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Abstract

The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the
cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in
the same kind of fluctuations as well as nonlinear interplay between different classes of
fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent
drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated.
With the help of an Ansatz of a large number of degrees of freedom with positive
Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem
in the presence of strong plasma turbulence has been-derived. A case where two driving
mechanisms (one for micro mode and the other for semi-micro mode) coexist is
investigated. It is found that there are several states of fluctuations: in one state, the micro
mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro
mode is excited, and the micro mode remains at finite but suppressed level. New type of
turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase
diagram is drawn for turbulence which is composed of multiple classes of fluctuations.
Influence of the inhomogeneous global radial electric field is discussed. A new insight is
given for the physics of internal transport barrier. Finally, the nonlocal heat transport due
to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length -
ones, is analyzed and the impact on transient transport problems is discussed.

- keywords: strong plasma turbulence, Langevin equation, extended fluctuation-dissipation
theorem, turbulence transition, cusp type catastrophe, phase diagram, radial electric field,

transient transport response



1. Introduction

High temperature plasmas are often in the state far from the thermal equilibrium,
and the development of statistical theory for the strongly turbulent plasma has been one of
the main subject of plasma physics theory.

One of the characteristic features of strong plasma turbulence is that it is driven by
spatial inhomogeneities of plasma parameters and those of fields (e.g., magnetic field
and radial electric field) and that it is composed of varieties of modes with different scale
lengths. Theories havé been developed by use of various methods, e.g., introduction of
plasma dielectric in collision integral, renormalized propagator and clump algorithm,
scale-invariance method, two-point DIA and K ~ € model, shell model, Langevin
equation formulation, and others. (See, e.g., reviews in [1-6].) These methods have
been successfully used in explaining some aspects of strong plasma turbulence.

In the previous articles [7-12], the statistical theory of subcritically-excited strong
turbulence in inhomogeneous plasmas has been developed, based upon the formulation of
Langevin equation [13-15]. (Hereafter in this article, references 8-12 are abbreviated as
I, II, HI, IV and V, respectively.) With the help of an Ansatz of the large degree of
freedoms with positive Lyapunov number, the Langevin equation is solved and the
fluctuation dissipation theorem in the presence of strong plasma turbulence has been
derived. The spectral decomposition is introduced and the Fokker-Planck equation is
formulated for fluctuation components. This allows us to calculate the probability density
flux, and the transition probability between turbulent states has been obtained. The
relation with the thermodynamical limit has been clarified. Obtained formulae are
extensions of the Fluctuation Dissipation Theorem (FDT) [16], Prigogine's principle of
minimum entropy production rate [17] and the Arrhenius law [18] for the transition
probability, which have been employed in the vicinity of the thermodynamical
equilibrium.

Analyses in [-V have been applied to a limited case where the turbulence is
characterized by one micro scale length (say, the collisionless skin depth 8 = clo, ). Itis
well known that there are many kinds of turbulent fluctuations in high temperature
plasmas and that they are characterized by different scale lengths. In particular, the drift
wave fluctuations (including ion-temperature gradient mode) whose wave length is of the
order of ion gyroradius, p; , are considered to dictate a considerable part of turbulent
transport (in particular, for ion energy transport). In general, fluctuations with different
scale lengths coexist in plasmas. In order to treat this kind of system, the scale separation
is used in the conventional approaches. In addition, in analyzing one class of mode,
fluctuations of other scale lengths are often neglected: This simplification is not always

“relevant, because nonlinear interactions between different-scale-length fluctuations could

be important.



Importance of interactions between the modes with different scale lengths has
been recognized recently. For instance, the dynamics of meso-scale structure of radial
electric field [19] is known to cause vareties in the dynamics of microscopic fluctuations;
Examples include the electric field domain interface [19, 20], zonal flow [21] and
streamer [22], and an effort to develop a statistical theory for zonal flow is reported [23].
(See [1-3] for recent investigations.) It is necessary to generalize the formalism of
statistical theory of turbulence which is developed in I-V in order to analyze this case.

Drift wave fluctuation is usually called as the micro mode (micro-turbulence).

Hereafter we call the drift type collective fluctuations as "semi-micro mode” and
distinguish it from the "micro mode" of the scale of skin depth. Namely, p; > d holds in

the system of our concern. The micro-turbulence (~ 6 ) is considered to cause the

electron anomalous transport as well. In order to consider the anomalous transport, the
coexistence of "micro” and "semi-micro" fluctuations and their interplay should be taken
into account.

In this article, we extend our framework of statistical theory to include two
different collective modes with different scale lengths. Namely, the nonlinear interactions
between micro-mode (~ & ) and semi-micro mode (~ p; ) are taken into account. Their
interplay (nonlinear dynamics) determines both the fluctuation levels and the cross field
turbulent transport. The model and formulations are presented. (Related discussion of
the global mode by use of direct numerical simulation is given in [24].) The term
"global" is used for the gradient scale lengths of the order of 2 , and the global parameters

(averaged on magnetic surfaces) are given and fixed here. Thermal fluctuation of the
order of Debye length, Ap , is considered as a thermal fluctuation, and is assumed to be

statistically independent of the modes of our concern. The effect of thermal fluctuations
is included as the collisional drags and the thermal noise of temperature 7 .

The nonlinear interactions of two collective modes of fluctuations are treated as
follows. Nonlinear self-interactions in one class of fluctuation are divided into the
coherent drag and the self-noise as has been done in I-V. The micro turbulence of smaller
size affects the semi-micro one through the renormalized drag and the "micro” noise. The
treatment is analogous to the case of micro turbulence which is affected by the thermal
fluctuations of smaller size. On the other hand, the effect of semi-micro turbulence is
included in the dynamical equation of the micro-mode as a kind of a driving force or
damping force. This is because the spatial structure of semi-micro mode can be large-
scale inhomogeneity for the micro-turbulence to be driven or damped. The hierarchical
structure is adopted. The combined Langevin equations are to be formulated. A set of
equations of the fluctuation level and decorrelation rate for the micro and semi-micro
fluctuations is obtained. A case where two driving mechanisms exist (one for micro
mode and the other for semi-micro mode) is investigated. It is found that there are several
states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is
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quenched (although both of them are subject to the drives by global inhomogeneities); in
the other state, the semi-micro mode is excited, and the micro mode remains at finite but
suppressed level. New type of turbulence transition is obtained, namely, a hard
bifurcation can take place between these two states. A phase diagram is drawn, and a
cusp type catastrophe is revealed. Turbulence transition which is induced by the shear of
global radial electric field is analyzed. A new insight is given for the physics of internal
transport barrier.

In some circumstances, the much longer-wave-length components are stable but
can be excited by the nonlinear noise of micro mode {(and/or semi-micro mode)
fluctuations. In this case, the longer-wave-length components induce the heat flux which
is not expressed in terms of the local gradient parameters. This kind of heat flux is
estimated, and its impact on the transient transport problems [25] is discussed.

The constitution of this paper is the following. In §2, model and basic equations
are given. Starting from one model equation of five fluctuating-fields, the nonlinear
interactions are formally divided into drags, drives and noises. Then the Langevin
equations are reformulated for each collective mode by introducing the scale separation.
In the equation, nonlinear interaction terms are modelled as the function of another
collective mode. Solving two Langevin equations with some constraints, the correlation
functions (fluctuation level, transport quantities) are obtained. The explicit formulae are
given for the interplay between the current-diffusive interchange mode (CDIM) [1] of
micro-turbulence and the ion temperature gradient (ITG) mode [2] of drift wave type
semi-micro turbulence in §3. Possible nonlinear interaction effects are discussed. In 84,
~ the excitation of stable longer-wave-length modes by nonlinear noise of micro (semi-
micro as well) mode turbulence is analyzed. The nonlocal heat flux and transient
transport are discussed. Summary and discussion are given in §5. Some implication for
the change of turbulent transport in internal transport barrier [26] formation is discussed.

2. Basic Eqguations

2.1 Model
We study a slab plasma, the pressure of which is inhomogeneous in the x -

direction, in a sheared magnetic field B = (0, X, 1)30 . Magnitude of the magnetic field
is also inhomogeneous in the x-direction B, = (1 + Qx4 -)Bo .
A reduced set of equations for the variables {¢, Al V) Po p,-} is employed for

the study of instabilities with multiple scale lengths. (¢, A, V||, p. and p; are the

perturbations of electrostatic potential, vector potential in the direction of main magnetic
field, ion velocity in the direction of main magnetic field, electron pressure and ion

pressure, respectively.) In this article, we investigate the interplay between the turbulence
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in the range of ion gyroradius (say, ion-temperature-gradient (ITG) mode) and those in

the range of collisionless skin depth (like current-diffusive interchange mode (CDIM)).

The system of fluctuating fteld variables {¢, Aﬂ, V||, Pos p,-} in the presence of the global

driving parameters (ion temperature gradient AT,/ dx , i.e., pressure gradient dp,/ dx |

magnetic field gradient d| By |/ dx , and the inhomogeneous global radial electric field
dE 4/ dx ) describes turbulence caused by the ITG mode and CDIM.

The dynamical equations of fluctuation fields are given in the Appendix afier [27].

They are symbolically written as

Lf+ 40 =21, )+ 50,

where f denotes the fluctuating field,

P, = (TeOITEO) P. , £9 denotes the linear operator,

LY =
Fog + ikyplo+ Wuk] P37 ey, 0
icd 1k|} g—l(fw;:*' &y +p’z‘ckzl) 0
0 0 { g Hi kL
~ikypoo-ikQ -B; ' 0
~ikypio 0 iBky

and W(f . f ) stands for the nonlinear terms

ik, Rk
. -1
-itl Ty
0
fog+ iy +ik 4y, ki

0

(1)

@

ik, Qk

ik)

g+ ki

(3)



[v2evie]
(1-8v32) o, ]
s . f)=-| |o. ] : @
[0, 7]
[‘P, Pi]

The bracket [ f,£] denotes the Poisson bracket,

[f. 8]=(VfxVg)b, )

and & = By/Bg denotes the unit vector in the direction of the magnetic field. In this
article, physics variables (e.g., {tb, A, V||, Do p,-} , magnetic field B , electric field,

length and time) are normalized according to a standard convention. Various choices of

normalization are described in detail in [27]. Transport coefficients by the collisional
process are expressed by L), , H, ., Hilc s Xcoe s Xe, i for the shear viscosity, electron

viscosity, parallel viscosity of ions, electron thermal diffusivity and ion thermal
diffusivity, respectively. The coefficient

©p=Vp.p K, (6)

is the Doppler shift by global electric field, and the spatially-inhomogeneous part of it
affects the evolution of turbulence so long as the condition V7, 8,y <<V ; holds [5].

Parameters
E=p? 2, andE=1+Ek7° (7)

show the finite electron inertia effect. Explicit forms and details are given in the
Appendix A.

The explicit driving parameters, which are specified by the inhomogeneity of
global parameters, are: the pressure gradient dpy/dx , the average curvature of the

magnetic field Q' and the inhomogeneous global radial electric field dE 4/ dx . The
global gradient pg ! dpy/dx controls the growth rate of the semi-micro mode, and the

product of two inhomogeneities

,dp
Go=Q' 3, 8)



denotes the excitation parameter for CDIM turbulence and the semi-micro instability.
When the ion-temperature gradient is a main source of the pressure gradient, it drives the
ITG mode turbulence. The third driving parameter dE,, / dx suppresses turbulence [28-
32). (See [1, 5, 33] for review.) These driving parameters are fixed in the evolution of
fluctuating fields under the assumption of the time-space scale separation. This is based
on the fact that the system size is taken much longer than the characteristic scale length of
the semi-micro mode. The typical time for the evolution of the global parameters is
considered much longer than the autocorrelation times of the semi-micro and micro

modes.

2.2 Scale separation .
We consider the situation where two kinds of microscopic fluctuations are
simultaneously excited in the presence of the global inhomogeneity of plasma parameters.
Lagrangean nonlinearity term N(f i ) gives three effects on a test mode f, which
is taken from the turbulent fluctuations. A part of the Lagrangean nonlinearity (%(f  f )
for f) is coherent to the test mode. This coherent part is considered to cause the turbulent

drag, which is written as — I'.f, . The second effect is the modification of the driving

term, which was not included in I-V. This is generated by the interaction of modes of
different scale lengths, and is symbolically written as 2, f; . (A symbol ‘D' stands for

'drivé‘.) Other incoherent part is considered as a random self noise §,. In order to
describe the turbulent characteristics, we assume that the system has a large number of

degrees of freedom and has many positive Lyapunov exponents. This assumption is a
basis to treat the incoherent part §, as a rapidly varying random noise term.

Symbolically, we write
Mk(f,f]=—rkfk+9kfk+§k : (9)

As has been discussed in I-V, a projection operator # is introduced to divide the nonlinear
interactions into the drag and others.

Scale separation is introduced. The scale lengths of two classes are assumed to be
different. A projection operator which separates the semi-micro mode and micro mode is
introduced. Semi-micro and micro components are selected by operators 2 and 7,

respectively:

PrPi=1 _ (10)

The superscripts ¢ and 4 denote the semi-micro and micro modes, respectively. The
scale-separation means that there exists a mode number ksep in Fourier representation so



that the semi-micro mode is in the region of | k ] <k, and the micro mode satisfies

|k|>k,,,. Anoperator Z is the selection of components which satisfy V| <k, .

Figure 1 illustrates the schematic distribution of the symmetry-breaking flows in the
wave-number space.

In calculating the nonlinear drag term, fluctuations which have shorter wave-
lengths are renormalized. Separation of the nonlinear term into semi-micro and micro
components are discussed in Appendix B. One writes the nonlinear effects on the semi-

micro and micro modes as
A ) == Ty + Tin)f'+ Sty + Sin (1)

and
h h gh
A(f. S) ==l " + 2ipf "+ 5y (12)
respectively. In this expression, the subscripts (l) and (h) denote the contributions from
semi-micro and micro modes, respectively. Explicit forms of the drag, drive and noise

terms are explained in the next subsection.

2.3 Langevin equation
By use of Egs.(11) and (12), a Langevin equation is derived as

Lfsof=5+8, O
‘For semi-micro elements, one has

£=£+ (T + Ty - (14)

and
§=51+ 8L +5, . (15)

For micro elements, cne has

=A% (rf’,,) - ﬂf,]) (16)



and

§=80,45,, an

The renormalized drag (coherent part) is given in a form of the eddy-viscosity type
nonlinear transfer rate y ;. A random-noise part is regarded to have a shorter decorrelation

time than Y7 I' according to RCM [34]. The nonlinear drag term is written in an apparent

linear term as
MNV?Lfl Ylfl
umVifs Yoo
2AS f)=| wnViA |=-| LA ) . (18)
XNeV?LﬁI ’Y“f:‘
AV 1S5 Vshs

Notation here follows the convention in [35]. In this article, suffix i, j = / — 5 denotes
the i-th or j-th field. In the following, Fourier transformation is used, and %, p. g
describes the wave number of Fourier components. (Suffix &, p, g is omitted if
confusion is not caused.)

The operator to the k-th comnponent, £; for Eq.(14) or Eq.(16), is the
renormalized operator, whi;h includes the renormalized transfer rates of

Yk =_;Mi.kquitqkai‘.qkp|fi,2p| . (19)

where T, ,, is the triad-interaction time, and summation A indicates the constraint

k + p + q = 0. The explicit form of the nonlinear interaction matrix is given as, e.g.,

2 2
Ml‘kpq=(p><q)-b(plk—2ql)— , (20a)
pe
My ipe=(1+863%) (P xq) 5, (20b)
M(s-s),kpq=(Px‘I)‘b s 7 (20c)

and the triad-interaction time 7; 4, satisfies the relation
(a/a: + dk)+ 4p) + 4q))(r,._,w] =T, (21)
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where I is the unit vector [35].

The driving part in the nonlinear interactions is deduced. A detail of derivation is
discussed in the Appendix B, giving

i Og(;) 0 0 0 0
iE'lmZ(,) i&_l(oE(,) 0 0 0
£ @y(y) 0 0 i Og()) 0
i @sy) 0 0 0 i Wgf)
where
()= ky g5 kg8’ 23)

is the Doppler shift owing to the £ X B velocity associated with the semi-micro mode,

and
o) =-kifely +kafyl)  (=2-5) 9

represents the modification of plasma parameters by the serni-micro mode. In calculating
the (1, 1) element of Eq.(22), the relation

(25)

3 v2#] | <<| 3" v35']

is used.
— - - ~ - - \T
The self-noise, § = (S pOn S5, 8, Sj) , has a much shorter correlation time as is

discussed in I-V. The nonlinear-noise term for the k-th component is expressed as
Se.& = w(‘)gi.k R ' (26a)
gi.kE;Mi.kpqd ti.kpqgl.pgi,q . : (26b)

where £; ; denotes the magnitude of the nonlinear noise term. The rapidly varying

temporal dependence is approximated to be given by the Gaussian white noise term zA),



<w(t) ﬂ/(t )) (t —t ) This strong assumption of Gaussian white noise is taken in

order to adopt the Markovianization in evaluating the correlation functions. The
assumption, that the autocorrelation time of S; ; is much shorter than Yi k‘.‘ , is sufficient

for the following derivation of the analysis.
The term & j, p in a random noise Eq.(26b) represents the j-th field of g-component

in the nonlinear term #. Their correlation functions satisfy the average relations of the

mode, which we call an Ansatz of equivalence in correlation [15, 35] in the following, as
(€& = () @n
with
Ci pC).a) = Opg (28)

where the bracket { ) indicates the statistical average and 8, is the Kronecker's delta.

The Ansatz of equivalence Eq.(27) holds for both the semi-micro components and micro
components, respectively.
The thermal excitation is also assumed to be a Gaussian white noise,

Sin, i = AW, i - (29)

The statistical independence between the incoherent parts of thermal and turbulent
fluctuations is also imposed, that is,
S 8)=0. (30)

2.4 A formal solution
Equation (13) can be solved by introducing the projection operator A" for

spectral decomposition (m =1- 5] which is defined by the relation

cxp[ L(t—- )]— iA("')exp( h( 1:)) . 31

In this equation — A, (m = 1- 5 ) represents the eigenvalue of the non-normal matrix £.

The eigenvalue is determined by:

det(M + £) = 0 (32)



and I is a unit tensor. Eigenvlaues A 's are ordered as

Reh, < Rer, < Reh, < Rek, < Reh . (33)

The eigenvector of the eigenvalue — A corresponds to the least stable branch, the decay
time of which is the longest. Others (m = 2—3 ) denote highly-stable branches, which are

assumed to decay much faster.
A formal solution of Eq.(13) is given as

£()= 3 1) (34a)

and

T

Fe) = exp(= M) 7)(0) + f exp~ At - 7)) AP {(c) + s,;(t)} dt . (34b)

]

where f (m)(O) is the projection of the initial value in the eigenmode basis. The rank of

projection operator is unity, and A" s rewritten by an outer product of vectors as
Al = yfm) y) T (35)
where V™ and V{" are vectors of 5 elements. We here choosé a normalization
Vil =all and Vil =1 (36)

after the convention in V. (Explicit forms of A" are given in V for three and four field
models.) The m — th eigenmode could be selectively calculated as

F1) = exp(= 2} (0) + VI f ' exp(~ At 7)) S7(x) dx 37)

0

where the projected amplitude of noise source is introduced as
5(x) = Vi {8(x) + 8.(x)} &

The right hand side of Eq.(38) represents the inner-product.



2.5 Statistical average and extended fluctuation dissipation theorem
The long time average of the decomposed amplitude is obtained from Eq.(37). An

extended fluctuation dissipation theorem could be derived for the decomposed amplitude.
The autocorrelation function of the i = | element (i.e., the electrostatic potential

fluctuation) is given as

(g j |ag|* (st st) (39)

_ ]
Z%e(lm
A statistica.l average is defined as

(1) = Jim 1| @ s (@)rfa). (40)

From Eq.(37), relations between various correlation functions are deduced as

<f.'(m) *fj('")>= S '1) <fl(m) *fl(m)) _ 41)

Combining Eqs.(39) and (41), other autocorrelation functions and cross-correlation

functions are given as

(42)

() 2]

ZERe(?Lm)

For the transparency of the'argument, one can take the limit where the amplitude
of highly damped branches is neglected,

(£ ) 0 for(m=2-5) 43)

This means that only one pole m =1 is excited for each mode number range (both micro-

mode and semi-micro mode). The wave-number ranges of micro-mode and semi-micro
mode are separated as is illustrated in Fig.1. In the following, the spectral function of the
least stable branches

1= (0" 50) | (44)



is analyzed with the approximation (ﬁ,(f ) fle )> — 0. Therefore we suppress the
superscript (1) that denotes the least-stable branch of oscillations. The suffix 1 for A,

which denotes the least stable branch, is also suppressed.
Expressions of the noise sources, Eqs.(15) and (17), are substituted into Eq.(38),
and projected elements Sf;)‘k , th),k  Shk, Sf'h)'k and 5% . are calculated accordingly.

One has

5= SfIJ.k + S(Ih),k + S (45)

for semi-micro mode and

5¢=S(* Stk (46)

for micro mode, respectively. Noting the statistical independence between noise sources,

Eq.(39) is rewritten for semi-micro mode as

I = (f:[;ﬁlk> = 29{:(“) |4l |2 ((5(5 S, k> + <5(h*}, «S{h), k> + <Stlhtk5£h, k>) |
@7

and for micro-mode as

ho_feh*xer\_ 1 h 2|/ ch* <h h* ch |
Iiy= <fi.k £, k) = 2] |t (<S(h],k5 ), k> + (5m.k5m. k>) . 48
Equations (47) and (48) give the relations between the fluctuation level /; ; and the noise

source. In this sense, they form an extended fluctuation dissipation theorem of the
second kind for strongly turbulent plasmas.

The decorrelation rates (inverse of autocorrelation times) for the semi-micro mode
and micro mode, A’ and A" in Eqs.(47) and (48), must satisfy the nonlinear dispersion

relation Eq.(32). It is written for the semi-micro and micro modes as

det(l’! + 24 Ty + 1’“(,,)) =0, (49)

and



det(x”l + 4%+1f, - :uf',)) =0, (50)

respectively. Equations (47)-(50) together with the renormalized forms (19)-(21) form
the closed set of equations that determines the statistical averages self-consistently.

2.6 Estimate of eddy damping rate
The renormalization of background fluctuations gives the drag coefficient ¥, , of

Eq.(19) together with the triad-interaction time T; s, . Under the Markovianization

approximation, the triad interaction time is estimated from Eq.(21) as

if (k, p) belong to the same class of either semi-micro (!} mode or micro (h) mode or
thermal fluctuations. (Here & for the test mode, and p for the back-ground mode.) In
Eq.(51), V. for micro mode is a sum of the eddy damping rate and damping rate by the

thermodynamical dissipation as
Vik=Yikt Yic, k (32)

where Y. denotes the decorrelation owing to the collisional transport coefficients. It was

given in I-V for viscous damping rate as
?1,k=71.k+7vc="{1,k+ucki s (33)

where W, is the molecular viscosity for perpendicular ion motion, being caused by the

thermal fluctuations. Other components, e.g., for the parallel current and pressure
perturbation, were also given by use of the collisional electron viscosity and collisional
thermal diffusivity. Y, , is also written as Y, 4 , illustrating the eddy viscosity damping
rate. |

With the help of this Markovianization approximation, Eq.(51), the renormalized
eddy damping rate in Eq.(19) is approximated as

(54a)

Vo=~ D MooM T |

or



Y, k?;.k == Zp: Mi.l;pq'l"litqkp| ffp | ) (54b)

if (k, p) belong to the same class of mode.

If the decorrelation rate of the beat mode (denoted by p ) is much larger than that
of the test mode, Vi;p >> Ti,k » one has an estimate

S (55)

When the test mode is chosen from the semi-micro mode,. it could also be generated by

the beat of rapidly-decaying micro mode, and one has

semi—nicro

Yf,k="’ 7 M:kquiqkp‘Y: |flp| "EMikqu!qkp‘Yi,_llﬁpl
(56)

2.6.1 Micro mode
The renormalized damping for microscopic mode is induced by the micro mode,
and the right hand side of Eq.(54) is contributed by micro mode as

micrgipodes

V= 2 MMl Rl o (57)

where
?l k™ ,Yl k+'ch k - (58)

Combining Eqs.(57) and (58), one has the relation for microscopic mode as

micrgmodes

' k("lff £+ Vie, k) =- M M, qldc’l e I - (59)_

2.6.2 Semi-micro mode
For the semi-micro mode, both the semi-micro mode and micro mode contribute
to the right hand side of Eq.(56), which is rewritten as

Y:.k=Y{I-)i.k+Y{h)i.ka (60)

where



semi-micre modes

'Y:nf,k'-"‘ e M:kquaqkp'Y:k

: (61a)

and
micromodes

* * _ )
Yoyik=— . M; oM oVl p l’fl,p‘ . (61Db)

The subscripts (1) and (h) denote the contribution from semi-micro mode and micro

mode, respectively. Equation (56) is rewritten as

semi—micro modes
I [nd * — *
Y, k(Yi, P ) k) == f M; M g

k

=2
|
micry des 7
ik
- M:kqutqkk’ h*fl.k|

(62)
2.7 Estimate of noise amplitude

2.7.1 Micro mode
The magnitude of source is also evaluated. As in the case of I-V, the self noise

source 1s induced by the micro mode, so that the correlation function ( 5(",,3, ,‘.SF,,}‘ k> is

evaluated in the same manner. The explicit procedure is shown in V and is not reproduced

here. A diagonalization approximation

;(ZMMr(ﬁfpﬁ,p)@’fq ,-f.q))%évv(ﬁfw,k) (©3)

where C{,‘ is a numerical constant of order unity, 0 < C(’)’ <1 . (See II for explicit form of

coefficient Cyy .) By the help of this approximation, the self-noise term is evaluated.

After the same procedure in V, one has the amplitude of self-induced noise as

<5(1h’)tk5('h)> ctrs|ati[ et 1t (64)

and the total noise ampiitudc as



* -2 2 . o
(5 k 5,?) = C(’,‘Yﬁ' & ]A'{l | |TrA"l | I {' x + thermodynamical excitations .
(65)
Contribution from thermodynamical excitation is determined by the fluctuation-dissipation
theorem for thermodynamical equilibrium. An explicit form is given in IT and is not

repeated here.

2.7.2 Semi-micro mode

The self noise source is induced by the micro mode as well as semi-micro mode,
<5£'5i> = ( E,; ka,)‘ k) + <Sf,:)‘k5£,,). k) + thermodynamical excitations . (66)
The correlation function (Sf,;,ka,), k> , which is induced by the semi-micro mode, is

evaluated in a same manner as for the micro mode. A diagonalization approximation
Eq.(63) is also used for the semi-micro mode

TS e (s N ci{is) o

and the amplitude of self-induced part of the nonlinear noise is given as

ab [ reatP 1, (68)

<5(1$5(t)> = C(I)“If;

for the semi-micro mode. The correlation function <5{',:),k5{’,1), k) is given by summations

like
" oo et i) *

In this summation, wave numbers (p, q] belong to those of micro mode, but their beat

P + ¢ belongs to the semi-micro mode. Magnitude of M M is reduced, relatively, by
2
the factor of (k/k h) (k is the mode number of the test mode (semi-micro mode), and k*

is that of micro mode). By noting this fact, one possible estimate of Eq.(69) is

g (2M st Mot q>) S(&)elstiste) . a0



where é{; is a numerical constant of the order of C {)' . Using the typical mode number of

. A
micro mode Kg , one has

" o it i)

2

k
(k)"

nh' '
Covh 1, (71)

where

1= 2= (flele) (72)

is the total fluctuation amplitude for the j-th field of micro mode.
The nonlinear noise for semi-micro mode, which is driven by micro mode, is
evaluated as

k2

e [ |Teal| 1t 73
0

<5(h*)5(h)> = Cg’?ff

The total noise amplitude for semi-micro mode is given by combining Eqs.(68) and (73),
and is expressed as

2
(si*st)=|at, [ meal]” | chyltt ,+ Ehyh (:WI?
0

+ thermodynamical excitations . 74)

2.8 Estimate of fluctuation dissipation relation
Estimate of noise source term is combined with the extended fluctuation
dissipation theorem, Eqs.(47) and (48). The fluctuation level is determined in a self-

consistent manner.

2.8.1 Micro mode
Equation (65) is substituted in Eq.(48), and the noise source term is eliminated
from Eq.(48). One has '

Covh v

.=
Lk 29{.2(%”)

' {’ « + thermal fluctuations . (75)



In deriving Eq.(75), the relation
TrA" =1 (76
is used. The expression of the thermal fluctuations in Eq.(75) has been given in IL.

2.8.2 Semi-micro mode

For the semi-micro mode, Eq.(74) is substituted into Eq.(47). The similar
procedure is employed, TrA'=1 | and one has

i N
= —— CoYUL & +Coyh —al 1+ thermal fluctuations . (77)
29{9(7‘ ) (ko)

2.9 Strong turbulence limit

The phase diagram of the turbulent fluctuations and thermodynamical fluctuations
are given in I-IV. The case of strong turbulence limit is adopted, which is relevant for
inhomogeneous and confined plasmas. The thermodynamical fluctuations are neglected
in Eqs.(75) and (77). For nontrivial solutions of fluctuations, we have

Cfl
Re(M) ==L vh ., (orlf,=0) (78)
and
Cl éh k2 .
me(ll)ff.ﬁTOYiIi.k'FTO’YﬁWI{' : (79)
0

The nonlinear dispersion relation Eqs.(49) and (50), the renormalization relation Eqs.(59)
and (62), and the fluctuation dissipation theorems Eqs.(78) and (79) form a set of
equations that determines the fluctuation level and autocorrelation time self-consistently.

2.10 Average model

Spectrum averages appear in renormalization relations and extended fluctuation
dissipation theorems. Order of magnitude estimate which is based on dimensional
arguments is made assuming that summations converge. Discussion is made in Appendix
C.

An order of magnitude estimate of Eq. (59) is given as



vifet k) = (kB) 1t (80

where Y is the characteristic eddy-damping rate of the micro mode, 1'}’ is the total

fluctuation amplitude for the j-th field of micro-mode Eq.(72), and kﬁ is the characteristic

wave number of the micro mode. Equation (62) is evaluated as

‘ | * i
irt " k)= (k) rf o+ (k) t) e 2 81)
1 i

where the total fluctuation level for the j-th field of semi-micro mode is given by
! 1*
Ij=kzlj,k’:;<f},k'j,k'> : (82)

and Y; is the characteristic eddy-damping time of the semi-micro mode, and ki, is the
characteristic wave number of the semi-micro mode.

Extended fluctuation-dissipation theorem for the semi-micro mode Eq.(79) is
approximated as |

” 4

. c! ch ok

reuit = ookt Shot 4] )
0

where A’ is the characteristic (spectrum-averaged) eigenvalue of the nonlinear dispersion

relation.

With these simplifications, the solutions of nonlinear dispersion relation (49) and
(50), together with renormalization relation Egs. (80), (81) and extended FDT Eqgs. (78)
and (83), determine the fluctuation level and correlation functions self-consistently.
Solutions of the nonlinear eigen values A' and A" are discussed in the next section.

2.11 Turbulence-driven transport
2.11.1 Test particle diffusion

Transport of test particle is calculated by use of the spectral functions of the
fluctuating fields. The velocity of the test particles in the x -direction by the & -component

of the fluctuation field, V, k(t) ,is givenas V, k(t) =ik, ,,k(t] . The displacement in the

direction of the global gradient, x -direction, is given as

) -x0)=-iL k[ et (7). (84)



Substituting Eq.(37) into Eq.(84), the statistical average of the mean deviation is
obtained. Explicit calculation is presented in V as

<| () -0 ) = T2 aly? o] (stsp) [ar (®5)

giving the test particle diffusion coefficient. D,,,, in terms of the noise source as

D,es,¥ lim —<|x > Xl e x) —L_(ss)) . e

" By use of Eq.(39), it is rewritten in terms of fluctuation spectrum as

2k2
test = Ayt QL 7\. (87)
Both the semi-micro and micro modes contribute to the test particle diffusion coefficient.
Using the average model of §2.10, the test particle diffusion coefficient is estimated as

),

Dre.ﬂ (9{ i[ 9{ l .

(88)

2.11.2 Cross-field flux of energy
Cross field transport of energy is obtained by calculating the cross-correlation
functions. The ion energy flux which is induced by the turbulent £ x B motion is given

as

Gio.=— <p? % ¢>- (89)

This quantity is calculated by use of the cross-correlation function

in,.xz_Sm;ky<f;.kﬁ,k>' (90)

By use of Eq.(41), the cross field heat flux is given by the autocorrelation function for the
fluctuating potential as

) 9



In the framework of the average model, we have an evaluation as
1yp* Y ! koys* -2 ’ h
qm.x=-3m(k0y VL,5VL,I|AI,1| ) II_Sm(kO.y VL,SVL,.'lAI.}| ) ;. (92)

3. Three Field Modelling

The decomposttion Eq.(31) for the five-field model is in principle possible;
nevertheless it is often very tedious. It sometimes is more physically transparent to use a
truncated form of the renormalized dielectric tensor £. A simple truncated model of £ is
introduced, and analytic solutions for the nonlinear dispersion relation are investigated in

the following.
3.1 Renormalized dielectric tensor and eigenvalue

3.1.1 Semi-micro mode

To obtain a three field model, firstly the electron inertia effect is neglected in the
Ohm's law, and the electrostatic limit is assumed, i.e., the inductive term in the Ohm's
law is neglected. Then the system turns to be the dynamical equations of four variables
{$, V|, n, p;}. In addition to it, often employed is the approximation that the Boltzmann
relation for the electron response, /i = ¢ or the low-electron temperature limit holds as

P.—0 forT, <<T,. (93)

If one keeps the current perturbation, the influence of parallel resistivity on the semi-
micro mode can be studied. The resistivity can enhance the growth rate, so that the
enhancement of anomalous resistivity by micro mode can increase the turbulence level of
- the semi-micro mode. However, this influence on the growth rate is small in the range of
parameters of interest [27]. Therefore this influence is not kept in this article.
With this simplification, Ay = 0 and . — 0, the reduced set of equations is

composed of three equations for the variables of

¢
S = Y 94)
P '

as



g +ikpig+ WKy 0 ik, Q k7>

£0)= 0 i g kT ik
—ik,pio i Pk i og; +x; k1
(95)
The renormalized operator £ for the semi-micro mode is given as
i gy +ik,pio+ T 0 ik, Q'k7?
=ik, i Bk i g +7,
In this equation,
op =5 LE, ©7)

represents the shearing rate of £ X B flow by the global radial electric field. Quantities
’Yf, R 7f| and 'Y;, are the sum of eddy damping rate and collisional damping rate, owing to

the shear viscosity of pérpendicular ion motion, the shear viscosity of parallel ion motion
and the ion thermal diffusivity, respectively. The drag terms are expressed as

. ]
TS V9%
o1 1
Te=| BmVi¥ie [==1 Y% |- NG
AV i onﬁf,k

The drag term is given as a sum of those induced by the semi-micro mode and those by
micro mode as,

=Tl + Ty 99)

where



i

Ty =~{ ¥« (100a)
‘Y{h)pﬁ t:l, k
and
1),
Tlye=—| Yy ¥px |- (100b)
Ytl)pﬁt k

(Correspondences between v!'s in §2 are Yf, = 7’; , ‘Yf| = ?é and ‘Y}") = 7’5 . Because the
number of variables, being denoted by I, j , is different in §2 and §3, we use the symbols
v, ||, and p for the suffix here.) Renormalization of background fluctuations of semi-
micro mode gives rt’)" , and the one of micro mode yields r[h)k .

This set of equations describes the (resistive) ITG-mode in the presence of the
magnetic field inhomogeneity. The coupling between the ITG mode and the interchange

mode could be investigated. The influence of micro mode turbulence on the renormalized
operator £ s included through the nonlinear eddy damping rates Y, , ’Yﬁ and ‘Yi, ,as is

shown by Eq.(100a).
Nonlinear eigenvalue equation Eq.(32) is solved by adopting the expression
Eq.(96). The local dispersion relation in the absence of the electric field shear is given

A +ioe A7+ (k§k12p,fog' + P JA + i Bkf =0, (101)

with
A=alogt (102)

In deriving Eq.(101), a relation
=1 =7, (103)

is used for the transparency of the analysis. The approximation, Eq.(103), means that the
turbulent Prandtl number is close to unity Pb =y iy pi =1 . The quantitative study, in

which the turbulent Prandtl number is determined self—corisistently, has shown that the



approximation P/ - | is arelevant approximation for usual situations. Nonlocal

solution in the presence of the magnetic shear has been discussed in literature. (See, e.g.,
[2, 27, 36].) If the magnetic shear is not strong, thé nonlocal solution of Eqs.(32) and
(96) is the ITG mode coupled with interchange mode (or magnetic curvature driven ITG
mode), and belongs to the family to which the toroidal ITG mode belongs. In the strong
shear case, the eigenvalue has been obtained for the long-wave length ITG mode (which
might not be the fastest-growing, but is important for the turbulent-driven transport) is
given as [2, 36]

SR@X=-"‘!‘_S(1+T}I')|(!)*1' . (104)

qR

where O« ; is the ion drift frequency. In the weak shear limit, one has the magnetic-
curvature driven ITG mode as [27]

1:%(—1'— Q'[1+n,-))|m*,- : (105)

Note that the minus sign of the real part of the eigen value A indicates the instability. By

taking the case of Eq.(104), one has the form of the eigenvalue for the semi-micro mode
as

Re M =—vh+7,, (106)
where

vh=ggs(l+nou]. (107)

(Order of magnitade of I W« ,~| is given by ’ W ;| ~ O(VI;,JH) for kp; ~ 1 in a dimensional

form.)

In the presence of the inhomogeneous radial electric field, the ®g; term in
Eq.(96) affects the eigenvalue. In the plasma frame, the anti-symmetric part of Wg; with
respect to the change of x = — x has the important contribution. The nonlocal analysis

has been performed, showing that the eigenvalue Yf] is modified. Explicit form has been

discussed in literature. One characteristic feature is that the growth rate of the mode is
strongly suppressed when g reaches a critical value ®f, . The critical value ®f, is

given as [36]



b | (108)

(109)

We have the nonlinear eigenvalue for the semi-micro mode as

!
Red!=-— Yo
1+ (mEllcof;C

)2 +7, . - (110)

3.1.2 Micro mode
For the microscopic mode, we study the current-diffusive (or resistive)

interchange mode, and take a simplification

17"—>0 , (111)

together with Eq.(93). The extension to the case of finite electron pressure perturbation is
straightforward, and has been discussed in [37, 38]. In the limit of Eqs.(93) and (111),
the reduced system is obtained with variables

=0y, (112)

For this set of variables, the linear operator and the nonlinear drag term are reduced to

iy +ikypio+ k] i B, ek 1 ik, Qk7?
el -1,
2= i58 &y € (‘ O, +ue,cki) 0
—ikypig 0 i og +x; K2

(113)
and
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Ty =2 F)=| whVi) 1=-| ¥4 (114)
X kﬁv iﬁt},l k Ygﬁ 1{' k

For the micro mode, we use the symbols v, ¢ , and p for the suffix of eddy damping
rates here. {Relations with those in §2 are: ¥y = ‘Y‘E’ , ’Yi,' = ’Yé and V’; = “{’5} .} The eddy
damping rate for parallel electron motion (electron viscosity) is close to the thermal
diffusivity due to the micro turbulence. We use the suffix ¢ for the electron viscosity. It
is noted again that the form of the operator 20 is simplified version of the one for the
CDIM (CDBM) turbulence. The finite ion gyroradius effect modifies the form of £0) ,

influencing the solution of the nonlinear dispersion relation. However, it has been shown
that the qualitative feature of CDIM turbulence is not affected much by the finite ion

gyroradius effect [38]. Based upon this confirmation, we choose here a simplified form

of 20 .

The operator which renormalizes the background micro turbulence, z , 1s given

2= 20Ty, (115)

Substituting Eqs.(113) and (114) into Eq.(115), the operator Zis given as

g +ik,pio+Tt  iB kD’ ik, Q'k7*
- e p—1 —1f,
Z'= iEE Ky € (10)131 +’Y§') 0 (116)
_ikyplfo l 0 imEl +7§

In simplifying Eq.(3) into Eq.(113), the current-diffusive limit &Ny <<, K7 is taken.
The other limit, i.e., resistive limit £n | == He, ,_.kzl , is also taken and similar argument

can be developed [39, 40].
The nonlinear drive operator, which is induced by the semi-micro mode, is given
for this reduced model as



iﬁ)E([) 0 0
Py=-| i& oy i€ oy 0 | (117)

i (1}5([) 0 [ mE(f)

Therefore the modification of gradient for micro mode by semi-micro mode is kept in
electrostatic potential and ion pressure. The current profile modification which is
associated with the semi-micro mode is small. The nonlinear drive operator for micro

mode is simplified as

iOJE(,] 0 0
2y =- 0 i€ logy O (118)
i('on([) 0 ICDE([)

the influence of the £ X B flow shear @g(y) is given by Eq.(23), and the (3, 1) element

is given as
Wy,) =~ kygeB + kB! (119)

The total renormalized operator is given as
4=ty 020

The operator 2" is discussed in the previous publications, and the term ﬂ(’;)‘ x Tepresents

the influence of semi-micro mode on the microscopic turbulence.
The operator ﬂ(}) k includes the fluctuating field associated with the semi-micro

perturbations. It fluctuates in time. In obtaining the solution of the eigenvalue equation
(32) with Eq.(120), two limiting cases are considered.

‘ One limit is the case that the autocorrelation time of the semi-micro mode is much
longer than the autocorrelation time of the micro mode. In this case, the value of ﬂf’;) X

does not change during the autocorrelation time of the micro fluctuations. Therefore, the
operator ﬂﬁ], k 1is approximated as constant in time in solving the dynamical equation of

the microscopic fluctuations. We call this case ‘dc-limit'.

The other limit is that the autocorrelation time of the semi-micro mode is much
shorter than that of the micro mode. In this case, the operator Z’f‘;), ¢ givesrisetoa



random oscillation effect on the dynamics of the test mode of micro fluctuations. This
case is called 'random oscillator limit'. (See [1].)

As a first step of the analysis, we take the 'dc-limit' here. This is because the
correlation time of the semi-micro mode is usually much longer than that of the micro
mode, when nonlinear dynamics of each component is analyzed separately. This is the
basis to employ the dc-limit in this article. The opposite limit might be more relevant, if
one chooses the 'zonal flow' as a semi-micro component. Its autocorrelation time could
be equal to or shorter than the micro fluctuations [41]. Such a case requires the statistical
method for random oscillators. The statistical approach has been discussed in literature
[1, 42].

In the absence of the nonlinear drive term by the semi-micro mode and radial
electric field, the eigenvalue A for the nonlinear dispersion relation has been obtained as

{43]
1/5
Re A= GL2 (- (%0) +%ﬂ)(%, (121

showing that this mode is subcritically excited by the turbulence-driven electron viscosity.
In this equation,

Yh= G, Wy . (122a)

represents the typical growth rate of the mode, w4, =Vv,/a (v,, being the poloidal Alfven

velocity), X/%o is the normalized amplitude of the micro mode fluctuation

—_ 0 c

Xo = Tm—gwfxp, (122b)
X _T 1 ¢b

X _T 1¢e 122¢
xo By T (122¢)

and
r~h 174, _
ko=0.58{Gop/a) "o (123)

is the characteristic mode number ( Gy = p,foﬂ denotes the driving parameter owing to

the global inhomogeneities). This branch of oscillations is subject to the subcritical
excitation, and subcritical property-is discussed in detail in [1, 5]. In this article, we are
intersted in the interplay between the different turbulent modes, so that a simplified mode}



form is used. In the vicinity of the zero of the eigenvalue, A in Eq.(121) is Taylor-

expanded and an approximate form is given as

Re A= —yh+yh (124)

In the presence of the ithomogeneous radial electric field, the nonlocal analysis
has been performed, and the eigenvalue Y§ is modified by the Doppler shift as

Yoe = 5 (125)
1+ [mEllcngc)
where
h Vihi
Ope =8 7 = (126)

represents the critical value of the inhomogeneous radial electric field for the suppression
of the micro turbulence [44]. Taking this effect into account, the nonlinear eigenvalue for

the micro mode is modified as

h
Reb=o— 10 yqh | (127)
1+(mE1/o)gc)

Next, the influences of the drive-term by the semi-micro mode are considered. In

the presence of the driving terms, the pressure gradient and radial electric field shear are
enhanced through the terms Wyp(y) and Oy , respectively.

Owing to the Wyp(y) term, the driving source for fluctvations is enhanced. The

absolute value of Oy p(1) is evaluated as

Vi (128)

lva(:)[:‘kﬁkip,-‘|=|k§ki

(Note that the pressure gradient in the y-direction is induced by the semi-micro mode.
However, this gradient is in the perpendicular direction of the gradient of the magnetic
field strength, and has little influence on the interchange mode turbulence.) In driving

micro mode, the pressure gradient is effectively increased as

Pio— o+ |k (129)



In a region where the pressure gradient is enhanced by the semi-micro mode, the
microscopic fluctuations are more strongly excited with Eq.(122a) being replaced by

Yfi—wﬁ)dmf\/ (P£o+|ki|m)9' L (130)

The relation between the pressure perturbation and electrostatic potential perturbation is
given by Eq.(41). An explicit form for A is given in V, and the relation between {3 and
I, is given as '

2

l

k’p'
o i (1312)

= I
Th-A

A further simpliﬁcétion is often employed as

l r
kyPU
Yl

v

VI = Vi, - (131b)

giving an expression

NI ' (131¢)

Yf][)dn‘ven = 7’6\/ b+ ‘ ké)zfz'ﬂf

The E X B flow shear effect is also enhanced by the semi-micro fluctuations. In
the diagonal term of the renormalized tensor, the new term Wgy(;) appears and replacement

®p| — O + Og()) 7 (132)

holds. The asymmetric part of Wg(;) influences the turbulence level. Figure 2 illustrates

the stretching the flow pattern of the micro mode in the presence of semi-micro mode
fluctuations. The semi-micro mode stabilizes the micro mode through the mechanism

which is effective in turbulence suppression by the sheared flow. Because the phase of
OF)) is statistically independent of that of dc component g} , we have

<(m€l + mE[,))2> = (o) + <(mE(,))2> , - (133)

The replacement



(051)" = (0)" + <((°E(1))2> | (134)

should be taken into account in Eq.(127) as

Vrl)driven h

Red=— +7, . (135)
T e (oot (omor))

The amplitude of the frequency shift Wg(y) is in proportion to the amplitude of the

electrostatic potential perturbation associated with semi-micro fluctuations. The
fluctuation amplitude of the electrostatic potential is given as

|8]=V1] . (136)
Substituting Eq.(136) into Eq.(23), we have the relation
_ ( kt)2 /!
| @y |= L. (137)

Substituting Eq. (137) into Eq.(135), the influence of the driving nonlinearlities ﬂ{’l) on

the eigenvalue of the micro mode is obtained as

le]driven
1+ (mEllmgc]z + [k’)4(m,’}c)' 2

Re Al = +7h ~ (138)

3.2 Nonlinear interactions of micro and semi-micro fluctuations

3.2.1 Set of moment equations
The closed set of equations for the relevant quantities (amplitudes I and I| , eddy

damping rates Y; and 7, , and the inverse of auto-correlation times A" and A’ | for the

micro and semi-micro fluctuations, respectively) are obtained:
Extended fluctuation dissipation relations from Eqs.(78) and (83);

o 4
C! ¢t
sne(x‘)ﬂ = -zll I+ —29- vh (é) " (semni-micro) (139)



ch .
Re (l") 20 vk, (micro)
the renormalization relation for eddy-damping rate from Eqs.(80), (81);

i ) = ()" () ) B 1 emicmicro
Yy e '

vi{vh 4 vh) = (b)'1% (micro)

and the eigenvalues for renormalized operator from Eqs.(110) and (138);

I
9{87\,[=— Yo

1+ (mE,/m,{;c

)2 + ‘?f, . (semi-micro)

'yo\/l +|k !2yv

e l":—] (mEllmEc) +( ) (mﬁc) ?

‘Yf} . (micro)

(140)

(141)

(142)

(143)

(144)

Here, the fluctuation amplitude is represented for the electrostatic potential and we write

Il’,h = I{'h "

(145)

The term 7, is the characteristic eddy-damping rate of the perpendicular ion motion, and

P . L .. .
kf) and k|, are the characteristic wave numbers of the semi-micro and micro modes,

respectively. Figure 3 summarizes the nonlinear interactions in turbulent fluctuation

which is composed of the semi-micro mode and micro mode.

3.2.2 Strong turbulence limit

Self-consistent solution for the nonlinearly interacting multiple-scale fluctuations

is studied in the strong turbulence limit
Virt 5 ol
and

1! >> thermal fluctuations .

We consider the case where the ordering

(146)

(147)



(kb <<(t) (148)

holds. _
In the limiting case of Eqs.(146) and (147), the renormalization relation Eq.(142)

1s rewritten as

. .
% I (micro mode) (149)

0

Substituting of Eq.(149) into Eq.(141) with relation Eq.(146), one has the

renormalization relation for the semi-micro mode as

12 I
% =I'+ kYI_V2 Vit . (semi-micro mode) (150}
0 0

From Eq.(150), the eddy-damping rate of the semi-micro mode is explicitly given by

fluctuation amplitudes of semi-micro and micro modes as

v I+ JTPear

2=
kb 2

(semi-micro mode) (151

Equations (149) and (151) represent the relations between the eddy damping rates and

fluctuation amplitudes.

3.2.3 Extended fluctuation dissipation theorem for semi-micro mode

Extended fluctuation-dissipation relation is solved for the semi-micro mode.
Substituting the eddy-damping rate of micro mode (149) and the nonlinear eigenvalue
relation Eq.(143) into Eq.(139), the extended FDT is rewritten as

..-.h l 2
N ¥ - Yf;z 11=C_67_51!+§2(ﬁ) () (152)
2 .
kh? 1+({og/of)” ko 2 K 2 \ko

One obtains from Eq.(152) the equation which the fluctuation level must satisfy as

!
%%1’=D‘I‘+e[l")m (153)

[i]



where

2 1 Y6
2_C6 ké)z 1+ ((ﬂEll(Df;c)z

{

(154}

In this expression, D' denotes the magnitude of the driving power by the global

mhomogenelty, and is the characteristic value of the diffusivity by the semi-micro mode.
This form of D' includes the enhancement by the self-nonlinear noise [8]. (Notice that

-1
the characteristic scale length ( 0) is determined by the nonlinear theory Eq.(49).) In

the absence of the mutual nonlinear interactions with micro mode fluctuations, / k0 ,in
Eqgs.(151) and (153), one has

I'=(p")’. o ass)

The smallness parameter

~h i 2
Cs [KHY) .
£=—2 (“9) (156)

2-Ch\ kb

represents the coupling coefficient for the drive of the semi-micro mode by the nonlinear

noise of micro mode. ‘
Substituting the expression of v, of Eq.(151) into Eq.(153), one obtains

(s/l_"+\/1”+411 —D’)I’=e(ﬂ')m

2

(157)

This equation shows the relation between the fluctuation level / ' and that of the micro
mode " | the driving parameter D' and the coupling parameter € . Example of the
fluctuation level I' as a function of I* is illustrated in Fig.4(a) for fixed parameter € ,
where quantities are normalized to D' . If the level of micro mode is small,

I"<D?, (158)

I' takes a finite value of the order D', and is a decreasing function of / " . Fora fixed
value of I* | the semi-micro mode amplitude increases together with D' ie. the mode is

excited by the (linear and/or ﬁonlinear) semi-micro instabilities. In contrast, if the level of
micro mode 1s high,



I">p"? (159)

the semi-micro mode is quenched and the amplitude is of the order of € . In this

parameter regime, the level /7 " isan increasing function of / h  which is shown in Fig.

4(b). That is, the semi-micro mode is excited only through the noise excitation by the

micro-mode.
Two limiting analytic forms of / ' as a function of / h , are derived. Equation
(157) shows that the left hand side is 0(8) . This means that either

(s/l_" R+ 1h a2 - D’) or I' goes to zero in the limit of € — O . If the amplitude

of semi-micro mode is not small
I's>el", (160)

the first term in the left hand side of Eq.(157) is O[e) , Le.,

2 h I
\/I_+\/I +41 =D’+O(E) (161)

2

One has a relation for the fluctuation level
=D"-DVI"+0[e) . (162)

This relation represents the regime of Eq.(158) in Fig.4(a), where I'isa decreasing
function of I . In this case, the eddy dampmg rate and the decorrelation rate (the inverse

of the autocorrelation time) of the semi-micro mode are given as

Y,=D'ky' + O[e) (163)
and
Re Al = 20 Db+ 0e) . | (164)

Even though the level is influenced by the micro mode amplitude / h , the decorrelation

rate is mainly controlled by the driving parameter of the semi-micro mode. In other limit,
where I' is small, '



It~ ofe) (165)

the term (\/I_hIZ + It al'2 - Dl) in Eq.(157) is approximated as (\/I_h —Dl) , and

Eq.(157) provides the relation which is valid in the range Vit > p! as

h .
I’:e(———ﬁ\h{TD!)I"r«eI", (166)

In this case, the eddy damping rate and decorrelation rate are given as

b= VI*K? + 0(g) (167)
and
1 Ch I L2
Re M =2V I"kg +0[g) . (168)

Equations (166), (167) and (168) show that not only the fluctuation level I' but also the
eddy damping rate and decorrelation rate are governed by the level of micro mode r

The decorrelation rate Re A’ is greater than D' k) 2,

3.2.4 Extended fluctuation dissipation theorem for micro mode

Extended fluctuation-dissipation theorem for the micro mode Eq.(140) with the
nonlinear eigenvalue equation Eq.(144) and the renormalization relation Eq.(149) provide
the fluctuation level,

2

1201 JTI
k2 ghd Y& 2 \/1"‘|k0 2y,
v oo kit 2-Cf +(0)Ellm§c)2+(k’)4[m§c)_2 ’ (169
the eddy-damping rate
W 2 ‘ \/1+ /2'yv\/ 170
R re (mEllmEC)z + (k’)4(coEC) ’r " | 470

and the decorrelation rate (the inverse of the autocorrelation time)



¢k, ch Vv 1+ |2y Vi

Re A" = = :
) 2 2-Ch +(m51/w},}c)2 + (k’)4(m§c)_21

216 (171)

as functions of the magnitude of the semi-micro mode turbulence / ' and the global

driving parameters. In a normalized representation, Eq.(169) is rewritten as

NI

2
a2 L+ b2y,

"=(D 172
( (1 + I 1’)2 (2
where
phe 2 1 v8
2-Cl 1+((0m/0)§c)2 AT (173)
and
Iy= (i + (mEllm}}c)z)(mgc]Z(k’)_4 _ | (174)

D" is the characteristic diffusion rate, being represented by the magnitude of the drive for
the micro mode. The parameter /¢ denotes the level of turbulence of the semi-micro

mode, at which the suppression of micro mode is effectively induced. In the absence of

the coupling between the semi-micro mode, one has the amplitude for micro mode,
h h\?
1"=(p*)". (175)

In the presencé of the coupling, eliminating Y. from Eq.(172) by use of Eq.(lS 1),

one has

2 1 NI
1" = (D" 7|1+ e (176)
(].,.[e-ﬁ}]’) NI+ 1"+ 4] :

showing the influence of the semi-micro mode level / ! on the micro mode fluctuations
I" | This equation includes the driving parameter for the micro mode D" and the
parameter { g .



Figure 5 illustrates the level I" as a function of the level / ! for given global
parameters. The quantities are normalized to D" (in Fig.5). In the limit of small

amplitude of the semi-micro mode, the fluctuation level * increases as I’ increases.

This is due to the local steepening of the pressure gradient by the semi-micro mode. In
2

the limit I/ << (Dh) , Eq. (176) gives an approximate relation

1= (D)’ (1 + _JE) | a77)

2D"

However, if the fluctuation level of semi-micro mode becomes higher, the suppression by
the flow shear dominates. Then the level I” starts to decrease for increasing I' . In the

2 2
limit of I'>> I , (i.e., I{1 + 157 I')>> (D"} ) the last term in the right hand side of
Eq.(176) converges to 3/2 , and Eq.(176) is approximated as

3
2.
2(1 +1;11’)

"~ (p")* (178)

. h i .
The level of micro mode I" decreases as { increases.

3.3 Self-consistent solution, bifurcation and phase diagram
The relation of the semi-micro mode, Eq.(157) and the one for the micro mode

Eq.(176) must be simultaneously satisfied. Combining these equations, the self-
consistent solution is obtained. This system is characterized by parameters D! D" I eff

and € . The parameters D' and D" represent the magnitude of the drive by global

inhomogeneity, and are the turbulence transport coefficients without the mutual
interactions. The parameter I stands for the critical strength of the nonlinear

interactions between semi-micro fluctuations and micro fluctuations. ‘The parameter €

represents the magnitude of the noise pumping for the semi-micro mode by micro mode

noise.

3.3.1 Self-consistent solution

Self-consistent solutions for Eqs.(157) and (176) are investigated, and the
dependence on the coupling parameters I, and € is studied.

We first study the case where the threshold for the sﬁppression of micro mode
Ig is high, Iz >>D*'  In this case, Eq.(176) shows that the level of micro mode /”

is weakly dependent on the level of semi-micro mode [ L Figure 6 shows the relations
between the levels of semi-micro mode and micro mode, Eqs.(157) and (176), on the



[1' LI h) plane. The extended FDT of the micro mode Eq.(176) is denoted by the solid

line, and that of the semi-micro mode Eq.(157) is shown by dotted and broken lines. In
2

this graph, the axis is normalized by the unperturbed level (Dh) . The drive for the

micro mode is fixed, and that for semi-micro mode D! s varied, and the relation

Eq.(157) is plotted for various values of D' . The cross point represents the self-

consistent solution. As is shown in Fig.4, the relation Eq.(157) has two limiting forms,

and the curve of Eq.(157) changes the characteristic feature near the condition { h-ND!,
Depending on the ratio of D/D" | the nature of the solution changes.

Let us examine two cases of D! > D* and D' < D" . If the drive of semi-micro
mode D' is large enough to exceed the threshold,

D'> D" (179)

the solution for which semi-micro mode is strongly excited appears. The cross point in
Fig.6 exists in the region where / ! has large value. The solution in the branch of

Eq.(162) is realized. In the large D' limit, D' >> D* , one has

I'=p? (180)
and

I"=D" 21" D" 15, D" (181)

. i . h
As D! increases, the level of I' increases; however, " starts to decrease.

When the drive for the semi-micro mode is weak,

D'<D" (182)
the self-consistent solution is realized in the limit of Eq.(166). We have
h n)?
"= (p")" | (183)

and

I'=el*, | (184)



The micro mode turbulence is excited. Although the drive D! s finite, semi-micro mode

instabilities do not grow and is quenched, being only excited through the noise pumping
by the micro mode. The eddy damping due to the micro mode is large.
The level of self-consistent solution is given in Fig.7 as a function D!. The

threshold for the excitation of the semi-micro mode is observed. In the case of Fig.7,
where I g >> D™! holds and the E X B shearing effect is weak, the transition of the

dominant solution turns out to be a soft transition.

3.3.2 Bifurcation
Self-consistent solutions for Eqs.(157) and (176) can be multiple and show the
hard bifurcation.

Figure 8 shows that the multiple solutions exist. If the drive for the semi-micro
mode D' is strong, (e.g., the dotted-dashed line), the solution exists in the limit of

Eq.(162) as is denoted by 'S'. ('S' stands for 'semi-micro’ mode.) When the drive D'
becomes weaker, the solution 'S’ disappears, and the solution is realized by the limit of
Eq.(166), i. e., the solution 'M' appears. {'M' stands for 'micro’ mode.) In the solution
'S', the semi-micro mode is strongly excited and the micro mode is suppressed. In the
solution ‘M', the micro mode is excited, but the semi-micro mode is quenched. For the
intermediate values of the drive D" , the multiple solutions of 'S' and 'M' exist
simultaneously.

Figure 9 illustrates the fluctuation amplitudes as a function of the driving ratio
D'/D" . When D'/D" <1 | only the solution 'M', Eqs.(183) and (184), is given. The
micro mode is excited, but the semi-micro mode is quenched, and the amplitude / " is little
influenced by the drive of the semi-micro mode D' . When the drive D' exceeds the

critical value, the solution 'S’ (given by Eqs.(180) and (181)) also appears. As the drive
D' increases, I' increases but I is more strongly suppressed. Owing.to the coexistence

of two solutions, a hysteresis appears in the relation between the gradient and fluctuation
level. At the critical point, the transition from solution 'S’ to 'M' (or 'M' to 'S') takes

place.

3.3.3 Phase diagram

The presence of hard bifurcation in the fluctuation level forms a cusp type
catastrophe in the phase diagram represented by the two parameters D' and D* .

The threshold condition for the solution 'M' to exist is given as

D'<D" (185)



The threshold condition for the solution 'S' is also estimated. Neglecting a weak
dependence on ' in the last term in the right hand side of Eq.(176), Eq.(176) is

approximately given as

D" |
it . —— 1
- 1+I;ﬂ'I’ (186)

Combining Eqs.(162) and (186), the condition for 'S’ to exist is obtained as,

2
D”<+(D’2+I ) (187)
_ﬁ' .
4D'1 4 @

From Eqs.(185) and (187), one sees that the two solutions 'S" and 'M' can appear

simultaneously in the cusp region

2
D’<D"<~—1—(D’2+1 ] . (188)
4D'I4 7

The critical point of the cusp is given as

D'=D"= /T . (189)
In the limit of strong drive,

D'>> [T, (190)
the cusp region Eq.(188) takes an asymptotic form as

1/3
(41,4D") " <D'< Dk (191)

Figure 10 illustrates the phase diagram for the turbulence which is composed of the semi-
micro mode and micro mode.

As is discussed in literature, amplitude VI* or V1' is the turbulent transport
coefficient. Therefore Fig. 10 also represents the cusp type catastrophe of the turbulent
transport.

3.3.4 Test particle diffusion



Equation (88) gives an estimate of the test particle diffusion. The test particle
diffusion coefficient associated with the solutions 'S’ and ‘M’ can be calculated.
On the branch 'S', in which the semi-micro mode is strongly excited, the

decorrelation rate for the semi-micro mode is given by Eq.(164), 1.e.,
1 Co pp12
Re A :TDkO . (192)
The fluctuation level of the semi-micro mode is given as Eq.(180), I' = D", By using

Eqs.(180) and (192), the contribution from the semi-micro mode to the test particle
diffusion coefficient is given as

1’:——:5250’_ (193)

As for the micro mode, Eqs.(140) and (149) give the estimate

Re xh:%g JT* (k)7 (194)
i.e.,
Kh)?
| 9(%:2..” Ih:E:Z_g J1' (195)

The contribution form the micro mode to the test particle diffusivity is given, by
substituting the fluctuation level Eq.(181) into Eq.(195), as

B2 nh -2 '
‘ﬁelhl :C_{)‘D Ieﬁ(.o) , (196)

in the limit of D' >> D* . Summing up Eqs.(193) and (196), one has the test particle

diffusivity for the solution 'S’ as

D,, :%D#%D" 1,D"". (D'>> D" Q97
0 0

The micro mode level is suppressed by the semi-micro mode activity. The coefficient
. . . . i .
D, increases as the drive for the semi-micro mode D increases.



On the branch "M, the turbulent transport is mainly driven by the micro mode.
The level and the decorrelation rate of the micro mode are given by Eqs.(183) and (194),
respectively. Substituting Eq.(183) into Eq.(195), the contribution of the micro-mode to
the test particle diffusion is estimated as

I":%D", (198)

The decorrelation rate and amplitude of the semi-micro mode is given by Eqs.(166) and

(168), respectively. The contribution of the semi-micro mode is given as

12
(k ) C{) eVIP = o 2 eD" (199)

The semi-micro mode influences on the test particle diffusion at the order of smallness
2
parameter € ~ O((kf}/kg) ) . It is also noted that the magnitude is controlled by the

parameter D" Combining Eqs.(198) and (199), the test particle diffusion coefficient is
given as

Dy, = % D"+ 0[e). (200)

0

test

The diffusion coefficient is determined by the drive of the micro mode D" , and is
independent of the drive for the semi-micro mode D',

Figure 11 illustrates an example for the test particle diffusion coefficient as a
function of the drive of the semi-micro mode. In Fig.11(a), i.e., the case of hard
transition, the solid line is for the branch 'S' and the dashed line is for the branch 'M'.
The case of soft transition is illustrated in Fig.11(b). In the case of the weak drive of the

semi-micro mode, the diffusion coefficient is given as Eq.(200). In the large drive limit,
it increases in proportion to D',

3.4 Impact of global electric field shear

The global radial electric field introduces new dynamical transitions in the
presence of nonlinear interactions between fluctuations of different scale length.

When the nonlinear interactions between different fluctuations are neglected, the

inhomogeneous radial electric field suppresses the fluctuations as



(201a)

D"

1+ (mEllm,';-c)z @010

The fluctuation levels decrease as the radial electric field shear, denoted by ®g; ,

increases.
In the presence of nonlinear interactions, depending on the ratio i/} , different

types of bifurcation appear.
Under many circumstances, the suppression of turbulence by flow shear is easier

for the semi-micro mode,
o < 0f, . 02)
For the examples in this article, Eqs (107) and (108) provide

(l)é(_. - svth/ qR and mg’c - Svrhi] VaR s (203)

satisfying Eq.(202). If Eq.(202) holds and other parameters are fixed, the driving
parameter for the semi-micro mode D ((DEI) decreases faster than that of micro mode

D"(mEl) as the shear of global radial electric field increases. The trajectories on the
phase diagram (D’(mEl), Dh(mgl)) are given by the solid lines (A-A’, or B-B') in

Fig.12. Points A and B denote the states in the absence of the electric field shear,
wg =0, and D[((DE]) and Dh(coE,) are reduced as ®g; increases from g /@5 =0 to

oz, /wf, =2 . Other global parameters are fixed along the trajectory.

In the case of A-A’, the initial state (A) is taken in the domain where the semi-
micro mode is strongly excited, while the micro mode is suppressed. When the electric
field shear W, is increased, the semi-micro mode starts to be suppressed by the electric
field shear. The micro mode, however, starts to be enhanced, because the suppression
by the semi-micro mode is reduced. The reduction of suppression by semi-micro mode is
stronger than the reduction of the drive by the global electric field shear. When the
trajectory crosses the phase boundary ( point C in Fig.12),

D= (D"+1,) (204)

— 46—



the phase transition of turbulence takes place. The semi-micro mode is quenched by the
dissipation of the micro mode, and the level of micro fluctuations jumps up. In the
domain of micro mode, the level of micro fluctuations starts to decrease. Figure 13(a)
illustrates the fluctuation amplitudes \ff and Vit as a function of Wg, , when it is
increased. A hard type bifurcation is observed.

Owing to the nature of hard transition with hysteresis, the back transition takes

place not at point C but at C', when the global electric field shear reduces from
W /Wy, =2 1o W /wp, =0 (from A' to A in Fig.12). At the point C', the condittion

D!(wg) = D"y ) (205)

holds. Figure 13(b) shows the level of micro and semi-micro fluctuations as a function
of ®g, in the case of decreasing Mg, . Figure 13(c) demonstrates the hysteresis of the

fluctuation level.
In the case of weak drive (B-B' in Fig.12), the change is much smoother. Across
the phase boundary Eq.(205), the semi-micro mode is either excited or quenched, and the

change of the micro fluctuation is smooth. The bifurcation is soft. Figure 14 is one
example for the case of increasing ®g; , showing the soft transition.

3.5 Multiple classes of fluctuations
The closed set of equations for the case where turbulence is composed of two

classes of fluctuation modes is obtained as Eqs.(139)-(144). The result can be extended
to more general cases. Let us consider the case where the turbulence is composed of N

classes of fluctuation modes. We assume that the scale length separation and time scale

separation hold among them, i.e.,

k{,l)2<< k{,z)z << <L kB")z S .kgv)2 (206a)
(n =1,---, N)
Y <<yt << <y << - <<yl (206b)

where the superscript (n) indicates the n-th mode composing the turbulence and k({‘] is

the characteristic wave number of the n-th mode. Analyses in §2 and §3 are developed
for the case of N =2 and symbols (1}=1! and (2) =4 are used. As is the case of

N =2 the statistical independence among different class of modes is assumed, based

upon the scale separations.
As is the case of §3, nonlinear influences on the n-th mode from the other »” -th

modes are decomposed as the eddy damping and noise excitation by the smaller scale
(higher mode numbers) fluctuations 7" > 1 , and as the suppression through shearing and



drive through the local pressure steepening by the larger scale (lower mode numbers)
fluctuations, n< n . Figure 15 illustrates these nonlinear interactions from different

modes. On the basis of the assumption of statistical independence, influences are given
as a sum of effects of the other modes. Self-nonlinear effect is unchanged. The
equations for relevant quantities (amplitudes / () , eddy damping rate T(,”) , and
decorrelation rate Re Alr) ) are obtained:

Extended fluctuation dissipation theorem;

- &) o[ )
ER(0) OIS SVEPONED yRKe: y{,](k{]n,]) )

n=n+l

(n=1,---,N—1) (207)

c&” )

Re(AM) = 28 4{n) | (208)

the renormalization relation for eddy-damping rate in the strong turbulence limit;

o= () 10+ () 3, (o) 2

(,,=1,...,N—1)' ©(209)

WM = (kfY ))41 ™, (210)

and the eigenvalues for renormalized operator,

E U IR @1
1+(mEllmE)) ‘

>, k67’
1+ (mEllmE)) (mf.f')) ’x (k(" ) 1)

(n=2,---,N) e

1+

‘Re?L

+

where "{B”) is the eigenvalue in the absence of the sheared £ X B flow and mutual

interactions between different modes.



4. Application to Transient Transport Problems
The statistical theory of the multiple-scale fluctuations is applied to the transient

transport problems in toroidal plasmas.

4.1 Transient transport problem

It has been well known in experiments that the estimate of thermal diffusivity
based on the stationary energy balance, X 5 , and the one based on the transient response

like heat pulse propagation, X p, , have shown unambiguous discrepancy [25]. The latter

is usually larger than the former. This discrepancy is partly understood by noting the
explicit dependence of X ,, on the temperature gradient. If it has a dependence like

x| VT, (213)
the effective thermal diffusivity measured by heat pulse propagation satisfies
Xep=(1+0) Xy : 214)

However, this does not suffice. For instance, the change of thermal diffusivity in the
core plasma after the onset of L/H transition at edge requires o ~ 50 in order to explain

the observation on JET [44]. The value o ~ 50 contradicts to the transport property in
stationary state, which requires & = 1 ~3/2 | In addition, a hysteresis relation in the local

gradient and local heat flux has been reported from W7-AS experiments. In order to
understand these transient transport problems, a non-local model of heat flux has been
proposed [45]. This model assumes the existence of the fluctuations with long radial
correlation length of the order of the minor radius. Therefore, the heat flux at some
location is a sum of the local heat flux and an integral over the range of long correlation
length. This model has successfully explained several features of the transient transport
problems [45, 46]. However, the physics basis for the fluctuations with long correlation
length has not been given. The mode with long radial correlation length corresponds to
low poloidal mode numbers, and such mode is usually stable. The statistical theory in the
turbulent plasmas allows to calculate the level of long-wave-length fluctuations which are
excited by the random noise of micro turbulence.

4.2 Long-wave-length fluctuations

4.2.1 Noise-induced fluctuations

_ Fluctuations of the long-wave-length mode of the order of minor radius in
background micro fluctuations are considered. Schematic draWing is given in Fig.16.
The semi-micro mode and micro mode, which are driven by global inhomogeneities and



induce turbulent transport, are categorized as microscopic modes in this section. Long-
wave-length modes and microscopic modes are considered to coexist in the plasma. We
investigate here the case where the long-wave-length mode is stable, and such
fluctuations are excited by the nonlinear noise from microscopic fluctuations.

According to the extended Fluctuation Dissipation Theorem, its fluctuation level

and associated thermal flux have been given as

<$;$f>=§1x;|‘4?,nl2<3*g> | ‘ (215)
and

_ kg L |4 2(3*3) ‘ 216

qeo= T To.p- Mt 2hp f,11| Po (216)

where the suffix ¢ indicates the long-wave-length mode, A¢ is the eigenvalue of the
nonlinear decorrelation rate, A is the projection operator, and 5 is the nonlinear noise

for the long-wave-length mode, respectively. The over-bar denotes the integral over the
correlation length of the ¢ -mode. This level of Eq.(215) is the statistical average of the

amplitude, and radial shape is given by eigenmode in toroidal plasmas.
4.2.2 Estimate. of noise source

By use of the estimate of previous sections, Eq.(73), the nonlinear noise which is
driven by the background microscopic turbulence is given as

2
(sese)=Covt x|Ae [ 1" @17)

where p is the wave number of the long-wave-length mode, and k and!* are the wave

numver and the level of the potential perturbation, respectively, associated with the
background microscopic mode fluctuations. (k’(') in Eq.(73) is simply written as k .) We

assume that the relation

|p|<<|k| (218)

holds. The turbulent transport coefficient which is induced by the microscopic mode
fluctuations, % , 1S related with 7 " in the strong turbulence limit as

Ih :'X,!Zurb . (219)



By use of this relation Eq.(219), the noise source amplitude in Eq.(217) is estimated as

(5*5) = COYkpzk_4XI2urb - -A (220)

It is convenient to rewrite Eq.(220) as

(5"S) = Clyhp2% s | (221)

where the estimate
Vi = Xtk (222)
1s used.

4.2.3 Nonlocal heat flux
Combining the noise source amplitude Eq.(221) with the heat flux formula
Eq.(216), one has the heat flux which is induced by the long-wave-length fluctuations as

~h 2
Co p2p? [yh ,
qu—Z—k-éim o] X P (223)

The decorrelation rate of the long-wave-length mode , A, , is obtained by solving

the nonlocal nonlinear eigenmode equation in the presence of the background microscopic
mode turbulence. An example for the low-poloidal-mode-number modes in helical
plasmas has been analyzed in [47]. An analytic form of the decorrelation rate has been
discussed, but we here consider the limit where the long-wave-length is stable and the

level is low. In the low-amplitude limit, the decorrelation rate is given as [47)]
Mo = XuursP? - (224)

Substitution of Eqs.(222) and (224) into Eq.(223) yields

Ah .
C ’ _2 7
qe=— ZQ: kg Xturb Po~— pzk Xurb Po - (225)

It is noted that this heat flux is the lower bound of the heat flux which is driven by the
long-wave-length fluctuations. This is because, (i) the contribution of the self-nonlinear



noise is neglecied and (ii) the decorrelation rate Eq.(224) is evaluated at the most stable
limit.

4.3 Impact on transient transport problem

The result Eq.(225) gives an insight into the transient transport problems.

First, this heat flux is small in stationary state in comparison with the local heat
flux which is driven by the microscopic turbulence. The latter is given as — X b Po -
The nonlocal heat flux is about ,-:12#’6‘2 times smaller than that in the stationary state. This .
result in the stationary state agrees with the analysis in § 3. Comparing Eqs.(198) and
(199), one sees that when the longer-scale-length mode is excited through the nonlinear
noise of the shorter-scale-length mode, the contribution of the former to the transport is

2
€= O((kf}/k’(’,) ) times smaller than that of the latter.

However, the nonlocal heat flux is influential in the transient response. Equation
(225) shows that the heat flux changes over the distance of the correlation length, which
is of the order of p~' . When the noise source of the eigenmode of the p -mode
suddenly changes at a radius, the change of the global mode amplitude appears. The
change of mode amplitude propagates across the plasma radius as a response of an radial
eigenmode, and reaches the average in an autocorrelation time Ay I after a local change
happens. That is, the statistical change of the heat flux of Eq.(225) due to the fluctuating
global mode is realized in a time interval of A7 ' | We see that the long-wave-length mode
induces, after a local impulse, a statistical change of heat flux, magnitude of which is
(p/k)?'(— Lurd pé] ,ata distance of p~! in a time interval of A7 ' .

This change of heat flux is not a diffusive process. Nevertheless, if one interprets

this change as a diffusion process, then this change of heat flux may be attributed to an
effective diffusivity X .z . When a transient delta-function perturbation Xoﬁ(x] is given at

t= 0, the diffusion process gives the perturbation 8X , which has a form

) |
8X ~ Xo —L— exp[- & |
0 Xeﬁtexp( qu’)' (226)

The exponential dependence is dominant, and one has - 111(5X/X0) ~ xz/xeﬁi . Based on

this relation, the observed relative change is interpreted by the effective diffusivity as
(distance)2 -1

Xeff = Time interval (227)

In(re]ative changc)



Let us estimate X ¢ for the nonlocal heat flux of concern. One has distance =~ 1/p |

time interval =A7 ' and relative change =~ p2%k™ . The effective thermal diffusivity is

estimated as
5|~ 1
Yo = P~ %A [ In { plk) ‘ _ (228)
Substituting Eq.(224) into Eq.(228), one has an effective diffusivity as

-1
X = |10 (06)°| A (229)

-1
This value is modified by the factor ‘ In [p/k)2 ] from X, - This is much larger than

-1
the heat diffusivity in a stationary state, since } In (p/k)2 ‘ >> p%? holds.

These analyses show that the contribution of the long-wave-length mode, which is
excited by the statistical process of micro-turbulence, has strong influence in the response
of energy transport after the transient perturbation. This gives an insight the problem of
transient transport phenomena in toroidal plasmas, and provides a basis for the nonlocal

models for quantitative analysis of experimental observations.

5. Summary and Discussion

In this article, the statistical theory of strong turbulence in inhomogeneous
plasmas is extended to analyzing the state where fluctuations with different scale lengths
coexist. The nonlinear interactions between micro-mode and semi-micro mode are taken
into account. Their interplay (nonlinear dynamics) determines both the fluctuation levels
and the cross field turbulent transport. The global parameters are given and fixed here.
Fluctuation of the order of Debye length, A, , is considered as a thermal fluctuation, and
is assumed to be statistically independent of the modes of our concern. The hierarchical
structure is constructed for the semi-micro mode, micro mode and thermodynamical
fluctuations. A transition in turbulence is found and a phase diagram is drawn with cusp
type catastrophe. Generalization for the case where turbulence is composed of N-classes
of modes is also developed. The excitation of stable long-wave-length modes by the
nonlinear noise of microscopic mode fluctuations (including both micro and semi-micro
modes) is investigated. The nonlocal energy flux associated with this process is
analyzed.

Nonlinear self-interactions in one class of fluctuation are divided into the coherent
drag and the self-noise as has been done in previous analyses I-V. The micro-turbulence
of smaller size affects the semi-micro one through the renormalized drag and the nonlinear



noise excitation. The effect of semi-micro turbulence is included in the dynamical
equation of the micro-mode as a kind of a driving force or damping force. A set of
equations of the fluctuation level and decorrelation rate for the micro and semi-micro
fluctuations was obtained. A self-consistent solution for turbulent state was obtained. It
is found that there are several states of fluctuations: in one state, the micro mode is excited
and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited,
and the micro mode is suppressed. A new turbulence transition was obtained, being
associated with a hard bifurcation. A phase diagram was obtained. The result clearly
shows that the nonlinear interplay is essential in the dynamics of the strong turbulence in
inhomogeneous plasmas.

The induced transition of the semi-micro fluctuations sheds a light on the internal
transport barrier (ITB) formation. It is widely conjectured that the steep gradient of
global radial electric field plays a role in the reduction of the anomalous thermal
conductivity. One of the key problems in the ITB formation is the imbalance between the
formation of ITB for ion transport and that for electron transport. In many cases, the
electron thermal transport remains in the level of L-mode although the thermal barrier for
the ion energy is established. The ITB for electron thermal transport can also appear
when the ITB for ion energy becomes prominent. This problem has stimulated the
studies on the microscopic fluctuations like ETG or CDBM turbulence. The simple
addition of the microscopic mode turbulence is not sufficient for the solution of the
problem: A reason is as follows. If the semi-micro mode (Like ITG) dominates the
anomalous transport in the L-mode as is often discussed, then the dominant electron
transport is governed by it. The anomalous ion conductivity and electron conductivity are
given as the same order ones. Even though the micro mode presides, the suppression of
the dominant semi-micro mode should influence strongly the electron thermal transport as
well. ‘

This problem could be solved by considering the transition of the semi-micro and
micro turbulence due to their nonlinear interactions. The semi-micro mode induces the

jon and electron thermal conductivity (X! and X! , respectively) of similar values. It is

possible that the turbulence thermal conductivity by the micro mode appears dominantly
for electrons, X . (E.g., the case of CDBM [38]. So is the case of ETG mode.) As is
shown in Fig.13, the suppression of the semi-micro mode could enhance the micro
mode. At the transition, the semi-micro mode is almost completely quenched, but the
micro modeé can jump up to a large amplitude. In the behaviour of the ion thermal
conductivity, the transition occurs at a critical value of the gradient of the global £ x B
velocity. Above this threshold value, the semi-micro mode is quénched and the ion
thermal conductivity decreases strongly. The micro mode fluctuation is enhanced, so that
the total electron thermal transport does not decrease much.



The formulation in this article is easily extended to various cases. One application
is the analysis of the nonlocal transport problem in §4, which has been analyzed in
conjunction with the transient response problems. The contribution of the long-wave-
length mode, which is excited by the statistical noise process of micro-turbulence, is
obtamed. It is shown that small but finite heat flux due to the long-wave-length modes
has strong influence in the response of energy transport after the transient perturbation.
This gives an insight into the problem of transient transport phenomena in toroidal
plasmas, and provides a basis for the nonlocal transport models for quantitative analysis
of experimental observations. The problem of the discrepancy between the stationary
transport coefficient and that deduced from the transient response is also a common
problem for the turbulence in which the Kubo number [48], &7, is much smaller than
unity. In strong turbulence of plasma, the condition &= 1 usually holds [1]. However,

if fluctuations with multiple scale lengths coexist, it is not always the case. When the
condition A'<< 1 holds, the correlation length of the perturbed electric field (in Eulerian

view) is much longer than the autocorrelation length of plasma motion (in Lagrangian
view). In such cases, the transient response could be different from those expected from

a simple diffusive model. A detailed analysis will be reported in a forthcoming article.
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Appendix A: Five Field Model

The reduced set of equations for the variables of {¢, A, V;;, n. p;} has been
derived [27]. Based on the model in the literature [27] a simplified model is employed.

The incompressible limit is chosen for ions and the iso-thermal limit is used for electrons

L p=0 and p,=TA,. (A1)

Model equations are: The vorticity equation

avie 2 -1 4
5+ 0 V3] + Vi [ V0] - B2V gy (6 X} V(P, + pi) —p V0 =Sy
(A2)
the Ohm's law
%ér“* Vilo-F)+ %( %Ztu +[0.7)] ) Ny~ AV )= Snz (A3)
. the equation of parallel ion motion
v | ,
5t +[0 Vi) + Yy (P p) -1 VIV = a5 (Ad)

the energy balance equation of electrons

0P, “1g2 2

Ta + [¢’ Pe] - (b X K)'VL (Pe - q)) + V”Pe - Be V"Jﬂ - Xe,chPe =Sm4, (AS)
and the energy balance equation of ions

g v Vy-xVipi=S$ |

3Pt [4), P.-] +BV V- xViPi=Sus . (A6)
In these equations, symbols denote

p_Ta )

e_Tm Pe , J||=—V_LA||, (AT)

S, stands for the thermodynamical excitations, and the bracket [ /,g] denotes the Poisson

bracket,



(/. 81=(VfxVg)b, (AB)

Other notations are: b = By/By, A, = V3, X =Q'% is the average curvature of the
magnetic field, 1/E denotes the finite electron inertia, 1/§ = (8/a)*,
Vap = BO(Zuomﬁ,-]_ m".aR' 'q" the poloidal Alfven velocity, @ and R are minor and major
radii of torus, m; is the ion mass, and 7; is the ion density and the suffix O stands for the
global parameters.

In studying the subcritical excitation, the electron inertia effect should be kept, but
the classical resistivity is neglected for the simplicity of the argument. The interchange
mode has a quasi-2 dimensional nature, | V3| << | V3 |, nevertheless, the existence of

small but finite V,; is essential. The product of two inhomogeneities

,dp | |
Go=Q' <2, _ (A9)

denotes the driving parameter (i.e., one of the main control parameters in this system),
being fixed in the evolution of fluctuating fields under the assumption of the time-space
scale separation. Under this circumstance, the fluctuation part is separated as

0=0o+8, Jy=Jo+J). Vy=Vio+ V|, Pe=Peo+Pe, Pi=Piot P
(A10)

We consider the inhomogeneities of Vg , P,o and p;o . The influence of VV| on

turbulence has been discussed, but is not investigated in this article. Keeping the relevant

driving terms, the equations which govern the fluctuations are derived as

—a—q’ (00, V28] + V. - [pior V8] - B2 'V Jy- (b x ) V(B + B)) -1V 4
~[6. V28] + S, (ALD)

(1-8v77) %}ﬁ +{00 7]+ &V} (8- B+ engdy -, ViTy == [0 )] + Sz
(AL2)

+[00, W]+ V) - V39 =-[8 %]+ Sus (A13)

¥

+[¢O, |- (bx )V, (B, -8)+ VP~ B, Vi -x. VP,



=—[6.B,]+ Sy (Al4)
%ﬁi + [4’0, ﬁf] + [‘T’ Pi o] +BV V- xVibi=- [5 ﬁf] +Sus (A15)

In Eq.(A2); the term [V PV JJ] is neglected. This term is known to enhance normal
cascade. Other combinations of terms, [(T) Vi%] and [ﬁ,-, \ J_%] , are also neglected,

because the global parameters change much more slowly in comparison with fluctuations,

and inequalities

and

<< ‘ [P,'o! Vl&]

|50 V.60] (AL6)

“&;- Vi%] << ’ [%, Vﬂ"’]

usuaily hold.
In the presence of global radial electric field, the Poisson bracket [%, X ] takes the

form

(90 K] == E,ofoR= i Viean 4, X (AI7)

where Vi, 5 , is the y-cdmponent of the global E x B velocity. We introduce

Og=Veyp Ky, (A18)
and write
[0 %] =i X . (ALY

Note that the spatially-inhomogeneous part of Eq.(A19) contributes to the evolution of the
turbulence so long as the condition V_gx By << v,%,,,- holds.

Linear part of the dynamical equations are rewritten as

('gt‘ +i O + lkyp;o)('ﬁ - B; IV” Vlzj” - iky Q’V12(]‘3e + ﬁl) - MMVE_&‘)
-1 |5y -lg (% & -1 3 -1 -

(% +i§ (ﬂE)J” +E87V, (¢ _Pe) +EE Iy + €, AT,

(;% +i “‘E)avu +ViB-m ViV,



(-c% + i mE)ﬁe—-ikyP;OaS +ik (P, -3)+ VB~ B.'ViJ)-x. . VIP.

(% +i wg)f’f —ikypio &+ BkyVy-x V15;

with & =1+& k72 . Equation (A11)-(A15) are rewritten as

_adt_f+jo)f=y([f,f)+§,,, (A20)
with
£9=
Pog+ ik, pio + 1 &L iB; k1 0 ik, QK72 ik, k72
g8 'Ky & |(f wg+ &y +l1e.cki) 0 ~iE 'k 0
0 0 i g+ k] 0 iy
—ik,pig-ikQ -BZkf 0 Fwp+ ik kS, K 0
—ik,pio 0 i Bky 0 P+ 1k
(A2])
and
V(. V3e]
-1
(1-8972) o, ]
s f)=-| [o.v] : (A22)
[0, 7]
[0, pi]
for
¢
I
f= Vi |- (A23)
Pe
Pi



Appendix B: Separation of Components
Nonlinear interaction term is separated as

S f)=2af. f)+ 7 S, §) (B1)

where # and 7" are projection operators which select the semi-micro and micro

components, respectively. Fluctuation fields are decomposed as
f=Pf+2f=f+f" B2)
and the nonlinear terms are formally rewritten as

AL S)= AP r g P f P ®3)

The term -ﬂ((f . f ) has a quadratic form of the fluctuation fields, and one has

m(f.,f)w(f’f,é*f)wv(f’f,ﬁf)+ﬂé(¢f,¢f)+ov(ﬂf,ﬁf)

(B4)

The term W(f’l f.2f ) provides semi-micro components, and the terms
9‘[(-’91 f.Pf ) and %(f"' f.2f ) contribute to the micro components. The last term

of Eq.(B4) yields both the semi-micro and micro componchts. Considering these facts,

the semi-micro and micro components in nonlinear terms are given as
2 (1. f)=2( 7f. f"f)+f°"ﬂk( 2f, Pf) (B5)
and

P Af f)= 4 21, Pf)+ A 2F, PF)+ Pl Pf, PF) ®6)

The self interaction terms are expressed in terms of the drag and noise (see I-V), and one

has



2 71, Pf)=-Tipf '+ 8y ®7)

and
2 75, 2f ) ==Thyf "+ Sy ®8)

for semi-micro mode. In this expression, the subscripts {/} and (k) denote that the
interactions are driven by semi-micro and micro modes, respectively. Combining
Eqs.(B7) and (B8), we have the nonlinear term for semi-micro mode as

7 Af, £) = - (Tl + Thy '+ 8(y+ Sy . (B9)
For micro mode, one has the expression for self-interaction term as

?W( 7f, ?"f):—l‘f,,}f"+s"(",,). (B10)

There appear cross terms (the first and second terms in the right hand side of Eq.(B6).
The cross terms N(f’lf , f’hf) and ﬂ[(?"f , f’lf) are linear with respect to 2 f .

The spatial scale of modification of plasma parameters by semi-micro mode, 2fis

much longer than the characteristic length of the micro mode. Owing to this
consideration, the cross term is interpreted as a modification of the driving parameters for
the dynamics of micro mode. We therefore write the cross terms as 'drive’ terms, and

use a symbol

oy f*= 2 21, Pf )+ A 2f, PF). (B11)
Abbreviations

fl=7f (B12)

fh'=2f (Bl13)
are used.

The driving term Eq.(B11) is explicitly given for the case of the five-field model
in Appendix A. The cross terms in the nonlinear terms are written as



ol . dxllsh . 9 st . d 3ilrk
(IkyaE¢) - lkxa;q) )J"’ i (lkya;.]” - lkx-ay.]")tb”’ k

t
f——A:—'\

: =l . 2\ 5k . T 5\ h
Dy =] ik ged - ik P - (;ky-%v“ - zkx%V“)qbk
. <1 1 T i\~ h
iy o8 — ik Bl — |k o - ik e)q;k
. = . =~ . - . ATy
lky%¢ _lkx%q) prk_(lky'aa;p! lkxa%pf) k
(B14)
with=1+E kj_z . The operator that shows the nonlinear drive is given as
i€ oy i€ oy 0 0 0
Zy=| iwyy O iegy O O (B15)
£ o) 0 0 Wg(y) 0
i (.05(1] 0 0 0 I G')E([]
where
w1 =
Wg() =k y;;dgtb - kx;%(b (B16)

is the Doppler shift owing to the £ X B velocity associated with the semi-micro mode,

and

mj(,)=—kyad;ﬁ+kx%ﬁ (j=2-5) (B17)

represents the modification of plasma pafameters by the semi-micro mode. A

combination of terms [$h, Vi&)[] is neglected, because the inequality

Hﬂi”, V3§ <<“€|'>’, V3] (B18)

holds.



Appendix C: Average Model Estimate

Spectrum averages appear in renormalization relations and extended fluctuation
dissipation theorems. Order of magnitude estimate which is based on dimensional
arguments is made assuming that summations converge. In Eq.(57), the summation is
estimated as

micrg modes . 2 K\
;2 M; wM;, ﬁ,k’| _’(ko) I, Cn
where the total fluctuation level for micro mode is given by
h_ R h* ch
I; —;Ij.kf—;l<ﬁ,k'1‘}.k'> . (C2)

With this approximation, Eq.(59) is order estimated as

kn)?
i = % It (C3a)
or
v{ve * 4yt = (k)1 (C3b)

where Y! is the characteristic eddy-damping rate of the micro mode, and k{’, is the

characteristic wave number of the micro mode.
In Eqs.(59) and (60), the summations are estimated as

semi-mjgrp modes

ST MM B ) )
and

micrgmodes

S Mttt | 7| e s

p

where the total fluctuation level for semi-micro mode is given by

L= le=2 (). (C6)



By use of Eqs.(C4) and (C5), one has

kb)? ARTAR
) Yf(*i)vfc fi+ (?; )E*;]')’ g (€7

or

| [* oyl
vi{vt " k) = () 2+ (k) ) BT hie g (CTb)
: Yi *+Yie

where Y} is the characteristic eddy-damping time of the semi-micro mode, and kf) is the

characteristic wave number of the semi-micro mode.
Equations (C3) and (C7) are the relations between the total fluctuation level and
(spectrum-averaged) damping rates and wave numbers.
* Similar arguments are possible for the extended-fluctuation dissipation theorem,

Eq.(78). Itis approximated as
~ 4
cl ¢o [kl
neaihi= s G 4] ®
0

where A} is the characteristic (spectrum-averaged) eigenvalue for the nonlinear

dispersion relation.
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Fig.1: Schematic distribution of symmetry-breaking structures in the wave-
number space: Sheared global flow, semi-micro mode fluctuations, micro-mode
fluctuations and thermodynarnical fluctuations.
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Fig.2: Stretching of the micro mode by the semi-micro mode.
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Fig.3: Mutual nonlinear interactions between the semi-micro mede and micro
mode. Symbol (E) and (S) denote ‘excitation’ and 'suppressing effect’ respectively.



(a)

(b)

Fig.4 Fluctuation level of the semi-micro mode I as a function of the fluctuation
level of micro mode 1 h for fixed value € . Coordinates are normalized to D' . An

expanded view for the small values of I’ is given in (b). Parameter is set as £ = 1073
for illustration.
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Fig.5 Fluctuation level of micro mode I as a function of the level of semi-micro

mode I' ; in terms of fluctuation amplitude v I h (a) and fluctuation level / h (b),
respectively. Other parameter is chosen as /I g = D2
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Fig.6 Extended FDT for both the micro mode and semi-micro mode must be

satisfted simultaneously. Extended FDT for micro mode (the case where nonlinear effect
of the semi-micro mode is weak, s/ 1z = 2.5 D" , solid line) and that for semi-micro
mode for various values of the drive term D’ (Dl = D"V2 for dotted line, D'=D" for

dashed line, and D' = V2D" for dash-dotted line) are shown. The cross point represents
the self-consistent solution.

0 ‘ 1 D!/ D"

Fig.7 Fluctuation amplitude for semi-micro mode Vit (solid line) and that for

micro mode \/I_h (dashed line) as a function of the driving rate of the semi-micro mode
D! The driving rate for the micro mode, D" is fixed as D" = V03 ly.
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Fig.8 Extended FDT for both the micro mode (solid line) and semi-micro mode -

(D[ ~0.6D" for dotted line, D' =0.74D" for dashed line, D! = D" for short broken
line, and D' =v2D" for long broken line) in the case where suppression of micro mode
by semi-micro mode is efficient \/ [,z = 0.5 D" Multiple solutions 'S' and 'M' can

exist for the intermediate strength of the drive rate of semi-micro mode D', Symbol 'S'

denotes the solution where semi-micro mode turbulence is excited. The solution 'M'
indicates the one where semi-micro mode is quenched.

Fig.9 Fluctuation level for semi-micro mode /° (solid line) and that for micro
mode I* {dashed line) as a function of the driving rate of the semi-micro mode D (For
the case of Fig.8, i.e., /I,y =0.5 D" ) The driving rate for the micro mode D" is

fixed. For the intermediate value of D! , multiple solutions are allowed and hard
transition takes place at critical values of D!,
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Fig.10  Phase diagram on the plane of global parameters, being represented by D!

and D" . Coordinates are normalized to y 1o . A cusp type catastrophe is obtained. In

the region of "micro”, the semi-micro mode level is quenched and is very low. In the
region of "semi-micro", the micro mode coexists but is suppressed.
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Fig.11(a) Test particle diffusion coefficient D, as a function of the drive for the
semi-micro mode D' . The case of Cp = C, is shown for illustration. Horizontal axis is

normalized to D" , and vertical axis is normalized to 2D*/C} . The case of hard transition

for the parameters of Fig.9 is given in (a); solid line is for the branch 'S' and the dashed
line is for the branch M'".
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Fig.11(b) Test particle diffusion coefficient D,,,, as a function of the drive for the
semi-micro mode D' . The case of Co = Cj is shown for illustration. Horizontal axis is

normalized to D" , and vertical axis is normalized to 2D"/Cy . The case of soft transition
for the parameters of Fig.7 is given in (b).
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Fig.12 Trajectory of the driving parameters Dl((!)f;l) and D"(rh,.’j-l) as the global

electric field shear increases. ®g; changes from @g /0L, =0 to Oz /0f =2 .

(Normalization is the same as in Fig.10.) States A and B {in the absence of the electric
field shear) is chosen in the branch where semi-micro fluctuations dominates. A hard

transition takes place at C and the back-transition at C'. DI(O] =22/15 ,
D0)=2/T,; and 0k =¥04 of, for (A-A); D'(0)=,/I; , D*(0)=06,/T; and
wf, =+¥0.3 of, for (B-B").
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Fig.13 Fluctuation amplitude \/F (solid line) and */_IT (dashed line) as a
function of the shear of global E X B velocity ®g/®wf, . ®g, changes from

g /0f. =0 to wg/0f. =2 . ('b/F and V1" are normalized to V1o ) The case of
hard transition. Parameters are: DI[O) =221y , Dh(o) =2\/ly and

wh, = ¥0.4 ®}, . The situation where ®g, is increasing is shown in (a) and that @, is
decreasing is shown in (b). Hysteresis of the semi-micro mode amplitude is illustrated in

©).



Fig.14 Fluctuation amplitude 'JI_I (solid line) and \/I—h (dashed line) as a
function of the shear of global £ X B velocity. ®g; changes from g /0f, =0 to

(DEI/O)EC =2, (\/}T and \/I_" are normalized to ,/Ieﬁ .) The case of the soft transition:
D'(0)= /T 5 , D*0)=0.6/T 5 and of =03 o}, .
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Fig.15 Hierarchical structure in mutual nonlinear interactions between the n-th
mode and the smaller scale modes (n' =n+1, ---,N ) and the larger scale modes
(n’ =1, ,n- 1) . Symbol (E) and -(S) denote ‘excitation’' and 'suppressing effect'

respectively.
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Fig.16 Long-wave-length mode is excited by microscopic modes (semi-micro
mode and micro mode) in inhomogeneous plasmas.
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