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A nondissipative simulation method for the drift kinetic equation
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With the aim to study the ion temperature gradient (IT(G) driven turbulence, a nondissipative
kinetic simulation scheme is developed and comprehensively benchmarked. The new simulation
method preserving the time-reversibility of basic kinetic equations can successfully reproduce the
analytical solutions of asymmetric three-mode IT'G equations which are extended to provide a
more general reference for benchmarking than the previous work [T.-H. Watanabe, H. Sugama,
and T. Sato: Phys. Plasmas 7 (2000) 984]. It is also applied to a dissipative three-mode sys-
tem. and shows a good agreement with the analytical solution. The nondissipative simulation
result of the ITG turbulence accurately satisfies the entropy balance equation. Usefulness of the
nondissipative method for the drift kinetic simulations is confirmed in comparisons with other

dissipative schemes.
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§1. Introduction

1t is considered that the ion temperature gradient (IT-
G) driven turbulence plays an important role in causing
the anomalous ion heat transport in a core of tokamaks.!)
In order to study the transport mechanism and predict
the thermal diffusivity, a lot of efforis have been devoted
to development of numerical simulation methods of the
ITG turbulence. The three-mode coupling system?' for
the slab ITG mode® in a two-dimensional configuration
is employed for benchmarking of gyrokinetic, gyrofluid
and drift-kinetic-Vlasov simulation codes as well as ki-
netic fuid closure models. ") Recently, we have derived
a class of exact solutions of the three-mode IT'G problem,
which is written in terms of the eigenfunctions of the lin-
ear unstable mode and the Jacobi's elliptic functions of
the time.®’ The analytical solution gives a useful refer-
ence for basic benchmarking of various theories and sim-
ulations for the ITG turbulence. In our previous work,?
it is also confirmed that the nondissipative drift-kinetic-
Vlasov simulation code with the implicit midpoeint time-
integration can successfully reproduce the exact sclutions
of the three-mode ITG equations. However, no direc-
t comparison with other time-integration methods was
made in the benchmark test which was also limited to a
collisionless three-mode system with the symmetry con-
dition of (1,1} and (—1,1) modes of the ion distribution
function [where (m,n) denote mode numbers in the anti-
parallel directions to a pressure gradient and the diamag-
netic drift of ions).

In the Vlasov simulation (in our terminology, it is
called Boltzmann simulation, when a finite collisionality
is introduced}, time-evolution of the distribution func-
tion is directly calculated in the phase space (or its Fouri-
er space), while the particle-based simulations follow tra-
iectories of super particles {or markers) according to their
equations of mations. The predictor-corrector scheme is
often employed for sime-integration of the drift kinetic

{or gyrokinetic) equation in both of the Vlasov®# 9 and
particle simulations.!®'") Comparisons of results from
different nurnerical schemes with each other would con-
tribute to verifying their applicability.

It is widely believed that stabilization by a shear (zon-
al) flow is one of key mechanisms in saturation of the ITG
turbulence.'?! Even in a regime where the ITG instability
is collisionless, it is considered that a finite collisionality
plays an important role in decay of the shear flow and in
the consequent enhancement of the transport.!® Thus,
benchmark tests of simulation code should be extended
to take into account effects of the shear flow and the
finite collisionality

In this paper, we report results of comprehensive
benchmark tests of the nondissipative drift-kinetic-
Vlasov simulation method. The paper is organized as
follows. In §2.1, we consider simulation methods for
the Vlasov-Poisson system, and generalize the splitting
scheme'?) into higher-orders by applying the symplectic
integrator.!®1%) This provides an outlook for developing
the nondissipative drift kinetic simulation scheme which
is described in §2.2. In §3, we show resulis of bench-
mark tests for dissipative and asymmetric three-mode
problems of which analytical solutions are derived in Ap-
pendixes A-D, where a simple example of stabilization
by an external shear flow is described. We also compare
the results with those of other time-integration methods,
such as the predictor-corrector and the Runge-Kutta-Gill
methods. The nondissipative scheme is applied to the s-
lab I'TG turbulence in §4, where we specifically focus on
the entropy balance”) and a convergence check for the
velocity space resolution. ¥inally, we summarize the re-
suits in §5.

§2.

2,1  Viesov-Porsson system

Basic schemes

We start with investigation of numerical algorithms
for a simpler equation which has common features as the
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drift kinetic and gyrokinetic equations. [t would provide
an insight into development of simulation schemes for
drift waves. The one-dimensional Vlasov-Poisson system
is a good example for our purpose. Various methods for
numerically solving the Vlasov-Poisson equations of
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- @ —1— f fdv (2.2)
had been extensively developed in 1970's to study non-
linear kinetic phenomena in electrostatic plasmas. Here,
f and @ mean the electron distribution function and the
electrostatic potential, respectively. Equations (2.1) and
(2.2) are normalized by r = 2'/Ap, ¢ = t'wp, v = v fvy,

= f'vifng, ¢ = e’ /m.uvZ, where prime means di-
mensional quantities; e, m,, and ng are the elementary
charge, the electron mass, and the average density. Ap
and w;, respectively, denote the Debye length and the
plasma frequency of which product gives the thermal ve-
locity v; = Background immobile ions are also
assumed.

One of the Vlasov simulation methods which is nondis-
sipative and preserves the time-reversibility of eq.(2.1) is
the splitting scheme proposed by Cheng and Knorr!%
with the Fourier mode interpolation.'™ In the splitting
scheme, a time-integration procedure of the Vlasov equa-
tion is separated into three steps,

)\DL:JP.

fHz,v) = Az — vAE2,v)
77 (2,0) = f(z,0 — AtdE/0z) (23)
ot (z,v) = f**(z — vAtf2,v)

The coordinate transformation of z — vA#/2 can be ac-
curately calculated in the Fourier space by multiply-
ing a phase shifting factor of exp(—ikvAt/2). Sim-
ilarly, the transformation of v — At8¢/0z is carried
out in the velocity wave number space by multiplying
exp{—i€Atdé/Oz). Here, £ denotes a wave number in
the velocity space. When k € 7/Axz and £ < 7/Av, the
distribution function f, which is a constant of particle
motion, is well preserved along the characteristics of the
Vlasov equation (& particle trajectory). In other words,
f is just advected in the z (v) space by eq.(2.3) with the
velocity v (the acceleration 8¢/8z) which is independent
of z {v).

From a point of view of a particle motion, the splitting
scheme is related to the leap-frog integrator,

zt = 2™ + v A2
v* =™ +At%§(z‘*)
2™ = 2* Lyt AL)2

vn+1 = y*

(2.4)

which is often used in partice simulations'® of the

Vlasov-Poisson system in terms of the equivalent form
of

{ itz - g 2+At ( ™)
gt = g7 +v“+2At

It has the second-order accuracy in time and keeps the

(2.5)

time-reversibility. We note that the leap-frog method is
identical to one of the second-order symplectic integra-
tors which preserve a symplectic 2-form of a Hamiltonian
system. The explicit symplectic integrator for a Hamil-
tonian systemn of dz/dt = {z,H}, where {,} denotes
the Poisson brackets, is constructed as follows.!316) The
Hamiltonian is assumed to be separable for the canonical
coordinates z = (g, p}, that is, H(q,p) = T{p)+V(qg). A
formal solution of the Hamilton’s equation is

2(t) = [exp ( /{, ‘(Dr+ Dv)dt)] =(0)

where differential operators, Dt and Dy, are
[OT(p)/Op)8/Bq and —[8V(q)/Bq)8/Bp, respectively.

For discretized time, the formal solution gives

(2.6)

k
gRg. H exp(d;AtDy ) exp(c; AtDr)z™

=1

(2.7)

Expansion of the exp operators leads to succession of
symplectic mappings,

— ar

TN A T B

Pe = pio1 — At S () T
{2.8)

where one can choose k, c¢,, and d, so that eq.(2.8) has
any order of accuracy. For the second-order accuracy, the
simplest set of k =2, ¢ = ey =1/2,dy = 1,and dp =0
gives the leapfrog scheme in eq.(2.4). The following set
has been derived for the fourth-order (k = 4) symplectic

integrator,1%)
o 1 12
61“04*2(2_21/3)1 62“63*2(2_21/3)1
1 3
Gok=rmm RErgogm A=0
(2.9)

Coeflicients for the sixth-order methods have also been
obtained.'®

Here, we note that the splitting scheme solving the
Vlasov equation, 8f/0t = —{f, H}, is regarded as a
mapping generated by the leapfrog integrator. Thus,
extension of the splitting scheme into higher-orders is
achieved by applying a higher-order symplectic integra-
tor to coordinate transfermations in the mapping. The
higher-order simulation scheme for the Vlasov equation
is written as

£ (ep) = fi1(g — :AWOT/Op,p) . . _
{ fila,p) = f7{q, p+ d:At8V/8q) forz = 1,2(, k)
2.10

which is a mapping of f generated by the symplectic
integrator. Here, V(g) in the argument of f* is given
by solving the Poisson’s equation in which f*(g¢,p) is
used. Equations (2.9) and (2.10) construct the fourth-
order simulation scheme of the Vlasov-Poisson system,
which is generalization of the splitting scheme.

Figure 1 shows fluctuations of the total energy £ =
L [ v* fdzdv+ [(8¢/8z)%dz] in simulations with the sec-
ond and fourth-order schemes, where the nonlinear Lan-
dau damping is examined for the imitial condition of
flz,v,t = 0) = Far(v}(1 + Acoskz). Fi(v) denotes
the Maxwellian, Far(v) = exp(—v?/202}/v2nv;. Used
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Fig. 1 Compansen of second- and fourth-order schemes

parameters are A = 0.5, k = 0.5)\5] =2x /L, L = 64Ar,
~10v, < v < 107, Av = 101, /512, and A = w;l/S. It
is expected that the simulation scheme in eq.(2.10) has a
good conservation property of the total energy, since the
time-reversible scheme is free from a secular error. Actu-
ally, even in the second-order case, fluctuating energy is
less thar 0.15% of the initial value, and shows no secular
irerease nor decrease. Conservation of the total energy
is largely improved by using the fourth-order scheme as
shown in Fig.1, which suggests that application of the
symplectic integrator is suitable for time-integration of
the Vlasov equation. In the next subsection, we consider
a simulation scheme for the collisionless drift kinetic and
gyrokinetic equations.

2.2 Drift kinelic system
Here, we consider the collisionless drift kinetic system
in 2 slab geometry with a uniform magnetic field,

of

o
—i-l-v!V"f +vExB " Vf-l' — Hav

= =0, (2.11)

where vpxg = E x BfB?. In the electrostatic and low-
frequency limit, E = —V¢ is usually given by the quasi-
nentrality condition with the adiabatic electron response

ffd"’llzﬂa [1+E(_¢’i@] ,

for the ion dissribution function f {which is averaged
in the perpendicular velocity space), the average density
ng, and the electron temperature T,, where (¢} means a
magnetic surface average of ¢.

A discrete spectral representation and/or discretiza-
tion on nuinerical grids in the phase space make eq.(2.11}
a set of ordinary differential equations. In a vector form,
it can be written as

{2.12)

au

it =FU),
where I and F, respectively, denote a discretized form
of f and a nonlinear operator on [ that represents the
second, third and fourth terms of eq.(2.11). We expec-
t that the symplectic integrator should be successfully

(2.13)

applicd to the time mtegration of eq (2 11), since it has
the same features as the Vlasov equation  In contrast to
the Vlasov Poisson system, however, we can not employ
the explicit symplectic method 1 eq (2 8) for the drift
kinetic case, since the Hamiltonian of a £ x B drift parti-
cle, H{x,y.z,vy) = TH’t‘ﬁ /2 + gotr.y, z). 1s non-separable
for the perpendicular coordinates r and y which are a
conjugate pair and satisfy dr/dt = —B7'8¢/0y and
dy/dt = B~'30/8x (the parallel coordinate z and mo-
mentum me| are also conjugate to eack other). Thus,
we use one of the simplest implicit syrmplectic mtegra-
tor with the second-order accuracy, that is, the implicit
midpoint rule,

U™t —U" = AeF (U + UM /2] (2.14)

It is known that, when eq.(2.13) is the canonical equa-
tion for canonical coordinates U, eq.{2.14) generates a
canonical transform of U.'% Unlike eq.{2.10), eq.(2.14)
applied to the discretized drift kinetic equation is, how-
ever, not a mapping of f generated by the symplectic
integrator for the drift-particle motion. Nevertheless, it
clearly preserves the time-reversibility.

For the drift kinetic equation, eq.(2.11), before dis-
cretization in the phase space, the time-integration
scheme using the implicit midpoint rule satisfies the con-
servation law of f*. One can easily confirm that the
implicit midpoint rule gives

() =y =

n+1 ny 2

—At [VIIUII+V opxn + e qu,] (m)

dvy; m 2

(2.15)

In 2 system with the periodic boundary for the real s-
pace, thus, the integral f d®zduv f* (where f — 0 for
v| — Zoc) is conserved during the numerical time-
integration. Therefore, the time-integration method in
eq.(2.14) is nondissipative. This is the advantage of ap-
plying eq.(2.14} to the collisionless drift kinetic equation
for a perturbed distribution function, since it enables a
highly accurate calculation of the so-called entropy bal-
ance™ 2% as shown in §4.

A fourth-order version of the time-reversible scheme
can also be easily implemented,?!)

Yl —Un = dIAtF{(Yl +Un)/2]

Yo —Y; = AR [(Y, +Y1)/2) (2.16)
U™t Y, = AR (U™ +Y5)/2)
where dy, do, and d3 are given in eq.(2.9). Both of

eq.(2.14) and each step in eq.(2.16} can be solved by

iteration. Application to the gyrokinetic equation is s-

traightforward. In the followings, we show results from

several benchmark tests for the nondissipative drift ki-

netic simulation scheme with the implicit midpoint time-
sroiar in o &g (9147

o
uxu\.oa.u-u\.u. 1 A Ledag.
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Benchmark tests for three-mode ITG prob-
lem

3.1 A brief review

In this subsection, we briefly review the three-mode
ITG problem.>% We start from the electrostatic drift
kinetic equation in a slab geometry with a uniform mag-
netic field in the y-z plane,

&f + 000, f - (0,00.f - 0:60,f) =
8,6 [1 + (v* — L)m:/2 + Ov] Fy(v) ,(3.1)

where f denotes a perturbed distribution function of
ions. The system is assumed to be uniform in the =z-
direction. In this section and Appendix A, v denotes the
parallel velocity vy for simplicity. The background den-
sity and temperature gradients that are constant with
scale lengths of L, and L7 in the z-direction are writ-
ten as the first and second terms in the square brack-
ets on the right hand side of eq.(3.1). The third term
represents the Landau damping by the background ions.
The above equation is normalized in the so-called gy-
rofluid units,¥ that is, f = f'L,va/png, 2 = 2'/p,,
y=1v'/p, v =20v'fv,, t =¢tv, /L., n = L,/Ly, and
¢ = e¢'L,/Tip.. Prime means a dimensional quantity.
Here, v4,, p., ng and e are the ion thermal velocity, the ion
gyro-radius, the background plasma density, and the el-
ementary charge, respectively. The background ion tem-
perature T, (= m;vZ; m; means the ion mass) is equal to
the electron one T.. © is defined as © = #L,/p; where
an inclination of the magnetic field 8 < ! is assumed.
The adiabatic electron response and the quasi-neutrality
condition give the perturbed potential & — {8},

[iw=o-&.

Here, (---) denotes average in the y-direciion.

Employing the periodic boundary conditions in the z
and y directions, f and ¢ that are independent of z can
be expanded in the Fourier series,

§3.

(3.2)

j':(:?:, y,u,t) = z fm,u(vv t)ei(k:z—i.kyy) » (3.3)
m,n
$(2,y,8) = 3 dma(B)eFemthosl - (34)

3

where k; = 2am/L; and ky = 2=n/L, for m =
0,%£1,x2,...andn =0,41,42, ... Here, wetake L, = L,
of which L; and Ly denote the system size in the z and
y directions, respectively. For studying the three-mode
coupling, we only keep (m,n) = (%1,£1} and (£2,0)
modes with the reality conditions of f1 = fi1 = fZ; _,
f-=faa=fi_1and fo = foo = fI30. In 2 symmet-
ric case studied in the previous works, fi = f_ = fy
and Re(fzu} = 0 (thus, (#) = 0) were also required.?%
Then, one arrives at the symmetric three-mode ITG e-
quations that is obtained by substituting the symmetry
condition into eqs.(A-1)-(A-6) in Appendix A where the
asymmetric three-mode equations are derived.

The symmetric three-mode equations have a class of
exact solutions written in termes of the real and imaginary

parts of the eigenfunction, fr.(v) and fr,{v), and the
real eigenfrequency w, (see ref.6 or Appendix A), that
is,

Filo,8) = [al6) fe (o) + B(8) fre(e)] exp( i),
fa(v,8) = ic(t) fr.(v),
&{t) = a(t) exp(—iw,t) . {3.5)

Here, aft), b(t), and c(t) are real-valued and obey the
following ordinary differential equations,

da/dt = b,
db/dt = vya — 2k ac |

de/dt = 4k*ab . (3.6)

Equation (3.6) reduces to a Hamilton's equation with
Hamiltonian of H(a,b), and hence, turns out to be inte-
grable.”) The analytical solution {a,b, ¢) is given by the
Jacobi’s elliptic functions which are periodic in ¢. See
ref.6 for more details of the analytical solution.

3.2 Comperson with other methods

The drift kinetic simulations with the implicit time-
reversible integrators in eqs.{2.14} and {2.16) can accu-
rately reproduce the analytical solution of the symmet-
ric three-mode ITG equation.®) Here, we compare the re-
sult with those of the predictor-corrector and the Runge-
Kutta-Gill methods, which are second and fourth-order
explicit schemes, respectively. The predictor-corrector
method used here is written as !0

{ Ut :Un—l +2AtF(Un)

Ut ot Rt Ty, 8D

which is known to be weakly dissipative.l!)

The initial condifion is given by fi(v.t = ) = eFy(v)
and fa(v,t = 0) = 0. The velocity space of —5v; < v <
Svy is represented by 129 grid points. The time step is
At = 0.25. Figure 2 shows the simulation results for
E=01mn =10, © = 1, and ¢ = 107%. For these pa-
rameters, the analytical solution predicts the period of
T = 353. With respect to the linear growth rate and
the first peak level of |&|, the three methods give the
same results. After the peaking, |¢| decreases with the
same rate as in the linear growth phase. In the case of
the predictor-corrector method, however, the exponen-
tial decay stops at |¢] = 4.63 x 1072 due to the nu-
merical dissipation, and then, the mode grows again.
The periodic bebavior of §@] is lost by the predictor-
cortector scheme. Thus, time interval of the first and
second peaks of |¢| is shorter (T = 143) than 2 half of
the period given by the analytical solution. Although
the fourth-order Runge-Kutta-Gill method is less disst-
pative than the predictor-corrector, the periodic solution
is not correctly reproduced. The minimum value of |¢)| is
4.45%x 107*, and the interval of the first and second peaks
is T = 256. The above comparison with the dissipative
integrators highlights the success of the nondissipative
schemes [eqs.(2.14) and (2.16)] in simulation of the sym-
metric three-mode ITG problem.
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Fig. 2 Comparson of the implicit mudpoint scheme with the

prediclor-corrector and the Runge-Kutta-Gill methods for k =
0l.7,=10.8=1.ande=10""

3.3 Dussipatwve three-mode IT'G problem

If one compare the results of collisional and collision-
less simulations, it is preferable to carry out the simu-
lations using the same scheme that can be applicable to
the both cases. Thus, we examine the applicability of
the nondissipative scheme to a dissipative problem. In
order to find out a reference of such benchmark test-
s, we have derived stationary solutions of the dissipative
three-mode ITG problem with the Krook collision model
in Appendix B.

We numerically solve the three-mode equations with
the Krook collision term, —vf, on the right hand side,
employing the implicit midpoint scheme. Even with
the Krook collision term, the distribution functions of
(£1,1) and (2,0} modes resulting from the drift-kinetic-
Boltzmann simulations are represented by the lLnear
cornbination of fr.(v) and fz.(v), since the three-mode
equations can be reduced to the sei of ordinary differen-
tial equations for {a, b, c) (see Appendix B). Time histo-
ry of the simulation result for » = 1072 is plotted as an
orbit in the (a,b,c)-phase space in Fig.3. The other pa-
rameters are the same as in Fig.2. One can see that the
spiral orbit approaches to a fixed point. The final val-
ves of (2, b, ) for several different v are summarized in
Fig.4, where lines indicate the stationary solution given
by eq.(B-3). The theoretical and numerical results show
a good agreement, which confirms the applicability of
the nondissipative simulation method to the dissipative
three-mode ITG problem.

The dissipative integrators that fail to reproduce the
periodic solutions of the collisionless three-mode ITG
problem in the previous subsection would be sufficient for
the case with the finite collisionality, if their numerical
dissipation is negligiblly smaller than the physical one. It
is, however, not trivial before running actual simulations.
For comparison, we have also run the same simulations
but with the predictor-corrector scheme, of which results
for v > 1073 agree with the thecretical predictions. For

[=T S A

Fig. 3. Orbit in the {a.b.c)-phase space resulting from the drift
kinetic simulation with the Krook collision term of r = 162
Other parameters are the same as in Fig 2.

4.5 ey T
4 S RRRETERELLEELAE - BAeoaooal A . R
35 | B
3E B E
a (theory)
2 b b (theory)

¢ (theory)
a (stmulation)
1 & b (simulation)
¢ {simulation)

a, b, ¢ in the steady state
(W=}
Lh

0 (;_l_.—l—.l—hhu&.%'mﬂ:—l—l—ulj_l—l—l—&m.
0.0001

Fiz. 4. Summary of a, b. and ¢ mn the steady state obtained by
the drift kinetic simulations of the three-mode IT'G problem with
the Krook collision term for different values of » (marks) Plot-
ted lines show the stationary solution given by eq.(B3}. Other
parameters are the same as in Fig.2.

the case of v = 10~%, the value of g approaches 2.929
(= apg) in the predictor-corrector simulation, while the
final value of @ = 2.939 {= atheory) 18 obtained by both
of the theory and the nondissipative simulation in Fig.4.
According to eq.(B-3), the effective dissipation v.g is
estimated as (veg/7)? = 1 — (apc/athem}.)g, and thus,
Ve ~ 7 x 1073 (where v = 8.312 x 1072) for At = 0.25.

3.4 Asymmetric three-mode ITG problem

We have assumed the symmetry condition of f} = f_
and Re(f20) = 0 in the above benchmark tests. In or-
der to study interaction between turbulent eddies and a
shear flow, however, one needs to take into account the
k,; = 0 modes. Introduction of the shear flow component,
&2, into the three-mode equation breaks the symmetry
of (1,1) and (—=1,1) modes. For a case with a constant
shear flow potential ®, we perform benchmark tests for
the asymmetric three-mode I'TG problem of which fun-
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damental properties are deseribed in Appendix C.

In the earlier studies, we explicitly imposed the sym-
metry condition during the time-integration at every
time step. Otherwise, asymmetry may grow from round-
off errors, even if the symmetric initial condition is em-
ployed in computations. Actually, one finds symmetry
breaking in the implicit midpoint simulation without 1m-
posing the symmetry condition {see Fig.5), where one of

the modes continues to grow in the second period. The
Igy || {with symmetric condition) ~
I¢ 1| (w/o symmetric condition)
I, || (wfo symmetric condition) ----——-
T T T T
3 107 .
2 1 .
g 107 o
< hS
3 10 .
§ 10°% ~
10—8 1 \ 1 1 £ 1 !
0 100 200 300 400 3500 600 700 800
Time
Fig. 5. Time-history of potential ampliiudes of (1.1) and {—1.1)

modes resulting from the drift kinetic sirmulation of the three
mode ITG problem withoui imposing the symmetry condition
(solid and dashed lines). Dotted line indicates the symmetric
result for comparison The same parameters as in Fig.2 are used.

other one decays more slowly with a rapid oscillation
which terminates the simulation at ¢ = 620. Here, we
employed the same parameters as in Fig.2. The above
features are explained in the followings by analyzing the
asyrmmetric three-mode equations given in Appendix A.
In order to consider the symmetry breaking found in
Fig.5, we rewrite eq.(A-12) for @ = 0 by defining a=
2(a+-§-a_), a=3(ep—a ), b=1(by +b_),and b=
by —b_). Fa=5b=0,(a,b,c) satisfy the symmetric
three-mode equation. Assuming |a|, |8] < lal, |B], ¢], we
obtain a linearized equation for &, which describes the
linear stability of the symmetric solution, such that

&, 2K N
dt2 [1 + TC( ):[ a .

Here, ¢(t) is given by the symmetric solution which in-
volves a quadratic termn of the Jacobi’s elliptic function
of the time .5 Instead of analytically solving eq.(3.8),
we discuss the stability qualitatively for the case that the
symmetric solution (a,b,c¢) starts from an initial condi-
tion with the small amplitude in the same way as in
Fig.5. The orbit of the symmetric solution (a,b,c) is
close to the separatrix orbit {@sep, Bsep, sep) OF

\/—k tﬂ)] )
2k*
bsep2 = asepz (1 - 7_2518&1)2) 7

28,
'asep

(3.8)

—sech [y(t —

Csep =

(3.9)

which emerges from (approaches to) the stationary point

(Fseps bseps €sep) = (0,0,0). Here, ¢y denotes s constant.
Thus, the maximum and minimum values of c( ) are, re-
spectively, max[e(t)] =~ v/k? and min[c(t)] ~ O(8), where
4 represents the order of the small initial amplitude. It
is noteworthy that, for small J, the linear growth and
damping of @ and b (where |e(f)] < max[c(t)})) continue
for a long time, while |¢(£)] can be as large as max[c(t)]
only for a limited time of G(y™'). Contribution of ¢(t)
to the right hand side of eq.{3.8) is, thus, negligible in
most of the period T of (a,b, ¢}, since T > v~1. There
fore, @ is expected to grow with a rate ~ . This means
that the symmetric orbit is unstable to asymmetric per-
turbations in the linear growth and damping phases of
the symmetric solution, and that the symmetry breaking
found in Fig.5 occurs spontaneously.

After the symmetry breaking, one can see the predomi-
nant growth of the (1, 1) mode in Fig.5. This is explained
in Appendix D by examining the linear stability of the
exponentially growing solution with no external shear
flow potential (@ = 0) [see eq.(C-11) in Appendix C],

ap =by =Crexpyf with a_=b_=c=0.(3.10)

The rapid oscillation observed in Fig.5 is also elucidated
by the linear analysis of eq.(3.10).

The exponentially growing solution in egs.(3.10} and
{C-11) is stabilized by applying the external shear flow
potential of |®] > v/2k%. Then one finds periodic solu-
tions given by eqs.(C-14) and (C-15). For the benchmark
test with a finite value of ®, we employ the mitial con-
dition of

F+() = ay(t = 0) frr(v) + by {t = 0) fralw)
F{v) = a—(t = 0)fr(v) + b_(t = 0) fra(v)
Fa(w) = ie(t = 0} fr.(v), (3.11)

where a;(t =0) = —b,(t =0) =1, a_(t =0)=b_(¢ =
0) =1, and c(t = 0) = 2&. The initial condition satisfies
eq.(C-14) with A; = Ay = 1. Here, ® = 4.2, which satis
fies the stable condition of ® > ~/2k? ~ 4.16. The other
parameters are the same as in Fig.2. The implicit mid-
point rule is used for the time-integration. We confirmed
that the form of the three-mode solution in eq.(A-11)
with ay (1) = —by(t), a_(t) = b_(2), ¢(t) = 2& was con-
served throughout the simulation. In Fig.8, one Finds
that the simulation result (circular marks) agrees well
with the elliptic orbit given by eq.(C-14). The observed
period of T' = 517.25 is very close to the theoretical value
of T = 2z /)y = 518.6.

§4. Benchmark tests for I'TG turbulence

In this section, we describe results of benchmark tests
for the ITG turbulence in the two-dimensional slab con-
figuration which is the same as in the three-mode case
but with many-mode interactions. The governing equa-
tions considered here are derived from the gyrokinetic
equations®? by assummg fk(vu,v 1) = fk(vﬁ)Fw(v 1)-
They are written in the wave number space such as

Ocfu+iOvikyfro+ Y. (KLY —RLEY) U firw =
k=K +k"
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Fig. 6 Orbut in the (a4.¢_)-phase space for & =4 2 with by =
~ay.b_=a_.and ¢ = 2% Sold line represents the analytical
solution 1 eq {C-14) with 4; = Ap = 1 Marks denote the
simulation resulis plotied with a constant tume interval of 40
Other paramelers are the same as in Fig.2.

—uk, Wy, [1 + (Uﬁ' —1 =k /2 + 9‘0“] Fay(wy), (4.1)

U =e %2, (4.2)

and
(1= To(k)] ¢ = *72 f Fulo)doy — e . (43)

where k? = k2 +k§, and Tp(k?) = exp(—k)I(k?). Ip(z)
means the 0-th modified Bessel function of z. The as-
sumed Maxwellian in the perpendicular velocity would
be valid, if a dominant wave length is much longer than
the ion gyroradius. We also assume the adiabatic elec-
tron response as

- @
Nek = { VOk

In our simulation code for the ITG turbulence, the con-
volution sum in eq.(4.1) is calculated in the real space
by using the Fast Fourier Transform where the 3/2-rule
is applied for de-aliasing, and then, is transformed back
into the wave number space.

In the followings, we note the so-called entropy bal-
ance” 29 which describes a relation between the entropy
oroduction rate and the transport flux. From eqs (4 1)-
{4.4), under the periodic boundary conditions in the x
and y directions, one finds

for ky # 0

for ky = 0. (4.4)

d
2 ) = 0 Qs 4.5
L (55 +W) =@ (43)
where
se -\ f - Ifk'

Z;:j ]IQFw(v;I)

1

QZfdv" (—zL e~k 12 ¢k) UHf_k ,

k

=1

W -

> (2= To(k*) = 8k, o) lowl’

k

(i6)

1a] »—

Here. the definition of 45 has the opposite sign as that
in ref.20. Equation {4.3) tells us that no transport 1s
observed {{J, = 0) in a steady state of d/dHd5 + W) =
0. As discussed in §2.2, for a homogeneous version of
eq.(4.1) where the right hand side vanishes, the implic-
it midpoint scheme guarantees the entropy conservation
[d(85)/dt =0]. Thus, it is expected that our nondissipa-
tive simulation of eq.(4.1} accurately satisfies the balance
equation, eq.(4.5).

Simulation parameters used here are given as follows;
the maximum wave number k; pay = Ky max = 3.2, the
interval in the wave number space Ak = 0.05 (thus,
164 x +64 modes are included), ® = 2.5, n, = 10,
—5v; < vy < vy and Af = 0.0125. The normaliza-
tion is the same as that n the three-mode problems.
Amplitudes of k, —  modes are fixed to zero, since the
background density and temperature gradients are set to
be constant in the r-direction. A convergence check for
the grid spacing in vy is carried out for Avy = 5v:/16,
5, /64, Sv,/256, and 5v,/1024.

Time histories of n,}, and a residual A = d(§§ +
W)/dt — n:Q: for the highest resolution of Awy =

31, /1024 are plotted in Fig.7.  Here, we emplayed

3 ¥ T 1 T T 1

25 + 1.0 —

05 1 1 1 1 1 !

0 100 200 300 400 500 600 700
Time

0.05
.04
0.03
0.02
0.01

n:Q; and A

-0.01

0 100 200 300 400 500 600 700
Time

Fig 7 Time-history of the thermal flux 1,@: and the residual of
the entropy balance A resulting from the nondissipative simula-
tion of the ITG turbulence The vertical axis of the upper panel
15 magmtied 1n the lower

the implicit midpoint scheme in eq.{2.14) for the time-
integration. In this simulation, the shear (zonal) flow
with k, = 0 is excited after the linear growth of the
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ITG modes. The transport flux (J, decreases after the
peaking of ¢ ~ 150. This is because suppression of tur-
bulence by the zonal flow leads to significant reduction
of the transport flux. Then, we can see in the lower pan-
el of Fig.7 that the flux reaches to a saturation level of
n:@: = 6.6 x 10™? (which corresponds to the ion thermnal
diffusivity of x; = @,/m, = 6.6 x 107 in the gyro-Bohm
units). Throughout the simulation, the entropy balance
in eq.(4.5) is well satisfied (JA] < [7.Q.|)- For com-
parison, we have also carried out the same simulation
but with the predictor-corrector method for the time-
integration, of which 6.5 is shown in Fig.8 as a function
of the time. In contrast to the case of the implicit mid-

60 .
50 b
4 L
& 30
20 |
10 +

0 1
0 100 200 300 400 500 600 700

Time

Fig. 8. Time-history of the entropy 45 obfained by the nondis-
sipative {implicil midpoint labeled as I.M.) and the dissipative
(predictor-corrector labeled as P.-C.) simulations of the ITG tur-
bulence.

point rule, 45 decreases after the initial growth in the
predictor-corrector simulation, although time-evolution
of @, (not shown here) is almost the same as in Fig.7.
Thus, the numerical dissipation inherent in the predictor-
corrector method breaks the entropy balance {A < 0).
In the simulations shown above, the transport flux @,
saturates af a certain level in later time (roughly, # ~ 500
in Fig.7). The convergence check for Avy clarifies that,
for coarser grid spacing in v, saturation of ); is found
at a higher level in earlier time. The saturated flux for
different Ay is sunnnarized in Fig.9, which shows a de-
pendence of (J, on a power of Avy (that is, @, x (Avﬂj_-g
with 3 ~ 0.85). Here, the error bars are calculated by
the root-mean-square of fluctuations of 7,§),. Thus, it is
considered that the flux vanishes when Avy — 0. The
observed saturation is, therefore, artificial due to dis-
creteness of the grids in the velocity space. The reason
is considered as follows. Suppose a fluctuation is given
in a collisionless electrostatic plasma. Then, the phase
mixing generates finer fluctuations in the velocity space
such as the ballistic mode. After the fluctuation scale-
length in the velocity space becomes comparable to Ay
(it is found at t =~ 250 in the simulation in Fig.7), an
aliasing error arises. The aliasing error affects the den-
sity and electric field calculations, and leads to the con-
tinuous increase of 85 that balances with the artificial
transport flux. This is equivalent to a phenomencn so
called recurrence’® in the Viasov simulations. There-

L A VX CIRR,
= 0.1 e 3
= ; L 5 3
L . ]
= 3. 3
3 001k ¢ ]
o 3 -3
w2 F T 3
0001 P S W YT | 1 coreassl
10 100 1000

Number of grids (V,) per Sy,

Fig. 9. A convergence check for the velocity space resolution {(grid
numbers per 5u:) in terms of the saturated thermal flux 3@, .

fore, the collisionless simulation considered here is valid
only in a finite time period when the fluctuation scale is
well resolved in the velocity space.

§5. Summary

We have carried out the comprehensive benchmark
tests of our newly developed simulation code with the
nondissipative time-integration scheme such as the im-
plicit midpoint rule. In order to establish a reliable ref-
erence for simulations of the ITG turbulence, we have
derived the asymmetric three-mode ITG equations, and
have found a special class of the solutions with a constant
(2,0) mode. The dissipative three-mode equations with
the Krook collision term are aiso given with the station-
ary solutions. The simulation results of the asymmetric
and the dissipative three-mode ITG problems agree with
the theoretical analyses. It is also confirmed that the
nondissipative simulation more correctly reproduces the
periodic solution of the collisionless three-mode problem
than the predictor-corrector and the Runge-Kutia-Gill
methods. Then, the simulation code is extended to in-
clude many-mode interactions through the E X B non-
linearity. The nondissipative simulation resulis of the
slab ITG turbulence accurately satisfy the balance equa-
tion between the entropy production rate, the tempo-
ral change of the potential energy and the ion thermal
flux, while the predictor-corrector scheme fails to balance
them due to the numerical dissipation. The benchmark
test for the ITG turbulence also raises a critical issue
of collisionless turbulence simulations. Under the pa-
rameters and the model settings employed in the present
simulations, the saturation level of the thermal flux has a
power-law scaling on the velocity space resolution. This
means that the observed saturation is artificial due to
the aliasing error in the velocity space. Since the phase
mixing generates finer fluctuations, in a strict sense, the
collisionless simulation of the ITG turbulence is possible
within a finite time period. This problem will be pur-
sued in detail elsewhere by means of the nondissipative
simulations developed here with a higher velocity space
resolution.
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Appendix A: Asymmetric three-mode ITG e-
quations

From egs.(3.1} and (3.2), the asymmetric three-mode
ITG equations are given by

(3 + k0 f4(1,8) + 27 [6_ (1) ol £) — Sal8)f— (v, 1)}
= ko (DG(v) . (A1)

(8 +1EOv) f_(v,1) + 28 [—04 (1) f3 (2.1) + 03 (8) - (2, 1)
= —iko_()G(v) , (A-2)

B fao(v, 8) = 267 o1 (1) fa(v,t) — 03 (VF2(0,0)] . (A3)

¢+(t)zfdv Filw1), (A-4)
60 = [ f-(o1), (A5)

and
f dv fa(o,8) = 0, (A6)

where the subscripts +, —, and 2 mean the (1,1}, (—1,1},
and (2,0) modes, respectively. In the drift kinetic limit
with the adiabatic electrons, however, there is no ade-
quate equation describing (¢} (= ¢2 in the three-mode
case} which accounts for the mean shear flow. In this
analysis, therefore, ¢y is regarded as an externally-given
function of the time ¢, while it is fixed to zero in the
symmetric three-mode equations.® G(v) is defined as

G(v) = [1 + %(U'f‘- 1)+ @v] Fulv). (A7)

Requiring fy = f—, Re[fa] = 0, 64 = ¢_, and ¢ = 0
in eqs.{A-1)-{A-6), cne finds the symmetric three-mode
equations.

The linearized version of the three-mode equations
with ¢ = 0 has a linear scolution of the form

[f (w8}, f- (v, 1), falw,t), &4 2), - (2)] =
1{v), fu(v), he(v), 01, drlexp(—iwt) .
Here, the linear eigenfunctions are given by
fr(v) = foe(v) +ifr:dv)
EG{v)
{wr — kOV) + iy

G —kB) —in]
- {w, —kB7)2 + 472 ’ (A8)

]

hr(r)=0, and ¢p =1 (normalization), (A-9)

and the complex eigenfrequency w = w, + 17 1s deter-
mined by the dispersion relation
kG(v)
duv V= f dv—me———— =
f v felv) f b (wr — EOV) -+ 17

where 7 > 0 15 assumed.

Hereafter, we consider the case of o2(t) = & where
& is a real-valued constant. Thus, in the same way as
in the symmetric case, eqs.{A-1)-{A-6) have a class of
exact solutions which are written in terms of the real
and imaginary parts of the eigenfunction fz(v) and the
real eigenfrequency w, as

fi(e,t) = laa () frele) + b4 (8) fLa(v)] exp(—iwrt),
Fof8) = [a- () f2r(v) + ibo (1) f2a(0)] exp(—icort),
f2(v,t) = ie{t) fr.(v),

¢4 (1) = a4 (f) exp(—iwet) ,

o_(t) = a_{t) exp(—ww,t) , (A-11)

where ay(t), a_{t), by(t), b_(t) and cft) are real-
valued functions of the time ¢. Equation (A-11)
automatically satisfies eqs.(A-4)-(A-6). Substituting
these into eqs.(A-1)-(A-3) and using eq.(A-8), we
obtain a set of ordinary differemtial equations for
o (2, 2 (£), s (£), b (1), (B},

dayjdt = vby + 2K ®a_

da_[di = vb_ — 2K2®a, ,

dbyjdt = vyay +2k2®b_ — 2k%a_c

db_Jdt = ya_ — 2k%®by — 2k%azc,
defdt = 2k® (ayb_ +a_by).

1,  {A10)

(A-12)

The above equations involve the set of ordinary differen-
tial equations for the symmetric case [eq.(15) in ref.6] as
a subset withay =a_, b3y =b_, and & =0.

Appendix B: Symmetric three-mode equations
with Krook collision term

Adding the Krook collision term —v f to the right hand
side of eq.(3.1), after manipulation similar to Appendix
A, one finds that the dissipative three-mode ITG equa-
tions have the same type of exact solutions as the nondis-
sipative one in eq.(3.5). In the presence of the Krook col-
lision term, a(t), b(f), and ¢(f) are given by the ordinary
differential equations,

da/dt = vb—va ,
db/dt = ya — 2k*ac — vb ,
de/dt = 4k*ab — ve. (B-1)

Here, » means the growth rate for v = 0. The lincar
growth rate with the Krook collision term is v — v. E-
guation {B-1) has a trivial exact solution,

(a,b,¢) = (0,0,c,e7"%) , (B-2)
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with an arbitrary constant ¢,. When we consider time-
evolutions of the unstable modes (4 > v) which linearly
grow {rom small initial perturbations, it is more impor-
tant to note that eq.(B-1) is non-conservative, and that
there are stable stationary points of

ER) T3 2,2
(a,b,c):(j:\h v ivf\/'; v: 4% —

222 T 9\ BR2y T 2k2y

(B:3)
In the limit of » — 0, the stationary points of eq.(B-3)
are located on the center of periodic orbits given by the
nondissipative symmetric three-mode equation [eq.(16)
in ref.6]. Thus, following a spiral orbit after the linear
growth, the solution of eq.(B-1) approaches to one of the
stable stationary points of eq.{B-3).

Appendix C: Fundamental properties of eq.
(A-12)
C.1 Inveriance and conservation property
Here, we consider some fundamental properties of the
set of ordinary differential equations, eq.(A-12}, derived
from the asymmetric three-mode equations. Equation
(A-12) is invariant to the following transforms,

(ay,a-,by,b_,¢,®) = (—ag, —a_,—by,—b_,c, @),
)

(ay,a_,by,b_,e,®) = (—ag,a_,=by b_, —c,—®

{ar,a—,by.b_,¢,®) = (ay,—a_,by,—b_,~¢,-B) .
(1)
When we rewrite eq.(A-12) as df/dt = F(£) for £ =
(a4,0.,b4,b_,¢c)f, V- P(£) = 0 (there is no sink and
source of the flow ¥ in the §-space). Thus, eq.{A 12) is

conservative.
From eq.(A-12) for any value of @, we easily find

(C2)

where C is a constant. For & = 0 with no shear flow,
furthermore, eq.(A-12) has the another constant of mo-
tion, Oy,

aﬁ_+ai—bﬁ_—bz_—c2:Cg ,

2K2

c———aya_ =, {(C-3)
~

which corresponds to eq.(20) in ref.6. Eliminating ¢ from

eq.{A-12) by using eq.(C-3), one finds that eq.{A-12) can

be written in a Hamiltonian form,

d _jom
dt " 8¢

where { = {a,a._,b;,5_)" and

H{ay,a-,by,b) = 3 (83 482 — o} —a?)

2k*
+ 2k*Crapa_ + Ta?,_az_ (C-4)

3:(3 (’))

O and ! are the zero and unit matrices of 2 x 2. A sim-
lar Hamiltonian form is also derived for the symmetric

with

case.T)

C.2 Siafionary selutions
For any &, eq.(A-12) has two types of stationary solu-
tions, trivial and nontrivial ones, which are written as

(ay,a—,by,b_,¢) = (0,0,0,0,c,) , (C-5)
{ay,a_,by,b_,e) =
2629 2K%% T {; 4kt §?
Us,As; — ’) s, Tas:@ + T ]
(C-6)

and

(a.;.,aq,b_;_,b_,c) =

. 28 2K9 T (,
a53~ L} -7_a5 T a1z
y oy T 2

=l
(C7)

where a, and ¢, are arbitrary constants. When & =
0, the solution in eq.{C-6) coincides with the stationary
solution of the symumetric case [eq.(16) in ref.6].

Let us consider the linear stability of the stationary
solutions. For the trivial solution in eq.(C-5), the linear
stability analysis gives complex eigenvalues (} and eigen-
functions exp{{}t), where

Q% = 4% —4Kk1®? + 12k, /452 — 2 .
Only if

(C-8)

2 v [4k1?
(01> 4/2K and 208] < o] < T, (7_2 e
c9)

one finds pure imaginary roots of eq.(C-8). Otherwise,
the solution in eq.{C-5) consists of unstable stationary
points. For & = 0 and ¢; = 6, @ = 4 which corresponds
to linear eigenvalues on the separatrix point found in
the symmetric threenode coupling system.% From the
linear analysis for eqs.{C-6) and (C-7), one finds complex
or pure imaginary roots depending on |@/,

Q = £4/2(72 - 4k10?) = V29, ,

as well as two other pure imaginary ones, § =

22+/2520.

(C-10)

C.83 Nonstatienary solutions
In addition to the symmetric exact solution which was
studied in detail in ref.6, there are a different type of
exact analytical solutions of eq.(A-12) with de/df = 0.
For @ = 0, eq.(A-12) has a stable/unstable solution
given by
ﬂ:+ = C.].Eﬂt + D+€“7t,
a-=C_e"+D.e ™,
b+ = C_;.E'ﬁ - D+E_7t,
b_=C_e" - D_e™,
(C-11)

ce=0,
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where C4,Co =0and Dy D_ = 0.
By substtuting by — —ayg, b -

eq.{A 12). which satisfy de/di — 0. ouc finds that the

above solution is extended to a case of & # 0. Then. one

a ,and c = 2® mto

obtains

ay +a_ = Re (.r-‘l.leﬂ"r + Agf“n"’) ,

1 _
ap — Q. — -mRC (90 [AI(QUI' — A_)f Qﬂf]) )
(C-12)

where §2g = 14/72 — 4k*®? {this is ideutical to fy de-
fined in eq.(C-10)]. For by = a4, b = —a_, and
¢ = —2&, the another exact solution of eq.(A-12) 15 de-

rived, that 1s,

ay+a_=Re (Agen"f + A46"Q°’) R
1

mf{,& (.Qg [Ageﬂbt — A4Eﬁgof]) ;

a4 — a— =

(C-13)

Here, A, (n = 1,2,3,4) denote arbitrary constants. As
seen in the definition of (g, when |®| exceeds v/2k?, un-
stable orbits of egs.(C-12) and (C-13) change to periodic
(elliptic) ones which are, respectively, given by

(2K2® — y)(ay + a_)? + (2K°T + y)(ay —a_)?
= (2K — 4)(A; + A2)* {(C-14)
for by = —a4,b_ = a_, ¢ = 2%, and
(28@ + )(ag +a.)" + (2@ — 7)(ay —a-)?
= (2K%® + v)(A;z + Ay)* (C-15)

for by = ag, b.. = —a_, ¢ = —2&, where A, are real-
valued.

Appendix D: Linear stability analysis of eq.
(3.10)

Linearizing eq.{A-12) around the exponentially grow-
ing solution in eq.(3.10} [or eq.(C-11) in Appendix C

with C_ = Dy = D = 0] with perturbations of
&a—lvib—ia ]Ei & |a+|> 1b+|7 one finds
da_jdt =~b_ ,

db_[dt = va_ —2k*Cy e
défdt = 2320 e (@ +5_) . (D-1)
A general solution of eq.{D-1) is given by

- 7
- = sg;

+ BaNq (2K%|C |7 [~)] + Bze™ ™, (D-2)

[ By J: (2KECile™ /)

I R,
et < b

.2 L
T (2210 7 3)

— J2 (2E7C1[e™ /7)) + Bz [No (2K°1C+1¢7 /)
— Ny (2R71C4 17 7)} ¥ = Bae ™ (D-3)

and

#t) = M [Bydy (2R3Cy €7 /7)) + BeNy (2R71C1 10T
(D-4)
where B), 8., and By are arbitrary constants. J,(z) and
N,(z) denote the n-th Bessel functions of the first and
second kinds, respectively
Using the asymptotic expansion of the Bessel fune-
tions for large z, Jo(2) ~ 4/2/mzcoslz — (2n + 1)m /4]
and Np(z) ~ 4/2/mzsinfz — {2n 4 )= /4], the oscillation
amplitudes of a_, b_. and ¢ are estimated as |a_(t)} ~
exp(—7t/2), [b_(£)| ~ exp(71/2), and [&(2)] ~ exp(~1/2),
respectively On the other hand, since a4 = &y
exp(yt), |a_/ay], |b_/asi, and |¢/as] exponentially de-
crease for the time ¢. This means that the linear approxi-
mation in eq.(1}-1} continues to be valid or, say, becomes
better as { increases. Thus, @y and by continue to grow
exponentially with the rate of -y, when the mitial point of
(a4,a—.bt,b_,c) is located in the vicinity of the exact
solution in eq.{3.10) Amplitudes of b_ and ¢ also show
the exponential growth but with the smaller rate of 4/2,
while a_ (and hence |¢_[) decreases with a damping rate
of 4/2. The same argument can be applied to the case of
€y = 0 but C_ # 0 Therefore, one expects a predom-
inant growth of one mode after the symmetry breaking
given by eq (3.8). This is consistent with the simula-
tion result in Fig.5. In addition, as ¢ increases, distances
between zero points of a@_(t), b—(t), &) exponentially
decrease, which explains the rapid oscillation of (—1,1)
mode in Fig.b.
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