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A flow between two parallel plates which move with a constant velocity in
opposite directions becomes turbulent at the Reynolds number above some
critical value if it starts with a strongly disturbed state {1, 2]. This is called
the plane Couette turbulence [3, 4], the fluid motion in which is chaotic and
never repeated. Nevertheless. it is known that the regeneration cycle (5, 6] is
present to sustain near-wail coherent siructures such as streamwise vortices
and low-velocity streaks though its theoretical description has not been estab-
lished. Here we report a periodic motion. discovered by solving the Navier—
Stokes equation iteratively, which describes a full cycle of repetition of a series
of dynamical processes including the formation and breakdown of coherent
structures. Since it is unstable, this periodic motion is not attained in reality.
However, the turbulent state spends most of the time around it. As a result,
the mean velocity profile as well as the root-mean-squares of velocity fluctu-
ations of the Couette turbulence coincide remarkably well with the temporal
averages of the corresponding guantities of the periodic motion.
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Since the monumental experiments on
transition to turbulence performed by
Reynolds [7] in 1883 many efforts have been
devoted to understanding and controlling of
finid turbulence. However, the lack of a sim-
ple spatiotemporal characterization of such
a large irregular system with strong nonlin-
earity has been making it difficult to eluci-
date the structural and dynamical proper-
ties of turbulent flows. Indeed complex and
chaotic behaviour in both space and time is
the primary characteristics of fully-developed
turbulence, but on other hand. there is ac-
cumulation of experimental and numerical

evidence of the existence of striking coher-
ent motions and structures [8, 9]. Coherent
structures are known, at least qualitatively,
to play key roles in the transport [10] of pas-
sive tnaterials, momentum aund energy, the
maintenance [11] of turbulence activity, the
building of intermittent fluctuations [12], and
so on and so forth. The presence of the co-
herent structures can be quite helpful to un-
derstanding of turbulent flows because they
exhibit simpler behaviour than vurbulence it-
self.

The number of active modes in any tur-
bulent motions of a viscous fluid in a fI-



nite domain is always finite, since the small-
scale motions are smoothed out and attenu-
ated by viscosity [13]. Therefore, a turbulent
flow may be regarded as a dynamical system
of finite dimension. In terms of dynamical
systems theory, coherent structures in tur-
bulence may be thought [14] of as being a
lower-dimensional manifold, in the neighbor-
hood of which the dynamical system spends
a substantial fraction of time. In chaotic sys-
tems [15, 16] of lower degrees of freedom the
infinite number of unstable periodic orbits,
which are known [17] to be embedded in a
chaotic attractor, have been shown to pro-
vide a useful measure of characterization of
the structure and dynamics of the attractor.
In this context, the possible simplest descrip-
tion in phase space of coherent structures in
turbulence should be given by a periodic sad-
dle orbit embedded in a turbulent attractor,
though it is much more difficult to find an
unstable periodic orbit in higher-dimensional
systems such as fluid turbulence.

In their numerical simulations of plane
Poiseuille turbulence, which is a pressure-
driven turbulent flow between parallel plates,
Jiménez & Moin [18] minimized the stream-
wise and spanwise dimensions of a computa-
tional periodic box so that turbulence could
be sustained, and they succeeded in reduc-
ing the degrees of freedom of the flow while
maintaining the turbulence activity. By us-
ing the same numerical technique, Hamilton,
Kim & Waleffe [5] decreased the Reynolds
number further to reduce the degrees of free-
dom of plane Couette turbulence which is
driven by two parallel plates moving with dif-
ferent velocities. In this highly constrained
plane Couette turbulence they reported the
recurrent formation and breakdown of near-
wall coherent structures, such as streamwise
vortices and low-velocity streaks, in a quali-
tative sense.

An unstable periodic orbit, if exist, may
be relatively easily obtained in the above-
mentioned constrained turbulence of lower
degrees of freedom. We have therefore per-

formed direct numerical simulations of the
incompressible Navier-Stokes equations by
using a spectral method for the same con-
strained Couette turbulence. The Fourier
expansions are employed in the stream-
wise (x) and spanwise (z) directions, and
the Chebyshev-polynomial expansion in the
wall-normal (y} direction. Numerical compu-
tations are carried out on 8,448 grid points
(16 x 33 x 16 in z, y, and z) at Reynolds
number Re = Uh/v = 400, where U stands
for half the difference of the two wall veloc-
ities, & is half the wall separation, and v is
the kinematic viscosity of fluid. The stream-
wise and spanwise computational periods are
L, = 5.513h and L, = 3.770h, respectively.
The grid resolution is taken to be sufficiently
fine to resolve the smallest active scales of
motions. The energy is injected through the
frictional force on the moving plates and con-
sumed at small scales over the whole flow
field by viscous dissipation. The energy in-
put I and dissipation D per unit time vary in
& cormplicated way in time, but their tempo-
ral averages, which are substantially larger
than the corresponding ones in a laminar
state, are the same since the turbulence is
statistically stationary.

In the present numerical scheme the de-
pendent variables are 31 Chebyshev coeffi-
cients for the mean streamwise and span-
wise components of velocity, 7,424 (= 16 x
29 x 16) Fourier-Chebyshev-Fourier coeffi-
cients for the wall-normal velocity and 7, 936
(= 16 x 31 x 16) Fourier-Chebyshev-Fourier
coefficients for the wall-normal vorticity. The
resulting number N of degrees of freedom
of the present dynamical system is there-
fore 15,422. An instantaneous state of the
flow field and its temporal evolution should
be represented respectively, in principle, as a
point and its trajectory in the N-dimensional
phase space spanned by all the independent
variables. Unfortunately, however, it is not
possible to represent the entire phase space
on a single paper but only a two-dimensional
subspace. In Fig. 1, we plot, with a grey



Figure 1: Two-dimensional projections of a turbulent and a periodic
orbits. The horizontal and vertical axes respectively represent total
energy input rate / and dissipation rate D normalized by those for a
laminar state. The grey line stands for the turbulence trajectory, to
which green dots are attached at 2h/U time intervals.. A closed red
line denotes the periodic orbit. A cut of the turbulence trajectory
is coloured yellow to show a typical approach to the periodic orbit.
Nine blue dots on the periodic orbit indicate the phases of panels
a—i in Fig. 2. The dashed diagonal denotes the equilibrium between
the energy input and dissipation.




line, a projection of the orbit over a period
of 10,000h/U on the two-dimensional sub-
space spanned by the total energy input rate
I and dissipation rate D which are normal-
ized by those for a laminar state. Green dots
are attached at every 2h/U time umnit. The
orbit generally tends to turn clockwise. The
input and the dissipation rates are in bal-
ance on the dashed diagonal. While a state
locates above (or below) the diagonal, the to-
tal kinetic energy is being decreased (or in-
creased). The variation of the orbit, which
is confined in a finite domain, is far from pe-
riodic. On the contrary, the frequency spec-
trum of the total kinetic energy is continu-
ous (figure is omitted), which suggests that
it may be in a chaotic state.

Motivated by previous works on findings
of the existence of periodic orbits embedded
in a strange attractor in simple dynamical
systems [15, 16] and on observations of the
repetition of a series of dynamical processes
in the present system [5], we searched a pe-
riodic orbit which might be embedded in the
turbulent flow. Luckily enough, we found one
by use of an iterative method to minimize the
Euclidean distance between successive cross-
sections of the orbit on a plane Im(@y001) =
~0.1875U/h in the N-dimensional phase
space, where Im(@,00:) is the imaginary
part of the Fourier-Chebyshev-Fourier coeffi-
cient of the wall-normal vorticity for the zero
streamwise wavenumber, the zero-th order
Chebyshev polynomial, and the 27 /L, span-
wise wavenumber. A state in a period dur-
ing which the turbulence trajectory is trav-
elling more or less periodically in the phase
space was chosen as the first guess for the
iteration. The iteration was continued until
the distance.between successive cross-points
fell within 1% of the distance from the origin
of the earlier cross-point. A periodic orbit
thus obtained is drawn with a closed red line,
the period of which is 64.7h/U. Green dots
on the turbulence trajectory crowd much
densely near the periodic orbit, implying that
the turbulent state often approaches the pe-

riodic orbit. An example of such close ap-
proach is shown with yellow line which is a
cut of the turbulence orbit. The turbulent
state approaches the periodic orbit and fol-
low it very closely for a while. The approach
is, however, not permanent. The turbulence
trajectory is destined to go away from the pe-
riodic orbit, sooner or later. In other words,
this periodic orbit should be of saddle nature.
This intermittent escape may be connected
with the well-known bursting process [10, 19]
which activates small-scale motions to en-
hance the energy dissipation. The present
extraction of a periodic orbit may offer the
first (to our knowledge) direct demonstration
of the real existence of a periodic motion em-
bedded in a turbulent flow.

Figures 2a-i show the spatial structures
of the time-periodic flow at nine sequential
phases indicated by blue dots on the peri-
odic orbit in Fig. 1. The phase of Fig. 2a
corresponds to the blue dot at the time of
the least input and dissipation rates. The
typical near-wall coherent structures [20, 21]
are clockwise (or counter-clockwise) stream-
wise (z} vortices visualized by the red (or
blue) iso-surfaces of the Laplacian of pres-
sure (see also the cross-flow velocity vec-
tors), and are streamwise streaks of relatively
low streamwise velocity represented by lifted
iso-contours in (y, z)-planes of the stream-
wise velocity. The dynamics of the periodic
flow is characterized by a cyclic sequence of
events which is composed of (i) the formation
and development of the low-velocity streak
through the advection of streamwise velocity
in the cross-flow induced by decaying stream-
wise vortices (Fig. 2a-d), (ii) the bending
along the streamwise direction and tilting
in the spanwise (z) direction of the streak
followed by the regeneration of streamwise
vortices (Fig. 2e-g), and (iii) the breakdown
of streaks and the violent development of
streamwise vortices (Fig. 2h, 1). This cyclic
sequence is completely consistent with the
previously reported regeneration cycle [5, 22]
of coherent structures in turbulent plane



Figure 2: Cyclic temporal evolution of a time-periodic flow. Flow structures
are visualized in the whole spatially periodic box (L, x 2h x L,) over one full
cycle at nine times shown with blue dots in Fig. 1, where panel a corresponds
to the lowest dot. The time interval is 7.2h/U. Time elapses from a to i.
The upper (or lower) wall moves into (or out of) the page at velocity U (or
—U). Vortex structures are represented by iso-surfaces of the Laplacian of
pressure, V2p = 0.15pU%/h?, where p is the mass density of the fluid. Colour
on the iso-surfaces of V2p denotes the direction of the streamwise () vorticity:
red is positive (clockwise) and blue is negative (counter-clockwise). Cross-flow
velocity vectors and contours of the streamwise velocity at u = —0.3U are also
shown on planes z = const.




Couette flows. It turns out that when the
turbulent system approaches the periodic
saddle orbit, the commonly observed coher-
ent structures appear in a turbulent flow to
exhibit recurrent behaviour, which is fully
represented by the present time-periodic so-
lution.

Figures 3a and b compare the mean and
RMS (root-mean-square) velocities for the
time-periodic flow (symbols) with those for
the turbulent flow (lines), where both of
the mean and RMS welocities are scaled
by U. The mean streamwise velocity for
the time-periodic flow is in excellent agree-
ment with that for the turbulent flow. It
is surprising and remarkably interesting that
even the RMS velocities of streamwise, wall-
normal, and spanwise components for the
time-periodic flow coincide with those for
the turbulent flow. Excellent coincidence
in other second-order statistics, namely, all
the RMS vorticities and the Reynolds shear
stress, has also been confirmed. These results
strongly suggest that the turbulent state ac-
tually spends most of the time in the neigh-
borhood of the periodic orbit.

Not only spatial but also temporal coher-
ence exists in turbulent fiows. The present
periodic solution to the Navier-Stokes equa-
tion gives a concrete example of both spatial
and temporal coherent structures in a turbu-
lent flow. There are two spatial symmetries
[23, 24] in the present solution, that is, (i) the
reflection with respect to the plane of z = 0
and a streamwise shift by L. /2, a half of the
period, and (ii) the 180° rotation around the
line £ = y = 0 and a spanwise shift by L, /2,
a half period. These symmetries seem to
be realized mainly because the flow is con-
strained, that is, at a low Reynolds number
in the smallest periodic box. One or the both
will be broken at a higher Reynolds num-
ber or in a larger periodic box. Nevertheless,
the present periodic solution may provide us
with a simple spatiotemporal characteriza-
tion of turbulence, which is a crucial base
for understanding of turbulent flows, at least
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Figure 3: Comparison of the mean and RMS
velocities between a time-periodic and a tur-
bulent flows. a, The mean streamwise veloc-
ity normalized by U versus the wall-normal
coordinate y/h. Circles and a solid line de-
note the time-periodic and turbulent flows,
respectively. b, The RMS velocities normal-
ized by U versus y/h. Symbols and lines
stand for the time-periodic and turbulent
flows, respectively. Circles and a solid line
denote the streamwise component, triangles
and a dotted line the wall-normal compo-
nent, and squares and a dashed line the span-
wise component. Averages are taken over a
plane parallel to the walls, y = const., and
over one time period 64.7h/U for the time-
periodic flow or time 60, 000k /U for the tur-
bulent flow.



in the constrained planc Couette flow.
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