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Hybrid Modes in a Square Corrugated Waveguide

K. Ohkubo

National Institute for Fusion Science,
Toki, 508-5292, Japan

Abstract: By using two scalar eigenfunctions, electric and magnetic fields in the rectangular {or
square} corrugated waveguide are analyzed. In a rectangular corrugated waveguide, the boundary
conditions on two corrugated and two smooth walls can be satisfied to excite the hybrid mode. In
a highly oversized waveguide where the wavelength of dominant mode is close to that in vacuum,
two smooth walls can be exchanged with the corrugated walls because the boundary condition at
this walls is satisfied approximately. The replacement is possible due to almost no penetration of
the electromagnetic fields into the gap of the replaced walls when the direction of main electric field
is parallel to the gap of replaced walls. This characteristic enables us to rotate the polarization of
the hybrid mode in the oversized square waveguide with all four corrugated walls and is applicable
to the remote steering antenna for electron cvclotron heating in the ITER. For a beam injection
larger than the critical angle in this antenna, excited higher modes are at a considerably different
wavelength from that in vacuum and result in the dissatisfaction of boundary conditions due to

millimeter-wave penetration into corrugation gaps in replaced walls.

Keywords: square corrugated waveguide, polarization, electron cyclotron heating

1 Introduction

Oversized circular corrugated waveguides have
been used in the transmission of high-power millime-
ter wave for electron cyclotron heating of fusion plas-
mas {1). The propagating HE,; mode in the waveg-
uide has small attenuation and linear polarization
appropriate to polarization control for plasma heat-
ing. Meanwhile, except for recurrence characteris-
tics applications, the utilization of rectangular (or
square) waveguldes with two corrugated walls have
received little atiention, mainly due to the dissat-
isfaction of boundary conditions when all the four
walls are corrugated [2]. In a weakly oversized waveg-
uide with all the walls corrugated. difficulties In mea-
suring the propagation and an attenuation in 10 to
50 dB was reported in the centimeter wave range
[3]. Recently, in a highly oversized square corrugated
waveguide which is being developed as an alterna-
tive launcher for the ITER [4, 5], loss-free propaga-
tion with no change in radiation pattern for rotation
of the polarization has been observed for millimeter
waves {6]. The purpose of this paper is to explain the
two experimental results from weakly and strongly
nvergized corrygated waveguides and fo discuss their
utilization as an alternative antenna for the [TER
electron cyelotron heating and current drive. Here,
an analysis of the electric and magnetic flelds in the
corrugated waveguide by two scalar eigenfunctions

is introduced without using the traditional Hertzian
12, 3] or vector potential analysis [7].

2 Field Structure

The waveguide fields £ and H of propagat-
ing wave with propagation constant 3y and 3, are
written as the sum of TE and TM modes with coef-
ficients V and I. The transverse fields E;. H,; and
the longitudinal fields £, H, in the waveguide with
the size of u % b are expressed as [§]

E. =) Viz)ewm+ ) Viglzlen
H; = Z Irz](z) h[l] =+ Z I(l) (z) h(z)

ZO 2
Ez - I 2 k_ ’z
ko Z (2} el @

I 2 .,
oz 2 ) Ky

H, =

where the suffixes [i] and (¢) represent i-th mode of
TE and TM maodez and 7 is a douhle index of two
mode numbers and also Zg = /o /€0 and kg = w /e,
The TE mode functions ep,;, hp: and the TM mode
functions ey, k() possess the property of orthog-
onality. By solving the wave equations on b, and



¢,
Vi, + kit =0
Vidi + kb =0
with k2, = k§ — 8% and k2, = &k — 5,, and by

substituting v; and ¢; in

ey = a; X Vi, hy) = a. x e

and

en = —Vidi,

mode functions are obtained, where a, (¢ = 1,7, z)
is the unit vector and V, =V —a,8/0z. Amplitude
ratios of V to I are given by

Viy/ 1 = Zoko/ B
Vio /Iy = ZoBay /o
for TE and TM modes, respectively. The electric

and magnetic fields in the rectangular waveguide as
shown In Figure 1 are thus obtained by

M op;

ha) = a: x e

for the TM mode.

To discuss the electric and magnetic fields of hy-
brid mode, we define the mode amplitude ratio given
by

Vi Visy = ds-
By normalizing the power flow P; of the TM mode

ko | Vi |2
o | Viy I°

o = RlVliy) = 7500 =1,

the mode amplitude

Vioy = —y/BuZo

is obtained, where R(,_) = ﬁ(i)/k{).

The propagation constants of the TE and TM
modes have the same value for [i} = (i} except for

E[i} = _( F) az — a_a'y)vfz] . .
Y 'z the dominant mode. The propagating constant 3;,)
., A, ka{i] W B of the hybrid mode is calculated by solving the wave
Hp = _(Ea”’ + B O + 3, =) FAMY equation on the hybrid mode. We replace ;) and
Y t 00 ,6(,,) with B{i}- The cutoff wavenumbers kc[gl and kc(z)
for the TE mode and which are derived from ;) and 5;, also can be writ-
D; Bé, jkg(z)qbi ten as k). By the same procedure, Rj; and R(;
Eq = _(Ea’az + By ay + By a:)V) are exchanged by Ry;y. Here the suffix {¢} represents
96 86 E * the #-th hybrid mode. Thus, the electric and mag-
H = (e, - —Iay)—G—wV(,). netic fields of ¢-hybrid mode as the sum of TE and
% dz " Zof TM modes are written by
B¢: |, O dp: O Ky
Bi= R Bl g Jan + (g — G a, + 572
_ 1 B¢, 2 O O 2 O Koy Ryt
H; = ﬁr{g}zui ( 3y diRi; o Jaz +( o +di B, Ty Ja, + 7 o a,l.
These results are consistent with the electromag- When

netic field acquired for the hybrid mode in the cir-
cular corrugated waveguide by co-ordinate inversion
(10. It is confirmed by direct substitution that
FE; and H, satisfy the Maxwell equation such that
diVEOE,_ = U, diV,tLon = O., I‘OtEi = mauon/Bt,
and rotH; = J¢yF;/8t. Especially, the fields E;
and H; for TE or TM modes are calculated by sub-
stituting (¢, = 0, d; = 1/Ry) or (¥, =0, d; = 0).
The cutoff wavenumber k(,y of hybrid mode is ob-
tained from the fact that F, {or H,) satisfies the
wave equation

ViE; + kB =0,

where kg{ = k& — ,3%1.}, Ry = By /kq is calculated
straightforwardly.

sink.x\ [ sink
P =N, ‘ vy
cosk,x j \cosk,y

sink.x\ { sink
i = N; N v
cos k. \coskyy
are adopted as scalar eigenfunctions, where a sinu-

soidal function is chosen from the parenthesis, these
satisfy the wave equations

Vit + k2t = (k2 + kD + kit =0

Vit + kg di = —(k2 + k2)oi + k20 = 0.

We have k2, = kZ + kI, where k; and &, are the
separation constants which are introduced for solving
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Figure 1: Rectangular waveguide with impedance walls.

the above equations. The origin of the co-ordinates
system is located at the center of the waveguide
cross-section. In an estimation of E, and H, by
i, and ¢,, there exist 16 cases due to four combi-
nations for v, and ¢, . In the z- (y-) component of
E, and in the y- {z-) component of H,, 8¢,/0x and
8y, /By (8¢,/0y and O, /Oz) must have the same
functional form along the waveguide wall on which
boundary condition is evaluated. As a result, the
following four cases are valid, i.e.

(A) %, = N;sink.zcosk,y and
¢, = N, cosk,rsinkyy

(B) ¥, = N;coskyrsink,y and
¢, = N, sink,x coskyy

(C) . = Njsinkzxsink,y and
¢, = N, cosk,z cosk,y

{D} 4, = N;cosk,zcosk,y and
¢, = N, sink xsink,y

The surface impedances appropriate for the rectan-
gular waveguide with smooth or corrugated walis [2]
are
E E
Z =4 locsarr, Zre=F o lz=zas2
a H, E:c a/2s a Hy ix a/
E E
Zip = Fe lymspjz.  Zip=F 7 ly—sbs2 -
Hz ¥ / Hx Y /
The suffixes ¢ and [ are related with the transverse
and longitudinal directions, respectively. A waveg-
uwide wall of two different types can be fabricated
such as an isotropic wall matched for Z;, = Zig
or Ziy = Zi» and an anisotropic wall matched for

Fta F Zia OF Zyy # Zpp. The anisotropic impedance
surface is prepared with a corrugated wall which has
the depth d. the width W and the pitch P. In a
rectangular waveguide with all four corrugated walls
and with small height such as b < Ag/2 for centime-
ter wave range, wave propagation in the slot of side
walls at £ = a/2 is in the cutoff, where A\ = 27 /ko.
Tts isotropic surface impedance with hyperbolic func-
tion form was derived on the corrugated walls at
r = +a/2 7).

Whilst, in the highly oversized waveguide, the cor-
rugated walls at z = #a/2 or y = £b/2 look like a
surface with an anisotropic impedance:

Zia =0, Zla = ana

or

Zp =10, Ziy = Zeob,

where

5 _ iWZy tan(kedy/1— (nho/25)°)
P V1— (ndo/26)

iWZ, tan(kgdmm)
P V1—(mAof2a)2

Zcob =

Here, m,n are the mode number of the TE; and
TE,o modes excited in the gap and Ag = 27 /ko. For
a smooth wall, the surface impedances %, = 0 and
Zin = 0 are obtained by d = 0. In the following we
discuss four cases of {A) to (D) in order. Hereafter,
solutions with pure imaginary k. and &, for surface
wave are not discussed from the viewpoint of real
use.



Table 1: Possible wall-shape of the rectangular waveguide in the case of (A). The upper figure in the box shows
the exact result and the lower one the alternative shape with the highly oversized approximation (sz} ~ 1).

The absence of a figure indicates that boundary condition at z = +a/2 and/or y = +b/2 is not satisfied. The

arrows show the main electric field.

mg(# 0)
waveguide di = —kz/k, dy, = ky [k
Y Ey H, x Er, Hy
b— cos kT cos kyy sin k7 sin kyy
Eﬁx E,=0,H,~0 E,=0,H,~0
1
odd even odd even odd even
I
odd
" Jm|
{# 0}
[T ===l
even
[y =)=

Case (A)

With k; 7# 0 and k, # 0, the electric and magnetic
fields are written by

E; = =N,/ Ry Zo(ke + kyd;) sinkz sink,y

By = Niyf Ry Zo(ky — kod;) coskgz coskyy

RN AL L ink,y
. =N, . coskpz sin
{2} OkOR{'z.} ¥
N kod, R2,,) cosk,a cosk
et~ kB coshncostyy
!V._.; = . .
H, = _—Rm—Zo(km + kydiR{i}) sinkzx sink,y
]Vz -?kf B d""R
H, = Ol sink,z cosk,y.

it is noted that F, and H, are very small such that
E./E; = O(1/koa), E.[/E, = O(1/kea), H,/H, =
O(1/koa) and H,/H, = O(1/koa). For a highly
oversized waveguide with kya > 1, the propagating
wave becomes an almost TEM-like mode. From the
field components, Z;; is expressed as

_ ikoZa _ kyb
Ty = k?{z}dz (kz + kyd;) tan 5

To satisfy Z;; = 0, two cases are considered:

(A1) d, = —k,/k, which gives E, =0,
{A2) ky =nen/b, with n, =2, 4, 6,... ..

Case (A1) Since

should be zero, we have to select k; = m,7/a with
an odd number for m,. Thus, Zy;, is expressed as

_JkyZy  tan(k,b/2)

Zyp — ]
t ko 1— (more/2a)?

The separation constant k, is determined in terms
of Zip = Z_.;. A numerical calculation of ky was
previously carried out for the rectangular waveguide
with two corrugated and two smooth walls [9]. The
separation consiant k, = n,7/b with an odd num-
ber n, gives Z; = oc which shows that the walls
at y = +b/2 are anisotropic, while k, = n.7/b with
an even number 7, gives an isotropic Zy, = 0 which
indicates smooth walls at y = £5/2. On the walls at
z = +a/2, Z,, becomes equal to Z;,:
Lo = _Jkk(:}fo cob % = Ziq-

The result shows that walls at z = +a/2 should be
smooth and that £, = £, = E, =0, H, =0, H, #
0 and H, # 0 at z = +a/2 are derived. Since Ry




in a sufficiently oversized waveguide is approximately
equal 10 unity. H, m the waveguide cross-section is
negligibly small due to Hy o {k; + kyd, R{ }) Here.
only the field H, remains non-zero mth satisfaction
of the boundary conditions. Even if the smooth walls
at = £a/2 are replaced with corrugated ones. the
electromagnetic fields are not affected by the exis-
tence of the corrugation due to £, = E, = E; =0,
H, =0, H, ~ 0 and H, # 0. That is to say, the
walls appear to be a metal boundary at r = *a/2.
As an example on the finite H,, it is well-known that
the electric (magnetic) field on a corrugated grating
plate is reflected with phase shift of 7(0) when the
incident electric field of the plane wave with normal
incidence is parallel to the groove. The electric field
parallel to the groove and the magnetic field perpen-
dicular to the groove on the plate become zero and
twice the value, respectively.

Thirty yvears ago, a rectangular waveguide with
impedance walls was discussed from the viewpoint
of low attenuation [2]. It is shown that completely
independent choices of impedances cannot be made
and that

Z1o(Z — Zip) + ZipZ1a = 0

must be realized. The rectangular waveguide with
all four corrugated walls fails to satisfy the above
impedance relation due to Zy, = Zy = 0, Zig # 0
and Zp # 0. It was pointed out that a modal so-
lution cannot be formulated for this configuration.
Although the relation abovementioned is satisfied for
(A1), we would claim that smooth walls at x = 1a/2
can be replaced with corrugated walls in the highly
oversized waveguide due to almost no penetration of
the electric and magnetic fields in the groove and
that the porpagation of the hybrid mode in the
waveguide with all four walls corrugated is possi-
ble. However. in the weakly oversized waveguide
with R?, # 1. an exchange with corrugated walls
is impossible due to H, % 0 which yields the pene-
tration of the fields in the groove and an attenuation
in the corrugated section. This is the explanation
for why low-loss propagation in the highly oversized
square waveguide [6] and strong attenuation in the
weakly oversized one [3] with all the corrugated walls
was chserved.

Case (A2) Tor the case of (A2) as ky = n.7/b, we
have

ei2}?

at © = ta/2.
Zfa = OZ

There exist two possibilities for

{A2.1) d, = k,/k. which gives E, =0,
(A2.2) k, = mon/a with m, =1, 3.3, .....

As for the case of {A2.1), the impedance Z;; is equal
to Zfb:

koZ kb
47020 tan —— = Zy,.

Ziy = —
e k, 2

This result shows that walls at y = =+b/2 have
isotropic surface impedance and are smooth due to
Zw = 0. The impedance Zj, is given by

Gk Za  cot{k.a/2)

Zio = .
{ ko 1 (ﬂe)\()/Qb)z

The separation constant k, is calculated from the
condition of Zjy = Zeoa. The value of k; = mew/a
with an even number m, gives Z;, = o<, which
shows corrugated walls at z = +a/2 with depth of
d = X\p/4, while k; = myn/a with an odd num-
ber m, gives Z, = 0 which indicates the smooth
wall at ¢ = *a/2. Here, £, = E, = £, = 0,
H, # 0, H, = 0and H, # 0 at y = +b/2 are
obtained. Since Ry, in the sufficiently oversized
waveguide is approximately equal to unity, H. in
the waveguide cross-section is negligibly small due
to H, o (—ky + kzd R{ })- Even if smooth walls at
y = +b/2 are replaced with corrugated ones, electro-
magnetic fields are hardly affected in the presence of
the corrugation as above-mentioned.

Finally, in the case of {A2.2} which corresponds to
arbitrary d,, we have k; = mym/a and ky = n.m/b.
The normal mode is the mixing of TE and TM modes
in the smooth waveguide. All the results are sum-
marized in Table 1. The upper figure in the frame
indicates the exact result. The lower one shows the
approximate alternative wall for the highly oversized
waveguide (R ). Especially, when d = Ag/4 or
d = 0, the cuto%f wavenumber is expressed as

MpT | TipT (g
ki = (—=) +(T)
where p is an odd or an even number. For

mpm/(koa) < 1 and n,7/(kob) < 1, the propaga-
tion constant 3y, is approximated as

m Ao 1.n )\0
By =k 1—— P S(E=2)7.
fy = ko[l — 5 5V
For mp:npzl.)\[):Qmm and a 4 mm, we
obtain R%z}(: (B3 /ko)?) = 00084 with ¢ = (1,1}

Case (B)

In the case of (B) with &, # 0 and ky # 0, the
electric and magnetic fields are written by
E, =N, \/R Zolk: + kyd.) cosk,x coskyy

E, =N, \/R{i}Zo(ky ~ kyd,) sink,z sink,y

E, =N, aV.' R{ }Zo

i sink .z coskyy
{2}



Table 2: Possible wall-shape of the rectangular waveguide in the case of (B). The upper figure in the box shows
the exact result and the lower one the alternative shape with the highly oversized approximation (R?i} = 1).
The absence of a figure indicates that the boundary conditions at z = *a/2 and/or y = +b/2 is not satisfied.
The arrows show the main electric field.

my(# 0)
waveguide d; = ki [k, di = ky/ks
Y Ey H, x E. H, x
b — sin k;x sin kyy cos k. cos kyy
E“:jﬂ«” Ee=0,H,~0 E,=0,H,~0
odd even odd even odd even
[ 1 — P
odd
==
fip
#0) =
( ]
even
N; 52 . . be replaced with corrugated walls with d = Xg/4
Ha= VB Zo (ky = kadifiy,y) sinkoz sinkyy as in the case of (A). In the highly oversized ap-
N, proximation, the {nz,,7,) mode with d, = &, /k, is
H, = —ﬁ(k + kyd;R};y) coskoz coskyy cross-polarized with respect to the (m,,n,) mode
At Ot with d; = —kz/k, in the case of (A). The mode
N, JklindiRy (e, ne) with d; = —k./k, has the relation of cross-

H, = cosk, T sink, y

Vi1 4o ko

By combination of the various mode number, pos-
sible wall shapes are shown in Table 2. With the
approximation of R%i} ~ 1, E; = 0 and H, ~ 0
for d; = —k;/k,, and also E; = 0 and H, ~ 0 for
d; = ky/k, are obtained. The transverse electric
and magnetic fields in d; = —k./k, (d; = &, /k;) are
asymmetric (symmetric) with respect to the z- and

y-axes. The surface impedances Zy, for d, = —k, /k,
and Zy, for d, = ky /k, are expressed as
ik, Zy  cot(k,b/2

kg 1-— (me/\g/ZaP
with k; = men/a and

ks 7y tan(kya/2)

Zia = ~
! ko 1— (noro/2b)2

with &k, = ngw/b. The separation constants k; and
k, in the waveguide with two corrugated walls are
determined from solving the equations Zj, = Z..n
and Zy, = Z.p. For the highly oversized waveg-
uide, smooth walls in a specific configuration can

polarization with the (m.,n.) mode with d; = & /.
in the case of (A).
Case (C)

With &, # 0and &, # 0, the electric and magnetic
fields are written by

Ep = =N/ Ry Zo(kg — kyd;) sink.z coskyy

Ey = =N,/ By Zo(ky + keod,) coskoxsink,y
E, = Nijy /R Z, jkg{i} kot cosk
z = i¥§ {z} DkOR{i} COSEKg vy
N;
H, = W(k + k.d, R{l}}cosk z sinkyy
— N — 2 H
Hy=—+——|(k, v R,y ) sink,x coskyy

VR Z
N, k2 diRes
‘\/R{i}ZQ ko
It is derived that in the approximation of R%i} ~ 1,
Ey = 0 and Hy ~ 0 for di = —ky/k; and that

H, = sink,x sink,y



Table 3: Possible wall-shape of the rectangular waveguide in the case of (C). The upper figure in the box shows
the exact result and the lower one the alternative shape with the highly oversized approximation (R%l} o= 1).

The absence of a figure indicates that the boundary conditions at z = +a/2 and/or y = 1b/2 is not satisfied.

The arrows show the main electric field.

mp(# 0)
waveguide d, = ~ky/ky d, = ke /ky
Y E., H, x E, H, x
— sink.x cos kyy cos kzz sinkyy
l: i B, =0,H,~0 E,=0,H, =0
—_
odd even odd even odd even
=== {|pua ]
odd
i =g I==i =]
)
(#0)
[ ]
even
: 1 J

E. =0 and Hy ~ 0 for d, = k. /k,. The transverse
electric and magnetic fields change with symmetric
and asymmetric dependencies on each axis. Starting
from boundary condition Zy, = 0 at x = 1+b/2 as dis-
cussed in the case of {A), the possible mode can be
examined. The result satisfying the boundary con-
dition is shown in Table 3.

Case (D)

With &, # 0and k,, # 0, the electric and magnetic
fields are written by

E. =N, R{;}Zo(kr - kyd,) coskzx sinkyy

Ey = Niy/ Ry Zolky + kzd;) sink.x coskyy

— Ik
AT C{i ink eoink o
Ez = iv, V ,}Z{J kOR{I} Siiikr-b an}byy
H, = J——(k + kyd R2,,) sink,.x cosk,y
z "R{ 1 Zo {2} 4
N, .
H,= —m(k — kyd, R},,) cosk,z sink,y
. d Ry
H, = Ni c{ PR cosk, T coskyy

VRwZo R

It is noted that in the highly oversized waveguide
such as R%l} ~1,E, =0and H, ~0for d, = kz/ky
and that E, = 0 and Hy =0 for d, = —ky/kz. The

results satisfying the boundary condition are shown
in Table 4. In the next section, the special cases of
k., =0 or k, = 0 are discussed.

Case k; =0 or k, =0

With respcet to k; — 0, the TM modes (¥, = 0)
for (A) and {C) are excited and the TE modes
(¢, = 0) for (B) and (D) propagate. The electric
and magnetic fields in the case of (B) are expressed

as
]Vz A f ZD/R[,,] ky COSkyy
E,

H,=0

N,
¥ ,/_ZO/R

N,
\/ Z]Zo ko

The surface impedances become Zy, = 0, Z;; =
0 and Z; = j(k()/ky)ZO COt(kyb/Q) and Z;, =
Jlky/ko)Zg cot{k,b/2). Because the separation con-
stant is determined to be k, = n,m/b with an odd
number n, from Z;; = 0, we have Zp, = 0. Due to
E, —F,=FE, =0 H = H, =0 and H. #0
at y = +b/2, the smooth walls at y = =b/2 can be
replaced completely with the corrugated walls. Both
E, and H, are independent of x. The profiles are
different from ones of the hybrid mode with k, # 0

E
Ey
H

ky coskyy

smkyy



Table 4: Possible wall-shape of the rectangular waveguide in the case of (D). The upper figure in the box shows
the exact result and the lower one the alternative shape with the highly oversized approximation (R { y ~ 1}.

The absence of a figure indicates that the boundary conditions at = +a/2 and/or y = £b/2 is not satisfied.

The arrows show the main electric field.

(7 0)
waveguide | d, = &, /k, d, = kz /K,
y Ex: Hy X Eyr H:: x
— 4 — cos k.. sin kyy sin kyx cos kyy
| —r % B, =0.H, >0 E,=0,H,~0
1 -
odd even odd even odd even

odd

(# 0} H —
==

| ]

S
/

[LET]
Lt
I

and k, 7 0. When the square waveguide with two
corrugated walls is used as an antenna, the radiation
pattern cannot be kept the same for the rotation of
polarization. In the case of (D)}, we have the TE
mode property. The electric and magnetic fields are
expressed as

Ey = =N/ Zo/ Riyky sinkyy

E,=E,=H,=0

H, ky sink,y
¢ ZO/ [2] y
N, jk

H, = L =¥ cosk
sz]ZO ko oY

The surface impedances Z;; = 0 and Z;, = 0 are ob-
tained, and the boundary condition Zi;, = 0 results
in ky = new/b and Zp, = 0. Also, the electric and
magnetic flelds at y = +8/2 except H, are equal to
zero. The smooth walls at y = £6/2 can be replaced
with corrugated walls.

With respect to &y, = 0, we should examine the
field properties in a like manner. The two cases of
(A) and (D} are valid for satisfying the boundary
conditions and result in ¢, = 0 which indicates a TE

mode. In the case of {A), we have

E,=E, =H,=0

Ey = —N;s/ Zo/Ryiyks coskex

N
s = el COSkpT
V' Zo/ Ry
Ny k2
z % sink,z,

where k; = m,m/a with an odd number m, due to
Zio = j{ko/k:)Zo cot(kra/2) = 0. The other surface
impedances are Zy, = j(k;/ko)Zg cot(kza/2) = 0,
Zwp = 0 and Zy = 0. In the case of (D), we have

E,=E,=H,=0

E, = N;\/ Zo/ Rygky sink,a

H, = Lk‘ sin ke
ZO/R i

N 2

— coskzm
\ /Rw Z()

where k; = m.w/a with an even number m, due
to Zig = 0. Thus, Zjy = 0, Zyp = 0and Zpp = 0
are obtained. The smooth walls at z = d¢/2 can
be replaced with corrugated oues for (A) and (D) as
discussed in the case of k. = 0. These resulis on the
TE mode are summarized in Table 5.

H, =



Table 5: Possible wall-shape of the rectangular waveguide with TE mode in the case of k; = 0 or k&, = 0. The
upper figure in the box shows the exact result and the lower one the alternative shape without the highly over-
sized approximation (R'f'z} ~1). The absence of a figure indicates that the boundary conditions at x = *a/2
and/or y = +b/2 is not satisfied. The arrows show the main electric field.

Case (A) Case (B) Case {C) Case (D)
= =,
My = =n, =1
p=x =

heo =agi uagl

SRR 1 ™
Normalization with d, = —(—1)™*"™rm,/n, for E¥, mode and

The normalization constants N; appearing in ¢,
and ¢, are determined by o H o sin{menz/a)\ ( smn.wy/a)
YT A cos(merz/a) ) \cos(n,my/a)

/E:tzdS:l

where the integration is carried out over the entire
cross-section of the waveguide. The constants N,
with k, # 0 and ky, #0 is

N, =2/\Jab(k2 + k)1 + dT RY,,)-

Also. N, = v/2/(kyVab) for k, = 0 and k, # 0 and
N; = \/ﬁ/(kz\/@) for k, = 0 and k; # O are ob-

tained.

3 Square Corrugated Wave-
guide

On the iabel of the modes corresponding to the
oversized rectangular waveguide with all the cor-
rugated walls, the definition used in an integrated
optics is suitable [11]. The (m,,n,) mode with
d, = —m,/n, in (A), the (m.,n.) mode with d, =
—me/ne in (B), the (m,, n.} mode with d; = m./n.
in (C) and the (m.,n,) mode with d, = m./n, in
(D) are named as EY . The (me,n.) mode with
d, = n./m. in (A}, the (ma,n,) mode with d, =
Tie/my, in (B), the (me. n,) mode with d, = —n,/me.
in (C) and the (m,,ne) mode with d, = —n./m, in
(D) are called as EZ,,,. Here, the superscript indi-
cates the direction of the main electric field in the
waveguide. The electric and magnetic fields of and
are summarized as

E, H. x (Sin(me”/a)) (sin(newy/a))

cos{memz/a) /) \cos(n,my/a)

with d, = (=1)™**"?n,/m, for Ef, mode, respec-
tively, where, m. # 0 and n. # 0. As above-
mentioned, there is no exact normal mode in the
waveguide with all four corrugated walls. The
present result from the analysis by scalar eigenfunc-
tions of TE and TM modes is consistent with the
conclusion from the impedance relation. However, it
is emphasized that the two corrugated walls appear
to be smooth walls due to almost no penetration of
electric and magnetic fields in the corrugated gap
when polarization is parallel to this wall. It is evident
that two modes with mode numbers (mp,7n,) and
(ng,m,) in the oversized square waveguide {a = b)
with d = Xp/4 have the identical cutoff frequen-
cies kopy = +/(mpm/a)? + (nym/a)?. By using the
highly oversized square waveguide with all the cor-
rugated walls, the control of the field polarization in
the waveguide becomes possible. In a waveguide with
two smooth and two corrugated walls which satisfies
exactlv the boundary condition. the cross-polarized
mode on the (m,, n.) is the TE mode with k; = 0 in
(B) whose an amplitude has no xz-dependence. This
mode is unsuitable as polarization rotation. Mean-
while, in the squarc waveguide with all four cor-
rugated walls. the E¥; mode is the cross-polarized
mode of E¥,. Amplitude distribusions of E{, and Ef;
modes are symmetric with respect to - and y- axes.
Raoth modes are suitable for an application to the
polarization rotation. The EY, and Ef, modes are
casily obtained by the conversion from HE;; mode
in the circular corrugated waveguide with efficiency
0f 99.3 % [9].




For the alternative ITER antenna for electron cy-
clotron heating with remote steering, the length of
antenna Is required to be 8a?/Ag (or 402/ ) for asym-
metric pattern}. For a beam injection larger than the
critical angle into a square waveguide with all four
corrugated walls, higher modes with large m, or n,
are excited and its propagation constant 3;;} is not
close to ko and phase slippage occurs [5]. Because the
higher modes behave as ones in the weakly oversized
waveguide, the modes do not satisfy approximately
the boundary condition.

4 Summary

The analysis based on two scalar eigenfunction
shows that hybrid mode can exist only in the rect-
angular waveguide with two corrugated and two
smooth walls. ¥rom the field analysis at the bound-
ary walls, two smooth walls can be replaced with the
corrugated walls if the waveguide is highly oversized.
This result can explain the experimental observation
in weakly and highly oversized waveguides with all
four walls corrugated. The application of the highly
corrugated waveguides to the remote steering system
for ITER is possible for electron cyclotron heating
and current drive antenna with any pelarization.
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