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Abstract

Nonlinear simulations of a magneto-hydrodynamic (MHD) plasma in full

three-dimensional geometry of the Large Helical Device (LHD) are conducted

to study nonlinear evolution of pressure-driven instabilities. A series of simu-

lations for a resistive plasma shows growth of resistive ballooning instability.

The growth rate of the most unstable resistive ballooning mode is shown to

be proportional to the one-third power of the resistivity. Nonlinear saturation

of the instability and its slow decay are observed. After the nonlinear sat-

uration, the pressure takes a profile similar to so-called pedestal. A possible

scenario of nonlinear relaxation of a plasma toward a new equilibrated state

is discussed.
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1. INTRODUCTION

The LHD system [1] is a heliotron/
torsatron type helical device with a plane
magnetic axis with two helical coils. where
the pitch period number M = 10 and the
aspect ratio of the major radius to the av-
erage minor radius of a plasma s 6.5. A se-
ries of experimental programs by using the
LHD are now under way and some success-
ful results have been reported. {2.3] Since

macro-scale plasma fluctuations in the LHD

system are considered to be dominated by
pressure-driven instabilities, understanding
linear and nonlinear behaviors of this kind
of instability is important to achieve good
confinement. Pressure-driven instabilitics
are important not only for the LHD system
but also for other helical systems in general.
and for tokamaks in the high 3 operation
regime. Although three-dimensional, non-
lincar behaviors of an MHD plasma have

been extensively investigated for tokamak



plasmas {see Mizuguchi et al. [4] for exam-
ple), little is known about helical plasmas.

Here we concentrate on an MHD plasma
to study pressure-driven instabilities in heli-
cal systems. This kind of instability is often
investigated through linear stability analy-
sis and/or numerical simulations of reduced
MHD equations. One of the most successful
approaches of stability analysis is the stel-
larator expansion method which was intro-
duced by Greene and Johnson [5], as well as
the averaging method. There are enormous
number of works which employ these meth-
ods to analyze MHD linear stability of heli-
cal plasmas. Refer to a review by Ichiguchi
[6] and references therein on these stability

analysis.

While linear stability analysis by means
of the stellarator expansion method is es-
sentially two-dimensional, there are three-
dimensional analysis, too. A series of
works by N. Nakajima and his collabora-
tor [7-9] was dedicated to investigate three-
dimensional linear ballooning stability. Fur-
thermore, recent numerical codes such as
CAS3D [10] and TERPSICHORE [11] are
used to investigate linear stability of three-
dimensional heliotron equilibria. For exam-
ple, the CAS3D code was used in Chen et

al. [9] for their global mode analysis.

We have to note that development of
the stability codes such as CAS3D and
TERPSICHORE enabled analysis of three-
dimensional instability with low-n modes,
where n denotes the toroidal Fourier mod-
e number. Before the development of these

codes, it was difficult to analyze low-n sta-

bility of helical systems because of the com-
plexity of their geometry. Most of previ-
ous researches on linear analysis have been
dedicated to ideal MHD instabilities and
properties of a resistive MHD instabilities
On the other hand,
some experimental results suggest that plas-

remain unclarified.

ma behaviors are often dominated by resis-
tive instabilities for low-n modes. For ex-
ample, Sakakibara et al. [12] have reported
that growth of resistive interchange mod-
e were 1mportant as much as ideal inter-
change mode in their Compact Helical Sys-
tem (CHS) experiment.

Nonlinear investigations of helical sys-
tems have been conducted by making use
of reduced MHD equations, which was first
derived by Strauss [13]. There are sever-
al works by using reduced MHD equations
[14-186), which have succeeded to treat low-n
modes concerning internal disruption phe-
nomena. However, fully three-dimensional
structures had to be out of scopes of these
researches because, from derivation, their
reduced MHD systems could express effects
of three dimensional helical magnetic struc-
Thus

behaviors of ideal or resistive ballooning

ture only in an averaged manner.

modes that strongly depend on local mag-
netic curvature effects are not understood

vet.

In order to investigate complex nonlin-
ear behaviors of an MHD plasma in a three-
dimensional structure, we have to execute
fully three-dimensional MHD simulations
without employing specific approximation-

s for the structure. For this purpose, we



have developed a new simulation code which
solves a full set of MHD equations in a fully
three-dimensional toroidal geometry. This
simulation code is a natural extension of
the HINT code [17], which obtains a ful-
ly three-dimensional equilibrium state with-
out imposing the nested flux assumption.
This nonlinear simulation code was origi-
nally developed by Hayashi and applied for
H1-Heliac simulation under the stellarator
symmetry. [18} Then it has been improved
to include effects of the shear viscosity and
to treat full-torus system. We aim to under-
stand nonlinear behaviors of an MHD plas-
ma in a helical system by making use of the
new code. The main target of our investiga-
tion is to study evolution and saturation of
pressure-driven instabilities which grow in
currentless equilibria of helical plasmas and
to clarify physical mechanism of relaxation
We

emphasize that nonlinear investigation on

to a possible new equilibrium state.

shown in Section 3, an indication of a re-
laxation phenomenon caused by nonlinear
evolution of unstable modes is found.

This paper is organized as follows. Sec-
tion 2 is for outlines of our simulations.
Basic cquations, boundary conditions, dis-
cretization scheme are described there. It
is also described how to give an initial con-
dition. Section 3 is for results of nonlinear
stmulations. Some observation in lincar and
nonlinear regimes are described there. Con-

cluding remarks are seen in Section 4.

II. OUTLINE OF SIMULATION
SCHEMES

A. MHD equations and boundary

conditions

We solve time evolution of a full set of

nonlincar, non-ideal (dissipative) MHD c-

quations
helical MHD plasma including fully three- .
dimensional structures has seldom been at- ? = _-aa— (pVi), (1)
tempted. There are not so much accumu- 3 (pV—§ gi Bp
lation of knowledge on nonlinear behaviors B = oz (pViV;) — Bz + €31, By,
of helical plasmas. Although our code can ! 82V 1 62 av.
treat low-n {fully toroidal) modes by solv- +u —+ 3 =5 (@2)
. ] . Y Y anaﬂ’:j 3 3.’1,‘5 8.’1}]' '
ing entire toroidal system, such a full-torus Ap ap av;
simulation is expensive as for the computa- bt _V«Ta_mj —P 5_3;3 +{y=1x
tion time. As a first step in the attempt of a 8 p\1
. . . . . . nid; +® - — | —x—=L (3)
executing simulations in three-dimensional oz; dz; p
geometry, we impose the stellarator symme- 0B; s,
. = = Gk (~€umViBn +1Ji) (4)
try in this paper. We assume that some ba- ot Oz ;
sic nature in nonlinear behavior of pressure- Jo = e, Ok 0B, (5)
driven instabilities can be observed even in T
this restricted situation. Actually, as is =9y re- . 1 ( 3‘/;-\] [/31/73 \f[ (6)
’ 3\dz: ) \oz; /|~ 7



1/8V, oV;

€sj =§ (3—%+ 3.7:,-)'

The symbols V;, B;, J; and e;; are i-th
components of the wvelocity vector, mag-
netic field vector, current vector and (i. j)
component of the rate-of-strain tensor in
the Cartesian coordinate, respectively. The
symbols p and p represent the density and
pressure, respectively. The symbol ¢, rep-
resents Edington’s anti-symmetric tensor.
We take a sum from 1 to 3 on repeat-
ed suffices. The conductivity, resistivity
and shear viscosity are represented by k.7
and p, respectively. Equations (1)-(7) are
already non-dimensionalyzed by using the
characteristic toroidal magnetic field By. the
toroidal Alfvén velocity V, = By/\/pope de-
fined by using By, the permeability p¢ and
characteristic density pg. and the character-
istic length Lg. The geometry is set to sim-
ulate the LHD configuration.

Note that dissipative coefficients x.7
and p are assumed to be constant and
isotropic in our simulations. Although non-
constant or non-isotropic dissipation mod-
els such as the Spifzer resistivity and a
conductivity paralle! to the magnetic field
are often adopted in fusion plasma simu-
lations, we restrict ourselves to the case
of constant and isotropic dissipation coef-
ficients in this article because few knowl-
edge are accumulated on numerical behav-
ior of a fully nonlinear MHD plasma in a
helical system and we should start from
the simplest model. Since the quantities
are already non-dimensionalyzed and kept

isotropic constants, we may replace the re-

(7)

sistivity » by the magnetic Reynolds num-
ber {or S-number S = 1/7).

The MHD equations (1)-(7) are now
described in the helical-toroidal coordinate
system (u®*, u?, u®) which has been adopted
in the HINT code. [17] The toroidal-helical
coordinate system (ul*,u?, u®) used here is

described as

w* =u' + 6 = rcos(f — ho), (8)
w? = rsin(f — he), (9)
w=—o (10)

by the minor radius of the torus r, distance
from the origin of the coordinate system 4.
the poloidal angle § and the toroidal angle
®. See Fig.l in Harafuji et al. [17] on the
coordinate system. Since we aim to study
an MHD plasma in the LHD geometry, we
set & = 0 and a set of values M = 10 and
h = M/2 is adopted throughout this arti-
cle. The MHD equations in this coordinate
system are described in the Appendix A.
We impose the stellarator symmetry to this
system. The stellarator symmetry consist-
s of M = 10 periodic boundary condition
on one-pitch period and a sort of symmetric
condition on the magnetic field at ¢ = 0 and
at the mid of one-pitch period ¢ = x/M.
Boundary conditions on the density, pres-
sure and velocity fields are determined so
that the MHD equations (1)-(7) are invari-
ant when the boundary condition is imposed
on the magnetic field. Then, the system size
of the simulation in the toroidal direction is
reduced to one twentieth, 0 < ¢ < #/M in
toroidal angle, and toroidal mode number

available in our simulation is multiples of



10. when the mode number is measured in
a full-torus geometry. See the Appendix B
for the detail of the toroidal boundary con-

ditlons in our coordinate system.

In Fig.1, the computational domain is
drawn in a gray, twisted rectangular box.
The computational domain covers a half-
pitch period in the toroidal (u*) direction.
The plasma is assumed to be surrounded
by a perfectly conducting wall. A pair of
helically-twisted coils of the LHD device and
a tvpical isosurface of the plasma pressure
are drawn for readers’ convenience to under-
stand the symmetry. The pressure profile
used to draw the isosurface is a result of a
nonlinear simmulation which will be described
in the next section. It is seen that the pres-
sure 1s twisted ten times in the toroidal di-

rection.

Equations {1}-(7) are discretized uni-
formly in the helical toroidal coordinate sys-
tem {(u'". u?.u%) and the spatial differences
are evaluated by the fourth-order central-
finite-difference scheme. The resultant dis-
crete equations are marched by the Runge-
Kutta-Gill method. which has the fourth-
order accuracy in time. Number of the grid

2

- . i < .
points 1 % . u u® directions are represent-

ed as .Vi. V3 and Nj. respectively. Here
Ny i1s a grid number for the half period in
the toroidal direction. Although we have
conducted simulations with N} = N, =
49, N3 = 16 and N} = Ny = 97. \; = 32,

only latter cases will be shown here.

When we discretized the nonlinear equa-

Tir mrsrrneion Tler
1y

called aliasing errors. (See a text by Roache
[19]. for example.) Removal of aliasing cr-
rors is simple and easy when we impose pe-
riodic boundary coaditions on the system
because we only have to operate a low-pass
filter to the variables, as is often adopted by
well-known spectral methods. [20] The cut-
off wavenumber of a low-pass filter must be
decided by investigating the nonlinearity of
the equations to be solved. However, it is
not the case in this article because bound-
ary conditions in u** and u? directions are
not periodic. In stead of having a clear-cut
de-aliasing by using a low-pass filtering op-
cration. here we make use of a smoothing
scheme by taking weighted-average of vari-
ables at neighboring grid points. [21] The
scheme was adopted by Mizuguchi et al. [4]
in their three-dimensional MHD simulations
of a spherical tokamak. to show satisfactory
results. This scheme contributes not onlv
to removing aliasing errors but to stabiliz-
ing the discretized system. Note that rela-
tively large-scale structures have the most
unstable nature under the parameters used
in this paper. Then the de-aliasing smooth-
ing operation works only to remove small
numerical oscillations and does not change

physical picture of numerical results.

B. An initial equilibrium obtained by
using the HINT code

An initial equilibrium is prepared by us-
ing the HINT code [17]. The HINT code is

a sort of a relaxation scheme to obtain an

merical errors inevitably. which arc often

ideal MHD cquilibrium. In the HINT code,



an initial pressure profile is given by
p() = (1", (11)

where ¢ represents an initial magnetic flux
function. Parameters ¢ and b controls the
initial profile of the pressure. Here a set of
parameters ¢ = 1 and b = 2 is adopted.
The choice of parameters is the same with
Ichiguchi et al. {22] who have studied the
Mercier stability of the LHD system by us-
ing the VMEC code [23]. We study a case
where the major radius of the vacuum mag-
netic axis R,, is located at B, = 3.7m in
the real dimension. This case corresponds
to a case where the vacuum axis is slightly
inwardly shifted. (The center of the helical
coil for LHD is located at 3.9m in the major
radius.) In this paper, we restrict ourselves
to an initial equilibrium whose central be-
ta Gy is 4%. According to a previous study
[22], a part of magnetic surfaces for an e-
quilibrium with R,; = 3.7m and 3 = 4%
are analyzed to be unstable for the Mercier
criterion.

In Figs.2(a) and (b), Poincare plots of
the magnetic field lines on horizontally-
and vertically-elongated poloidal sections at
¢ = 0 and ¢ = w/M, respectively, are
shown. Hereafter, in figures of Poincare
plots and contour plots, the right-hand side
represents the outer side of the torus both
for the horizontally- or vertically-elongated
cross-sections. Poincare plots and contour
plots in a horizontally- (vertically-) elon-
gated rectangular box represent those on
a horizontally- (vertically-) elongated cross-
section. We see in Fig.2(a) and (b) that the

Shafranov shift has put the position of the
magnetic axis toward outer side of the torus.
Consequently, the magnetic axis is observed
relatively in the right-hand side in Figs.2(a)
and (b). In Fig.2(c), the profile of the rota-
tional transform ¢/2# is shown. The abscis-
sa represents the averaged minor radius. In
Fig.2(d) a bird’s eyes view of the pressure
on a horizontally-elongated poloidal section
is shown. It is seen that the pressurc has
a clear bell-shape which is a natural re-
sult of the parametfer set ¢ = 1,6 = 2
for the initial pressure profile of the HINT
code. In Fig.2(e), a bird’s eyes view of the
toroidal current on the same poloidal sec-
tion with Fig.2(d) is shown. It is seen that
the Pfirsch-Schliiter current is emerging on
the center of the poloidal section keeping the

net toroidal current null.

ITI. NONLINEAR SIMULATION

A. An observation of a resistive

ballooning instability

Now we investigate time evolution of the
MHD equations (1)-(7). In Fig.3, time evo-
lution of the kinetic energies obtained by
typical three simulations is shown. The con-
ductivity & and shear viscosity p were sct
1x 107% and 2 x 1072, respectively, and the
resistivity were varied n = 1 x 10 %(solid
line), 1.78 x 107%(dashed line) and 3.16 x
1075 (dotted line). The conductivity & is
fixed to 1 x 107® throughout this article.
First we observe some overshoots of the

kinetic energy in the very early phase of



the time evolution. It is typically observed
in simulations when random perturbations
which are not proportional to linear ecigen-
function are given. After the overshoots. the
kinetic energy stays almost constant for a
period for about from ¢ = ¢, = 40074 (dot-
ted line) to £ = ¢, = 7007, (solid line). It
1s considered to be a period when the linear
eigenfunction at unstable modes is gradual-
ly formed out of tiny random perturbations.
At around ¢ = t,, the kinetic energy begins
an exponential growth until nonlinearity of

MHD equations (1)-(7} cause saturations.

Now we study behaviors of the pressure
during the exponential growth observed in
Fig.3. Hereafter, so far as we do not note ex-
plicitly, we investigate various quantities for
the case of 1 = 3.16 x 107 % and 4 = 2 x 1073,
In Figs.4(a) and (b), contour plots of the
pressure on a horizontally- and a vertically-
elongated poloidal sections are shown. re-
spectively. Here the time ¢ = 52074 corre-
sponds to relatively early stage of the ex-
ponential growth. There are some deforma-
tions of the pressure contours in the outer
side of the torus. In order to investigate
these deformations, contour plots of modulo
of the pressure fluctuation on horizontally-
and vertically- elongated poloidal section-
s are shown in Figs.4(c) and (d), respec-
tively. We see that the pressure fluctua-
tion is localized around a circular region
where the pressure gradient becomes the s-
teepest. The fluctuation is especially large
Note that

the de-stabilization effect of the magnetic

in the outer side of the torus.

-~I

side of horizontally-elongated poloidal sec-
tion for the heliotron type helical configu-
ration. These observations suggest that the
cxponential growth was caused by a kind
of ballooning instability. It is considered
that a weak interchange instability has al-
so contributed to the pressure deformation
because there are small deformations in the
inner side of the torus. (Recall that our ini-
tial equilibrium solution is expected to be
Mercier-unstable.) As time proceeds. wavy
contours of the pressure grows toward edge
regions. especially in the outer side of the
torus. We observe in Figs.4(e} and (f) that
ridges of the pressure contours slightly bend
into the inner side of the torus. It looks that
these ridges are growing toward the radial
direction of a magnetic coordinate. [6] At
this stage of the time evolution, the energy
growth is not exponential any more and go-
ing to saturate by nonlinear effects, though
the plasma stiil seems to be dominated by
the most unstable mode. An isosurface of
the pressure at t = 8907, is seen in Fig.1.
It is clearly seen that ridges of the pressure
isosurface have grown strongly toward out-
er side of the torus while the ridges in the
inner side of the torus are very small.

In order to look closely into the origin of
the exponential growth and pressure defor-
mation observed above. we have conducted
a Survey on various resistivities on a range
1x107% <5 < 3.16 x 10™* for two values of
the viscosity p =1 x 1073 and 2 x 103, In
all of simulations, the exponential growth of
the kinetic energy and wavy contours of the

pressurc In the outer side of the torus are



observed. The exponential growth regions
were identified and fitted by an exponen-
tial function in order to obtain growth rates
of the most unstable mode. In Fig.5, the
growth rates are shown as a function of the
resistivity. It is seen that the growth rate
is almost proportional to 7'/2 both for the
case of g = 1x 107% and 2 x 1073, Previous
investigations [15,24] have shown that both
resistive interchange and resistive balloon-
ing instability brings growth rates propor-
tional to n%/3. Because of the pressure de-
formation observed in Figs.4, these growth
are considered to be caused by the resistive
ballooning instability. ( We have to keep in
mind that the linear analysis by Depassier
and Cooper [24] is based on a large-aspect-
ratio expansion. Since the aspect ratio of
the LHD is about 6, we have to be careful
to compare our results with their analysis.
)

Poloidal mode number of the ballooning in-
stability observed in these simulations is
m = 15 as far as we identify the mode
by counting number of ridges of the pres-
sure contours, local maxima of module of
the pressure fluctuation, and number of is-
lands observed in Poincare plots of the mag-
netic field lines. Since the ballooning mode
was first observed at the region 1/2% ~ 2/3,
where the pressure gradient become the s-
teepest. the toroidal mode number is con-
sidered to be n = 10, which is the smallest
toroidal number available in our simulation-
s. There observed little dependence of num-
ber of these ridges of the pressure contours,
or the poloidal mode number of the most

unstable mode, on the resistivity. It may be
understood as follows. The toroidal mod-
e numbers available in our simulations are
restricted to multiples of 16. The region at
which a ballooning mode should emerge first
is roughly determined by the steepest pres-
sure gradient. It is the region /27 ~ 2/3
in our Initial equilibrium. Then the poloidal
mode numbers which we expect to emerge
are m = 15 and multiples of it. Under the
value of the shear viscosity we used, poloidal
mode numbers much greater than m = 15
are suppressed. Consequently we have only
m o~ 15 poloidal mode number. Remem-
ber that the mode structure was identified
through number of ridges of pressure con-
tours or local maxima of the modulo of pres-
sure fluctuation and that ballooning mode is
realized by coupled set of poloidal Fourier
modes [25]. Thus it is considered that there
exist some poloidal numbers around m ~ 15
associated with ¢/2m ~ 2/3.

Now we pay attention to the growth rates
associated with 7 < 1.78 x 107% in Fig.5.
Some of growth rates in this resistivity re-
gion do not obey to the scaling n'/*. We
have to note two comments here. One is
that the growth rates with g = 1 x 1073
and 5 < 1 x 1075 gave almost the same
growth rates with the case p = 1 x 107%
and = 1 x 107%. We consider that a nu-
merical dissipation caused by the finite d-
ifference scheme exceeds the physical effect
of the resistivity for 7 < 1 x 107%. Then
the effective value of the resistivity should
be greater than 1 x 107% even when 1 was
set 1 x 107%, to cause a larger growth rate



than the vahie expected by n'/3-scaling.

Another one is on a deformation of the
pressure for the cases p = 2 x 107? and
7 < 1.78 x 107%. Their small growth rates
lead the plasma to the long exposure under
conductive effects and ohmic heating during
the period of the formation of eigenfunction.
as was observed in Fig.3. We deduce that
exposure by the nonideal dissipation effect-
s for sufficiently long period caused change
of the equilibrium and brought departure of
the growth rate from the scaling /2.

B. Nonlinear deformation of the

pressure profile

Next we see deformation of the pressure
after the nonlinear saturation of the kinetic
energy observed in Fig.3. Again we concen-
trate on the case of = 3.16 x 1075 and u =
2 x 107%. Contour plots of the pressure at
t = 143074 on horizontally- and vertically-
elongated poloidal sections are shown in
Bends of
ridges of the pressure contours toward the

Figs.6{a) and (b). respectively.

inner sides of the torus are more clearly
seen in Figs.6(a) and (b) than in Figs.4{e)
and {f}.

ridges. which can be seen as if they are go-

Thus the bends of the pressure

ing toward the radial direction of a mag-
netic coordinate. are considered to be a re-
sult of nonlinear phenomenon. In the in-
ner side of the torus in Figs.6. we observe
there are some regions where the pressure
contours arc relatively sparse. The pres-

sure gradient is small there. On the oth-

in the outer side of the torus. In Figs.6{c)
and (d).

t = 170074 on horizontally- and verticallv-

contour plots of the pressure at

clongated poloidal sections are shown. The
pressure contours are less concentrated than
those in Figs.6(a) and (b), to show that the
plasma profile is changing toward a new re-

laxed state.

The Poincare plots of the magnetic field
lines associated with cross-sections in Figs.6
are shown in Figs.7. Although the magnet-
ic field lines are stochastic in Figs.7(a) and
(b}, there are clear magnetic surfaces at the
center region of the plasma. The plasma
is still well confined inside the nested mag-
netic surfaces. In Figs.7(a) and (b), there
are also many remains of magnetic surfaces
and/or islands which prevent the magnet-
ic field lines from becoming fully stochas-
tic. These remains of magnetic surfaces and
islands seem becoming clearer in Figs.7(c)
and (d) compared with (a) and (b) respec-
tively, suggesting that the plasma confine-
ment is going to be recovered. As far as the
central part of the plasma is concerned, we
find appearance of new magnetic islands in
Figs.7(c) and {d). We do not find any mag-
netic islands there in Figs.7(a) and (b). It
means that a new unstable mode is growing
around this region. We will come to this

point in the last section.

We sce a one-dimensional plot of the
pressure at ¢ = 170074 in Figs.8. The ab-
scissa is a vertical axis u? which go across
the point with the maximum value of the

- oo s I 1l
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pressiure on a verticaliy-elongated poloidal

er-hand:the pressure gradient is very large

section. Readers may be able to understand
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as a minor radius r in this case because
the magnetic axis is located on u? = 0.
We observe that the pressure profile is quite
polygonal. The core part u? =~ 0, at which
a plasma is confined by the nested mag-
netic surfaces, is surrounded by a very s-
teep gradient of the pressure. It is consid-
ered that this steep gradient of the pressure
becomes a source of a new pressure-driven
instability there. At the low-pressure re-
gion, there observed two stages of flattened
pressure around |us| ~ 0.3 and |ug| ~ 0.5.
As is shown in the next figures, this struc-
ture is brought by a ballooning instability.
At the edge region |us] > 0.5, we observe
the pressure profile looks something like the
pedestal structure observed in LHD experi-

ments. [3]

A bird’s eyes views of the pressure at
I =
Fig.9(a), a bird’s eyes view of the pres-

170074 are shown in Figs.9. In
sure on horizontally-clongated poloidal sec-
tion is shown. The inner side of the torus
is in the left-hand side of this view. It is
clearly observed that ridges of the pressures
are twined around the core part of a con-
fined plasma. Furthermore, there are some
locally-peaked pressure profile in the inner-
side of the torus. Much more number of
small peaks of the pressure are observed in
Fig.9(b), a bird’s eyes view of the pressure
on vertically-elongated poloidal section. It
is a view from the inner side of the torus.
Trains of small peaks consists of a couple of
layers in the radial direction. These small
peaks of pressure are associated with mag-

netic islands observed in Figs.7.

10

A comparison of pressure profiles in
Figs.6{c) and (d), Fig.8 and Figs.9 reveals
that the flattened pressure profile observed
in Fig.8 have been formed along the pressure
ridges which we have observed in Figs.6. In
fact, by observing contours in Figs.6, we find
that there are regions with sparse contours
along pressure ridges both on horizontally-
and vertically-elongated poloidal sections.
Note that the two pressure ridges observed
in Fig.9(b) forms a pedestal-like pressure
silhouette at the edge regions, associated
with one-dimensional plot in Fig.8. Thus we
may be able to attribute the origin of this
pedestal-like structures to the resistive bal-
looning instability and its nonlinear evolu-
tion which has formed these pressure ridges.
Since the pressure ridges are growing along
the radial direction of the magnetic coordi-
nate, some analysis on this coordinate sys-
tem may contribute to clarify the mechanis-

m of the flattened pressure formation.

IV. CONCLUDING REMARKS

We have reported results on nonlincar
simulation of an MHD plasma that is exe-
cuted in the full three-dimensional geome-
try of the LHD system. In this paper, we
focused on plasma behavior in the medi-
um poloidal mode number range by impos-
ing the sterallator symmetry boundary con-
Growth
and saturation of the resistive ballooning

ditions in the toroidal direction.

modes were observed. We found that the
growth rate of the kinetic energy in the lin-

ear growth period were proportional to 7'/3.



In nonlinear stages of our simulations.
we observed that magnetic surfaces are go-
ing to be recovered in the edge region of
the plasma while a new instability is com-
ing up in the center region. It was observed
in Figs.7 that magnetic surfaces at the re-
gion where the ballooning instability had e-
merged first were recovered while a new bal-
looning instability was going to occur in the
inner side of poleidal sections. A scenario
of nonlinear relaxation which is consistent
with above observation is described as fol-

lows.

1. A ballooning instability is first ob-
served in a region with the steepest
pressure gradient. It causes convec-

tive transport of the plasma heat en-

ergy from the inner region to the edge
region through the region under the

instability grows.

2. While the first instability initially ex-
cited is stabilized by a nonlinear ef-
fect (reedistribution of the pressure)
and viscosity, it prepares next insta-
bility by making the pressure gradi-
ent in the inner side of the poloidal
section steeper. This process contin-
ues till the steep pressure region in the
core region disappears.

3. When the final instability in the cen-
tral part of the poloidal section is sta-
bilized, the overall profile of the plas-
ma pressure becomes broader, and it

relaxes

fr-
Lo

appears that the system

In order to consider whether this rough sce-
nario scems to occur or not. conteur plots
of the pressure and Poincare plots of the
magnetic ficld lines on horizontally- and
vertically-elongated poloidal sections at t =
400074, far beyond the last time in Fig.3
are shown in Figs.10. We observe that
the pressure profile is well-shaped and the
magnetic surfaces are recovered clearly in
Figs.10. Although a computation with fin-
er resofutions might be required to confirm
such a Jong time scale behavior. we consid-
er Figs.10 suggest a possible recovery of the
equilibrium state as a result of a series of
nonlinear relaxation processes according to
a scenario described above.

In nonlinear stages of our simulations.
we observed structures which look similar
to pedestal structures observed in LHD ex-
periments [3]. Although it may be in con-
troversy on what the origin of the pedestal
is, it is worth keeping in mind that similar
structures can be observed in MHD simula-
tions. It is also noteworthy that this struc-
turc is observed along the pressure ridges.
which have been formed as a result of non-

linear evolution of ballooning instability.
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APPENDIX A

The MHD equations (1)-(7) are de-
scribed in the helical-toroidal coordinate
system (8)-(10) as follows.
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Here g;;, g and g are (¢, f)-components of

covariant and contravariant components of
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metric tensor and square of the Jacobian,

respectively. The symbol

h _ h __l hp 39:‘;: 3§jp 07i;
{z‘j}_{ji}_Zg (auf+ dui | Bur
(A10)

is the Christoffel symbol. Symbols %, % and
7% represent i-th contravariant components
of the velocity, magnetic field and curren-
t vectors, respectively, while variable with
subscripts represent contravariant compo-
nents which can be obtained by using the
metric tensors g;; or g'. The bold face sym-
bol M represents a 3x 3 Jacobian tensor and
its (4, j) components are represented by the
symbol M. In eq.(A2), we have used the
vector identity

Vie=V(V-v)—Vx(Vxwv) (All)

for ease of a mathematical expression of the
the Laplacian of a vector v. In eq.(A4), we
have also used a fact that the dissipative
coeflicients are isotropic constant.

APPENDIX B

As was described in Section 2, the stel-
larator symimetry is imposed in the toroidal
direction of this system. The boundary con-
ditions associated with the stellarator sym-
metry on the contravariant components of
the magnetic field vector may be described

as
bl(ut,u?, Au®)
b2 (ul, u?, Aud)

B (ul, u?, Au?)

—~bt(ul, —u?, —Au?), (B1)
bz(ulr _u27 '—Aua)s (Bz)
b (ut, —u?, —A®), (B3)



on the poloidal section o = 0 (vertically-

elongated poloidal section}. and

b ul v, /M — Au®)

= b{—ul, . 7/M+AY%), (B4)
v2(ut, u?, w /M — Au®)

= b (—ul, w7 /M + Aud),  (B5)
Blul,u?, /M —~ Au®)

= b3(—ul, . 7/ M + Au®), (B6)

m/M (horizontally-
elongated poloidal section), where Au® is

on the section o

the grid interval along the u® direction.
Boundary conditions on the density, pres-
sure and velocity fields are determined so
that the MHD equations (1)-(7) are invari-
ant when the boundary condition is imposed

on the magnetic fleld. and described as

1 .2

plut,u?, Au®) = p(ul, —u?, —Au®), (B7
p(ut, 2, Aud) = p(u', —u?, —Au?), (B8
Vb w? Add) = oMt —u? -Ad?), (B9
v¥(ul, u?, Au®) = o (v}, —u?, —Av?). (B10O
Plul,u?, Av®) = -8 (u!, —u?, —AW®), (BlL

on the poloidal section ¢ = 0, and

plut u?, w /M — Au®)

= p(—ulﬁ uQ? /M + Au'?')., (B12)
p(ul, u?. /M — Au®)
= p(—ut,u?, 7/ M + Au?), (B13)

v ul, u?, 7/ M — Au®)
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142, /M — L\.us)

‘3(’)
\

=+ £
[ L

at o==/M.
Figure captions

Fig.1 Computational domain, LHD coil-
s and an isosurface of the pressure.
A gray. twisted rectangular box rep-
rescents the computational domain in
which an MHD plasma is simulated
in our simulations. The box has half-
pitch period in the toroidal direction.
LHD coils and an isosurface of the
pressure obtained in our simulation

are drawn in fully toroidal geometry.

Fig.2 Profiles of an initial equilibrium state
obtained by the HINT code. Poincare
plots of magnetic lines on a horizon-
tally and vertically elongated poloidal
sections, @ = 0 and 7/M are shown
in {a) and (b). respectively. Magnet-
ic axis is in the right-hand side of the
center of the rectangular poloidal sec-
tion in (a) and (b), becausc of the
Shafranov shift. The rotational trans-
form ¢/27 in {c) shows a magnetic
well, which is typical to the tradition-
al stellarator such as LHD. Birds’ eyes
view of the pressure and toroidal cur-
rent on a poloidal section are shown

in (d) and (e), respectively.

Fig.3 Time evolution of the kinetic energy.
Solid, dashed and dotted lines repre-
sent runs with the resistivity n = 1 x
107%,1.78 x 107%,3.16 x 107¢, respee-

tively. The conductivity and shear
viscosity are 1 x 107% and 2 x 1673,

= —v’(—u',u*, 7 /M + Au®), (BI6)

3
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respectively.



Fig.4 Pressure contours on horizontally-
and vertically-elongated poloidal sec-
tions at 74 = 520 are shown in (a) and
(b), respectively, for the case of 7 =
3.16 x 107% and p = 2 x 107%. Con-
tours of pressure fluctuations associ-
ated with (a) and {b) are shown in (c)
and (d), respectively. Pressure con-
tours on horizontally- and vertically-
elongated poloidal sections at 74 =
890 are shown in (e) and (f), respec-

tively.

Fig.5 Growth rates obtained in the regime
of exponential growth. The black tri-
angles and circles are associated with
the viscosity u = 1x107% and 2x 107°.

respectively.

Fig.6 Pressure contours on horizontally-
and vertically-elongated poloidal sec-
tions at ¢ = 14307, are shown in
(a) and (b), respectively, and those at
t = 170074 are shown in (c) and (d),

respectively,

Fig.7 Poincare plots of the magnetic field
lines on the poloidal sections associat-
ed with Fig.6.

Fig.8 A deformation of the pressure pro-
file caused by a nonlinear saturation

of the resistive ballooning instability.

Fig.9 Birds’ eyes view of the pressure on
a (a)horizontally- and {b)vertically- e-

longated poloidal sections.

Fig.10 Contours of the pressure and

Poincare plots of the magnetic field

16

lines on the poloidal sections associ-
ated with Fig.6.
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