmic dissipation terms (the third terms). The dissipation in
the vorticity equation and that in Ohm’s law [e.g., Eq. (4.47b)] are treated independently
and modelled in different forms. C,, Cx, C;, C:, Ce, C.o, and C.; are numerical
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constants [4.109]. The numerical solution of these transport equations is discussed in
references [4.120].

When the transport terms in Eq. (4 175) are neglected. the stationary local solution
is obtained as K x gop? and ¢ o gy’ K. The diffusivity is given as D = K?*je = C\/gop?,
where C' = (1—C51)/CJ\/E;\/(Cﬁ ~ Cey){1 — C.y). This local result belongs to a family
of gyro-reduced Bohm diffusion, and can be extended to include the transport effects of
fluctuation energy and dissipation. Therefore D deviates from the local-balance value,
which gives D = C,/gopi. It should be noticed that the local terms (i.e., the first-
third terms on the right-hand side) are of order (Dp?)K while the diffusion term (the
fourth term) is of order (DL™?)K, where L is the characteristic scale length. When the
inhomogeneity is weak. that is, L > p?. the turbulence level is determined by the local
balance between the production and dissipation.

4.2.5. Mapping models Statistical property of the nonlinear dynamics has been
investigated by use of the mapping models. The standard mapping is used for the
study of the magnetic stochasticity and of the plasma heating problems, and so on. It
is formulated as {4.51]

Gn+i = Gn + Pnils (4.176a)
Prnit1 = Pn + Asin2ug,. (4.176b)

If the nonlinear parameter (normalized amplitude) exceeds the threshold, A > A, =
0.1546 - - -, stochasticity sets in. In the stochastic orbit, the diffusivity in the phase
space is given as

B A_21 — 2J2(2x A) — J2(2rA) + 22 (27 A)
4 [1+ L(27A)) ‘

where J, is the n-th order Bessel function of the first kind. In the large A limit, one has
D = A?/4 [4.121]. From intermediate value of A, accelerator modes appear for some
special values of A [4.122, 4.123]. The presence of accelerator modes suggests that the
transport is not a purely diffusive process in the braided magnetic structure. The non-
diffusive transport has been discussed in, e.g., [4.124]. The dispersion increases faster
than time %, i.e., ‘superdiffusion’ appears.

In addition to the standard map, Tokamap has been proposed to describe the
magnetic-field lines in tokamak [4.125]. The selective interaction of particles with
the toroidal Alfvén wave eigenmode (TAE mode) is taken in the TAE-mode mapping
[4.126]. Below the threshold, A < A., the memory effect of orbits has been investigated
statistically. A recent survey of the statistical theory of the standard map is given in
14.127].

D

(4.177)
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This method is also applied to transport by the drift wave. In the vicinity of the
magnetic surface with vanishing magnetic shear {dg/dr = 0), the standard non-twist
map is applied [4.128]. The wave phase and radial position, (X,Y’), are chosen as
variables, and a set of mapping equations is given [4.129]:

Xy =Xy +osu (1-Y2,4), (4.178a)

Yy =Yy — Gsnusin 20 Xy, {4.178b}
where

asny = vj{m — ng,)/woRq., (4.179a)

(4.179b)

—2mme [Zm(dzq/dr2)] 12
Baxm =

a?Buwg | g.{m — ng.)

with m and n being the toroidal and poloidal mode numbers, respectively. Here, wy
is the wave frequency, ¢. is the safety factor on the surface where dg/dr = 0, and é
Is the static potential amplitude. This mapping model is used to study the transport
near the surface where magnetic shear vanishes. Importance of such magnetic surface
for turbulent transport is explained in §4.3.1E.

4.3, Inhomogeneity-Driven Turbulence

In inhomogeneous plasmas, the turbulent state is governed by the excitation and
suppression mechanisms, which are functionals of gradient and turbulent decorrelation
processes. The co-existence of various inhomogeneity and magnetic field induces
a variety of plasma turbulence. By analyzing the nonlinear dispersion relation,
Eq. (4.105), various turbulence have been analyzed. Some examples are illustrated
in §4.3.1. Fluctuations on the scale length of the ion gyroradius [4.13-4.15}, those on the
scale length of the collisionless skin depth (or longer) [4.130-4.134] and those on the scale
length of the electron cyclotron gyroradius [4.135] have been considered in conjunction
with anomalous transport. The relationship of modes with length scales is given in
Fig. 4.11. The flux which is driven by turbulence is surveyed in §4.3.2. Generation of
fluid structure is discussed in §4.3.3. The influence of the inhomogeneous flow (electric
field in plasmas) is discussed in §4.3.4.

4.3.1.  Typical examples
A Dissipative interchange mode The instability in inhomogeneous plasmas in the

presence of magnetic-field inhomogeneity, known as the interchange mode, has a
fundamental role in the pressure-gradient-driven plasma turbulence. This is an analogue
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Figure 4.11. Characteristic length scales and various typical modes of plasma
turbulence.

of the Rayleigh-Bénard instability in neutral-fluid dynamics. The free-energy source of
the interchange mode is released when the electron free motion along the field line is
impeded by a dissipative process (frozen-in condition is relaxed). The rate of growth is
mainly determined by the competition between the energy release through the magnetic
diffusion and the viscosity damping.

A1 Resistive interchange mode When the resistance in the Ohm’s law is given by
the electric resistivity, the renormalized dispersion equation (4.105) without noise-source
term takes the form

2.2 2
d s k‘y o + RyC;YO
3]61- T]n Bk,, XFC T
where x and p are renormalized transport coefficients (sums of collisional and turbulent
ones, i.e., X = Xc + xn and g = pe + pn), 7y is the resistivity, and Gy is the driving
source due to the inhomogeneity [4.136]. The critical condition {4.180) is rewritten as

- uki) S(kai k) = 0, (4180)

2
G 7

g?li =C, = { LY } , (4.181)
2% AIn{2(Gofi~tx~k,4)1e]
where C; is a weakly varving function of Gy. and the coefficient C; can be approximated
as a constant.

From Eq. {4.181), the turbulent transport coefficient in a stationarv state is derived

_

C,s?
in the limit of strongly turbulent transport, y~ > x.. The turbulence decorrelation
rate is given as

XN (4.182)

~ -1

T W et L Y
Teorr o TAp- (4.183)
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A2 Resistive ballooning mode In the case of toroidal geometry, in which the gradient
of magnetic field changes its sign along the magnetic-field line, the resistive ballooning
mode appears [4.137]. For this case, the condition on nonlinear marginal stability,
Eq. (4.105), provides the relation

X~ = 2amy, (4.184)

where a = Rq?d3/dr. The parameter « for the normalized pressure gradient includes
the geometric effect of toroidal plasmas [4.28]. Comparing Eqgs. (4.182) and (4.184), one
sees the common role of resistive dissipation in combination with the pressure gradient.
The turbulent transport coefficient is increased by the pressure gradient.

In addition to the resistive interchange/ballooning mode turbulence, a variety of
resistive turbulence has been investigated; e.g., rippling modes [4.138], resistive drift
waves [4.139] and others.

A8 Current diffusive interchange/ballooning mode (CDIM/CDBM; When the
plasma temperature becomes high, the dissipation associated with the parallel current
is controlled not by the electric resistivity but by the current diffusivity {4.130, 4.134,
4.140-4.149]. The current-diffusive interchange mode turbulence, which is a submarginal
instability, has been analyzed by solving the nonlinear dispersion relation with the noise
source. Subcritical excitation is discussed in §4.3.5. The Nonlinear decorrelation rate
and coherence length are given as

Co

-1 _ ~ 1/2 -1
Tcol]:r = /\1 = mao TAP’ (4185)
and
fopmv & 571G, (4.186)

where § = c¢/w, and the numerical constant Cy originates from the contribution of
random noise source, Eq. (4.148). The spectrum of fluctuation energy is given as

2
Ey(k;) = ———cGok:>, 4.187
l( .L) (1 . C(]) Oy ( )
for ki > k, = sGy /%61 [4.150, 4.151).
In torcidal geometry, one has current-diffusive ballooning mode (CDBM) turbulence,
instead of interchange mode (CDIM) turbulence. For this case, the turbulence

decorrelation time is given as
o 0 V2. (4.188)

The role of pressure gradient in determining the turbulence decorrelation time is seen
in Eq. (4.185) or {4.188). Figure 4.12(a) illustrates the influence of gradient on the
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decorrelation rate. It is noticed that the wavelength of an unstable current-diffusive
ballooning mode could be much longer than the collisionless skin depth. as is shown
in [4.145]. The coupling with the drift wave has been studied [4.152]. This coupling
reduces the growth rate. but the strong nonlinear instability still remains.

corr coIr

0 G0 0 Mic i
(a) (b)

Figure 4.12. Turbulence decorrelation rate as a function of gradient. The case of
current diffusive mode turbulence (a) and ion temperature gradient mode (b).

B Ion temperature gradient (ITG) mode The lon temperature gradient (ITG) mode
becomes linearly unstable if the temperature gradient exceeds a threshold. Much work
has been done [4.135, 4.153-4.155], and one estimate of the threshold is given as

M= — > 1he = 0.5+ 2.5 [—02} (4.189)
= i . .Dmax ,0. 189
L, ¢ R’

in toroidal plasmas [4.153]. Turbulence theories have been developed for the ITG mode.
The mode-coupling theory has provided a nonlinear dispersion relation [4.90] as

L L L L L L
k- poka(ve ) ]} i (- 2)
{w Cy {1 ~Ps + LT R Cs + 1Ps R - LT
dk’

Ny (K = k) + K)E(K) = 0. (4.190)

The last term is the nonlinear interaction term and E(k’) is the fluctuation energy

spectrum. The balance between the linear growth and nonlinear damping yields an
evaluation of the stationary fluctuation level as

- 2

eQ 1 L, L,

) /= 1+ 41
<(T)> kngR( +LT) (4.101)

with
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For the range of k| p; ~ 1, the nonlinear decorrelation rate is estimated by Teorr =
with

Cs
= 1 — Yicy 4.193
= JRLYETT (4.193)

and is given as

I‘corr = %V T — e, (4'194)

where 7 = L,/ Lt [4.154]. Further elaboration of the mode-coupling theory is discussed
in Ref. [4.17]. Figure 4.12(b) illustrates the decorrelation rate as a function of the
temperature gradient.

It is noted that the linear eigen mode in toroidal geometry has a wavelength in the
radial direction which is much longer than the ion gyroradius [4.156, 4.157]. However,
this does not mean that the correlation length of the motion of a fluid element is much
longer than the ion gyroradius.

C Electron temperature gradient (ETG) mode The origin of ITG mode instability is
an effective negative compressibility owing to the ion temperature gradient as is shown
by Eq. (4.16). The phase relation between density and pressure perturbations for ITG
mode is given by the relation

%%; x (1 - wa) g- (4.195)
A negative compressibility means that the pressure perturbation can be negative at a
phase that the density perturbation is positive. A similar mechanism works for electrons
in the presence of their temperature gradient. The mode in the range of

kipe~1 (4.196)

becomes unstable if the electron temperature gradient exceeds a criterion. This
instability is called the electron temperature gradient mode (ETG mode) [4.135).
Stability analyses have been made for slab plasmas [4.135, 4.158, 4.159} and in toroidal
plasmas [4.160]. The stability boundary for the toroidal ETG mode is approximately

EIVEILL a5

L, 2 [Ln 1}
R’3

_ e = — + 2
LT>77 3—i— max

from Fig. 1 of [4.160].
The mode-coupling theory has been developed for this mode. In a saturated state,

the nonlinear mixing rate I'; is considered to balance with the linear growth rate ~q,

e = (4.197)

and is estimated as

2\ Uihe
UL~ kipeyf2 (Ue - g) \/;Jh—- (4.198)
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The fluctuation level is also evaluated as

(4.199)

D Kinetic instabilities A nonlinear dispersion relation has also been derived for kinetic
instabilities, by employing the renormalized kinetic dielectric tensor. For instance. for
an electrostatic perturbation with the wavelength which is longer than the Debye length,
the dispersion relation is approximated by the charge-neutrality condition

k3 0 k=0, (4.200)

s=i.e

where the conductivity tensor o, 1, is calculated by use of the renormalized propagator.
One example is quoted from the work of [4.161].

In the presence of magnetic shear. the path integral along the field line which appears
in, e.g., Eq. (4.9), takes the form

f_; dt’ exp ik - (x'(t') — x) — iw{t’ — 1]
= /000 drexp [i(w — kyo)7 = Tar = (Ty7)?). (4.201)

where Iy is the decorrelation rate which is enhanced by the diffusive motion in the
sheared magnetic field,

Ly = [(kﬁvn)zDM 3} e (4.202)

and ', = D, k% is the conventional decorrelation rate (kj = dkj/dr). For rapidly
moving electrons, the decorrelation rate I'y) is much larger than I';. The argument of
the plasma dispersion function is modified as

w w+ il
z (—) Ny (—————' ) , (4.203)
V2|kjval YOI
and a nonlinear dispersion relation with the random noise source neglected, is given as
d2 1 Ao (w - w*) 2 9
odiY il Fy Bt el 72 B
(d&:z {d { w HE

os(w—w.} [ waly )})
- z o(z) = 0, 4.204
wT (\/—ilklwthel ) (4204

where

T = . (4.205a)

A, = 1,(b) exp(—b), (4.205b)
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b= ko, (4.205¢)
me \ /2 L
s = =, 4.205d
« (Zm) L, ( )
W Te ] — Wy QF i
d=(Ao— A)) ( e ) — 3 (““ d ) aal (4.205e)
W Wy Wy
, 1/2
= ﬁ& {Ao (w il W*) dl} for the case of T,=1]. (4.205t)
L, w w

Here, r; denotes the mode rational surface on which ky vanishes, and Lg is the magnetic-
shear length being defined as L, = Rr'g*(dg/dr)~* = qRs~!. This nonlinear dispersion
relation provides the stationary state

e\ [ Ls\"/* cspl
b ()" ()"

E Influence of magnetic-field structure

E1 Drift due to the magnetic-field gradient As is illustrated in the previous
subsections, the structure of the magnetic field is very influential on plasma turbulence.
Particular emphasis has been imposed on the role of the magnetic shear. When the
magnetic shear is strong, the fluctuations tend to be localized near the mode rational
surface, so that the turbulence level is suppressed. When the magnetic shear changes
its sign, the turbulence is affected as well.

Figure 4.13 illustrates the effect of the magnetic shear in toroidal plasmas. The
drift orbit of trapped particles, which forms a banana orbit in the poloidal cross section,
drifts in the toroidal direction. If the magnetic shear is positive:

dg

7 >0, (4.207)
the distance of torcidal motion is larger when the particles stay in the outer magnetic
surface, i.e., the toroidal curvature drift increases. The toroidal drift direction coincides
with the diamagnetic drift direction, so that the magnetic drift in the bad magnetic

curvature increases. On the contrary, if the magnetic shear is negative:

dq
. <0, (4.208)
the toroidal drift is reduced [4.87].

Another issue is the large toroidal shift. When the shift of inner magnetic surface
becomes larger, owing to the higher plasma pressure, the magnetic-field line, in the bad
magnetic curvature region, becomes shorter. The gradient-B drift in the destabilizing

direction becomes smaller on average. See {1.35, 4.27].



137

Through these mechanisms of reduction of unfavourable toroidal drift, the
turbulence level and turbulent transport coefficient reduce in the case of negative
magnetic shear and large Shafranov shift.

Drift of banana orbit

Diamagnetic drift
Toroidal d:flﬁ\

Figure 4.13. Trajectory of an ion in toroidal plasma. Orbit of banana particle
is lustrated together with its projection on the poleoidal cross section. When the
magnetic-field shear is positive, the toroidal drift is in the same direction as the

diamagnetic drift.

E2 Trapped particle instability The growth rate of the trapped ion instability is
estimated as

;N\ 1/4

M= LE) VWl (4.209)

where wy; = k Vn, k; is the mode number in the toroidal direction, and V4 is the drift
due to the gradient of magnetic field (see Fig. 4.13). As a result of the reduction of the
eradient- B drift velocity Vp, the growth rate is reduced in the case of negative magnetic
shear. The control of cross-section shape leads to a similar result [4.162, 4.163].

E3 Toroidal won-temperature-gradient (ITG) mode A simpie analytic limit of the
dispersion relation for the ion-temperature-gradient (1TG) mode in toroidal plasma is
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given as

2 2
ku Vthi
w2

W— Wy wM(
w — w*i(l -+ LR/LT) w

where 6 is the poloidal angle. The drift owing to the magnetic-field inhomogeneity
is reduced when the magnetic-field shear is negative. This causes a reduction of wy,
decreasing the growth rate [4.164-4.166]. The growth rate is illustrated in Pig. 4.14
[4.164]. The additional impact of weak magnetic shear has been pointed out. In

+Ei o+ cosf + sfsinf) =0, (4.210)

weak magnetic shear, the distance between adjacent rational magnetic surfaces becomes
ionger. As a result of this, the perturbation extends on the magnetic surface. This
effect further decreases the particle drift which is averaged over the eigenmode structure
[4.167].

The influences of helical plasma shape on this instability has been studied, including
the effect of helical ripples [4.168, 4.169].

-1 -05 0 05 S 1

Figure 4.14. Growth rate of toroidal ion temperature gradient driven instability. In
the negative shear region, growth rate becomes smaller. (Reproduced from [4.164].)

E4 Current diffuswe ballooning mode (CDBM) turbulence This effect of negative
maguetic shear is also effective to the MHD-like turbulence. The ideal MHD ballooning
instability appears at high-pressure gradient. The critical pressure gradient for
instability becomes higher when the magnetic shear becomes negative. It is often called
the second stability regime {4.28-4.30]. This reduction of free energy for ballooning mode
influences the turbulence. The current diffusive ballooning mode (CDBM) turbulence
becomes weaker if the magnetic shear is negative {4.145, 4.170, 4.171].

4.83.2.  Global flow driven by turbulence
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A E x B transport and magnetic transport

Al E x B transport The global flux of a certain quantity is calculated by use of a
cross-correlation functions. In magnetized plasmas, the cross-field velocity is governed
by the E x B drift velocity (E = —V¢) in the simple case of electrostatic perturbations.
The flux of a quantity X across the magnetic surface, Fx. is given as

Fx = %(z‘@f(&*) (4.211)

in terms of the cross-correlation function between X and ¢. By determining the cross-
correlation functions, the global heat flux is derived. A goal of analysis is to express the
flux in terms of global parameters:

Fx = —pxVX + Fre, (4.212)

where Fl..., does not include VX. It is often called a ‘pinch’ term [4.172]. The pinch
flux which is induced by the gradient of magnetic field in toroidal plasmas (4.173] is
discussed in Appendix A.

In a quasi-linear approximation, the flux is expressed in terms of a quadratic function
of the fluctuation amplitude. The phase relation between two quantities is related to
the imaginary part of the linear propagator, Eq. (4.60). For the particle flux in the
presence of a density gradient, one has

. 7 s w*s i’UJ_
(i r) = §f L — kjoy ( Wes )fs}

x ? (Grubrw)  (s=ed) (4.213)

This estimate is valid within a weak turbulence theory. That is, it holds only
for the particular cases that satisfy Eq. (4.27). In usual circumstances, the nonlinear
modification of the propagator is important. The evaluation of the global flux requires
result from the nonlinear theory of plasma turbulence.

The simplest nonlinear argument is to consider the balance between the linear
growth rate ;. and the turbulent decorrelation rate Dk?, Eq. (4.80). This balance
gives an estimate

D= k2 . (4.214)
This is a mixing length estimate explained in §3. A non-Markovian effect is discussed
in [4.107], and the correction due to it is proposed as

~ 'YL 7L

~ ’ 4.215
Wi A k2 ( )

where w;, is the real frequency of a linear mode.
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The result Eq. (4.214) captures a certain aspect of unstable plasma. However, the
characteristic rate of turbulence generation, which is the physical origin of the numerator
of Eq. (4.214), could be different from the linear growth rate in strong turbulent plasmas.
The use of the linear growth in the mixing-length estimate [Eq. (4.214)], which is called
the Kadomtsev formula, might not be relevant in turbulent plasmas. Examples of
nonlinear analysis are illusirated in this subsection.

A2 Magnetic braiding and transport When magnetic perturbations exist and
Eq. (4.59) is satisfied, braiding of magnetic surfaces occurs, and the trajectory of
magnetic-field line is subject to diffusion as

([z(¢) — 2(0)]*) = D, (4.216)

where £ is the distance along the field line and Dy is called the magnetic-field diffusion
coefficient. Magnetic-field fluctuations are characterized by two correlation lengths, the
one in the direction of the unperturbed field line, £, and the one across the magnetic-
field line £, ; (£.): Euler view of correlation length). The correlation length along the
perturbed magnetic-field line L., that determines Dy as Dy = (f?r /B)?L,.. depends on
the relative magnitude of perturbation B, /B. In weak turbulence, one has L,, = e -
In the strong-turbulence case, the auto-correlation length L. is estimated by ‘

-1
B,
Loc =4, (E) . (4.217)

The diffusion coefficient of magnetic-field line is given as

_fey(B/BY?  for BB <t [ty (4218)

£.1(B./B)  for B./B>{., [l '
The small-amplitude limit is the one in a quasi-linear formula, and the large amplitude
limit is the strong turbulence case.

The response of plasma transport tc stochastic magnetic fields has been discussed
[4.4,4.174-4.179]. The case of low collisionality is surveyed, i.e., v 1 > 7, and v~ > Tdecs
where 7; is the transit time of particles, 7, = L. /vy, and 7aec is the decorrelation time of
plasma due to the cross-field diffusion, which may be determined by various processes in
addition to this magnetic braiding. In this simplified situation, the transport coefficient
due to the magnetic stochasticity is given as {4.176]

X= gDy i =< (4.219a)
Ty Tt

X = v Dy i e (4.219b)
Tt

For the given correlation lengths, £ £, and L,., and the amplitude of magnetic
fluctuations, the diffusion coefficient for each species depends on the ratio 7y /7 as well.
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When the cross-field decorrelation time 4o 1s determined by the magnetic perturbation
{e.g.. high temperature electrons in a braided magnetic region). the relation 74.. = 7
holds. More complex formulae in general circumstances are summarized in [4.13] and
[4.176. 4.177]. Super-diffusion can possibily occur due to the accelerator modes that is
discussed by use of the mapping model {§4.2.5). In addition, a subdiffusive behaviour
has also been found for stochastic magnetic fields [4.180].

The turbulence amplitude usually depends on the renormalized transport coefficients
of the plasma. It is necessary to determine the correlation length and time, L., and
Taee. and the amplitude B,/B simultaneously.

B Heat flur The energy flux is given by the formula in the electrostatic limit as

@ = 5 (B9 (4.220)

An application of the statistical approach in §4.2.3 is illustrated here. A decomposition
of the fluctuating fields. e.g., Eq. (4.145). allows to relate the cross-correlation functions
(f;f;) and auto-correlation function (f1 f7). In the case of Eq. (4.145), there is a gradient
of plasma pressure but no velocity gradient. In this case, one has

o ky 7 pwein]

9e = — [; oM <f1‘k fl.k)} p- (4.221)
It is noted that the turbulence decorrelation rate A,, and the eddy damping rate «y; are
given by the nonlinear balance. The cross-correlation functions are readily obtained,
once the auto-correlation function {fif;) is given. One has an expression for the
turbulent thermal conductivity, §: = —XturbP -

Three typical examples are shown; i.e., turbulence in the range of ion gyroradius [ion
temperature gradient (ITG) mode], that in the range of collisionless skin depth [current
diffusive interchange mode {CDIM)] and that in the electron gyroradius [electron
temperature gradient (ETG) mode]. The inhomogeneities of pressure and magnetic-
field strength are the primary origin of driving fluctuations. The influence of the shear
of flow (i.e., inhomogeneous radial electric field) is discussed in §4.3.4.

Under many circumstances, the turbulent heat flux caused by pressure gradient
dominates the dissipation ¥y Fx V(X ™!} [e.g.. the left hand side of Eq. (4.49)]. The
‘pinch terms’ in fluxes of other quantities could become noticeable without making
the total dissipation negative. If one takes the example of drift waves, the flux of
perpendicular electron energy is much larger than that of parallel electron energy [4.181],
and an inward pinch of particle is deduced.

B1 ITG mode A case of ITG mode turbulence has been analyzed. As is illustrated
in an argument of scale invariance theory, 8§4.2.2D, the transport coeificient has the
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dimensional form of x = ¢p2/R (A1 scales with ¢;/R and £, is of order p..}) It is given
as

2

Cs r L, T, )
= ——=F - 222
pduyel R (q, ’R LT Ti y (4 )

where the factor Flq,s,7/R, L, /Ly, Te/T;, - - -) denotes a geometrical factor. One model
has been proposed by taking this fact into account as [4.153]

T )3/2 \/3(1 — Miclp/ Ly) csp?

XxiTe = 14 (i L. R

(4.223)

Other models which have been proposed for the ITG-mode turbulence are listed in, e.g.
[4.15]. The inward pinch of particles is discussed in relation to the ITG mode [4.182].
It is again noted that the characteristic step size of motion due to the ITG mode
is not necessarily longer than the ion gyroradius, even though the radial wavelength
is much longer than the gyroradius. The result in [4.156] and those in numerical
simulations {4.163, 4.183] suggest that the radial wavelength is of the order of Vap;. For

the turbulence level of Eq. (4.40), the eddy turn-over time is estimated as \/a/p;Lnc;?
which is much longer than the characteristic coherent time of turbulence, L. The
Kubo number is given as

K ~/n/a, (4.224)

and is much smaller than unity, if K is evaluated by use of the linear wavelength. In
this case, the radial coherence length of random motion remains of the order of ion
gyroradius, and the thermal conductivity has a scaling property like Eq. (4.223). The
coherence length of the turbulent field in the Eulerian view is not always relevant for
the step size of random motion. For the step size, one may choose the correlation length
of the fluctuating motion (Lagrangian view), which can be different from the one-time
coherence length.

B2 CDIM Fluctuations in the range of the collisionless skin depth are also
important for plasma transport [4.130-4.134]. Fluctuations could be self-sustained even
in the linearly stable situation. The mechanism for the nonlinear instability is discussed
in §4.3.5. Such turbulence belongs to a family of electromagnetic turbulence, and its
typical time scale is given by the poloidal Alfvén transit time 74,. The CDIM leads to
the characteristic coherence length and nonlinear decorrelation rate, Egs. (4.186) and

(4.185), and the turbulent transport coefficient is estimated as [1.35, 4.98]

1 372 &

Xturb ™~ m 2 G (4.225)

TAp
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In the limit of small magnetic shear, s —» 0. Eq. (4.225) converges to a large but finite
value as [4.184]
da
Go—. (4.226)
Tap

q

X~ d*q/dr?

B3 ETG mode Among short wavelength fluctuations, the electron temperature
gradient (ETG) mode could be important for energy transport [4.135]. The
characteristic scale length and time rate are give by the electron gyroradius p. and
the electron transit time R/vy,., respectively. The transport coefficient is given as

'Uthepg r L, 1.
XETG = R F(Q»S-,‘Rg‘-.L—Ts f)
Comparing Eqgs. (4.223), and {4.227), one sees that a typical form for the ETG mode,
UiheP2/ R, is about 1/me/m; times smaller than x & ¢,p2/R for the ITG mode.

Several discussions have been given for possible higher transport coefficient. The
linear growth rate is maximum in the range of Eq. (4.196). However, the estimate (4.214)
is maximum in a longer wavelength region of collisionless skin depth. If one employs the
collisionless skin depth as a decorrelation length, a possible high transport coefficient

has been studied in [4.158-4.160]. For example, [4.160] gives

(4.227)

CPe Vthe
= 4.228
XETG oo L ( )
from random F x B motion, and
2
T c
= e— | — \ 4.229
XETG e (wpe) Uthe ( )

owing to the stochastic motion induced by magnetic perturbations. The latter is
independent of the gradient length of electron temperature, and has a similar dependence
on the collisionless skin depth, as in the CDBM turbulence. This is because the
collisionless skin depth is chosen as a relevant length.

In addition, the ETG mode induces a streamer [4.185], which is able to enhance
the geometrical factor F(g,s,7/R,L,/Ly,T./T..---) for the ETG mode. The direct
numerical simulation provides [4.186]

2
XETG ™~ 50&?&, (4.230)

which is not far away from Eq. (4.223) in magnitude.

B4 Low or negatwe magnetic shear Associated with the reduction of the free-
energy source, the turbulent transport coefficient is also reduced in the low or negative
magnetic shear region of a tokamak plasma,

PP Y

verons = Flov, 2)ey
XCDeM ol gl
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The contour of thermal conductivity is plotted on a plane of pressure gradient and
magnetic shear {Fig. 4.15).

s | \ I e B i
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Figure 4.15. Contour of transport coefficient on the s — & plane, which is obtained
from the numerical solution of nonlinear current diffusive ballooning mode. Normalized
values for ¥ = Tapa~”x are shown. For a fixed pressure gradient, the thermal diffusivity
becomes smaller for the weaker magnetic shear. Dashed line indicates an instability
boundary for linear ideal MHD ballooning modes [4.170].

It is pointed out that the connection length between the bad- and good-curvature
regions for the resistive turbulence becomes shorter in the case of negative magnetic
shear. This effect is favourable in reducing the turbulence level [4.187].

The influence of negative magnetic shear suggests that the current profile modifies
the transport coeflicients. If a magnetic shear is very weak (or negative), the geometrical
factor to the turbulent conductivity becomes small. The influences of pressure profile
and current profile are two keys for the structural formation in confined plasmas.
Intensive analyses have been performed.

C Momentum flur and Reynolds stress The correlation between the momentum
fluctuation and the radial velocity fluctuation determines the radial transport of
momentum. The momentum flux induced by pressure-gradient driven turbulence could
exist even in the limit of VV — 0: the off-diagonal element of the transport matrix is
important as well. The turbulent viscosity and spontaneous torque are discussed below.
Then the convective cell formation through the parametric decay instability [4.188] is
reviewed.

C1 Anomalous viscosity and spontaneous torque In the fluid picture of turbulence,
all plasma particles are considered to respond in a similar way. In this case, the energy-
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and momentum-transport coefficients are close to each other. That is. the turbulent
Prandt] number is of order unity {4.189. 4.190]:

privb > (4.232)

This is in contrast to the case of kinetic instabilities. in which only selective particles

that satisiy the resonance condition contribute to the turbulent fluxes. By employing a

reduced set of equations, the flux of the perpendicular momentum in the radial direction,

I19, . has been obtained. An example of CDBM turbulence has been expressed as [4.191]
I, Vol

e = I\J“V (?) — ﬁbf]g’b‘_a_v,g, (4233)

where M, is the (4, j) element of the transport matrix, and M, is the shear viscosity ) .
The second term in the right-hand side is the off-diagonal transport. The off-diagonal
element is driven by the asymmetry of propagation direction of perturbations. In this
case, the rotation torque is induced by the pressure gradient. It is estimated as

M, 1 jm c (4.234)
_1'1_/[1]_ 4q e CL&JP ’ )

The estimate of off-diagonal elements in Eq. (4.234) has also been given based on a
m = 1 convection {m being the poloidal mode number) or loss of wave torque near the
plasma periphery etc.

C2 FEzcitation of convective cell, zonal flow and streamer When turbulence is highly
anisotropic, the coefficient gx in the flux-gradient relation

Fx = —pxVX + Fru (4.235)

could be negative. That is, the turbulent-driven flux could enhance V.X.

The generation of a convective cell by drift waves has been observed in numerical
simulations [4.25, 4.192] and discussed by [4.24]. As has been shown by Eq. (4.13),
there is a damped oscillation with k) = 0. The dispersion relation of drift waves, with
finite-ion-gyroradius correction. is illustrated in Fig. 4.16. A decay instability [4.188]
is possible for drift waves. Consider the case that there is a drift wave with wave
number and frequency (kgg,wap). This drift wave can decay into the convective cell
with {k¢, weony) and the other drift wave with (kq1,wq.1), if the conditions

kao = ke + Kaa, (4.236a)
Wd.0 = Weonv T Wd.1 (4236b)

are satisfled (suffix d and c indicate drift wave and convective cell, respectively). As
is seen from Fig. 4.16, the decay instability occurs in the vicinity of the peak of the
dispersion curve of the drift wave.
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convective cell

0 k 0 k
Y X

Figure 4.16. Decay process of the drift wave {(kq0) into the convective cell (k.) and
drift wave (kq..}. Dispersion relation for the drift wave (solid line) and that for the
convective cell (dashed line) are illustrated. The case of streamer {left) and zonal flow
(right).

The growth rate of the convective cell is expressed in terms of the amplitude of
drift-wave fluctuations. Density and potential perturbations for drift and convective
cell components are considered. They satisfy

fa ., eda

Taths (4.237a)
N eéc p

— . 4.2

Py > T (4.237b}

The parametric decay instability is analyzed below. Quasi-linear equations are deduced;
a bi-linear correction of convective cell is kept in the linear dispersion of the drift wave,
and the quasi-linear excitation of a convective cell by drift waves is considered. A model
set of equations is

[ 9 O 8. e . .

[(1 — pSVJ_) g + Vé‘eme Tlg = ~Bn [Ra, ficl, (4.238a)
8 2 = n =~ 2v52 =

(E — Mcvl) e = ﬁ [nd,psvind} . (4238b)

The growth rate of the convective cell amplitude is given as [4.24]

Yeonv = “Vdecay — #ck_?L,c (4239)
with
1. (k3o — K31) |fao
vy — Vdec,s = —5 . : — 4.24
Ydecay = Vdec, oB ikd,o % kg1 12 P ( 0)

[
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for the case of the strong decay instability. If the decay instability is weak. one has

2
e
'dec.s

Yd =% -
= ﬂ‘—kidz

(4.241)

When the wave vector is directed in the radial direction, k. & (k,.0, 0}, one has a zonal
flow. In the case of k. = (0, k,0). one has a streamer.

D Reswstivity and current diffusivity Turbulent resistivity is an important element that
dictates the plasma dynarmics, in particular, for the evolution of magnetic field. If one
takes the diffusion of magnetic flux and current into account, the Ohm’s law takes the
form

E+V x B = (1 + um)d = (e + Aurn) AL T. (4.242)

In the presence of £ x B convective nonlinearlity, the anomalous resistivity 7m and
current diffusivity Ay, are estimated as (see, e.g., [1.35, 4.130])

Thurb = HoXturb (4243)
and
N
/\turb = Ho (—) Xturb- (4244)
Wp
In the case of magnetic turbulence, one has
2 2
T ¢ c
Avurh = %#0 (—) vehe DM ~ Lo (—) Xturb,e: (4-245)
Wp Wp

where Dy is given by Eq. (4.218) [4.193-4.197]. The resistivity is less affected by the
magnetic perturbations and remains as

Thurs = HOXEx B> (4.246)

where xpxp is a turbulent diffusivity due to the turbulent £ x B motion [4.193]. An
upper bound for the turbulent resistivity has been discussed for the reversed field pinch
(RFP) plasmas. See Appendix D.

Off-diagonal elements in the transport matrix could also be important for the
electromotive force. The global electromotive force that drives a global current is
influenced by the pressure gradient, but the influence is found to be small in tokamaks
(4.198]. The electromotive force which is caused by the velocity inhomogeneity has
been investigated, with the name of v or cross-helicity dynamo. The latter process is
discussed in §3.4.
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4.8.3.  Generation of structure in flow In inhomogeneous plasmas, a spontaneous
radial electric field is generated and induces transitions [4.199]. The transition involving
the radial electric-field structure was found to be essential in the transport phenomena
of plasmas. There are many processes that induce the radial electric field, and much
work has been done on this processes, e.g.. [4.199-4.207].

A Break doun of ambipolarity of turbulent flow 1t is often argued that the turbulence-
driven particle flux is ambipolar in a steady state [4.13]; in other words, the turbulent
transport does not continue to induce a radial electric field. This is not correct. The
turbulence-driven fiux does generate a radial electric field, causing a variety of nonlinear
dynamics of plasma turbulence [1.35].
It is worth noting the momentum-conservation relation is associated with the
perturbation-driven flux. One has the rate of change of the wave momentum as
o
ot

This relation is derived with an assumption that there is no flux of wave momentum

Pravey = —(3 x B),. (4.247)

across a surface of the region over which an average is taken. Injection of torque by radio-
frequency (rf) waves is discussed in [4.208-4.211]. In the stationary state, dPyayey/0t = 0
holds, and the momentum-balance equation leads to an ambipolar condition

Je=) el =0 (4.248)

so long as an average in a certain region is treated. The basis and validity of ambipolarity
is discussed in [4.212, 4.213].

It should be noted that the ambipolarity does not necessarily hold as the local
balance. The flux is calculated as an average within a small plasma volume. In general,
the wave can propagate in the direction of the gradient (Z-direction) and the local
momentum balance does not hold in each region. Momentum exchange between the
different magnetic surfaces can take place as is discussed in the following chapters. In
such a case, local charge neutrality does not hold.

B Generation of zonal flow by drift-wave turbulence The perturbation amplitude of the
convective cell {including the zonal flow and streamer) is constant along the field line. If
one calculates the average of density {or potential) over some flux tube, the contribution
from drift waves (and other waves) is averaged out, but that from a convective cell
remains finite. The excitation of convective cell, zonal flow and streamer, is interpreted
as the occurrence of a structure with meso-scale. Meso-scale [4.214] means that the
characteristic scale length is longer than fluctuating turbulence, but is shorter than
the system size. The mechanism of flow generation has an analogy to the magnetic
dynamo. The generation of a small-scale DC radial electric field, i.e., a convective cell,
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has been confirmed by numerical simulations [4.192]. A DC radial electric field could
be generated in a global scale. and this process has also been confirmed by numerical
simulations [1.215-4.220]. See also discussions in [4.221. 4.222].

The generation of the flow by electrostatic turbulence is briefly discussed here. The
generation through MHD turbulence. in which the global gradient of the current is the
source of torque, is explained in §3.4.

One can extend the analvsis of Eq. (4.238) to the nonlinear evolution equation with
respect to the amplitude of a convective cell [4.223]. Note that Eq. {4.238) is linear
in the amplitude of the convective cell. If one emplovs a simple assumption that the
drift-wave fluctuations are in a stationary state. the action

E -
Ne= 22 o (1 +K2)?|ee)? (4.249)
Wk
is conserved. For a conserved quantity the ray-tracing equation holds. A detailed
description of the ray-tracing equation is given in , e.g., [4.224]. It is applied to dift
waves as

g . Owp 0 . Owr 0

—N —— N, - —— N, = .

pn k+8k8x”‘ % Ok 0 (4.250)
(see also [4.225]). In the case of zonal flow generation, k. = (k,,0.0), one has

Oy —uly —plv2_ s V=0, (4.251)

ot or or

where the coefficients for the convective term and the nonlinear term are given as

1 o K2R (BT 9Nk
== . 4.252
u B?fdk(Hki)?(ak 5k, (4252)
1 o Kk (0w 0 |8 0N
b= om / d k(l + k2 )2 ( ok Ok, |\ 0k Ok, | (4:253)

C Generation of poloidal flow by colhsional processes The collisional process can also
induce the poloidal rotation. The neoclassical transport theory. which is based on the
small-gyroradius expansion with respect to the scale length, p,/L,,, has shown that the
particle flux remains to be almost ambipolar. The ambipolarity mechanism breaks down
in neoclassical transport theory at the order of p?/LZ [4.44]. In the presence of steep
radial gradients, which are relevant to the improved confirement phenomena in toroidal
plasmas, the collisional process may drive the radial electric field and plasma rotation
[4.199- 4.202, 4.206]. See reviews {1.22-1.35]. The spontaneous onset of poloidal rotation
of a tokamak plasma in the framework of neoclassical theory is given in, e.g., [4.226]

- 1 .. 1 1, . 3. ¥ o LU 1
and related work 1s also found in [4.227, 4.228].
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The source due to the collisional process is added to Eq. (4.251)

'g_ti/c - U%V;: - bgi ~ Yeonv Ve = Se. (4254)
The source term S; could be a nonlinear function of the radial electric field (i.e., the
flow velocity V). Even in the limit of ng/f — 0, i.e., without the drive by drift waves,
Eq. (4.254) can show a bifurcation. The important roles of ion orbit loss, neutral
particles, the ion transit time magnetic pumping, etc., have been investigated. In
plasmas without toroidal symmetry like stellarators or helical systems, the neoclassical
transport drives a strong radial electric field, inducing transitions [4.229, 4.230]. The
interface of radial electric-field domain is also generated by the nonlinearlity in S,. The
electric domain interface is demonstrated in [4.231] and following work (see, e.g., [4.232]).
Details are discussed in later subsections.

D Electric-field domain interface Equations (4.251) and (4.254) allow solitary
structures of radial electric field and flow velocity. A soliton-like structure and a
kink-soliton-like structure are obtained. A kink-soliton-like solution with the boundary
conditions V, — Vi at r — —oc and V. — V; at r — oc is given as

o+Vi V-V

_ 2 -1
Vo=~ + 5" tanh 62— 7o) (4.255)

where £,; = b(V1 — V2)/(27conv) and 7. is the location of the knee of the kink [4.233].
The radial propagation velocity is of the order of drift velocity, u = V3 = T,/(eBL,).
Another example of a soliton-like solution which is induced by an external bias current
is illustrated in Fig. 4.17 {4.234]. Generation of the plasma rotation by the torque of rf
waves is discussed in [4.208-4.211].

A poloidal shock can occur [4.235-4.238]. In the case of a weak radial gradient limit,
the poloidal flow {15) is governed by the source rotating the plasma and by poloidal
derivatives. An example of the Vj equation is [4.238]

8 181 [.Ll 82T Fg

Vot Vom Ve — SV = — L sind, (4.256)

6 =
ot r of 2 72 96?2 2
where S; = —(Fp/2) sin # models the drive by an m = 1 component. The formation of
poloidal shock has been obtained if the poloidal Mach number is close to unity.

E Streamer formation When a streamer is excited by drift wave fluctuations, k. =
(0, kg, 0), it induces a modification of the density profile, which is estimated from the
balance

DviNstreamer = VstreamerV_LN- (4257)

'The deformed density contour is illustrated in Fig. 4.18. Figures 4.18(a) and (b)
show schematically the potential perturbation and deformed density contour in toroidal
plasmas. Detailed profile of the density deformation is given in Fig. 4.18(c).
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Figure 4.17. Solitary structure of radial electric field {electric field as a function of
the normalized radius. Electric field is constant on the magnetic surface, and radial
structure is illustrated. See {4.234] for the details.

The assumption of the conservation of drift-wave fluctuations [Eq. (4.192)] is
an idealized simplification. The back-interaction for the drift wave allows nonlinear
instabilities. This process is discussed in §4.3.5.

4.8.4. Flow-shear suppression A flow shear itself is a source of turbulence. However,
if the flow shear exists together with a pressure gradient, being another source of
turbulence, it may suppress the turbulence. A competition between the pressure
gradient and flow shear is surveyed in a framework of linear stability. Then the
suppression of turbulent quantities by the flow shear is discussed.

The influence of flow shear on the pressure-gradient-driven turbulence has attracted
attention in the context of the improved confinement of plasmas [1.22-1.35].

A Linear stability wn fluid dynamics Effects of shear and gravity on flow instability have
been studied in fluid dynamics [4.239-4.241]. Gravity in the presence of a heat source
can cause the Rayleigh-Bénard instability (Fig. 4.19a), and flow shear (Fig. 4.19b) may
drive the Kelvin-Helmholtz (KH) instability. Their stability diagrams are shown in
Fig. 4.20 [4.241]. The regions of Rayleigh-RBénard instability and Tollmein-Schlichting
instability are dictated by the Richardson number
_ Rae

~ B4Re?Pr’

where Ra is the Rayleigh number defined by Eq. (4.165). The transition from roll to

wave structures occurs at Ri = Ri, = 107°. When the velocity shear is weak and
Reynolds number is small, the stability boundary for the Rayleigh-Bénard instability,

Ri (4.258)
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{a) Potential perturbation (b) Density contour

=

{c)

Figure 4.18. Hlustration of density contour in the presence of streamer. The potential

y /

X

perturbation and deformed density contour in toroidal plasmas are shown in (a) and
{b}. Detailed profile of the density deformation [expand view of the region of thick
square in (b)] is given in (¢). Detailed illustration (c} is based on [1.31}.

Ra,, becomes higher due to the effect of shear flow as
Rae = Rago(t +c Re” + -+ ) (4.259}

in the small- Re limit, where ¢; ~ 107! for the case of Fig. 4.20. If the flow shear becomes
too strong, the KH-type instability takes place.

B Linear stability in plasma dynamics Some mechanisms of linear stability, i.e., fluid-
like response, Landau resonance, and drift reversal, are shown here as examples.

A flute mode is a typical example of plasma instability. In the presence of pressure
gradient Vp parallel to a ‘gravity’ g (either the real gravity or the centrifugal force due
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Figure 4.19. Rayleigh-Bénard instability in the gravity (2) and the Kelvin-Helmholtz
{KH) instability in the sheared flow (b).
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Figure 4.20. Stability diagram in the Poiseulle flow. in the presence of the heat source
from the bottom. is given in the Rayleigh number - Reynolds number plane (Ra, Re).
A case that the wave vector is in the direction of shear flow is reproduced from [4.241].

to the magnetic curvature) a fluid-like instability, the flute mode, can occur with its
linear growth rate v, ~ /g/L, (L, = —n/n’ for VT = 0). When the electric field
is radially inhomogeneous, the flow velocity is inhomogeneous and the growth rate is
reduced [4.242]. An off-resonant type of stabilization is possible if the condition

Vexe! ~ 1o (4.260)

is satisfied, where v is the linear growth rate in the limit of Vi, p = 0 [4.243-4.245].

This order-of-magnitude estimate is widely applicable for the linear-stability analysis.
Another type of stabilization mechanism 1s seen in a wave-particle resonance.

Landau damping is one of the main mechanisms for instabilities, and can also be

IMmTinrifant o a nanhinoaar maoarhaniom Tha inn nrhit :‘S mndifad Ty tha ;n]'\r\mnrrahnnxis
AL DGRy G0y G UULLUICE, A Geiadi i de e AR LG L LARAIIAL Y L s s iU
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electric field, and Landau damping is expected to occur. A strong ion Landau damping
takes place if the inhomogeneity is strong enough [4.246]:
Lpspie L w

o ) 4.261
T; kgveni (4.261)

even for a flute mode with &; = 0.

The drift reversal of trapped particles due to an inhomogeneous electric field is
also influential on a stability. The toroidal drift velocity of trapped ions is modified
by a factor (1 + 2uy) where u, = ppvii By (dE./dr). If the condition u, < —1/2 is
satisfied, trapped particles drift as if a magnetic curvature were favourable. Owing to
this modification, the growth rate turns to be

F{w) = (26)1/4\/(1 + UYMW (4.262)
The trapped-ion mode is stabilized by a drift reversal in the range of
uy < —1. (4.263)

'This stabilization mechanism has an asymmetry with respect to the sign of E/ [4.247].

An inhomogeneity of the toroidal flow is also known to stabilize plasma instabilities.
Effects of toroidal flow on various instabilities are seen in [4.248-4.251].

When the flow shear becomes too large, the KH-type instability may occur in
the plasma. The competition between the flute instability and KH instability is
illustrated in Fig. 4.21 [4.252]. In this model, an inhomogeneous F x B flow of the
form Vpyp = Vptanh(z/Lg) in the poloidal direction is imposed on the plasma. The
influence of the shear flow on the linear growth rate is plotied on Fig. 4.21 for a given
value of A, /Ly (A, and -, are the radial width and growth rate, respectively, of the
resistive interchange mode in the absence of an inhomogeneous radial electric field). For
a fixed pressure gradient, the flow shear first stabilizes the mode. In a strong flow-shear
limit, the KH instability dominates, and a strong instability may appear.

C Suppression of turbulence

C1 Decorrelation rate As is explained by the model equation for a passive scalar
quantity in the background fluctuations, the rapidly changing effects are included in the
turublent transport coefficient in Eq. (4.93), as

d o - a 5 - =

=X +Vy(z)—X — DV?X = §. 4.264
Owing to the inhomogeneous static flow, the stretching of test perturbations takes place,
and statistical property is influenced. The turbulence level is suppressed by 8V, /9z (i.e.,

E! in magnetized plasmas), and is discussed in this subsection.
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Figure 4.21. Linear growth rate of pressure-gradient-driven instability as a function
of the flow shear for the case of A, /Ly = 0.5. (Quoted from [4.252].)

Figure 4.22 illustrates a sheared flow and the stretching of a fluid element. Its mean
velocity in the y-direction (poloidal direction), which has a shear in the z-direction
(radial direction), is expressed as

V, = Spz (4.265)
in local coordinates. The flow velocity shear is interpreted as
d [ E,
=r— [ = 2
Sy=r— (BT) (4.266)

m a cylindrical geometry. Consider a deformation of an element which is circular at
t = 0. After a time ¢, a circular element is stretched to an ellipse, in which the major
axis has a length I; = /L2 + (L5,t)2. Since an area is preserved by this stretching, a
length of minor axis is given as

L
L,=—= (4.267)

J1+ 822

This result shows that the perpendicular wavelength, k', of any mode is compressed
due to the shear flow. The characteristic perpendicular wavenumber for the test field X
is effectively enhanced by a factor (1 + S2t%) [4.200, 4.253-4.255], £7%; = £-2(1 + S52¢2),
As a consequence, a decorrelation rate, 75, which is defined by the relation

V/7p = DETZ,, (4.268)

3 by this increment of perpendicular wavenumber.
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Figure 4.22. Flow in the y-direction, which is inhomogeneous in the z-direction, and

the stretching of a fluid element.

The stretching of turbulent vortex, whose decorrelation time is 7p, continues until
the elapse time reaches 7p. Substituting the relation t = 7p into Eq. (4.267}, an effective
mode number kg (i-e., an inverse of decorrelation length) is estimated as

072 = 21+ S25). (4.269)

Substituting it into Eq. (4.268), we have the equation that determines a consistent
decorrelation rate 1/m as

1

— = DE3(1+ S275). (4.270)
™

Depending on the magnitude of the flow shear, |S,|, two limiting cases are derived from

Eq. (4.270) as

(4.271)
™ :

1 DA+ SDHE - (1S < D),
(DR RS (1S, > De2).

The limiting form of 7o ~ {D€;2) 1/35-%/3 is similar to the one which was derived from
the renormalization of the turbulent electron parallel motion in a sheared magnetic field
[4.161]. This result [Eq. (4.271)] shows that a decorrelation due to the shear flow is
effective if the flow shear rate S, reaches a level Dk1,. If the diffusion coefficient D is
constant, the relation S, = Dk?, is satisfied for the long-wavelength mode even when S5,
is small. That is, the stabilization by shear flow is more effective for longer wavelength
modes.

The reduction of the correlation length leads to the suppression of the fluctuation
amplitude of the test field X. According to the statistical average in §4.2.2Bl,
T ~ 7p limg_o S€*(£), the fluctuation intensity is

X o1

(XQ)ref B 1+ SETI%
assuming that the magnitude of the source term lim, .o S™*(£) is unaffected, where
the suffix ‘ref’ indicates the reference case where S, = 0. The Lorentzian correction

(4.272)
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appears [4.200. 4.254. 4.255; In the large-shear limit. 7o ~ (Dk2,)7 1357273 reduced
Huctuations were discussed. [f one employs the mixing-length estimate. a similar
reduction factor is expected for the diffusivity. A stochastic Doppler shift is also effective

in reducing the turbulence level. as is shown in Eq. (4.89). This process has also attracted
attention recently [4.74. 4.256].

C2 Turbulence level and turbulent transport These arguments on fluctuation level
and transport, however. should not be taken as a conclusion. As was carefully discussed
in [4.200]. these analyses have been developed assuming that the basic properties of
fluctuations {such as the wavenumber &, of a relevant mode and so on) are unchanged.
These terms can also be functions of E, and dE./dr. Effects of E, and dF,/dr, as
a whole. can be simultaneously determined once the turbulence structure is properly
solved. Numerical simulations have also revealed a subtle balance between various
nonlinear interactions [1.28, 4.219].

Analyses have been performed for ITG modes, e.g., [4.17, 4.257-4.259]. An analytic
formula has been used for the ion temperature gradient driven turbulence. For instance,
a formula for the turbulent transport coefficient due to the ITG-mode turbulence has
been proposed as [4.259]

1/2
~ (’YL —Wp1 — %1)1‘/2"/(1/

Xturb = 2
ky

(4.273)

where ~, is the linear growth rate in the absence of flow shear, wg; is the £ x B flow
shear [4.260]

rd gk,
o . 4.274
“El gdr ( rbB ) ( )

~.: 18 the shear of diamagnetic flow, ~4 is a damping rate of a representative beat mode.
being approximated as

va = 0.3(73/Te)wn (4.275)

{ung: toroidal gradient-B drift frequency}, and k, is taken from the most unstable mode.
The dependence of iy on wg; is adjusted to the observation of nonlinear simulation.

For the case of self-sustaining turbulence, thermal diffusivity has been derived for
CDIM turbulence as [4.261]

1 Gl e\ vA
X~ o (S 2 (4.276)
]. -+ 0.5G0 Wi S i.up (43

where wg1 = kgTapEr/B and

e e

(k1) o {14 0.5G, *wi )Gy . (2.2
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As the gradient of the radial electric field becomes larger, the correlation length becomes
shorter and the decorrelation rate becomes higher. In toroidal geometry (i.e., current-
diffusive ballooning mode turbulence), the normalized parameter

1 dFE.

WEr = TAPE?

controls the turbulence level and turbulent transport [4.255]. The E x B flow-shear

effect is more effective for the lower-magnetic shear case. This shear dependence is also
found for ITG modes [4.17].

The electron-temperature-gradient (ETG) mode has a larger linear growth rate and
shorter characteristic wavelength. This fact suggests that the £ x B flow shear has a
weaker effect in comparison with the ITG mode or the CDBM turbulence. It must be
noted, however, that the streamer formation plays an important role for the transport
by ETG modes. Streamers could be affected by the E x B shear and so the transport
by ETG modes. This suggests that a further study is required for the transport due to
shorter wavelength turbulence.

In addition to the inhomogeneity of flow across the magnetic surfaces, the

(4.278)

inhomogeneity withic the magnetic surface is also effective in suppression of turbulence.
The toroidal flow in tokamaks varies in the poloidal direction if a hot-ion component
exists. This poloidal dependence of toroidal flow suppresses nonlinear turbulence [4.262].
Some discussion has occurred on the dependence of iyt on wgr. The expression
1
C It wn/
has been derived analytically with index h (7v: decorrelation rate or instability growth
rate in the absence of F x B shear). The index was given as h = 2 in the models [4.200,
4.254, 4.255, 4.261] and A = 2/3 in the model [4.253]. These are analytic estimate:
in toroidal plasma configuration, a nonlinear simulation has suggested a dependence
such as Eq. (4.273) for ITG mode turbulence. A further elaboration of theory might
be required to derive a formula which is relevant in a wide parameter region. The

X (4.279)

comparison of the index h with experimental observations has been reported [4.263]
for the condition that the electric bifurcation is controlled by an external bias current
[4.264]. Other examples are summarized in review article of [1.32].

4.3.5.  Subcritical exzcitation Inhomogeneity-driven turbulence has larger amplitude
at higher gradient. Turbulence can grow as an evolution of linear instabilities. On the
other hand, there are many cases where turbulence is sustained under the condition for
which a linear theory predicts the stability. Figure 4.23 illustrates a schematic relation
between the fluctuation amplitude and driving parameter that represents the gradient of
a system. This type of turbulence is called the submarginal turbulence or the subcritical
excitation. Nonlinear theory has been developed for the study of such turbulence.
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te. 8

Figure 4.23. Excitation of submarginal turbulence. Steady-state amplitude of
turbulence is illustrated as a function of the driving parameter g (e.g.. pressure
gradient, Reynolds number, etc.). g. denotes the linear stability boundary. The lower
branch is excited by thermodynamical excitations.

If a dynamical equation is expanded in a series of a perturbation amplitude A, the
time evolution of A may be written as

a - . - .
EA = A+ NA + NAS ... (4.280)

From a symmetry consideration, one sees that only odd-order terms remain for
symmetry-breaking perturbations. In the case of supercritical excitation, the mode
1s excited by the linear growth rate, v, and is suppressed by the low-order nonlinear
effects N, A3 with Ny < 0. However, in the case of suberitical excitation, nonlinear
terms have a destabilizing influence (e.g., Ny > 0, or N, > 0), so that a finite-amplitude
solution may exist even in the regime of ~_ < 0.

A Subcritical excitation in neutral fluid There are several examples of submarginal
turbulence in fluids. First example is a plane Couette flow. Other famous examples are
a plane Poiseuille flow and a pipe flow. The linear stability analysis has shown that a
pipe flow is linearly stable. However, in reality, turbulence develops in a pipe flow if
Re > 2200 holds. Nonlinear analysis is inevitable.

Al Nonlinear marginal stability condition Analysis has been performed for a plane
Poiseuille flow, by truncating the series of Eq. (4.280) at a certain order [4.265].
Figure 4.24 shows an example of the analysis in which the series of Eq. (4.280) is
truncated. The nonlinear marginal stability boundary is illustrated in the space of
the Reynolds number Re and perturbation amplitude A. A backward bifurcation is
demonstrated. The growth rate of luctuation becomes positive if the amplitude exceeds
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the nonlinear marginal condition. It is possible that suberitical turbulence is sustained
in a region where the linear stability is predicted. In addition, one must notice that
the truncation at a finite order of A is not a relevant approach. When the higher-order
terms are retained in Eq. (4.280), one by one, the nonlinear marginal stability condition
does not converge to an asymptotic limit, but oscillates considerably on the (Re, A)

plane.

0.75
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4500 5000 5500 R

Figure 4.24. Nonlinear stability boundary for Poiseuille flow on (Re, A) plane.
Reproduced from [4.265].

A2 Self-susiaining mechanism Subcritical turbulence has been studied by taking
into account secondary-flow (roll) generation. When a planar flow is slightly deformed
by the roll, the deformed two-dimensional flow has been known to be unstable for
three-dimensional perturbations [4.266]. If the roll is driven by a three-dimensional
perturbation, the self-sustaining instability is possible to occur. The idea of subcritical
turbulence has been proposed by taking into account of secondary-flow generation.

Waleffe’s model was proposed to study self-sustaining turbulence in shear flows

{[4.267] and references therein). Consider a plane shear flow
Vo =[0,0.U(z)]. (4.281)

The z-axis is in the direction of inhomogeneity (the ‘radial’ direction), the y-axis is in
the spanwise direction (the ‘poloidal’ direction), and the z-axis is in the direction of
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fiow. Note that coordinates are re-oriented for the convention of the plasma physics.
Basic idea is to study effects of streaks. which is induced by the role-type instability.
When the roll-tvpe flow

V,—O;] = [V(I. y) VV(I. y). 0] (4282)
(an analogue of a convective cell in plasma physics) exists. the streak,

Vitreax = [0.0.8U(z.y)]. (4.283)

is induced by the convection. The simple shear flow V| is linearly stable. However, the
deformed shear flow, Vg = [0.0.U(z) + 6U{z.y)} can be unstable against waves of the
form

V = [v(z) sin kyy, w(z) cos k,y, 0] exp(ik,z). (4.284)
if the amplitude of the streak is large enough. By nonlinear interactions, the roll-type
flow is induced by the wave-like perturbations.

This nonlinear chain is summarized in Fig. 4.25. The self-sustaining mechanism
consists of three processes:

(i) advection of mean-flow shear by rolls (vortices) inducing a streak-like structure;
(ii) & linear instability occurs if the streak is strong enough; and
(iii) this instability enhances the roll, closing a nonlinear chain.

This model has a similarity to one of the mechanisms that has been proposed for
submarginal plasma turbulence. In [4.267]. a Lorenz-model-like equations with eoght
variables are proposed, and a model with four variables is also discussed. The similarity
of this nonlinear instability mechanism to those in plasma turbulence has been discussed
in [1.31].

B Subcritical excitation wn plasma turbulence The nonlinear excitation of instabilities
Is important in understanding dynamic events in plasmas. There are abundant
observations on the abrupt excitation of strong perturbations in plasmas, which may not
be explained by the growth of linear instabilities. See, for review, [4.268}]. Self-sustained
fluctuations and perturbations, in the parameter regime of linear stability, have been
obtained by theories and numerical simulations [4.134, 4.144, 4.161, 4.269-4.286].

In plasmas, dissipation can induce varieties of instabilities as has been shown for
MHD instabilities and drift instabilities. This might be in contrast compared to neutral
fluids, where the dissipation-like viscosity and thermal conductivity usually stabilize the
system. When the electron motion is impeded by a dissipation mechanism, the electron

: - N o L e ] — T . ,
response aeviates from the DBoltzmann response {fi./n = ed/Ty), and the perturbed
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Figure 4.25. Subcritical excitation mechanism for shear-flow turbulence {based on
[4.267]).

electric field appears on the magnetic surface. This mechanism drives instabilities. The
stability property could be different in the presence of background turbulence, because
the electron response is easily modified by turbulence. Subcritical excitation in the
presence of dissipation is an important process for plasma turbulence. Examples include
interchange-mode turbulence, drift-wave turbulence, tearing-mode excitation, and MHD
turbulence.

B1 Current diffusive interchange mode (CDIM) turbulence 7The interchange mode
is stabilized when it has a finite mode number along the magnetic-field line, kj. This
is because the free electron motion along the magnetic-field line tends to neutralize
the charge separation which is the origin of the instability. If this electron motion is
impeded, the neutralization of charge separation is not perfect so that the instability
occurs. The marginal stability condition, which is determined by the balance between
excitation by the current diffusivity (i.e., electron viscosity p.) and damping by the
viscosity p and thermal conductivity x was derived as [4.282]

PR 4}'3 3 R s
_Go (O) ’ (."-Le,N‘I“ﬂe,C)QN
(

'T s \a X~ + Xe)(fix + pre) /3

a
where Z. is the critical Itoh mumber which is of the order of unity. Suffices N and ¢

=T, (4.285)

indicate the turbulent and collisional contribution, respectively.

As has been explained in §4.2.4C, turbulence could enhance all the transport
coefficient e x, Xn, and un. Equation (4.285) shows that the turbulent electron viscosity
destabilizes the mode. In the small-amplitude limit of fluctuations, the destabilizing
effect through the enhanced electron viscosity dominates the other nonlinear damping
processes, leading to the nonlinear instability. The turbulent viscosity and thermal
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conductivity suppress the turbulence. The nonlinear chain is illustrated in Fig. 4.26(a).
There are both a similarity and a dissimilarity to the neutral Huid. The Rayleigh—Bénard
convection is excited if the Rayleigh number [Eq. (4.165)] exceeds a critical value. Both
the quantities 7, and Ra increase with the gradient of pressure or temperature, and
decrease with increase of the viscosity and thermal-conductivity enhancement. In the
case of this plasma turbulence, the increment of electron viscosity makes 7, larger and
destabilizes the mode.

By expanding Eq. (4.285) near Gy = G, which is the linear stability boundary, the
amplitude ¢ near the marginal condition is given as
preRs “S_l‘éﬁ (% - 1) .

2 \G.
where g, . is the collisional electron viscosity. This result shows the existence of a
backward bifurcation near the linear-stability limit. The fluctuation level as a function
of the gradient is illustrated in Fig. 4.26(b).

po————3- [ Fluctuations |eg~e=s====y

(4.286)
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Figure 4.26. Mechanism of nonlinear instability for the CDIM turbulence (a).
Turbulence fluctuation level as a function of the pressure gradient is shown in (b).
Analytic theory (solid line) predicts the subcritical excitation, and the direct nonlinear
simulation (dots) demonstrates the self-sustained turbulent state below the critical
pressure gradient for linear instability [4.285].

B2 Nonlinear drift instabilities Drift waves are subject to nonlinear instabilities
as well. Linear theories of drift waves in a slab geometry show that the various linear
stabilizing and destabilizing mechanisms are nearly in balance, and the drift wave in a
sheared magnetic field is stable (marginal at most) [4.287-4.291].

The nonlinear theory of drift wave in a sheared magnetic field has shown that the
drift wave in a sheared magnetic field is unstable if the fluctuation amplitude is high
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enough. The analysis based on Eq. (4.204) indicates that the mode is stable if I'yy =0
(linear theory), but that it is unstable if [y is large enough. The electron motion is
impeded by the scattering by turbulence.

Another mechanism for the nonlinear excitation of drift wave has been recently
proposed [4.281]. This is a nonlinear linkage that includes the excitation of a streamer
by drift-wave turbulence, which is discussed in §4.3.3E. The nonlinear chain consists of:

(i) streamers (ky 2 0, being a kind of convective cell) are induced by the drift waves
(ky # 0), being associated with the strongly sheared radial flow (Fig. 4.18):

(i) this system with a radial drift flow is unstable for the drift waves (k) # 0); and
(iii) the unstable drift waves regenerates streamers, closing the nonlinear link.

The mechanism is illustrated in Fig. 4.27.

Density
Streamer | gradientin
y-direction

\Destabilize
nonlinear self

]-interaction Drift wave

advection of
mean gradient

«— | propagating
in xX-direction

x 4
’
\ 1?(I;’g"(\e’ared RS Suppress

Figure 4.27. Nonlinear self-sustaining mechanism for the streamer and drift wave. A
loop of solid lines is compared with Fig. 4.25.

Convective
cell

A

A set of equations for the streamer and drift wave has been proposed [4.281]. A
potential perturbation of the form

& = ¢ cosmy + {da1 cOSTY + dqz sin 27y) sin k,z exp(ik, T) (4.287)

is considered, where ¢. is the streamer amplitude, ¢q; is the least stable drift wave, and
Pas denotes the damped drift wave. The original density gradient is in the z-direction,
but the density gradient appears in the y-direction, owing to the streamer formation.
The drift wave in Eq. (4.287) is propagating in the z-direction, owing to the density
oradient of streamer in the y-direction. The potential and density evolution equations
for the streamer are

d

aﬁﬁc = Aoldar|*dc (4.288)



and

o {on
— | — | = 270.. ;
g (dy) Oc (4.289)

where Ap is the coefficient in the growth rate of convective cells in the limit of weak
dissipative growth, Eq. (4.241}. The complex growth rate of the drift wave is calculated
by taking the lowest-order correction from the streamer as

5 _
(1 + k2 p2 + ka v) km%. (4.290)
From this set of equations, one sees the nonlinear linkage of self-sustainment: the
drift wave causes the convective cell formation. the cell leads to the density streamer,
the density gradient in the y-direction destabilizes the drift wave. Note that the
normalizations in this model are L, = gR/s as the parallel scale length, the resistive scale
length L, = [vL2p? /{weeln)!'/® as the perpendicular scale length, and L,L_ /(csps) as
the time scale.

The second-order correction from the streamer is the stabilizing influence of a
sheared flow. The quasi-stationary state is considered, in which a balance holds between
the destabilizing effect (97 /0y term) and the stabilizing effect (¢? terms) of the streamer
on drift waves. This requires

on
44 4.2
e =M aya ( 91)

where the coefficient ~, is given by the nonlinear interaction terms, and its explicit
formula is given in [4.281}. Combining Eqs. {4.289) and (4.291), one has an algebraic
growth of the streamer amplitude as

on

5 473, (4.292)
Y

This result shows that the submarginal drift-wave turbulence self-sustains in the
presence of density gradient.

B3 Tearing mode at high pressure gradient Nonlinear destabilization is possible
for large-scale instabilities in magnetized plasmas. When symmetry breaking current
perturbation J i x exp{imf — in() exists on a mode raticnal surface, ¢ = m/n, the
topology of the magnetic surface changes and magnetic islands appear at the location
of the rational surface. Helical magnetic islands have a self-sustaining mechanism, and
the subcritical excitation of them is possible.

The dynamics of the helical magnetic island is conveniently described by introducing

hehcal flux function A, = A¢ + (nr?/ 2Rm)BC where the suffix h denotes the helical

.0 Maomrnotin nort o cn —I-\vWA av
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width of an island, w, is given as w = \/(R/r)(q2/q’)B—1;1h(rs), where 7, is the mode
rational surface. The induction equation

a9 - _

— Ay = 4.293

5 = TiJn (4.293)
governs the evolution of the perturbed fields. Once the relation between the perturbed
current and the flux function is given as

Ju(rs) = Fy [Au(r)], (4.294)

Eqgs. (4.293) and (4.294) close the dynamical evolution.

In the presence of the current gradient dfc /dr, an explicit relation of Eq. (4.294) is
deduced [4.292]. Away from the mode rational surface, the perturbation approximately
satisfies the MHD equilibrium equation, J x B = (0, because the time evolution is much
slower than the Alfvén time. That is, one has

BuA Ay + (%) Ap =0, (4.295)
T

where By, = By — B;rn/(mR). The logarithmic derivative of this perturbation across
the magnetic island

, i i
A{w) = [5 III(A}J} . - {E’rt hl(Ah)} - (4.296)
is related to the perturbed current averaged on the magnetic island as (see, e.g., [4.4])
- 1A
Ju(rs) &2 ——An(rs). 4.297
) = Z 2 n) (4.297)

This relation is one of the explicit forms of Eq. (4.294). The combination of Eqgs. (4.293)
and (4.296) together with the relation w oc 1/ Ay(r,) provides the temporal evolution
equation as

a1
dta
where the resistive diffusion rate yg = nuug 7, ° is characterized by the electric resistivity
[4.292]. A’ vanishes if the island width reaches the equilibrium value w = weq. The
growth of magnetic island is slow, if it is regulated by Eq. (4.298). Acceleration
mechanism of the growth is discussed later in §4.3.5C. Note that the parameter A’
at the zero island width, A’(0), dictates the linear stability:

!

— - N, (1.298)

A0} >0 (4.299)

is the condition for the destabilization of linear tearing modes.
If there is an additional mechanism that the magnetic island induces the perturbed
current J, there could happen a nonlinear instability. Reference [4.270] has suggested
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that local plasma heating or radiation loss drives a perturbation current as J;, x w?.
giving the relation

- 1 A" ]
Jn(rs) & ——An(rs) + ]\-‘,aduf:i, (4.300)
Ho W

where Np,q4 is a certain positive coefficient. The right-hand side can become positive if
w becomes large enough even if A’ < 0. This result allows a self-sustained magnetic
island even if the system is linearly stable. A’{0) < 0.

Another origin for perturbed current is the Bootstrap current. The collisional

diffusion process associated with the radial pressure gradient induces the toroidal
current, which is known as Bootstrap current. When the magnetic island appears, the
pressure gradient vanishes on it, causing the loss of Bootstrap current on the magnetic
island [4.293, 4.294]. The perturbed current associated with this process has the form
~ w2 ;
Ty B (4.301)
where 3 is the pressure gradient being normalized using the poloidal magnetic-field
pressure. A finite width wyp is introduced because the pressure flattening is not expected
for w < wp, because perpendicular diffusion tends to keep a finite pressure gradient
[4.295]. This process may also induce a seif-sustained magnetic istand. The equilibrium
island width is determined by the relation

A'(weq) — Nec—5—2— 3, = 0. (4.302)

wg + w

Detailed explanations inciuding the coefficient N, xc is given in literature [4.293-4.300].
This mechanism is called the neoclassical tearing mode. Detailed analyses have been
performed, including the effect of the polarization drift current. Figure 4.28 shows
the saturated island width as a function of the driving parameter. Below the linear
stability boundary, a self-sustained perturbation is possible for the case of a finite
pressure gradient. Applications to tokamak plasmas are discussed in [4.301-4.304].

B4 Turbulence-turbulence transition (M-mode transition) Subcritical excitation of
turbulence associated with magnetic braiding is also predicted. As is discussed in
§4.2.4A2, the transport due to the magnetic braiding is more influential on electrons
than ions. Hence, the electron viscosity is more pronouncedly enhanced than the ion
viscosity once threshold condition, Eq. (4.59), is satisfied. The electron viscosity is
selectively enhanced in Eq. (4.219a) so that the new nonlinear instability occurs.

First example is the onset of global stochasticity associated with m = 1 magnetic
island. When the amplitude of an m = 1 magnetic island exceeds a critical size in
toroidal plasmas, global stochasticity sets in. This is because that, when a helical
perturbation is imposed on toroidal plasma, the system loses symmetry. If the symmetry
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Figure 4.28. Saturation level of tearing mode perturbation, as a function of the MHD
driving parameter A’(0) for fixed pressure gradient (a) and as a function of the pressure
gradient for fixed value of A’(0} (b}. Tearing mode is linearly stable if A’(0) < 0. In
the linearly stable case (A'(0) < 0), a finite amplitude island is self-sustained if the
pressure gradient becomes large enough. In (b), unstable branch of nonlinear marginal
condition is denoted by dotted line, which is a threshold for subecritical excitation.

breaking is strong, the stochastization of the magnetic field may occur. This criterion
is given as [4.305, 4.306]

1 RB, 1
\JQ {m — 1] 5 > (4.303)

When the magnetic perturbation grows and the criterion (4.303) is satisfied, the
magnetic braiding and its associated enhancement of the electron viscosity switch on. By
this onset of electron viscosity, nonlinear instability sets in. Dynamics of this instability
is discussed in [4.144, 4.277].

The transition from electrostatic perturbation to turbulence with magnetic braiding
occurs for the case of micro instabilities [4.307]. . The case of the current-diffusive
ballooning mode (CDBM) turbulence has been studied. It has been shown that, for
the self-sustained current-diffusive turbulence in the low pressure gradient limit, the
associated magnetic island width w,s scales as w,s < a®/?_ while the island separation d

scales as di; o o2/?. Here. o is the normalized pressure gradient (o = —¢*Rd@/dr). The
1/2.

Chirikov parameter, wis/dss. has a dependence on the pressure gradient as wis/dis X @
When the pressure gradient becomes high and exceeds a criterion a > a. so that
wis/dis > 1 holds, the magnetic stochasticity sets in. As a result, an enhancement
of turbulence takes place, which induces a magnetic braiding. The turbulent transport
coefficients for the case of CDBM are estimated as

52

W [ haF(a,s)a’? (—) ; (4.304a)

e TAp
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iy [ 62
e ﬂﬁ,ctF{av. 5)a’? (—) . (4.304b)
Mme TAp

which are larger than Eq. (4.231). Superscript M stands for the magnetic braiding. This
state is called the M-mode, and s is the magnetic shear parameter (s = r¢~1dg/dr). The
condition for the onset of the M-mode is illustrated in Iig. 4.29.
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Figure 4.29. Region of M-mode turbulence in tokamak plasmas [4.307].

C Abrupt transition

C1 Microscopic turbulence and transport coefficient The time scale for the onset
of H- to M-mode bifurcation, 7, is of the order of the poloidal Alfvén time. During
the transition, the magnetic-island overlap is associated with the nonlinear growth of
turbulence. The time scale 7, is given by the inverse of the nonlinear growth rate,
Tar = V51, Which was calculated as [4.307)

YNLTap ~ 8 /3 F(s, a) e [1 + 2 F(s, oz)]lf3 alf? (4.305)
for the M-mode transition in a strong-shear limit. This indicates that the tvpical time
scale for the mode growth is given by 74,/v/a. The change of turbulent transport
coefficient at the critical condition for the turbulence-turbulence transition is a rapid
process in comparison with the transport time. An abrupt growth of turbulence is
predicted for a steep gradient {4.308]. These subcritical excitations for plasma turbulence

+3a) frarm vrndavcrarding flha Aomarmiog ~f olalo o g s
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C2 MHD modes Equation (4.298) predicts a slow growth of the resistive diffusion
time. The acceleration of the MHD growth rate is possible in the presence of the
scattering of electrons by turbulence [4.309]. Much faster growth, ie., an explosive
growth, is possible to occur. The nonlinear destabilization of global MHD modes, for
which the growth rate is increased by a finite amplitude, shows an abrupt growth. The
explicit dependence of the growth rate on the amplitude leads to the explosive growth
of the mode, which is more violent than the exponential growth. If the growth rate is
expressed in an asymptotic form as

v x |BJ, (4.306)

then the mode amplitude shows the time evolution

- 1

An explosive growth occurs.

Typical examples are given for various cases. For instance, the interactions of the
m/n = 2/1, m/n = 3/2, and m/n = 5/3 modes have been studied [4.310-4.315]. When
the m/n = 2/1 and m/n = 3/2 islands overlap, then there appears a stochastic region
near the rational surface ¢(r;) = 5/3. The m/n = 5/3 mode is subject to tearing
destabilization, whose growth rate is increased by the enhanced anomalous resistivity
[v = 3/4 in Eq. (4.306)]. Nonlinear destabilization through the magnetic braiding is
also obtained. After slow growth, the fast increment of the growth rate is recovered by
the simulation. The change of the growth rate from the classical tearing mode to the
nonlinear destabilization takes place in the event. For the case of current-diffusive MHD
mode, one has v =2/5 in Egs. (4.306) and (4.307).

D Bubble formation and suppression by shear flow One of the typical phenomena of
a subcritical excitation is a bubble formation. Flow shear is also influential on the
transition phenomena like the bubble formation, which was analyzed in the neutral-
fluid dynamics [4.316].
The bubble formation is strongly influenced by a shear flow. Two forces work on
a bubble in a sheared flow: A shearing force 5, tends to stretch a bubble (i being a
coefficient of fluid viscosity). A surface tension /L acts to restore a spherical shape (o:
a coefficient for surface tension, L: a size of bubble). See Fig. 4.30(a). If the shearing
force is greater than the surface tension, iS, > &/L, the bubble is destroyed. A critical
size above which a bubble collapses,
g

Lcr = ﬂS@:,

(4.308)

can be found.
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On the one hand. there is a critical (minimum) size for nucleation, L. because the
bubble formation is a subcritical phenomenon [4.317]. Below this size. a bubble does
not grow and disappears with a finite life time even in the absence of sheared flow. The
latter size is determined by a balance between the surface tension and the difference in
the free energy inside of the bubble and the outer fluid. The free energy associated with
the bubble formation is illustrated in Fig. 4.30(b). If the velocity shear is strong enough
so that a condition

Ler < Ligin (4.309)
is satisfied, then nucleation of the bubble is strongly suppressed. The condition
Lep < L is Tewritten as

o
ALz
As the critical size for the onset of nucleation, L. becomes larger, the suppression by
shear flow appears at the lower level of the flow shear rate.

Sy > (4.310)
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Figure 4.30. Shearing force and surface tension (per unit volume} vs bubble size (a).
Free energy of bubble formation as a function of bubble size {(b). Activation energy
AQ and minimum size L, for nucleation are shown.

4.4.  Bifurcation

As is reviewed in previous subsections, one comes to the following view about turbulence
in inhomogeneous plasma:

(i) Fluctuations do not follow the equi-partition law;
(ii) Various turbulent states exist;

(ii1j The differences between turbulent states are seen:
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(iii-1) not only from quantities such as the average spectrum and the dependencies
on the global driving parameters and local plasma parameters,

(iii-2) but also by the difference in the associated dynamical and spatial structures,
e.g., shape of global profile, meso-scale structure (interface), zonal flow or
streamer, etc.

(iv) The change between turbulence happens in the short time of the nonlinear
decorrelation rate, often being triggered by subcritical excitation.

These features suggest that the dynamical change of turbulence should be understood
within the concept of bifurcation.

At the same time, the physics of phase transition may be extended for
inhomogeneous plasmas which are away from thermodynamical equilibrium state. One
way to extend physics of critical phenomena to turbulent systems is using the concept
of structural transition. That is, the changes of global structure (gradient, symmetry,
shape) are described simultaneously together with the turbulence spectra. The view of
(iii) fits to this way of thinking, and the physics of turbulent plasma transition has been
developed along this line of thought. The driving motivation has been the observation
of the transition between the L-mode and H-mode [1.14].

The change of turbulence levels across a certain boundary in parameter space has
been discussed. Self-organized dynamical oscillations have also been investigated. As
is illustrated in Fig. 4.31, a transition between states A and B takes place. A case
of subcritical excitation is shown as an example. The statistical properties of the
turbulence are different from those for the thermodynamical equilibrium, so that the
transition probability between different turbulent states is modified. An overview of
various properties of bifurcations and transitions is given in the following. In this
subsection, research in this direction is surveyed, with elucidating the non-equilibrium
property of plasma turbulence.

4.4.1. System with hysteresis Under given inhomogeneities of global plasma
parameters, turbulence and meso-scale structures develop according to the nonlinear
selfregulating mechanisms. Figure 4.32 illustrates a typical concept: Figure 4.32(a)
shows various structures in %k space, and Fig. 4.32(b) demonstrates their mutual
interaction processes. Micro-turbulence drives turbulent transports, possibly owing to
nonlinear instabilities, and at the same time induces meso-scale structures such as the
electric domain interface, zonal flow, solitary radial electric field, streamer, and so on.
Some of them (like electric domain interface) tend to suppress turbulence, but others
(like streamer ) drive nonlinear destabilization of turbulence. According to the turbulent
transport, the plasma profiles evolve, being controlled by external source and boundary
conditions. Micro-scale fluctuations with a large number of positive Lyapunov exponents
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Figure 4.31. Bifurcation of turbulent state and transition between them. Two
turbulent states ("H’ and ‘L') and thermodynamical equilibrium fuctuation are
schematically shown.

exist in the turbulent state. meso-scale structures might be described by a system of a
small degree of freedom. Combined dynamics of turbulence and chaos are expected to
occur in inhomogeneous plasmas.

Another example is the mutual interaction of the plasma gradient and turbulent
transport. In many circumstances. the pressure gradient is the origin of turbulent
transport (e.g., Fig. 4.12), which has a feedback effect on the pressure gradient under
the fixed flux condition [Fig. 4.33(a)]. However, if the pressure gradient becomes
high enough, as is discussed in §4.3.1E, it suppresses turbulent transport through the
reduction of magnetic shear. In this case, there arises a nonlinear linkage that enhances
the plasma pressure gradient [Fig. 4.33(b)i.

A Dynamical equations for structural transition In order to describe these nonlinearly
interacting systems, one employs a set of model equations, which describes the dynamics
of global plasma parameters, e.g., plasina pressure, as
op
Frl
and the electromagnetic field [e.g., radial electric field {including zonal flow and electric-
field interface) and poloidal magnetic field} as

V - (Xeur [3: VD VE: -+ VB) + Prcats (4.311)

8B, i I

- =V (mVBo) + Np [Be; V-], (4.313)
and fluctuating quantities f

Ofirio§+ S (4.314)

8t \ 7/
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Figure 4.32. Schematic drawing of the self-regulating mechanisms in plasma
turbulence and structural formation.
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Figure 4.33. Other nonlinear chain for structural formation through the modification
of the current profile.
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The explicit formulae for transport coefficients uwrb[é; Vp, VE,-. -1, the nonlinear source
term N [E,; Vp;-- -], and the renormalized operator £ have been discussed for several
examples of turbulence modelling. The term NB[BG;Vﬁ;---] represents the driving
source like the Bootstrap current. The last equation, Eq. (4.314), could be subject to a
bifurcation, which is surveyed in §4.3.5.

B Nonlinearity in flur—gradient relation To analyze the bifurcation and transition
phenomena, a time-scale separation is introduced first. We consider the case that the
evolution time of the turbulence level, Thue 18 shorter than the evolution time of plasma
inhomogeneities, Tglobals

Then the fluctuation level and the turbulence transport coefficient are evaluated by the
counterparts of the stationary state when the evolution within the time scale Telobal 1S
solved. The fluctuation level is no longer an independent variable in the evolution
equation for the global plasma structure. Taking two global-parameter variables
(pressure gradient and radial electric field, i.e., plasma flow velocity), we have a system
of plasma transport equations as

55
% =V (X VE) + Prac, (4.316)
E, _ _

=V (unVE,) + N E.], (4.317)

where Phea is the heating power, N[E,] is the nonlinear source that generates a radial
electric field. Examples are discussed in §4.3.3C as Eq. (4.254). Here, xyup and
turb are functional of the pressure gradient and electric-field structure, x[Vp, VE,[(r)
and puur!Vp, VE,](r). Simplified relation Hurb = Xiurh 1S sometimes employed [see
discussions for Eq. {4.232)]. This system is known to have a hysteresis [1.32, 1.35,
4.318, 4.319].

When one further introduces the time-scale separation that Eq. (4.317) has a
faster time scale than Eq. (4.316), then a stationary solution of Eq. (4.317), E.(r) =
E,[V5,- -], is obtained in a fast time scale, and is substituted into Eq. (4.316). On
this slow time scale, Eq. (4.316) is solved with the thermal transport coefficient which
1s expressed in terms of global plasma parameters. Figure 4.34 illustrates the energy
transport coefficient as a function of the pressure gradient and other plasma parameters,
with an example of the case of electric-field bifurcation model. It is possible for a cusp
type catastrophe to occur. The thermal conductivity is subject to change at critical
pressure gradients. In association with the change of transport coefficient between the
upper and lower branches of Fig. 4.34, the flow pattern is different, as is illustrated in
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Figs. 4.35{a)and (b). In the state of Fig. 4.35(b), the electric field is weak: damping of
the poloidal flow due to the transit time magnetic pumping is large. The plasma rotates
in the toroidal direction. When the electric field becomes strong enough, it is possible
for the plasma to rotate in the poloidal direction. See §19 of [1.35].

Figure 4.34. Cusp type catastrophe [1.35]

(a) (b)

Figure 4.35. Bifurcation in flow pattern. The flow pattern in an reduced transport
state (a) and that in an ordinary turbulent state (b) [1.35].

Another model of the transition is based on the theory of instabilities in the range
of drift waves [4.320-4.327]. The temperature gradient induces drift-wave turbulence,
which can be suppressed by the density gradient. According to the balance between
them, a phase diagram of drift-wave turbulence has been proposed [4.320]. Figure 4.36
illustrates a diagram for the tokamak edge turbulence, for fixed value of 7, 7y = 2.5, on
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the (z,.qq) plane. where

2L,
tn — R .

(4.318)

and

_ Ps R
C(+T/T)L VL,

Gy

(4.319)

where L) = [voL2p?/(weeln)]/3. The parameter £, controls the effective compressibility.
and a4 measures the strength of the diamagnetic drifts in the plasma edge.
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Figure 4.36. Phase diagram of drift wave turbulence. Reproduced from [4.320].

A much simplified model of the bifurcation in energy transport has been proposed,
corresponding to one section of Fig. 4.34, as
_ X1
1+ c{a/Lr)? + ey(af L)
where ¢; and ¢ are numerical coeflicients, and Ly is the temperature-gradient scale
length. Here, x; and xo represent two different mechanisms that induce the cross-field
transport of energy [4.328, 4.329]. This model also predicts a bifurcation of pressure
gradient in certain conditions. In some models, the curvature of temperature, d°T,;/dr?,

X + X2, (4.320)

is included in the denominator of Eq. (4.320). In this case, the temperature profile is
not necessarily determined uniquely even if boundary conditions are imposed [4.330].
Various turbulence models, which include the turbulence-suppression mechanisms,
can be combined with the transport picture of Egs. (4.316) and (4.317). Applications
have been made to analyze the transitions in plasma confinement and the establishment
of steep gradients in plasmas [4.319, 4.331-4.343]. Objective of these research is to
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examine whether the transport models based on turbulence theories can reproduce the
anomalous loss in L-mode plasmas as well as the transition phenomena to improved
confinement states [1.14-1.21]. At least the qualitative understanding has been given on
the plasma loss which increases as the heating power increases, and on the formation of
transport barriers. Exhaustive references are found in [4.344].

C Simultaneous evolution of fluctuation, flow and gradient When the system size
becomes smaller, the characteristic time for the change of the average profile and that
for the change of turbulence level becomes closer to each other:

Thuc ™ Tglobal- {4.321)

Under such circumstance, the evolution of the fluctuation level must be simultaneously
solved together with plasma gradients and flows. As is illustrated in Fig. 4.32, meso-
scale structures and turbulence are then nonlinearly regulating each other. When the
time-scale separation is not allowed under the circumstance of Eq. (4.321), a complicated
spatio-temporal evolution is expected to occur, including the plume ([4.207, 4.318]).
With the ordering of Eq. {4.321), a soft-type bifurcation has also been examined in
a dynamical model with a local approximation. An example is presented below, e.g., in
the form of a set of equations for the plasma pressure, the electric-field inhomogeneity,
and the fluctuation level [4.207]. In this model, a set of coupled equations is proposed

as
A=A — A% — auUA, (4.322a)
U = —ulU + asAU, (4.329b)
G =—asG — aGA+ P, (4.322¢)

where A is the fluctuation level, A ~ 7i/n, U is the flow shear, G is the pressure gradient,
and P is the heating power. This particular form is derived by dimensional arguments,
and is not necessarily unique. Its extension is given in {4.345, 4.346]. Similar, but not
identical, dynamical models are given by other groups [4.114, 4.205, 4.347-4.349]. The
set of equations {4.322a}-(4.322¢) is a representative one of this kind. This type of
dynamical models has two types of steady states, i.e.,

A=2 =y (4.3232)
¢
and
A=t - (7 _ 0-’1“) LN (4.323b)
X3 (873 X9

These two branches merge smoothly at the condition yoaz = pzer;. Only a soft transition
{pitch-fork bifurcation} is predicted. These types of models would be useful in analyzing
phenomena of a soft transition.
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Before closing this subsection. one example is quoted from a numerical simulation.
The evolution of the fluctuation energy in the regimes of meso-scale and microscale is
plotted in Fig. 4.37. Complex dynamics among fluctuations of different scale lengths is
observed [4.350]. A survey of plasma turbulence is made in [4.351] from a complementary

viewpoint. The complicated behaviour in confined plasmas are summarized from other
approach of variable reduction.
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Figure 4.37. Energy in the long-wavelength region (meso scale) - horizontal axis - and

that in microscale fluctuations - vertical axis - show complicated dynamics. Quoted
from [4.350].

4.4.2.  Self-organized dynamics In inhomogeneous plasmas. nonlinearity drives self-
organized dynamics. One example is the sequences of repetitive destabilization and
stabilization. Systems with a few degrees of freedom, like the Lorenz model or the
Voiterra—Lotka model, allow a limit-cycle oscillation under fixed external parameters.
The amplitude of one distinet mode repeats growth and damping periodically. As
is discussed in §4.4.1, structural transitions occur in inhomogeneous plasmas. The
structural transition can occur periodically as well. Examples of the self-organized

dynamics which is related to the edge localized modes (ELMs) [1.15, 1.18] are surveyed
below.

A Dithering ELMs The hysteresis in the gradient-flux relation gives rise to self-
organized dynamics under a constant supply. A cross section of Fig. 4.34 has a hysteresis.
An example is illustrated in Fig. 4.38. There could appear a linkage in Fig. 4.38(a).
In a state of small transport coefficient, the demsity increases (path A); the critical
condition is reached, and the transport changes abruptly {jump B); on the branch of

¥
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larger transport, the density decreases (path C); other critical condition is satisfied, and
the transition takes place (jump D), closing a cycle. A set of equations like Egs. {4.316)
and (4.317) are solved, and a repetitive burst of plasma flux is obtained. Associated
with this repetitive change of plasma flux, the turbulence level as well as the global
plasma gradient periodically change [4.214, 4.352-4.354]. This self-organized dynamics
is one typical model of dithering ELMs that has been observed. Compound dithers have
also been theoretically predicted {4.355].

LI B N N B S B R L S T
Loss r °F D i
Rate out L
C
3l .
2k .
A
A
B

3] L1 v L PR S T S U S U S W N )

Density ° ' p
(a) (b)

Figure 4.38. FExample of the self-organized dynamics in structural transition.
Hysteresis in the plasma parameter - loss space is shown in (), and temporal evolution
of the plasma outflux across the suzface is shown in (b).

Soft transition models also predict self-organized dynamics under a constant supply
of plasma [4.113, 4.114, 4.207, 4.356, 4.357]. A variety of limit-cycle oscillation is possible
in plasmas with hysteresis in the transport property.

B Giant ELMs Self-organized dynamics in §4.4.2A is expected to occur in a particular
region of the parameter space (e.g., near the critical condition that predicts the L-
H transition). If the parameters are chosen so that the steep pressure gradient is
established, the dithering cycle does not occur. In this case another type of repetitive
structural transition may take place.

A pair of instabilities are proposed to cause repetitive bursts [4.358-4.360] (see
Fig. 4.39). The ballooning instability is excited by the pressure gradient, while the
surface kink instability [4.361, 4.362] is driven by the current density near the plasma
surface. The instability region is illustrated in Fig. 4.39. In the stable region, the
pressure gradient increases due to the high heat flux (path A}. Once the ballooning-
instability criterion is reached, the pressure gradient might stop increasing at the critical
value even though the heating continues. The characteristic diffusion time of the
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magnetic flux and current is slower than that of energy. so that the current density
near surface increases {path B). When the criterion for the kink instability is reached.
then the pressure gradient and the current density decay (path C} so as to close the
loop.

®

=)

3 | Kink

5 | Instability

@

c

E B

§ Ballooning
Instability

pressure gradient

Figure 4.39. A pair of instabilities. under constant heating condition, causes the
repetitive rise and decay of pressure gradient. After Ref. [4.360].

The transition in turbulence and turbulent transport owing to the onset of magnetic
stochasticity is discussed in §4.3.5.B4 {4.307]. Based on this transition, a sequence for
the structural transitions has been predicted [4.363, 4.364]. This mechanism causes
the periodic collapse of transport barriers and the burst of plasma loss. Figure 4.40
illustrates the transition of turbulent transport coefficient as a function of the plasma
pressure gradient o = (¢°R/a}d3/dr. The critical pressure gradient for the transition to
turbulence with magnetic braiding, o, is illustrated in Fig. 4.29. The plasma pressure
increases at the H-branch due to the strong heating power. The critical pressure gradient
o is reached, at which the transition to the strongly turbulent state takes place. The
enhanced transport coefficient causes the collapse of pressure gradient. When the
pressure gradient becomes low, the back-transition to the lower turbulent transport
coefficient occurs at a = ;. The pressure gradient starts increasing again, closing the
loop.

Reference [1.32] provides a very detailed survey of the theoretical work on L-H
transitions, and comparisons with experimental observations are extended. It contains
exhaustive references on this subject.

4.4.3.  Transition probability Multiple states with different turbulence characteristics
are ailowed in piasmas. The transition between two different states has been studied by

use of dynamical equations like Egs. {4.316) and (4.317) or Bq. {(4.320). These moadel
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Figure 4.40. Transport coefficient as a function of the pressure gradient. Transition
between the turbulent states is predicted.

equations are formulated as deterministic equations. However, as is explained in the
statistical theory of plasma turbulence in §4.2.3, the random source is also induced
by the turbulence interactions. If one accounts for the statistical noise source in the
dynamics of turbulence, one may see that the transition from one turbulent state to the
other turbulent state takes place as a statistical process. The transition occurs with a
finite probability when the controlling parameter approaches the critical value that is
obtained by the deterministic model [4.365, 4.366].

In systems at thermodynamical equilibrium, deviations from equilibrium occur as
the thermal fluctuations, and the transition probability follows the Arrhenius law [4.367].
In turbulent plasmas, the probability density function deviates from the Boltzmann
distribution; therefore the transition probability is different from the Arrhenius law.

A Fokker—Planck equation for macro variable (coarse-grained quantity) The Langevin
equations for each k-component, Eq. (4.100), are reduced to one for a macro variable.
The total fluctuating energy, which is the quantity integrated over some finite-size
volume (L? in the perpendicular cross section),

E= (1)K, (4324
k

is introduced. The Fokker-Planck equation for the probability distribution function of
the coarse-grained quantity, P(£), is described as

0 a 1,38

(see also refs. [4.101, 4.102] for the basis for the reduction to the Fokker-Planck
equation). In the Langevin equation for the average energy &, the damping rate is
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given as
A=E773 o0 k% 6 (4.326)
k

(Avx being the nonlinear decorrelation rate of the k-mode). and the magnitude of the
statistical source term is written as

_ 3
E =1

It is also useful to introduce the mean classical decorrelation rate

Yo = €7 e (4.328)
k

("we = tuck?). When the fluctuation level changes. the decorrelation coefficient deviates
from the value in the thermodynamical-equilibrium limit.

B Transition probability

B1 Equlibrium probability density function The equilibrium probability distribu-
tion, being the solution of Eq. (4.325). is governed by the effective potential

€ 4ANE
The equilibrium probability density function (PDF) is given as
~1
Fo(&) = PE exp[—S(E)]. (4.330)

Therefore, the minimum of the effective potential S(£) (e.g.. states A and B in Fig. 4.41)
predicts the probable state of plasma turbulence.
The analysis in the large-amplitude limit has shown the existence of a tail component

as
5 -n
eq
with the power index as
5 3 A /IN?
==+ =) Gy, 4.
n 4 * 200 ’Yk‘eqs (5) v ( 332)

where £ is the mean of the fluctuation energy, the coefficient A is the asymptotic
coefficient of nonlinear damping rate A = lime__,, A(E/Eq) 1. and 4 o is the nonlinear
eddy damping rate at £ = £,. For a fixed averaging-size L, the power index depends
on the inhomogeneity as

(n~5/4) x G5 (4.333)

As the gradient increases, the tail component becomes larger.
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B2 Transition probability The flux of probability from the A state to the B state
in Fig. 4.41 is obtained. The saddle point is denoted by the suffix C. The function A(E)
is Taylor expanded in the vicinity of & as
Alw) = Avag) — Ap(lv —via) + - {4.334)
(v = VE, v.; = V&), and the transition rate is given as [4.366]
VA 1
TA—B = — =
A=B T 9 /T A&
where Ao = Ajv., and A&, is the width of the PDF at the state A. The transition
probability from B to A is calculated in a similar manner.

(Ea)exp[S(Ea) — S(&c)]. (4.335)

Fluctuation
Level

0 G Ac  Gradient

Figure 4.41. Transition probability between two states is calculated.

In the thermodynamical limit, where the fluctuation spectrum is given by the
thermal-fluctuation counterpart, Eq. (4.335) reduces to

ra—p = Yy, exp(—Ec/T). (4.336)

One recovers the relation ln(ra_.g) o« —1/7 which is the Arrhenius law.

Away form the thermodynamical equilibrium, the transition probability obeys a
power law. In the vicinity of the critical linear stability boundary G¢ in Fig. 4.41, the
transition probability is given as a function of the distance from the critical pressure
gradient, G¢ — Gy, as

,-Ym 'uec 72{)1 4%1/3 ( - 3 )2(71/3 ( GO ) —61
L Om (He _Ly
ran~ 2 ( - ) ko P 1 (4.337)

where
by = (1/3)[3/(16Co)[Y*T (L /a)?, (4.338)

& = Trym[3/(16Co) k(L /a)?, | (4.339)
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and L is the size of a small region over which the fluctuation energy £ is integrated
{4.366].

Comparing Eq. {4.337) with Eq. {4.336), the characteristic features of the turbulent
transition are seen. First. the transition probability is explicitly expressed in terms of
the plasma-inhomogeneity parameter. Second. it is greatly enhanced owing to a large
statistical variance. Third. it has a power-law dependence on the plasma-inhomogeneity
parameter. Namely. the transition probability increases as

Ta.B X (GC — Go)—bl (4340)

when the gradient parameter Gy approaches to G¢. These results, combined with the
dyramical and spatial structural formations. are the distinct features of the transition
of turbulence away from the thermodynamical equilibrium.

The ‘phase boundary between states A and B in parameter space is defined by
the relation that the transition probability from A to B is equal to the back-transition
probability. i.e.,

TA—B = TB—A- (4.341)

In Eq. (4.335), an exponential dependence on the difference of effective potential
S(En) — S(Ec) dominates the transition probability. Therefore the balance equation
is approximated by the relation

S(€Ea) = S(&c) (4.342)

with a logarithmic correction. This result is a generalization of the ‘Mazwell’s
construction rule’ for the phase boundary in thermodynamics.

4-4-4. Probabilistic transition In a system with hysteresis like inhomogeneous
plasmas, a self-generated oscillation is possible to occur under the condition of constant
supply of energy and particle. The discussions in §4.4.2 is based on a deterministic
picture, in which a transition takes place when a certain critical condition is reached.
In other words, the transition at critical condition is formulated based upon the
deterministic view. As is reviewed in §4.2.3, the turbulent state is associated with the
random excitations which are much stronger than the thermodynamical fuctuations.
As a result, the transition occurs according to the probabilistic law, as is discussed in
§4.4.3. The probabilistic excitation of transitions introduces the concept of a life time
during which the plasma is in a certain state of turbulence [4.368].

This process has been analyzed by including the noise term in model equations that
describe the transitions. For instance, the model equations for the dithering ELMs are
given as

(4 24322)
V22238
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0 3
(-é_E’y =a—14+a(y—1)—bv—-1), (4.343b)
where the variables o and -y represent the global plasma parameter (density,
temperature, or their gradients) and the level of turbulence (turbulent transport),
respectively. This set of equations is a simplified model of Eqs. (4.316) and (4.317).
The notation is as follows: S is the energy influx into the layer, ¢ is the possible
difference of dynamical time between « and -; the cubic equation a{y — 1) — b(y — 1)*
describes the shape of the hysteresis in the gradient—flux relation. This Ginzburg-
Landau model describes the dithering ELMs under a given source of magnitude S. In
turbulent plasmas, the turbulent state itself fluctuates in time, so that the coefficient a
that determines the turbulence level is fluctuating as well. Based on this, the coefficient
a is modelled to include the fluctuating part as

a = ag + &,4. (4’344)

A power-law noise is assumed, and the probability distribution function of £, is taken
as

P(g,) x 7" (4.345)

Equations (4.343), (4.344) and (4.345) are solved, and the self-regulated oscillation and
transition probability are calculated. The probability for the transition to occur at a®is
found to follow

P(a®™) o (agp — o), (4.346)

c

where o Is the critical value of the deterministic picture, which is given in the absence
of the statistical noise [4.369].

4.5.  Transient response and transport

In the discussion of turbulent transport, it is often assumed that a temporal and spatial
scale separation holds between the global transport and the microscopic fluctuations.
This leads to the picture that the change of global profile propagates in space with the
diffusion time scale. The characteristic diffusion time is estimated by the global scale
length and the turbulent diffusion coefficient. This scale separation is not always satisfied
in plasma turbulence. If it is not satisfied, the transient response of inhomogenecus
plasma could be different from those described by a diffusion process. See review of
[1.13, 4.172, 4.370] for the phenomena of transient response.

4.5.1. Long scale length of fluctuations 1t is possible that fluctuations have long
radial correlation length (Fig. 4.42). If the correlation length includes a meso-scale
or is comparable to the global gradient scale length, the change of transport properties



187

propagates rapidly, at the level of group velocity of waves [4.371. 4.372]. In the case of
long correlation length. the gradient-flux relation usually becomes an integro-differential
equation. [In some cases. however, the Fick’s law (ie., the local equation) is valid for
the particle flux in a long mean-free-path regime [4.373).]

T(x)
gradient scale length
B e

Correlation length
- ——

X

Figure 4.42. Schematic illustration of correlation length which is comparable to the
scale length of inhomogeneity.

In addition, the amplitude of fluctuations with long correlation length is not
determined by the local plasma parameter. The long-wavelength modes can be excited
by micro-fluctuations within its coherence length. Based on this process, the electron
heat flux ¢, is modelled as a sum of the local diffusion and non-local fux as [4.374]

a(rt) = = [ nr' Oxelr O Kifr. v
X AVT (.t} + (1 — NYV'To (', )] dr, (4.347)

where

| =

N 2
Ki{r,r') = - {C1oca15(7” —r)+ Cglobal—\/}ﬁ exp I’_ (Il—r) } } . (4.348)
Here [ is the half width of non-local interactions, §(r — r'} is the delta function, and
A0 € A < 1), Cear and Caiobar (Clocal + Calobal = 1) are numerical constants. The
parameter A represents the ratio of the role of the local temperature gradient in the
non-local transport process. The length { is based on the correlation length of the
long-wavelength fluctuations that bear the additional non-local transport.

-

According to this process, the heat flux at one location is influenced by the plasma
inhormogeneity at another location. The gradient—Aux relation is no longer a unique line,
but constitutes a hysteresis loop, depending on the rapidness of the temporal change.
A schematic diagram is given in Fig. 4.43. The transient response is different from
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the static response [4.375]. It is noted that the change of flux precedes the change of
gradient.

Other models, in which the global term is switched on/off, have also been applied
to the study of transient response [4.376. 4.377].

dq,

—nVoT

Figure 4.43. Perturbed heat flux and perturbed gradient on one magnetic surface
(near half radius, r ~ a/2) against a periodic modulation of the heat source at the
center. {Schematic)

4.5.2. Memory effects The non-Markovian effect also affects the transient response.
According to the arguments of §4.2.3F, the memory effect makes the transport equation
into an integro-differential equation. Given the long-fime assumption, a transport
equation is obtained as [4.104]

& ¢
—n(r.t) = [ atcu@)Von(a, e~ 1), (4.349)
0
The contribution of the tail to the correlation function is separated, and an approximate
form is given as
4

%n(m, t) = DoV?n{z,t) — Ho [ ()= 2n(z, ¢t — t')dY, (4.350)

(&7 Fmin

where a,,; = 0.58, I is the conventional diffusion component, and the coefficient of the
tail, Hp, is discussed in [4.104, 4.105]. This transport equation provides a subdiffusive
transport, as is discussed in Eq. (4.161). The dispersion evolves in time as {4.105]

{[z(t) — 2(0)]*) o 1o, (4.351)

The relation ay.; < 1 holds, and the response is different from a Gaussian packet. The
central peak decays much slower than a Gaussian packet (i.e., subdiffusion}, but the tail
of the packet propagates much faster. The long-time tail in the Lagrangian correlation
modifies the transient response from a simple diffusive process.
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4.9.3. Fuast propagation of bump In many cases. multiple scale lengths are necessary
to describe global plasma profile.  For instance. bumps are imposed on a smooth
inhomogeneous profile. The temporal evolution of bumps may be different from the
energy flow associated with the «mooth gradient.
Fast (ballistic) propagation of a bump is possible if the plasma state is close to the
critical condition for the onset of instability. The change of heat flux, dg,, associated
with a bump of pressure, dp, is modelled as [4.378]

Sgr — 224 0n Lo 2+ (4.352
QTAQP 2 drp Tt . )

As a simple model, the case of g, = {A/2)dp? was discussed. The temporal evolution
of the perturbed profile is described by the energy balance equation

a d /A 5° ~
—6p + — —62)—13—5 =S, 4.35

57+ 5z (3%7) ~ Dogadp (4.353)
where D, is the diffusivity in the unperturbed state, and S represents a source.
Equation (4.353) in a slab geometry is expressed as a form of Burger's equation, and

represents the ballistic propagation of the bump at the speed of
V. = Adpo, (4.354)

where dp is the height of the bump. The higher the bump, the faster the propagation
speed. It is shown that the transient perturbation may propagate much faster than the
diffusive propagation. See also [4.379] for some remarks on {4.378].

4.5.4.  Plume, avalanche, and self-organized criticality Considerations in §4.5 leads to
the view that a meso-scale structure appears, time to time, in inhomogeneous plasmas.
A meso-scale structure may give rise to the rapid propagation of energy through long
auto-correlations or the propagation of large bumps. The localized structure of a radial
electric field, on the other hand. may suppress turbulence {e.g.. suppression by sheared
flow). The dynamic evolution of the meso-scale structure is an essential element in
plasma turbulence. Therefore the damping rate of the meso-scale structure, a simple
form of which is given in Eq. (4.239), has an important role for the level of turbulence
that drives turbulent transport [4.380, 4.381]. Such an influence of damping rate of
meso-scaie structure has been confirmed in direct nonlinear simulations.

Recent progress in nonlinear simulations also demonstrates the importance of an
intermittent appearance of a strong flow. A strong global modification of the profile
appears in a short time (Fig. 4.44). In other words, an ‘avalanche’ is observed [4.382-
4.386]. An alternative type of nonlinear simulation has been performed by taking into
account the meso-scale structure in a tokamak plasma [4.387, 4.388]. It has been shown

that symmetry breaking structures with interinediate mwode numbers have substantial
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effects on the evolution of plasma profiles. A hierarchical approach including the meso-
scale structure and micro turbulence has been proposed [4.389, 4.390].

g 100 120
x=(r-a)lp,

Figure 4.44. Nonlinear simulation with fixed flux source. Iso-density contours,
n(z,t), averaged over y-direction, are shown. Strong global modification of the profile
appears in a short time, being observed as an ‘avalanche’. Reproduced from [4.386].

An awvalanche has also been predicted as a consequence of successive M-mode
transitions. Consider a case that a transition from L-mode to M-mode {Fig. 4.40)
occurs at a certain magnetic surface. As a consequence of this, a large amount of
energy is transported from this transition region to the neighbouring regions. It causes
pressure steepening in the neighbouring regions, so as to reach the critical condition for
the M-mode transition there. A successive M-mode transition occurs, and the location
of the transition propagates in the radial direction. It was shown that the successive
transitions propagate in space as an avalanche, not as diffusion [4.391, 4.392].

The theoretical study of plasma bifurcation presents the view that there are
bifurcation boundaries in the parameter space and a plasma profile is rapidly modified
when the parameter reaches the boundary. The modification of the profile propagates
rapidly in space. Extending this way of thinking, analyses have been performed [4.378,
4.393, 4.394! based on the sand-pile model which gives rise to self-organized criticality
(SOC) {4.395]. This model introduces discrete automata which have number-conserving
topping rules with a nonlinear threshold, and exhibits avalanches at all scales.

The long-time correlation of perturbations, which has a power law, is deduced from
this model. Examination of the experimental data has been performed, and the long-
time tail has been observed. Based on the experimental observations, the importance
of the SOC model of plasma transport has also been stressed [4.396, 4.397]. As is
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discussed in examples [1.378. 4.391, 4 392]. the SOC model provides a basis of deduction
for some cases. The model might have relevance in much wider circumstances: This is
because there are a lot of subcritical instabilities in plasmas and they have non-zero
correlation length and a nonlinear threshold for excitation as is surveyed in §4.3.5. At
the same time, however. some care is necessary for widening the applicability using
the observed probability density function (PDF) [4.398]. Nonlinear theories. even in
the framework of the local model, did predict a power-law distribution. For instance,
algebraic evolution is predicted for nonlinear drift-wave turbulence as Eq. (4.292), and
strong plasma turbulence exhibits a power law in the PDF and associated transition
probability function. as in Eqgs. (4.331) and (4.337).

It is thus stressed that the transport properties of inhomogeneous plasma may be
different depending on whether the global gradient is a fixed constant or the source is a
fixed constant. This difference is one of the characteristic features of far-non-equilibrium
turbulent plasmas. Contrary to this fact, the materials in thermal equilibrium show the
common transport property that is independent of the constraints of either a fixed
gradient or a fixed flux.
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5. Summary

Theoretical methods for fluid and plasma turbulence have made remarkable progress
in this century. Understanding of turbulence has become mature in various aspects:
the excitation of fluctuations by instabilities that are caused by inhomogeneities,
the energy partition via cascade and enhanced dissipation, the formation of meso-
scale structures by the inverse cascade or parametric excitation, the transport and
destruction of inhomogeneous structure by fluctuations, the suppression of turbulence
by inhomogeneity, and the subcritical excitation due to nonlinear instabilities. These
processes are either cooperating or competing with each other, and constitute the
dynamics of turbulence. The subject of this review article is the illustration of turbulence
theories which have given analytic insights into these essential features of highly-
fluctuating media.

Among various nonlinearly interacting dynamics in fluids and plasmas, turbulence is
characterized by a large number of degrees of freedom. One of the main advances is seen
in the statistical description of turbulence, which is discussed in this review. Contrary to
the case of media in or near the thermodynamical equilibrium, which is described by well-
established statistical laws (Maxwell-Boltzmann statistics, Fermi-Dirac statistics or
Bose-Einstein statistics), a turbulent state is in a far-non-equilibrium state. Statistical
theories have been developed, and various useful closure models have been investigated.
On this basis, hierarchical modelling like the TSDIA and mean-field approaches like
the K~¢ model are developed. The renormalized dielectric tensor is derived in plasma
turbulence theories, which describe self-consistent systems of equations for the turbulent
spectrum. These methods allow one to investigate the dynamics of generation and
nonlinear decorrelation of turbulence, providing a key to the understanding of turbulence
and turbulent transport. At the same time, the statistical physics of a non-equilibrium
state is generalized. Various theoretical formulae are surveyed.

Another outstanding progress in turbulence theories is the understanding of
the mutual interactions between perturbations and inhomogeneities with various
length scales. This mechanism introduces a variety of characteristics of turbulent
media. Inhomogeneous structures (e.g., sheared flow, pressure gradient, localized
electromagnetic fields, etc.) generate fluctuations so that ordered structures are
destroyed through turbulent transport. Simultaneously, global or ordered structures
are generated from the nonlinear interactions among turbulent fuctuations. Theories
have shown that these two competing processes (i.e., the destruction and production
mechanisms) are equally important, providing an explanation to the question: Why
is nature full of observable structures although Reynolds numbers are extremely large
so that fully developed turbulence might erase inhomogeneities? Structural transitions
of turbulent media, of which the H-mode transition is the leading example in plasma
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physics. are described. The dynamo is another challenging example. theories for which
are addressed.

In this review article. we have surveyed methods in turbulence theories. M\luch
common physics has flourished in fluid dynamics and plasma physics. Therefore.
emphasis is put on those plasma-turbulence theories that are based on a fluid description
of plasmas, and little about kinetic-turbulence theories is discussed.

Another approach to investigate turbulence is direct nonlinear simulation. This
approach is indispensable. and is complementary to the methods which were described
in this article. Quantitative description requires direct nonlinear simulations, because
exactly solvable systems are very limited in the field of turbulence problems. The
description of direct numerical simulation is limited in this review. The turbulence
theories may deepen further understanding of the physical mechanisms and provide laws
that govern turbulent phenomena. Turbulence theories of fluid and plasma, cooperating
with simulation methods, will continue to challenge the frontier of physics, ie., the
problem of the millenaries, ‘IlavTa per (all things flow) .
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Appendices
A. Quasi-linear theory of transport

Within the framework of the quasi-linear theory, which is briefly explained here. the
reactions of turbulence on the mean distribution and global profile can be calculated
[4.31]. The fluctuation-driven flux can be characterized by a transport matrix.

A. 1.  Reaction on mean distribulion

The back-reaction of the linear response affects the average distribution function as

d-. e ~ - d -
afzg<(E+va)-gf>. (A1)
Upon substitution of the linear response function f into Eq. (A.1), the evolution equation
is obtained. The electrostatic limit, E = —V ¢, is shown for an illustration as
d - 1 d -
k- — k-—/f. 2
at (m) Z|®k| “( “k v> v/ (4.2)

A diffusion equation in the phase space is obtained. with the diffusion coefficient being
a quadratic function of the perturbation amplitude in the quasi-linear model. The
influence of a strong magnetic field and finite-gyroradius effects has been extensively
discussed in the literature.

A.2. Influence on the global profile and transport matriz

In inhomogeneous plasmas, diffusion in the phase space is also associated with transport
in the real space.

The fluctuation-driven fluxes of particle, energy, and current have been calculated
by use of the quasilinear theory. Fluxes are expressed in terms of a transport matrix.
Similar to neoclassical transport, the transport matrix has been obtained for electron
fluxes. In this appendix, by convention denotes the particle flux, not the decorrelation
rate. An example is quoted from [4.38] as

r, D —3D D3 X1
‘%: = — _%D lff'D —0.87Dx3 Xa 1, (AB)
A/ Dy —0.87Dq - Ey

where the driving forces are given as

w\ eBr Tldp1 edp T.+Tldp
Xi=—{({— —— T A
! <m> T Top dr  Todr T, pdr (A-4a)
X, =~ e, (A.4b)

T, dr
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and the matrix elements are given as

~ 2
\/’.7? 3 Uthe m? 3¢m T
D=-=-—n, e s Ab

4 "R mzn:u, Im —ngl \ 2T, (A-5)

VT T Uine  m(m—1g) (edmni)
31 = S —— - (A.5b)
2 Vein qR m,mw im - nCII '\/§Te
and
~ 2
_ ‘\/EUthe equ,n,w
Jef = O¢ 1 0175m m%;w ]m TLq’ \/EI; s (ASC)

where the overline, which denotes the global (averaged) quantity, is suppressed for
simplicity. In this expression, (m, n) are the poloidal and toroidal mode numbers,
respectively, ppe is the electron gyroradius in the poloidal magnetic field, and o, is
the electrical conductivity (determined by the collisional processes). There are other
anomalous fluxes, such as the ion energy flux ¢:,, electron—ion energy equipartition
Qes, ion shear viscosity, etc. More complete transport matrices for the sets of fluxes
(L'ygers @y i) O (T, Gor, @iy Qe ) are explicitly given in [4.40]. A transport matrix that
includes the ion shear viscosity is discussed in [4.39].

The transport matrix is a quadratic function of the fuctuation amplitude. The
fluctuation level is not determined in this framework, and must be given by other
theoretical considerations. An order-of-magnitude estimate of the flux is often made by
employing the fluctuation level of e¢/T ~ 1/ (kL,). However, that level is sufficiently
high that the assumption of quasilinear response is violated, as is noted in §4.1.3.

A3 On the inward pinch

In addition to the off-diagonal terms of the transport matrix, which are associated with
pinch terms, an additional mechanism exists that causes particle and energy pinches.
Specifically, fluctuation-driven flux caused by the inhomogeneity of the magnetic field
has been analyzed. This flux is seen as a pinch.

The linear response of the distribution function to the electric-field perturbation is
calculated in a toroidal geometry. By use of a simplified equation, i.e., the gyrokinetic
equation [see, e.g., Eq. (2.28)], one has the response as
—i

f=

~ — e -
(VExB -Vf - ‘T“UllEﬂf

vl 20 \viz; _)

W — kH'U” — WM

5— VExp" —-B-,—f ; (A.6)

Uih
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where Ve, = Ex b/B and wy = (02 + 20%)w k- (b x VB)B ™! is the magnetic drift
frequency (B = |B]) [4.173]. The particle flux. which is caused by the fluctuating E x B
drift, is given as

I'= <V5xsﬁ> = <VExB/de(V)>- (A7)

There thus appears a term proportional to the gradient of the magnetic field [the third
term on the right-hand side of Eq. (A.6)]. The third term, which is a diffusion in phase
space, is associated with a plasma flux directed to the region of higher magnetic field.
Note that the origin of this third term in Eq. (A.6) is the gradient- B drift term in the
gyrokinetic equation Eq. (2.28) [the second term of vp, which is explicitly given after
Eq. (2.28)].

This flux can cause the pinch in tokamaks. It is in the direction of the major radius
for tokamak configurations, so the component of this flux across the magnetic surface
has a poloidal dependence of cos#, where # is the poloidal angle. As has been discussed
in the case of collisional transport (Pfirsch-Schliiter diffusion), the surface area has a
dependence as 1+ (r/R) cos§. and is larger in the lower-field side. As a result. an inward
pinch is induced. Upon comparing the first term and the third term on the right-hand
side, one has an order-of-magnitude estimate

flux by the third term _, —DqurR™*n

= A

flux by the first term —DoLVn (A8)

From this estimate one has the particle and heat fluxes, I' and g¢,, as
r

['= —DQLVH - DQLﬁn (Aga)

and
_ T
g = —xQuVD — XaL 7z P (A.9b)

where Dqr and xqu are the quasi-linear diffusion coefficient and quasilinear thermal
diffusion coefficient, respectively. If the gradient is weak, the pinch term can be effective.
The pinch term vanishes near the magnetic axis r = (), because the poloidal-angle
dependence of the surface element vanishes there. If the fluctuation amplitude is not
constant on the magnetic surface, like the case of ballooning instabilities, the pinch terin
could be larger.
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B. Thermodynamical equilibrium and statistical property

B.1. Thermodynamical equilibrium

In the fluid dynamics of the invicid limit, the Hopf solution for the characteristic function
®(u) is known as

kgT
P(up) = exp [——Bé— /dku—k.a(5ab — kakok™ % Jupy | - (B-1)

This solution corresponds to a state that all the modes are equally excited satisfying
the equipartition law as

E(k) = dnksTE. (B.2)

Some particular solutions of the plasma equations are obtained in the thermodynarnical
equations.

The equilibrium properties of the Hasegawa Mima (HM) equation have been
studied. In the state that a large number of modes are excited, equipartition is
sometimes assumed. A function which is expressed in terms of constants of motion
is a particular solution of the Liouville equation. For the HM equation, the energy and
enstrophy are conserved. In the Fourier representation, they are given as

€=(1/2)3 (1 + k)¢,

k

U=(1/2)> K (1+k)d;
k

In thermodynamical equilibrium, the Boltzmann distribution is sometimes assumed and
the probability density function (PDF) given as [B.1, B.2]

B

Pl  expl—ct ~ ) = [eww |- (5 + 2i) s ). B3

‘The statistical averages of Fourier components of the fluctuation potential, energy, and
enstrophy are given as

i

= e Ry (B.42)
L? k
(&) = 3 (at AR) (B.4b)
CRRE1+R)
(U = et G (B.4c)

where L? is the plasma volume per unit length in the 3-direction (ignorable coordinate).
The energy is larger in the longer-wavelength region, and the enstrophy is dominant
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in the shorter-wavelength region. In the limit of strong collisions, two equations in the
Hasegawa—Wakatani (HW) equations become decoupled. In such a limit, the internal
energy

£M = (1/2)Y ni
k
and the cross-correlation between the density and the vorticity,

C=1(1/2)Y_ kingex,
%

become an additional integral of motion. The thermodynamical equilibrium distribution
function is given as

P({¢x}] o< exp (~a€ - BU — o'E™ - gC). (B.5)

In this case, the functional dependence of (£x) and (U4) on &3 is similar to the one in
Egs. (B.4b) and (B.4c¢), and an asymptotic dependence is unchanged, i.e.,

() x k(' and (U) x k)

in the large-k7 limit. It is noted by [B.3] that the ‘temperature’ of quasi-particle
could become negative if one employs the Gibbs canonical ensemble. Instead, the
microcanonical ensemble is used in [4.46]. The particular solution Eq. (B.3) is divergent
in the short-wavelength limit. That is, it is not a physically observable state. However,
it would give some insight for the property of the plasma dynamics.

Equation (B.3) is expressed in terms of Fourier space. The choice of other functional
spaces is possible. The Beltrami field

V xu=xu, (B.6)

where {u} constitutes a complete set of orthogonal eigenfunctions, has been used to
analyze the thermodynamical equilibrium [B.4]. In this study, the distribution function
is expressed in terms of energy and helicity. A similar power-law distribution is obtained.

A large amplitude in the long-wavelength region is often called the ‘inverse-cascade
of energy’. In other words, the system of equations has a property of anti-shielding.
Consider the situation there are many clusters of charge. One might call them vortices,
or quasi-particles, or clumps. The dominance of fluctuation energy in the long-wave-
length region means that a positive vortex is surrounded mainly by positive vortices:
a negative one is mainly by negative ones. The correlation function of the vorticity is
obtained by use of the microcanonical ensemble as

¢ 1 &

((0)p(8)) o Ko [e: exp (—5-@5)] , (B.7)
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where Ky is the zeroth-order modified Bessel function of the second kind, £ is the
screening length in the HM equation, N and e are the number and charge of quasi-
particles (vortices), respectively, and £ is the total Coulomb energy among interacting
quasi-particles. The correlation function {p(0)p(€)) decays at the distance

? = f exp|E/(2N€Y)). (B.8)

This length is considered to be the size of a vortex (clump) in thermodynamical
equilibrium. As the total interacting energy £ becomes larger, the correlation length
(clump size) becomes exponentially longer.

B.2.  Propagating solitary structure

The other solution of interest is a solitary structure which moves with constant velocity.
In an atmospheric application, a solution like a ‘typhoon’ has been obtained as

¢(z,9,t) = 9(g) and §= /2 + (y - vat)? (B.9)
with the asymptotic form
$(¢) — exp(—§/t) (B.10)

[B.5]. The drift-wave vortex, which has a similar form as Eq. (B.9), has also been
obtained [B.6, B.7]. The vortex is either propagating in the direction of the ion
diamagnetic drift (ion modon) or in the direction of the electron diamagnetic dirft
(electron modon). The velocity of the drift-wave vortex (electron modon), v,., is faster
than the drift velocity V3. Influences of drift-wave vortex on transport in nonlinear
simulation have been discussed in, e.g., [B.8].

B.3.  Comparison of cases for strong turbulence and thermodynamical equilibrium

In the usual thermodynamical-equilibrium statistics, the principle of ‘minimum entropy
production rate’ is employed [B.9]. The cascade of enstrophy takes place in turbulence.
In fluids, the cascade process is dominant in the inertial range and an ansatz of
‘minimum enstrophy’ was proposed. For the interaction of ch'arged clumps (vortex,
quasi-particle) in plasmas, an inverse cascade of energy and a cascade of enstrophy occur.
The ‘maximum energy/enstrophy’ hypothesis is referred to for the thermodynamical-
equilibrium limit.

The strong turbulence in plasmas is not in thermodynamical equilibrium. The
strong pumping of fluctuation exists, and equipartition is not established. In case that
the excitation and nonlinear damping balance, the power-law dependence

() x k78, ie, (&) xk]® | (B.11)
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has been obtained in many cases (see. ¢.g., [4.13}). A principle for strong turbulence was
proposed as the minimum of the effective potential S(&), which is given as an integral
of renormalized dissipation [Eq. (4.329)] as
£ 4NE
G2
where A is the nonlinear damping rate of the dressed test mode (quasi-particle) and
G? = ¥, S{k4 7 stands for the statistical noise-source term. The statistical noise-source
term G2 is induced by the excited turbulent fluctuations. The instability mechanism and
the turbulent decorrelation are included in the nonlinear damping rate A. It has been
shown that the ‘minimum of S(£}" reduces to the minimum of the entropy production
rate, if one takes the thermodynamical-equilibrium limit of Eq. {B.11). The minimum
principle for S(&) is a generalization of the thermodynamical principle to the turbulence
counterpart. The comparison between the statistical principle for turbulence and the
principle of thermodynamical equilibrium is summarized in Table Bl.

S(E) = d€ . (B.12)
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Table B.1. Principles of statistical theory for strong plasma turbulence are compared
to the principles of thermodynamical equilibrium. (Example of CDIM/CDBM
turbulence [4.98. 4.99, 4.365, 4.366].)

Near Thermodynamical Far-Non-Equilibrium

Equilibrium
Basic Stosszahl Ansats; Large number of degrees of freedom
assumption 1/Q-expansion with positive Lyapunov exponents
Dampng Molecular viscosity Noniinear (eddy} damping

Ye = }ucki N éki/B

Micro vs Macro HUmicro = Mmacro Scale-dependent

Onsager’s Ansatz

Excitation
{random,) Thermal excitation Nonlinear drive
(coherent) {none) Instability drive
Decorrelation Ye Nonlinear decorrelation A4
rate
Balance Fluctuation-dissipation Extended FD theorem
(FD) theorem
et oin® ; —~ nonlinear noise
Einstein’s relation ! nonlinear decorrelation
Partition Equipartition Ey, ~ Tk Nonlinear Balance Ejy ~ {Vpg|k~3
Probability Boltzmann Integral of renorm. dissipation

density function P(E) ~ exp|—€&/(kpT)] P(&) ~exp{—S8(E)|/g

principle

Phase boundary

Transition
probability

Trensport matriz

Interface

of fluzes

Transport
coefficients

Maximum entropy/
Minimum entropy-
production rate

Maxwell’s construction

In(K} ~ —AQ/T
Arrhenius law

Cnsager’s symmetry

Curie’s principle

Independent of gradient

power-law tail

S{£)} minimum

S(€a) = S(&B)

K x exp|—S(Eaddle)]
power law

Not necessarily symmetric

Interfaces between heat,
particles, and momentum

Depend on gradient
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C. Clumps

The contribution of ballistic terms in the response function is discussed in [4.57, 4.58.
C.1. C.2!. A brief explanation of the concept is made after ref. [4.58]. A more thorough
survey of the clump theories is given in [1.34].

In deriving Eq. (A.2) from Eq. {A.1). the wavelike solution of the linearlized Vlasov
equation has been substituted. However. the solution of the linearlized equation

(8/8) + v - VIf = —(e/m)ofk - (9/0v)}f
is a sum of the wavelike solution and that of the homogeneous equation as
6

f= mﬂ_vk —f+fc1 (C.1)

where f. is a solution of the homogeneous equation
(u} —k- V)fcl = {.

Here. the suffix ¢l denotes clump. The self-consistent electric field that is induced by
this clump is

2t e

where ¢ is the dielectric constant [see Eq. (4.34)]. The clump in the phase space fa
and this induced electric field cooperatively introduce the evolution of the averaged
distribution function. Substituting Eqs. (C.1) and (C.2) into Eq. (A.1), one has

2

%f:‘f_ ( ¢ ) k- _H [7(v), F(v")] dv'dv" ks, (C.3)

m2 eggk

i [0, 7] = {faw s Y 8= kv F(v)

Rl ), e - kv A FW)| (C4)

with the two-point correlation function
<fcl(r -+ I.f’ V,v t+ T)fc](ra v, t))
= / <fc1(v) fa (v’)>lmJ exp(ik - I’ — iwr)dkdw. {C.5)

This contribution of clumps in Eq. (C.3) could contribute to the relaxation in the
non-wave region where the dielectric constant ¢ does not vanish. The correlation of the

clumps is proportional to 8{w — k- v}, and remains finite in a small interval ArAv in
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the phase space. The interval must satisfy Ar < vy, Jwp and Av < wy,. The correlation
relation is approximated as

<fcl(v)fcl(vi)>

where A is an amplitude given by the initial condition. Notice that the enhancement
factor @ = (ArAwv)? indicates that the contribution of the relaxation is due to a macro
particle with charge Qe. Since the binary collision frequency is proportional to the
square of the charge of particle, the formation of the clump is influential in accelerating
the relaxation.

= A(ArAv)*S(w — k- (v — V'), (C.6)

An example is the case where an initial distribution function is given by such a
model that f = 1 if f # 0 (like a spinodal decomposition) [4.58]. With this initial
condition, the coefficient A is approximated as A = (1 - f)f. An accelerated relaxation
to the Fermi distribution is shown. It has been pointed out that the interactions with
collective modes can give rise to a high energy tail. Also note that the initial memory of
the clump decays in time. Therefore the acceleration of the relaxation is effective when
the initial distribution function deviates substantially from the equilibrium distribution
function.

A quantitative analysis has been developed for the study of the clump correlation
function in, e.g., [4.269, C.1 - C.3]. The method of deriving the two-point correlation
has been extended to pressure-driven turbulence, e.g., [4.45, 4.75, 4.138, 4.253]. More
extensive discussion on the clump algorithm as applied to fluid problems is given in
[1.34].
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D. Rigorous upper bounds for transport

In some cases, a rigorous upper bound for the turbulent transport can be obtained.
The analysis of an upper bound has been explored in. e.g.. [4.67. 4.78 D.1, D.2]. A
brief survey of the concept is explained here: details are given in [1.34]. Let us take an
equation of, say, temperature

g _0 &
(55 + ua — Xc@) T{x.t) =0 (D.1)

where 1 is a turbulent velocity field and y. stands for the molecular thermal diffusivity
that is caused by binary particle collisions. The total flux Qo is composed of the
turbulent transport @ and by the collisional transport @. as Qe = @ + Q. where
Q = (aT{(z.t)) and Q. = —x.(8/9z)T hold.

When the statistics of the turbulent velocity field @ are specified. being independent
of the response of the temperature fluctuation. the problem is called passive. When the
dynamics of @ is determined by the dynamics of plasmas or fluids (e.g.. through the
MHD equations or the Navier-Stokes equation). the problem is called self-consistent.

The structure of the theorv is explained by taking an example from the passive
problem, following [4.67]. The system of Eq. (D.1) may be normalized as follows: length
to L (the distance between the two boundaries), temperature to AT (the temperature
difference between the two boundaries), fluctuating velocity to the average @ == (G*)"/2,
and time to 7, = L/4 (the macroscopic eddy-turnover time}. Under this normalization,
the characteristic parameters are the Reynolds number Re and the Kubo number K,
which are given as

Re=1uL/x. and K = urs/L, (D.2)

where 7,. is the auto-correlation time of the fluctuating filed @. In a passive problem.
Re and K are given parameters.

The maximum of the possible turbulent flux is discussed with the boundary
condition Q(0) = @Q(1) = 0. As is discussed in §4.1.4 [e.g., Eqgs. (4.48) and (4.49}].
a quadratic form in perturbed quantities can be obtained from Eq. (D.1). The space
average like 0= f3 dxQ(x) is employed. In a stationary state, one has

[ rd 2
< déT) (D.3)

~Qle) g (T(a)) = Re™ | Z-

where the deviation of temperature profile is denoted as éT'{x), with respect to which
the turbulence-driven flux @ is maximized. Equation (D.3) is rewritten as

<l

—_—— ﬁ
: :Re(Q—@/z—kRe‘l(d—?z\ , (D.4)
\dzr ]
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The variational principle is stated as:

Maximize the functional Q[87]
subject to the constraint, Eq. (D.4). (D.5)

This maximum principle is well-posed. One has the Schwartz inequality

Q = (3udT) < (6u2)12 (5T2)1/2.
That is, the lefi-hand side of Eq. (D.4) is linear (at most) in the temperature
perturbation, while the right-hand side of Eq. (D.4) is quadratic. The constraint
Eq. (D.4) bounds the domain of 67", and confirms the presence of the upper-bound
of the left-hand side, Q[6T.

Several cases has been studied [4.67]. In the limit of large Kubo number, K — oo,
Le., the perturbation is static, the upper bound of the flux is given as

Do = O (Be) = Re ! ERe coth (—;—Re) _ 1} . (D.6)
In the lmit of small Kubo number (i.e., very short auto-correlation time of fluctuations),
the result is obtained as Q = 5ql(lC). It was pointed out that in order to achieve proper
quasi-linear scaling, a two-time constraint is necessary in addition to the constraint,
Eq. (D.4). See [4.67] for details. An upper bound is given for an arbitrary Kubo
number as

_Qq(K)Qn(Re)
qu(}C) + @oo(Re)

Application has also been made to a self-consistent problem in plasma turbulence
theories. The MHD equation has been analyzed for the turbulent resistivity of the
reversed-field pinch (RFP), and an upper bound for the volume-averaged turbulent
resistivity 7, has been obtained [D.2]. An cnergy-stability criterion for the turbulence,
below which 7%, = 0 holds, ie., any (subcritical as well as supercritical excitation)

perturbation is predicted to decay in time, is also obtained.

5ub = (DY)
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