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Abstract

A strong axial magnetic dipole field having the magnetic energy 15 times larger than
the kinetic of thermal convection is realized by a direct numerical simulation of the
magneto-hydrodynamic equation of an electrically conducting Boussinesq fluid in a ro-
tating spherical shell which is driven by a temperature difference between the outer and
inner boundaries against a gravity force pointed to the system center. Cyclonic and
anti-cyclonic corvection vortices, which rotate, respectively, in the same and opposite
directions of the systern rotation, are generated and play a primary role in the magnetic
field intensification. The magnetic field is enhanced through the stretching of magnetic
lines of force in four particular places of the convection fields, namely, inside anti-cyclones,
between cyclones and their western neighbouring anti-cyclones at middle as well as low
latitudes, and between anti-cyclones and the outer boundary. A ‘twist-turn’ loop of
intense magnetic flux density is identified as a fundamental structure which yields the
dominant contribution both to the toroidal and poleidal components of the longitudinal
averaged magnetic field. Various types of competitive interaction between magnetic field
and convection vortices are observed. Among others. a creation-and-annihilation cycle of
them in the statistically equilibrium state is particularly important, which is composed
of three sequentially recurrent dynamical processes, that is, the generation of convection
vortices by the Rayleigh-Bénard instability, the growth of anti-cyclones and the inten-
sification of magnetic field by concentrate-and-stretch mechanism, and the break-down
of vortices by the Lorentz force followed by diminution of magnetic field. The energy
transfer from the velocity to the magnetic fields is taking place predominantly in this

dynamical cycle.



1 Introduction

It is well known that celestial bodies have their intrinsic magnetic fields. Most planets in
the solar system have dipolar fields whose axes are nearly parallel to their rotation axes, e.g.
for the Earth and Jupiter, or are much inclined, e.g. for Uranus and Neptune. It is widely
believed that the origin of these magnetic fields should be attributed to the dynamo action
by electrically conducting fluids in their interiors (see Busse 2000, Zhang & Schubert 2000.
Roberts & Glatzmaier 2001, for recent reviews). In the case of the Earth, for example, the
north-south symmetry of the magnetic field structure at the core-mantle boundary (Gubbins &
Bloxham 1987) together with the Taylor-Proudman theorem, which states a tendency of two-
dimensionalization of fiuid motions ir a rotating system, strongly suggests that the dynamo
action due to convective motions of electrically conducting fluids in the outer core may be
responsible for generation of the geomagnetic field.

Since a suggestion of this dynamo concept by Larmor (1919), the motion of an electrically
conducting fluid and the generation of magnetic field by it in a rotating spherical shell as
well as in a rotating sphere have been extensively studied both theoretically and numerically.
Most of the studies are based upon the magneto-hydrodynamic (MHD) equations of either an
incompressible or compressible fluid. As for simulation study, recent rapid developments of
computer power, numerical algorisms, and visualization techniques have made it possible to
increase the available size of numerical simulation and to raise the quality of data analysis year
by year. However, even now, it is still far away from a realistic direct numerical simulation
of the geodynamo because of extremely large values of the control parameters such as the
Taylor number and the Rayleigh number (Merill, McElhinny & McFadden 1996, Glatzmaier
& Roberts 1997).

In this situation there may be at least two approaches in the dynamo simulation study.
One is to stick to the original purpose to get a numerical solution which agrees quantita-
tively with observations of the geomagnetic field. For such an ambition, however, the basic
equations, such as the MHD equations, are too heavy to be solved. It is necessary, there-
fore, to lighten the computation load by introducing some insightful simplifications, e.g. by
asymptotic analyses, by phenomenological arguments, and by elaborate numerical methods.
In fact, some characteristic behaviours of the geodynamo, such as the dominance of dipolar
field having reasonable magnitude and a reversal of its polarity have been successfully realized
by the use of variants of the MHD equations either with hyper-diffusion coefficients, without
the inertial term, or under slip boundary condition (e.g. Glatzmaier & Roberts 1995, Kuang
& Bloxham 1997}. The other approach is to concentrate our attention on understanding of
a fundamental process of the convection dynamo in a rotating spherical shell. Closeness of
the values of control parameters is then not strongly required between the dynamical system
and the real Earth or any celestial bodies. Similar (but different in the type of viscosity, fluid
compressibilify, numerical scheme, boundary condition, etc.} convection dynamo simulations
in a rotating spherical shell have been performed by several research groups independently
to realize also some characteristics of the geodynamo at least qualitatively (e.g. Kageyama &



Sato 1997, Kitauchi & Kida 1998, Katayama, Matsushima & Honkura 1999, Sakuraba & Kono
1999, Olson, Christensen & Glatzmaier 1999).

We have learned a lot, from these extensive simulations. on the global structure and be-
haviour of the convection velocity and magnetic fields in a rotating spherical shell, but not so
much as on the dynamo mechanism itself. The averaged (e.g. over the whole longitudes) global
structure of the fields are relatively easily visualized, but the instantaneous local structure,
which is responsible to the dynamo action, is very hard because of unsteadiness, irregularity.
and three-dimensionality of variations of the fields. As has already been recognized by many
simulation studies (Kitauchi & Kida 1998, Katayama, Matsushima & Honkura 1999, QOlson,
Christensen & Glatzmaier 1999), the interaction between the convection velocity and magnetic
fields is taking place locally in space, which implies that the generation and maintenance of
magnetic fields should be local phenomena. This immediately rings a warning bell that an easy
average, such as a longitudinal average, may loose some important dynamics of local nature.
For example, the aw dynamo, if it is argued on the bases of only the longitudinal averaged
quantities may miss the true mechanism of local nature and lead to a misleading conclusion. It
should be stressed here that a detailed analysis, without any averages, of the individual local
dynamical process is indispensable to capture the real physics.

The second approach stated above are taken here. We solve the MHD equations as ac-
curately as possible for an incompressible Boussinesq fluid of constant material parameters
confined in a rotating spherical shell with uniform constant temperature distribution on the
boundaries under a gravity force pointed to the system center. This is one of the simplest
non-trivial settings to study the dynamo mechanism which imitates spherical celestial bodies.
Our primary interest is to find a possible mechanism of some characteristics observed in the
geomagnetic field such as the dominance of a dipole magnetic field with axis nearly parallel to
the rotation axis, the intermittent irregular reversals of the dipole polarity, the spottiness of
intensified magnetic field, the westward drift, and so on, under the dynamo action by convec-
tion motions of an electrically conducting fluid. We assume that three factors, {1] the system
rotation, [2] the spherical boundary, and [3] the convective motion of an electrically conducting
fluid, are fundamental to produce the above-mentioned characteristics. Other factors, such as
the inner core (Glatzmaier & Roberts 1995, Hollerbach & Jones 1995, Sakuraba & Kono 1999),
fluid compressibility (Kagevama & Sato 1997), the source of convection motion, e.g. the latent
heat and the compositional buoyancy (Glatzmaier & Roberts 1996), are assumed to give the
secondary effects and not taken into consideration in the present analysis.

In this paper we analyze 2 run which exhibits ar axial dipole fleld {Ishihara & Kida 2000)
to examine the dynamo mechanism. We find strong competitive interactions between magnetic
field and convection vortices, in which dynamo action is taking place. In the next section a
numerical model of thermally driven MHD dynamo problem in a rotating spherical shell is in-
troduced with fundamental equations. governing parameters, initial and boundary conditions,
and numerical schemes. A purely thermal convection simulation is described in §3. Then, a
dynamo simulation follows. In §4, the dynamics of global quantities, such as the energy and

the magnetic dipole moment are discussed. In §5, the intensification mechanism of the mag-



netic field is presented. There are three distinct periods of temporal evolution of the magnetic
field, i.e. the linear, first-equilibrium and second-equilibrium periods. After the dynamo mech-
anisms in the respective periods are described in detail, an overview of the most intensified
places of the magnetic field is taken. Then, we discuss, in §6, a competitive interaction —
a creation-and-annihilation cycle of magnetic field and convection vortices. Finally, section
seven is devoted for further remarks and conclusions.

2 Spherical-Shell Model

We consider the magnetic field intensification by thermal convection of an electrically conduct-
ing fluid between two concentric spheres which are rotating with the same constant angular
velocity £2 around the center. The density p of the fluid is assumed to be uniform and constant
except in the buoyancy force term. This is the so-called Boussinesq approximation. The inside
of the inner sphere and the outside of the outer sphere are assumed to be vacuum with the
same magnetic permeability p as that of the fluid, for simplicity. A gravity force g per unit
volume acting on fluid elements is directed to the system center and is proportional to the
distance from the center, i.e. g = —pvyz, where v is a constant and @ is a position vector
relative to the center. The temperature is kept uniform over the two boundary spheres and
constant at all times. The inner sphere is hotter than the outer by AT, which drives a thermal
convection. Two coordinate systems, the Cartesian (r,y, z) and the spherical (r, 0, ¢), with
the origin at the center are used as the case may be. The (z,y) plane is taken on the equatorial
plane and the z axis on the rotation axis, whereas r is the radial, # is the co-latitudinal, and
¢ is the longitudinal coordinates. In the following we use such coordinates systems rotating
either with the spherical shell or with the vortex columns according to circumstances.

The dynamical equations, in a frame rotating with the shell, for the fluid velocity u(xz,t),
the magnetic flux density b(z, t}, and the temperature T(x, ¢t) are given by the Navier-Stokes

equation,
Du _ —v(Z+ —I—’y|:r:|2 - 3|.Q x z|* | + PrRaTz +PrTafu x 2+ (V X b) x b+ Prviu
Dt p 2 2 e e S ‘v—"
~ ~ ~»  buoyancy Colioris Lorentz viscous
pressure
(1)
the electro-magnetic induction equation,
Db
— =(b-V)u+ RoV>b, (2)
Dt
and the heat conduction equation,
DT
— =VT.

Since the fluid is incompressible and there is no magnetic mono-pole, both the velocity and
magnetic fields are solenoidal,

V-u=90 (4)



and
V-b=0 {5)

Here, p(x,t} is the pressure, Z = 2/{£2| is the unit vector along the rotation axis, and

D 8
D m V) (6)

is the Lagrangian derivative. All the variables have been normalized in terms of the shell
thickness d (= r» — r1), where m and r; are the radii of the inner and outer spheres, the
thermal diffusion time d?/x (x being the thermal diffusivity), and the characteristic magnetic
flux density K,(,up)% /d. There appear four dimensionless parameters in these equations, which
are the Prandt] number,

v
Pr=- 7
r=2, ™)
the Rayleigh number,
4
Ra avATd , (8)
KU
the Taylor number,
T (21!2[(12) ’ (9)
v
and the Roberts number,
A
Ro=—, {10)
K

where « is the thermal expansion coefficient of fluid. » is the kinematic viscosity, and X is the
electrical resistivity.

These equations are solved numerically under the boundary conditions that the velocity
vanishes, the magnetic field is continuous,’ and the temperature is uniformm and constant on
both the inner and outer spheres. Simulations are performed by the pseudo-spectral method.
All the dependent variables are expanded by the spherical harmonics on the latitudinal and
longitudinal directions and by the Chebyshev polynomials in the radial direction. Simultaneous
ordinary differential equations with respect to time for the expansion coefficients are solved by
the Crank-Nicolson scheme for the diffusion terms and by the second-order Adams-Bashforth
scheme for the other terms (Kitauchi, Araki & Kida 1997).

Our primary interest here is to understand how the magnetic field is intensified through
mutual interactions with the thermal convection generated by a steady and uniform tempera-
ture difference between the outer and inner boundaries of a rotating spherical shell. For this

lm oy -
This iz the rcondition that there ig no gurface o urrent, which is compatible with a finitc clectrical resis-

tivity and in contrast with the vanishing Poynting flux Wthh requires an unphysical infinite surface currenz
(Kageyama & Sato 1997).



purpose we solve the initial value problem of {1)-(5) in two steps. First, egs. (1), (3), and (4)
with b = o are simulated starting with thermal conduction state,

r
u=o, = (--2— - 1) (11)
r

superimposed by random disturbances both in the velocity and temperature fields. The Taylor
number, the Prandtl number, and the radius ratio of the two spheres are respectively set at

Ta=16x105, Pr=1, ;—1 =0.5. (12)
2

These values are chosen as an extension of a series of our previous studies {Kida, Araki &
Kitauchi 1997, Kida & Kitanchi 1998a, 1998b, Kitauchi & Kida 1998), namely, the Taylor
number is increased by factor 4 under the expectation that more intensified magnetic field
may be generated. The critical Rayleigh number in the linear stability of thermal conduction
state (11) at these parameters is found to be Ra, = 1.36 x 10%. A thermal convection state
develops at a super-critical Rayleigh number. Simulations for several cases of different Rayleigh
numbers were performed. Here, we report a case of

Ra = 3.2 x 10%, (13)

in which a strong axial magnetic dipole filed is developed (Ishihara & Kida 2000). Since the
Rayleigh number is quite away from the critical value (Ra/Ra, = 2.4) the resulting thermal
convection is rather irregular both in space and time (cf. figure 4 in Busse 2000).

In the second step of the simulation a random seed of weak magnetic field 1s sowed in a
thermal convection state obtained in the first step, and the temporal evolutions of the magnetic
and velocity fields are traced by solving the full set of MHD equations (1)-(5). Whether the
magnetic intensification is effective or not depends on the Roberts number. It is found that the
magnetic field is intensified when it is below the critical value Ro, = 0.149. In the following
we present the results at

Ro = 0.1. (14)

The numbers of modes in the simulation are taken as (N,, Np, Ny) = (128, 64, 128) in the radial,
latitudinal and longitudinal directions, where N, is the number of terms in the Chebyshev
polynomial expansions, and Ny and N are the truncation orders in the spherical harmonic
expansion. It turns out that these truncation orders may be large enough to guarantee the
numerical accuracy in the sense that the peak value of the power spectra of the dependent
variables drop by a factor of 1072 ~ 1072 at the cut-off mode even when the magnetic energy
is highest in the present numerical simulation (cf. Christensen, Olson & Glatzmaier 1999).
The time step width is A¢ = 1.25 x 107°. The magnetic, viscous, and thermal diffusion times
are d?/X = 10, d?/v = 1, and d?/k = 1, respectively.

In the following sections we will analyze the interaction of the velocity and magnetic fields
in terms of various physical quantities, including vorticity w(z,t) = V x wu(x,t). For later



convenience, we write here the evolution equation of vorticity, which is obtained by taking a
curl of the Navier-Stokes equation (1), as

Dw _ (w-V)u+PrRa(VT) x z + PrTa%Q'i +V x (§ x b) + PrViy, (15)
Dt N, it ~ s o’ az N, n
stretching buoyancy m Lorentz diffusion

where j(z,t) = V x b(z,t) is the current density. The physical meanings of the five terms
on the right-hand side are respectively the stretching and tilting of vorticity by advection, the
torque by buoyancy force, the stretching and tilting of system vorticity (22) by advection, the
torque by Lorentz force, and the diffusion by viscosity. See Kitauchi & Kida (1998) for details.

3 Structure of Thermal Convection

As described in the preceding section, the velocity field which causes the magnetic field inten-
sification is prepared by a pure thermal convection simulation. Therefore, it is instructive to
see the characteristic properties of the structure of this thermal convection for discussion of
the intensification mechanism. The structure is not so simple as might be expected from the
geometry and the boundary condition of the problem. A competition between two different
symmetries, i.e. the spherical symmetry of the boundaries and the cylindrical symmetry of the
system rotation, makes the flow very complicated (Kitauchi, Araki & Kida 1997). Although
the details are different depending on the three parameters of (12), the overall flow structure
can be understood by the Taylor-Proudman vortex columns of alternated senses of rotation
around the axis of system rotation.

An instantaneous flow structure in the fully developed thermal convection state is shown
in figure 1. The iso-surfaces of |w| are drawn with yellow for cyclones (w, > 0) and blue for
anti-cyclones (w, < 0) in {(a). The threshold value |w| is the same on all the surfaces. This is
a view seen from 30° north latitude. The gray circular annulus represents the equatorial plane
and the sphere at the center the inner boundary of the spherical shell. The outer boundary
is omitted. There are nine cyclonic and anti-cyclonic columns aligned alternately around the
rotation axis. Besides these vortex columns the so-called Ekman boundary layers develop on
the outer and inner spheres where vorticity is parallel to the boundaries and very intense. The
thickness of the Ekman boundary layers on the inner and outer spheres is nearly the same and
about 0.06d which is covered by 20 Chebyshev points in the numerical scheme, implying that
these boundary layers are well resolved. The Ekman boundary layers are cut away in these
figures to make the inside of the shell visible. The z component of vorticity dominates the
other components except in the Ekman boundary layers. The size and shape of iso-surfaces
are different from vortex to vortex and change in time rather irregularly. Their intensity is not
uniform along the axis. It is more intense near the outer boundary in cyclones, whereas near
the equatorial plane in anti-cyclones. The vortices retrograde with mean angular velocity of
2, = —0.9 (= —0.0102).

The velocity field in the whole spherical shell is genuinely three-dimensional and more
complicated than the vorticity field. However, the key structure, which is important for the



Figure 1: Thermal convection. (a) Iso-surfaces of |w| are drawn with yellow for cyclones
(w; > 0) and blue for anti-cyclones (w, < 0). (b) Equatorial distribution of w, and streamlines.
The colour map represents w, with yellow for positive and blue for negative. (c) Streamlines
projected on a sphere of radius r = r; +0.55d (r; being the inner-sphere radius and d the shell
thickness) on which the magnetic field is intensified strongly in the linear period (see figures
7(a) and 8). The colour map represents u, with blue for positive and yellow for negative. (d)
Same as figure (c) but on a sphere of radius r = r; +0.92d just outside of the Ekman boundary
layer on the outer sphere. A white cross denotes a stagnation point. Figures (a), (c), and (d)
are viewed from 30° north latitude. The streamlines in (b)-(d) refer to the velocity field in
a frame moving with the convection vortices. Streamlines are shown by coloured lines with
black circles toward which the flow is pointed. The velocity magnitude is proportional to the
line length. Red and white denote the positive and negative accelerations on the lines.




magnetic field intensification, is relatively easily pictured by recalling the properties of the
Taylor-Proudman vortex columns and the Ekman boundary layers. The cyclones (or anti-
cyclones) are vortices of high- (or low-) pressure with swirling flows in the same (or opposite)
sense as the rotation of the spherical shell and with axial flows toward {or away from) the
equatorial plane, which is caused by the Colioris force and the Ekman pumping. Therefore,
the flows inside both the cyclones and anti-cyvciones are helical and skewed as a left-handed
(or a right-handed) screw in the northern (or southern) hemisphere (Kitauchi, Araki & Kida
1997). The flow pattern on the equatorial plane is simpler because the velocity field is of
mirror symmetry at least approximately. The structures of the velocity and vorticity flelds
on the equatorial plane are shown in figure 1(b), where red-and-white lines with a black
circle represent streamlines projected on this plane relative to a frame moving with the vortex
columns. The velocity is directed to the circle and the acceleration is positive and negative
at red and white, respectively. The line length is proportional to the velocity magnitude.
The colour map represents w, with red, green, and blue for the positive, zero, and negative
values, respectively. The flow is spiralling out of (or into) the cyclones (or anti-cyclones).
This is consistent with the flows leaving from (or approaching to) the equatorial plane in the
cyclones (or anti-cyclones). The anti-cyclones are stronger and concentrated in space more
than the cyclones. As will be shown in §§5.2 and 5.3, the magnetic field is intensified by
the concentrate-and-stretch mechanism of magnetic lines of force in anti-cyclones (Kitauchi &
Kida 1998).

Two other flow patterns important for the magnetic field intensification are shown in figures
1(c) and (d) on spheres of radii r = r; +0.55d and r; + 0.92d, respectively. Here, the notation
of streamlines is the same as in figure 1(b), whereas the colour map represents the radial
component u, of velocity with yellow for z, < © and blue for u, > 0. As will be seen later,
the magnetic field is most intensified around these spheres (see Table 1). The flow is swirling
clockwise {or anti-clockwise) around cyclones (or anti-cyclones) and sinking into (or going out
of) the Ekman boundary layer. Therefore the streamlines are skewed in the same sense as a
left-handed screw in the northern hemisphere. Note that the yellow and blue in figure 1(d)
represent the cyclones and anti-cyclones in just the same manner as in figure 1{a).

The important point to notice in magnetic field intensification is that the acceleration is
positive at the inner (or outer) side between a cyclone and an eastern {or a western) neighbour-
ing anti-cyclone. In §5.1, the magnetic field is shown to be intensified at the place of positive
acceleration by the stretching of magnetic lines of force. There is a stagnation point, denoted
by a white cross, to the south of an anti-cyclone around which the flow is being stretched in
the direction of the north-west and the south-east. As will be shown in §5.2, the magnetic
field is also intensified along this flow.

4 Growth of Magnetic Field

The second step of the simulation described in §2 is performed by sowing a seed of random
weak magnetic field in a thermal convection obtained in the preceding section. Initially, the



Lorentz force is negligible in the Navier-Stokes equation (1) so that there is no feedback effect
on the velocity fleld, and the induction equation (2} is linear with respect to the magnetic
flux density. Since the velocity field is stationary in the statistical sense, the intensity of the
magnetic field should change exponentially in time. The growth rate is a decreasing function
of the Roberts number. The critical Roberts number is found to be 0.149, below which the
magnetic field is intensified. In the following we report a case of Ro = 0.1.

4.1 Energy equations

The convection dynamo is, after all, the energy transfer from the convective motion excited
by a temperature difference between the inner and outer boundaries to the magnetic field.
Therefore, the examination of the energy flow is useful to understand the dynamo mechanism.

The temporal evolution of the kinetic energy density per unit mass %|’u.[2 is derived by
taking the inner product of (1) and u as

D 1 2 p 1 2 1 2 . 2
- o . = 1 — —_ = ' . . .
tzlul = C 'U-( T 2 Y|.’BI i.Q X J,'I +PI‘:§‘3T:B u+u (J X b)+Pr1{’sco:—s u.
- - uoyancy Lorentz Vi

diffusion by pressure

(16)

The first term on the right-hand side represents the diffusion of the kinetic energy density
by the pressure, the gravity force, and the centrifugal force, which is integrated out over
the spherical shell because of no-slip boundary conditions. The second term expresses the
buoyancy effects which is the only source of the kinetic energy. The third term is the work
done by the Lorentz force which is responsible to the direct energy exchange between the
convection velocity and magnetic fields. The sign of this term turns out to be negative,
which implies that the kinetic energy is converted to the magnetic. The last one includes
all the contribution from the viscous effects, which may be written in a sum of diffusion and
dissipation such as Pr(V22|ul*+VV : uu—2 || s |?) and Pr(V2L{ul? - VV : uu—|w}?). Here,
8 = {si;}, sij = £ (Bu;/0z; + Bu;/Bx;), (i, = 1,2,3) is the rate-of-strain tensor. In either
of these decompositions the first two terms represent the diffusion, whereas the third one the
dissipation. The diffusion terms are integrated out over the whole spherical shell. Note that
the Colioris term does not contribute to the energy dynamics at all, though it fluctuates with
substantial amplitude (see (29) below).

The evolution equation of the magnetic energy density %[blz, on the other hand, is derived
by taking the inner product of (2) and b as

b
53l =b-s-b+Rob V. (17)
stretching resistive

The first term on the right-hand side of (17) contributes to the growth (or decay) of the
magnetic energy density by stretch (or contract) of the magnetic lines of force. The interrelation
between directions of the magnetic lines of force and of the eigenvector with positive eigenvalues

10



of the rate-of-strain tensor is especially important for the magnetic field intensification. The

second term describes the effects of resistivity. which may be rewritten as a sum of diffusion

and dissipation, e.g. Ro(V - {bx j}—|7]?). In this decomposition the first term represents the

diffusion, whereas the second the dissipation by the Joule heating. In fact. the magnetic field

in vacuum outside the spherical shell is excited through this diffusion term (see §4.2).
Another expression of the evolution of the magnetic energy density is

o) ) .
573161 =~ 2 (j x b) -~ ¥V - (E x b)~ Rolj’, (18)
~ -~ s -~ s N’
Lorentz Poynting Joule
where
E =Roj—uxb (19)

is the normalized electric field. The respective terms on the right-hand side of (18) represent
the reaction of the Lorentz force, the electro-magnetic energy flux due to the spatial variation
of Poynting vector E x b, and the Joule heating.

Two equivalent equations (17) and (18), which are, so to speak, the fluid dynamical and
the electro-magnetic representations, respectively, vield different descriptions of the energy
dynamics. We use the fluid dynamical representation (17) throughout this paper.

4.2 Energy dynamics

The magnitude of variations of the velocity and magnetic fields is conveniently measured by
the kinetic energy,

Exlt) = 1 f,, lul? 4V (20)
and the magnetic energy,
Eu(t) = § [, 1bI* AV, (21)

where V) and Ve denote the whole space and the spherical shell, respectively. Note that
the magnetic energy £,(t) is taken from the whole space, whereas the kinetic energy Ex(t) is
only from the inside of the shell.

The evolution equation for the kinetic energy is derived by integrating (16) over the spher-
ical shell as

A&
E_ QB_QL_QVa (22)

whereas that for the magnetic energy is derived by integrating (17) or (18) over the entire
space as

S
o T % Qe (23)
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Here,

Qr =PrRa Tx-udV (24)

Vanell

is the work done by the buoyancy force,
ng—/ -G xb)dV
Vinell

= f b-s-bdV (> 0) (25)

Vahell
is regarded as either minus the work done by the Lorentz force or the growth rate of magnetic
energy density by stretching of magnetic lines of force,

Q, =Pr / lw|2dV
Vi

shell

=2HL I8 l?av (26)

shell

is the viscous dissipation, and

Q.=Ro[ lifav (27)
Vehell
represents the resistive dissipation (the Joule heating). The positiveness of (25) is a result
of the present numerical simulation. Thus, @, may represent the energy transfer rate from
the velocity to magnetic fields. Notice that the magnetic field is being excited also in vacunm
outside the spherical shell but the supply and dissipation of the magnetic energy are confined
inside the shell. This implies that the magnetic energy fluxes either outward or inward through
the boundaries of the spherical shell. The diffusion term {e.g. RoV - (b x j) in (17) and
RoV - (E x b) in (18)) is responsible to it.

Energy equations (22) and (23} tell us the following scenario of the energy flux between the
velocity and magnetic fields in the statistically steady state. The kinetic energy is supplied
to the velocity field by the buoyancy force, a part of which is dissipated by viscosity and the
rest is transferred to the magnetic field through the Lorentz force. This magnetic energy is
dissipated by resistivity inside the shell. The magnetic field is also excited in vacuum outside
the shell, the energy of which is typically several percent of that in the shell. A detail of the
energy balance will be discussed below (see figure 3). By summing up (22) and (23), we obtain
the governing equation of the total energy as

C (EetE)=Q -0 - (28)

In figure 2, we plot the temporal evolutions of the kinetic and the magnetic energy (a) in a
semi-logarithmic scale and (b) in a linear scale. A solid and a broken line denotes the kinetic
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Figure 2: Temporal evolutions of the kinetic and the magnetic energy. (a) Semi-logarithmic
scale. {b) Linear scale. A solid and a broken line denotes the kinetic and the magnetic energy,

respectively.
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and the magnetic energy, respectively. Initially, after a short transient time (0 < ¢ < 1}, the
magnetic energy increases exponentially in time with growth rate 0.78. It exceeds the kinetic
energy at ¢ =~ 27.1, then stops increasing at ¢ = 28 and fluctuates around the mean value 4, 353
until ¢ ~ 38, which is about double the mean kinetic energy 2, 239. Those periods during which
the magnetic energy increases exponentially and fluctuates around some level are called the
‘linear period’ and the ‘first-equilibrium period’, respectively. The kinetic energy is hardiy
different, in the mean, between the two periods, but the fluctuations are much larger in the
earlier. A drastic change of the kinetic energy occurs at £ = 41 ~ 43, across which the magnetic
energy increases by factor 4.5, whereas the kinetic energy decreases by 43%. The period after
the change is called the ‘second-equilibrium period’. As seen in figure 2{b) the magnetic energy
exhibits a quasi-periodic saw-tooth fluctuations in the second-equilibrium period. This is a
manifestation of a creation-and-annihilation cycle of convection vortices and magnetic field
which will be discussed in §6. The mean magnetic energy inside of the inner sphere is about
0.5%, 1% and 5% of the total in the linear, first-equilibrium and second-equilibrium periods,
respectively. The corresponding values outside of the outer sphere are about 2%, 3% and 12%.

In order to see how the supplied energy by a temperature difference between the inner and
outer spheres is transferred to the magnetic energy, we compare, in figure 3, the time series of
each term in energy equations (22) and (23). Figure 3(a) shows the balance in the kinetic energy
equation in which a dashed, a solid, and a dotted line denotes contributions from the buoyancy
force, minus the Lorentz force, and the viscous force, respectively. Throughout the simulation
period the buoyancy force always gives positive contribution which counterbalances the sum
of those of the Lorentz and viscous forces. In the linear period (¢ < 26) the contributions from
the buoyancy and viscous forces compete almost perfectly and the difference is less than a few
percent at every instant of time. In the first- and second-equilibrium periods, on the other hand,
the contribution from the Lorentz force is substantial, which is about 21% and 50% of that from
the buoyancy force in the respective periods. The viscous dissipation is negative all the times,
the magnitude of which hardly changes throughont the linear and first-equilibrium periods but
is reduced by half in the second-equilibrium period, which coincides with the reduction of the
kinetic energy {see figure 2). The contribution from the Lorentz force increases exponentially
in time in the linear period, the growth rate of which is the same as that of the magnetic
field. It fluctuates around a constant level in each of the first- and second-equilibrium periods
and jump abruptly between the two periods. This abrupt change of the contribution from
the Lorentz force is an indication of difference in the dynamo mechanism between the first-
and second-equilibrium periods (see §§5.2 and 5.3 below). Another noticeable jump in Qp
between the linear and first-equilibrium periods, which synchronizes with the variation of Q,,
is interesting, but we have no clear-cut explanation of it.

Figure 3(b) for the magnetic field shows that the contribution from the stretching of mag-
netic lines of force (which is equal to that from the Lorentz force, see (25)) balances with the
resistive dissipation almost perfectly in the whole period. But there exists a small systematic
time-lag between them. To see it, we compare, in figure 4, the temporal evolutions of @, (solid
line) and @ (broken line) in an enlarged part of the first-equilibrium period. Their variations
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Figure 3: Contributions from the respective terms of the kinetic and magnetic energy equations.
{a) Kinetic energy. Qj, buoyancy (- - -); —Q,, minus Lorentz ( ); —Qy, minus viscous
CERERE ). {b) Magnetic energy. Q,, Lorentz ( ); —Qp, minus resistive (- - - - - ). A small
fluctuating quantity seen on the abscissa denote the sum of the energy fluxes across the outer
and inner boundaries.
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Figure 4: Phase lag between the stretching and resistive terms in the magnetic energy equation.
Temporal variations of @, and Qj are respectively plotted with a solid and a broken line during
30.5 < ¢t < 32.5, in the first-equilibrium period. The phase of variation of the former advances
the latter by 0.03 time unit.

are very close, but the former always leads the latter by 0.03 time unit. This time lag,
which is much smaller than any of the magnetic, viscous, and thermal diffusion times, should
be interpreted as the magnetic energy transfer from large-to-small scales through nonlinear
interactions. Incidentally, the very small fluctuations seen on the abscissa of figure 3(b) denotes
the sum of the energy fluxes across the inner and outer boundaries.

Another interesting point to be mentioned is that as seen in figure 3(a), the contributions
from the Lorentz and viscous forces are nearly equal in the second-equilibrium period. With
reference to figure 3(b) this implies the equi-partition of energy dissipation between the velocity
and magnetic fields.

Finally, a comment on the Colioris force term may be in order. Although it does not
contribute to the energy budget at all, its effects on the velocity field should be significant in
the present rapid rotating system. To confirm it, we calculated the root-mean-squares {(RMS)
of the respective terms on the right-hand side of Navier-Stokes equation (1) over the whole of
the second-equilibrium periods. The relative ratios among them are stable (fluctuations being
within 5% in the standard deviation) and their time averages are found to be

(Pressure) : (Buoyancy) : (Colioris) : (Lorentz) : (Viscous) =2.0:1.6:1:0.7:0.2, (29)

which shows that the contribution from the Colioris term is quite large, as expected.
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4.3 Magnetic Dipole Moment

One of the most important quantities in the problem of magnetic field intensification is the
magnetic dipole moment defined by

m{t) -—-[ s x j(z,t) dV
Vinell

= §/ b(z,t) dV (E 3 lim b(z,1) dV) \ {30}
2 Vau 2 R=oo Va

where Vi denotes a sphere of radius R. The second identity is derived under the condition that

the current density is confined in a finite domain as it is the case. Integral (30) is expressed

in terms of the dipole (I = 1) component of the magnetic field in the spherical harmonic

expansion. Let

b(r,8,6,1) =V x A(r,8,6,t)F + V x (V x B(r,8,6,t)7) (31)

be the toroidal and poloidal decomposition of the magnetic flux density in the spherical shell,
where A(r,8, ¢,t) and B(r,8, ¢,t) are the toroidal and poloidal defining scalars, 7 is the unit
radial vector, # is the co-latitude, and ¢ is the longitude relative to the z axis. If the poloidal
defining scalar is expanded in a series of the spherical harmonics as

Neg

!
B(r,0,6,8) = > > Bim(r,t)¥im(0, ¢), (32)

=0 m=—1

then the three components of the magnetic dipole moment are written in terms of only the
[ = 1 components as

mm(t) = 4\/§7f7”2 RCBH(T‘Q,t), (33)
my(t) = —4V37ry ImBy(rs, 1), (34)
m,(t) = 2v6rry Bio(re, 1), (35)

where Re and Im denote the real and imaginary parts, respectively.

The temporal evolution of the dipole moment is shown in figure 5. The magnitude is plotted
in a semi-logarithmic scale in (a), the z, y, and z components are respectively represented by
a solid, a dotted, and a dashed line in {b), and the angle between the dipole moment and the
equatorial plane in (¢). Here, the positive values imply that the dipole moment is pointed to
the north. As seen in (a), the magnitude starts to increase exponentially in time and continues
to grow throughout the first-equilibrium period until ¢+ = 40, then saturates around 800 in the
second-equilibrium period. Very violent changes both in the amplitude and the direction of the
dipole moment are observed in (a) and (c) around ¢ = 30 which is the end of the linear period
when the velocity and magnetic fields are about to adjust themselves to a new state. It is seen
in (b) that among the three components, only the z component of the dipole moment changes
in time substantially. It increases exponentially in time from the beginning until £ = 42 when
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Figure 5: Temporal evolution of the magnetic dipole moment. (a) The magnitude |m| in a
semi-logarithmic scale. It increases exponentially in time until { = 42, and then fluctuates
around 800. Large fluctuations are observed around ¢ = 30 which is the time when the linear
period passes into the first-equilibrium period. (b) The z, y, 2 components. A solid, a dotted,
and a dashed line refers to m,, m,, and m,, respectively. After ¢ = 30, the z component is
dominant so that |m| =~ |m,l. (¢) The angle between the dipole moment and the equatorial
plane. Positive values indicate the northward direction.
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Figure 5(c) See page 18 for caption.

the system moves from the first- to the second-equilibrium periods. After ¢ = 30, it becomes
dominant and indistinguishable from the magnitude itself. The equatorial (z and y) compo-
nents do not grow significantly so that the dipole moment is almost parallel to the rotation axis
in the second-equilibrium period.? The variation of the z component in the second-equilibrium
period is remarkably similar, apart from the sign, to that of the magnetic energy (cf. figure 2).
This suggests that most of strong magnetic fluxes are pointed to the south. Asseen in (c), the
angle of the dipole moment measured from the equatorial plane is positive (i.e. pointed north-
ward) in the linear period, which is accidental owing to the random initial condition. Later, in
the first-equilibrium period, the dipole moment reverses a few times (Kida, Araki & Kitauchi
1997). Finally, in the second-equilibrium period, the direction is almost nailed to the south
within 9% deviation. This southward orientation of the magnetic field should have occurred
also by chance. There is no indication of the change of sign of m,, or reversal of the magnetic
dipole polarity later in the second-equilibrium period. By comparing figures 2(a) and 5(a),
we see that the magnetic energy and the magnetic dipole moment develop similarly but there
is an interesting difference between the two. Both of them increase exponentially in time in
the linear period and saturate in the second-equilibrium period. However, their behaviours in
the first-equilibrium period are different from each other. The magnetic energy stays constant,
whereas the dipole moment still increases exponentially in time with big fluctuations. In figure
6, we compare the temporal evoiutions of the integration

over the equatorial plane of the square of b, and the square of the integration of b,. The
temporal evolutions of these two are quite similar to those of the magnetic energy and the
magnetic dipole moment, respectively (cf. figures 2(a) and 5{a)). This suggests that the
activity of the magnetic field on the equatorial plane is a good representative of that in the
whole space. As a matter of fact, except for the linear period, the activity of the magnetic

ZAlthough the mean values of b, and b, are much smaller than that of b, in magnitude, the RMS’s of the
former two are comparable with the latter.
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Figure 6: Temporal evolutions of two integral quantities of the magnetic field on the equatorial
plane. The integration over the equatorial plane of the square of b, and the square of the
integration of b, are plotted against time with broken and solid lines, respectively.

flux density, especially the z component, is maximal around the equatorial plane (see §5.3 and
figure 15). We also find that the fluctuations of b, are much larger than the mean value and
that the former saturates at some level whereas the latter is still increasing in time in the
first-equilibrium period. We speculate that the increasing arrangement (in anti-cyclones, see
§5.1) of the direction of the magnetic field leads to the exponential growth of the mean value.

5 Stretch-and-Intensification of Magnetic Lines of Force

We have seen in §4 that there are three distinct periods in which the magnetic field devel-
ops differently. They are the linear, first-equilibrium, and second-equilibrium periods. The
magnetic field is intensified in different ways in the respective periods, the physical character-
istics in which are summarized in table 1. We consider the dynamo mechanism in each period
separately in the following subsections.

5.1 Linear period

In the early stage of evolution the magnetic field is too weak to alter a thermal convection
through the Lorentz force. Then, the magnetic field is passively intensified by a given velocity
field. This period is therefore equivalent to the kinematic dynamo. Since the velocity field is
hardly different from the pure thermal convection, the characteristics of the resulting magnetic
field are almost the same throughout the linear period (1 < ¢ < 26); namely, the mechanism of
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Period Linear First-Equilibrium Second-Equilibrium
Time l<t«<26 28 <t <38 t>43
Kinetic Energy Stationary (= 2285) Stationary (= 2239) | Stationary (= 1273)

Magnetic Energy

Exponential Growth

Stationary (= 4353)

Stationary (= 19626)

Vortex Columns Alive Broken Broken

Number of ACs 9 9 4~6

Ang. Vel. of ACs -0.90 —0.80 —-0.8
Places of Intensification (a), (d) (a), (b}, {c}, (d) {b), {c), {d)

Table 1: Characteristics of the magnetic field in three periods of evolution. The magnetic
energy is summed up over the whole space, whereas the kinetic energy in the spherical shell.
AC implies the anti-cyclones. There are four particular places where the magnetic field is
strongly intensified, i,e. (a) between a cyclone and its western neighbouring anti-cyclone off
the equatorial plane, (b) inside anti-cyclones near the equatorial plane, {c) just outside of the
Ekman boundary layer on the outer sphere near an anti-cyclone, and (d) between a cyclone
and its western neighbouring anti-cyclone on the equatorial plane.

magnetic intensification may be understood by looking at the pure thermal convection velocity
field. The intensity of the magnetic field, such as the magnetic energy and the dipole moment,
increases exponentially in time. This continues until the Lorentz force becomes strong enough
to deform the velocity field.

Snapshots of the vorticity and magnetic fields in the middle of the linear period are shown
in figure 7. Iso-surfaces of |w,| with yellow for cyclones (w, > 0) and blue for anti-cyclones
(w; < 0) are quite similar to those in the pure thermal convection (see figure 1). The lines on the
equatorial plane represent the contours of w, with black for cyclones and white for anti-cyclones.
The threshold on the contours is somewhat smaller than that on the iso-surfaces. Regions
of high magnetic flux density are surrounded by red and pink iso-surfaces which indicate
b, > 0 and b, < 0, respectively. This is viewed from 30° north latitude. Regions of strong
magnetic field are observed in figure 7(a) between cyclones and their western neighbouring anti-
cyclones in the middle latitude (between 29° and 61°) over almost all the radial coordinate
(0.06d < r — r; < 0.94d). These are the places where the flow is accelerated away from the
rotation axis (see figure 8 below). It is consistent with the results of Kitauchi & Kida (1998)
that the magnetic field is intensified where the flow is pointed away from the rotation axis
between cyclones and their western neighbouring anti-cyclones. In Kageyama & Sato (1997),
on the contrary, the magnetic field intensification is observed at the places where the flow is
pointed inward to the rotation axis. This discrepancy may be attributed to a subtle difference
in the structure of the thermal convections owing to different values of control parameters.
The magnetic field is anti-symmetric with respect to the equatorial plane. However, it seems
of general characteristics in the present system that the magnetic field is intensified not equally
between all the pairs of cyclones and their western neighbouring anti-cyclones but selectively

between sgeveral of them (Kitauchi & Kida 1908), which is alsc different from the results in
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Figure 7: Snapshots of the vorticity and magnetic fields in the linear period. (a) Oblique views
from 30° north latitude. The iso-surfaces of the magnetic flux density |b| are drawn with red for
b, > 0 and pink for b, < 0, inside of which it takes larger values in magnitude. Iso-surfaces of
|w,| are drawn with yellow for cyclones (w, > 0) and blue for anti-cyclones (w, < 0). Contours
of w, are drawn on the equatorial plane at a somewhat lower level in magnitude. The black
lines are for cyclones and the white for anti-cyclones. (b) A cross-section of the fields on the
equatorial plane viewed from the north. The magnetic flux density is shown with colour map
in which red is for positive flux and blue is for negative. The magnetic field is intensified
between cyclones and their western neighbouring anti-cyclones in the middle latitude and
inside anti-cyclones on the equatorial plane. ¢t = 15.

Kageyama & Sato (1997). By comparing the iso-surfaces of the magnetic flux density at
successive times (not shown here), we find that the pattern of strong magnetic regions prograde
relative to the convection vortices. In the meantime, as seen in figure 7(b), the magnetic field
is being intensified inside of anti-cyclones on the equatorial plane. This activity is much weaker
than that in the middle latitude at this time, but it becomes more important later in the first-
and second-equilibrium periods (see §§5.2 and 5.3).

The regions of strong magnetic field shown in figure 7 are understood by comparing it with
the velocity field. In figure 8, we plot the velocity and magnetic fields at time ¢ = 15 on a
sphere of radius r = r; + 0.55d where the magnetic field is strongest. They are viewed from
30° north latitude. Red-white lines with a black dot represent the streamlines projected on
the sphere in a frame moving with the convection vortices. The flow is toward the dot with
accelerating on red and decelerating on white. The radial component u, of velocity is generally
smaller than the azimuthal components, which is shown by colour map with blue for positive
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Figure 8: Stretching of magnetic lines of force between cyclones and anti-cyclones in the linear
period. The streamlines projected on a surface of radius r = r; + 0.55d are drawn with red-
white lines with a black dot. The flow is pointed toward the dot. The acceleration is positive
on the red part and negative on the white. The velocity field is seen in a frame moving with
the convection vortices. The radial component of velocity is much smaller than the azimuthal
components. The brown iso-surfaces represent regions of high magnetic flux density. The
magnetic field is intensified in accelerating regions. An oblique view from 30° #orth latitude
at £ = 1o.

and yellow for negative. The strong magnetic field is observed at accelerating regions where
the magnetic lines of force are being stretched.

There is another intensified region, classified as (d) in table 1, between cyclones and their
western neighbouring anti-cyclones on the inner-sphere side at low latitude. It happens to be
invisible in figure 7 because this region is rather narrow and the magnetic field there is a bit
weaker than that in (a). However, we have confirmed its existence at other times (cf. figure
16 in §5.4) and identified it with the one discovered before by Kitauchi & Kida (1998).

The magnetic field which has been intensified by the above mechanism deforms the velocity
field through the Lorentz force to stop the growth of the magnetic field itself, and we enter the
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first-equilibrium period during which the magnetic energy is statistically stationary.

5.2 First-equilibrium peried

Two prominent characteristics in the development of the velocity and magnetic fields are
observed in the first-equilibrium period (28 < t < 38). First, both the kinetic and magnetic
energy are statistically stationary. The level of the mean kinetic energy is the same as that
in the linear period, whereas the magnetic energy is increased to be twice as large as the
kinetic. Second, the magnitude of the magnetic dipole moment is still increasing exponentially
in time (see figure 5(a)). We describe in this section the structure of the velocity and magnetic
fields in detail. In order to capture the temporal behaviour of the velocity and magnetic fields
we show, in figure 9, a typical time sequence of the fields in this period. The green circular
annulus denotes the equatorial plane. The cross-sections of the fields on the equatorial plane
seen from the north are shown in figure 9(a). The time elapses from (a-i) to (a-xii) by 0.3
time unit. The z component of vorticity is depicted with contour lines of black for cyclones
(w; > 0) and white for anti-cyclones (w, < 0). The magnitude is common to the both lines at
all times. The individual anti-cyclones at different times are identified by attached numbers.
These figures are plotted in a frame moving with the convection vortices which retrograde with
angular velocity of £2, (= —0.8) relative to the spherical shell so that each vortex is located
approximately at the same position. The colour map represents the z component of magnetic
flux density, the direction of which is pointed to the north (b, > 0) for red or to the south
(b; < 0) for blue. Bird’s eye views of the fields in the whole spherical shell seen from 30° north
latitude are pictured in figure 9(b), in which red surfaces represent the magnitude of magnetic
flux density and gray semi-transparent ones the vorticity magnitude.

It is seen in figure 9(a) that all the nine cyclones and anti-cyclones, which were born
in the linear period, are robust and not destroyed though their shapes are much deformed.
Actually they survive and the individual vortices can be traced unambiguously throughout
the first-equilibrium period. The most remarkable observation on the equatorial plane is that
(1] the strong magnetic flux is confined only in the anti-cyclones, [2] they do not occupy all
the anti-cyclones but only in several of them, [3] the intensity of the magnetic flux density
in each anti-cyclone varies in time; some changes the sign and others do not before and after
a vanishing intensity, and [4] the shape of vorticity contours is different depending on the
magnitude of magnetic field in them; the stronger is the magnetic field, the rounder the shape.

Point [3] may need an explanation. Slightly yellow anti-cyclone #4 in (a-i) changes into
blue. It becomes brightest in (a-iv), then fades away in (a-vi). Thereafter, it gets yellow and
red, then blue again in (a-x) and goes on. Thus, it changes the sign alternately. The same
behaviour is clearly observed in five other anti-cyclones #1, #3, #5, #7, and #8. The way
of change of sign in anti-cyclones #2 and #6 is similar though the intensity is rather weak.
On the other hand, vortex #9 in (a-i) gets weaker and disappears around (a-iv)~({a-v), but
reappears as the same colour, gets stronger in (a-vii), then weaker again and disappears around
(a-xi)~(a-xii).
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Figure 9(a): See page 27 for caption.
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Figure 9(b). See page 27 for caption.
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Indeed the behaviour on the equatorial plane is simpler in appearance, but the dynamics
of the system cannot be closed on this plane. The spatial distribution of iso-surfaces of |bl
in figure 9(b) shows that the magnetic flux is more intense off the equatorial plane. Their
temporal variations are rather complicated, but a careful inspection enables us to extract
dynamically important blobs of intense magnetic field and to classify them into four groups,
ie.

(a) cigar-shaped ones generated at middle latitude between a cyclone and its western neigh-
bouring anti-cyclone,

(b) cigar-shaped ones penetrating orthogonally the equatorial plane at the center of anti-
cyclones,

(c) banana-shaped ones associated with (b} which are located between anti-cyclones and the
outer boundary,

(d) horn-shaped ones generated at low latitude on the inner-sphere side between a cyclone
and its western neighbouring anti-cyclone.

The first type {a) has already appeared in the linear period. The appearance of the fourth
type {a} is very rare (cf. light-blue dots in figure 16 of §5.4).

One of the most interesting observations discovered in the bird’s-eye view is that the types
(b) and (c) always appear together with. In order to see the way of their appearance more
closely we trace the field in detail in figure 10 which is an enlargement of a period around
figure 9(b-vii). First, look at a yellow anti-cyclone (the one numbered 5 in figure 9(a)) at
the bottom left. There is nothing with it in (i). A banana-type blob begins to appear in (ii)
and develops subsequently. Then, in (iv), a vertical cigar-type blob appears in an associated
anti-cyclone. It develops and gets strongest in (vi), then weakens and disappears in (ix). The
same process occurs with a blue anti-cyclone (#3 in figure 9(a)) at the right and with a yellow
anti-cyclone (#9 in figure 9(a)) at the top. A banana-type blob exists already in each of these
anti-cyclones in (i). Then, in the following panels, vertical cigar-type blobs appear in the
respective anti-cyclones, which develop strongest in (v) and then fade away approximately at
the same time.

Figure 9: Temporal evolutions of the magnetic and velocity fields in the first-equilibrium
period. (a) Equatorial plane seen from the north. Contour lines of w, are drawn with black for
positive vorticity (cyclones) and white for negative (anti-cyclones). The magnitude of vorticity
is the same on all lines at all times. The numbers identify the individual anti-cyclones at
different times. The colour map on the plane represents b,. Red is for positive flux, blue is for
negative, and green is for zero. (b) Bird’s-eye views of the magnetic field seen from 30° north
latitude. The red surfaces represent |b| and the gray semi-transparent ones |wl. The levels of
these iso-surfaces are common at all times. (i) ¢t = 28.0, (ii) 28.3, (iii) 28.6, (iv) 28.9, (v) 29.2,
(vi) 29.5, (vii) 29.8, (viii) 30.1, (ix) 30.4, (x) 30.7, (xi) 31.0 (xii) 31.3.
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Figure 10: Simultaneous appearance of cigar-shaped and banana-shaped blobs of high-
magnetic flux density. The gray iso-surfaces represent |b|. The fields on the equatorial plane
is plotted in the same manner as figure 9(a). (i) t = 29.4, (ii) 29.5, (iii) 29.6, (iv) 29.7, (v)
29.8, (vi) 29.9, (vii) 30.0, (viii) 30.1, (ix) 30.2.

The directions of magnetic fluxes of these blobs are perfectly correlated to each other. In
order to see the connection between the two blobs directly we show in figure 11 the magnetic
lines of force which go through inside an anti-cyclone at ¢ = 29.8. It is seen that these lines
actually run along the banana-shaped blob. By the way, the symmetry of the magnetic field
with respect to the equatorial plane is still well maintained.

The formation mechanism of the banana-shaped blobs of the strong magnetic field may be
seen in figure 12, where the magnetic and velocity fields on a surface of radius r = r; + 0.92d
just outside of the Ekman boundary layer are depicted. Streamlines projected on the sphere
are drawn with red-white lines with black circles. The flow is directed toward the circles while
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Figure 11: Connection between a cigar-shaped strong magnetic blob in an anti-cyclone and
a banana-shaped one outside. Magnetic flux lines which go through a circle of radius 0.1d
located at the center of an anti-cyclone (which is #5 in figure 9(a)) are drawn with purple
lines. The coloured surfaces represent the iso-surfaces of |b| with red for b, > 0 and pink for
by < 0. 1=208.

accelerated on red and decelerated on white. The colour map denotes the radial component of
velocity with blue for positive and yellow for negative. The white cross indicates the stagnation
point, from which the convection flow extends with positive acceleration both toward the south-
east and the north-west and the intensified magnetic field shown with brown iso-surfaces is
created through stretching of magnetic lines of force.

It is interesting to compare the shape of the magnetic lines of force shown in figure 11
with the ones discussed by Olsen, Christensen & Glatzmaier (1999) as the mutual generation
mechanism of the toroidal and poloidal fields (see figures 5 and 8 in their paper). They show
a similar ‘twist-turn’ loop of the magnetic lines of force which penetrates orthogonally the
equatorial plane and are twisted at a higher latitude toward the outer sphere, to the east, and
to lower latitudes. Indeed the shape of the field lines are quite similar, but their explanation of
the generation mechanism is rather different from ours. They explain it, similarly to Kageyama
& Sato (1997), by the inward fluid motion between a pair of convective vortices (a cyclone
being in the west and an anti-cyclone in the east) and the axial flows which are directed away
from the equatorial plane in the cyclone and toward the equatorial plane in the anti-cyclone.
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Figure 12: Stretch-and-intensification of magnetic lines of force near the outer sphere. Stream-
lines projected on a sphere of radius r = r; + 0.92d are drawn with red-white lines with black
dots, where r; is the inner-sphere radius and d the shell thickness. The flow, which is pointed
toward the dots, is accelerating on red and decelerating on white. The colour map represents
the radial component of velocity with blue for positive and yellow for negative. The mag-
netic flux density is stronger in the semi-transparent brown iso-surfaces. A stagnation point
of the projected streamlines is indicated with white x. The magnetic field is intensified on
accelerating streamlines. £ = 29.8

As a result, the magnetic field is intensified outside the convection vortices. In contrast, we
have observed that it is intensified inside of anti-cyclones and on their outer-boundary side by
the concentrate-and-stretch mechanism.

5.3 Second-equilibrium period

The interaction between the velocity and magnetic fields is much complicated in the second-
equilibrium period (¢ > 43). The magnetic energy is 15 times as large as the kinetic energy so
that the velocity field is much distorted from the pure thermal convection state. A developed
magnetic field destroys the quasi-two-dimensional vortex columns along the rotation axis. On
the other hand, the imposed temperature difference between the inner and outer spheres always
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works to generate new comvection vortices. As a result, some numbers of vortices remain in
the field all the time. The dipole component of the magnetic flux density is dominant in this
period, and the magnetic field exhibits a typical dipole structure in vacuum outside of the
spherical shell (See figure 2 in Ishihara & Kida 2000). The axis of the dipole field is aligned
with the rotation axis, so that this is called the axial magnetic dipole field.

As seen in figure 2, the magnetic energy fluctuates in time with quite large amplitude in
the second-equilibrium period. It exhibits a sawtooth oscillation with period of about 15 d2/v
(which is comparable with the magnetic diffusion time d?/A = 10 d?/v). In order to see typical
temporal evolutions of the velocity and magnetic fields we pick up a single time period between
the first and second big minima (54.7 < t < 66.3). Figures 13 and 14 show their evolutions in
the growing phase (t = 54.2 ~ 64.1) and the decaying phase {t = 65.9 ~ 70.7), respectively.
The representation is the same as in figure 9. Only a single level of |w,| is plotted on the
equatorial plane so that a double contour of an anti-cyclone indicates the existence of a hollow
at the center. The colour represents b, with blue for negative, green for zero, and yellow for
positive. Note that it is negative in all the anti-cyclones.

Several interesting characteristic features are observed in these figures. First, let us look
at the vorticity field in each snapshot. {1] The white contours are much wider than the black,
meaning that anti-cyclones are much stronger than cyclones (see figures 13(a) and 14(a)). This
is a contrast to the linear and first-equilibrium periods in which the two kinds of vortices are
more or less the same in strength. {2] The number of anti-cyclones is not invariant in time but
varies between 4 and 6. They tend to arrange themselves with equi-distance apart from each
other around the equatorial annulus (for example, see figure 14(a-iv) for the four-vortex state,
figures 13(a-i), 13(a-iii) and 14(a-viii) for the five-vortex state, and figures 13(a-xii) and 14(a-ii)
for the six-vortex state. Recall that there were nine pairs of cyclones and anti-cyclones both
in the linear and first-equilibrium periods. This implies that a vortex break-down should have
occurred just before entering the second-equilibrium period. [3] There are quite a few doubly-
contoured anti-cyclones most of the time. These are hollow vortices, namely, vorticity is lower
at the center. (N.B. All the contours have the same level of vorticity.) [4] Anti-cyclones are
localized in the vicinity of the equatorial plane as opposed to the columns elongated along the
rotation axis observed in the linear and first-equilibrium periods (see figures 13(b) and 14(b)).
It is clearly seen in the bird’s-eye views that the regions of intensified magnetic field are
also different from the preceding periods. Cigar-shaped regions (classified as (b)) penetrating
vertically the equatorial plane at the centers of the anti-cyclones are prominent. They are much
stronger inside of hollow vortices (see, for example, #1 in figures 13(b-x), 13(b-xii) and 14{b-i),
#2 in 13(b-ii) and 13(b-viii), #3 in 13(b-ix), #5 in 13(b-v), 13(b-xii) and 14(b-i)-(b-iii), #6 in
13(b-vii), #7 in 13(b-10), 13(b-xii), and 14(b-ix)). Banana-shaped regions (classified as (c))
along the outer sphere appear accompanied with the above cigars.

On the other hand, other cigar-shaped regions (classified as {a)) between cyclones and their
western-neighbouring anti-cyclones, which were observed in the linear and first-equilibrium
periods, have disappeared. Horn-shaped regions (classified as {d)) are now seen at the cast

side of some anti-cyclones on the equatorial plane in 13(b-iii}, (b-ix)-(b-xi) and 14(b-iii), (b-v),
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Figure 13(a): See page 33 for caption.
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Figure 13: Temporal evolutions of the magnetic and vorticity fields in a growing phase of
the second-equilibrium period. (a) The equatorial plane. (b) Oblique views from 30° north
latitude. The red iso-surfaces represent |b| and the gray semi-transparent ones |w|. (i) t = 54.2,
(ii) 55.1, (iii) 56.0, (iv) 56.9, (v) 57.8, (vi) 58.7, (vii) 59.6, (viii) 60.5, (ix) 61.4, (x) 62.3, (xi)
63.2, (xii) 64.1.

33




Figure 14: Temporal evolution of the magnetic and vorticity fields in a decaying phase of the
second-equilibrium period. (a) The equatorial plane. (b) Iso-surface of vorticity magnitude A
view from 30° north latitude. (i) ¢ = 65.9, (ii) 66.5, (iii) 67.1, (iv) 67.7, (v) 68.3, (vi) 68.9,
(vii) 69.5, (viii) 70.1, (ix) 70.7.

(b-vi), (b-viii), (b-ix).

Next, a comparison of successive snapshots enables us to educe some fundamental dynam-
ical processes which are taking place in the competition between the velocity and magnetic
fields. Remember, as before, these figures are plotted in a frame rotating with mean angular
velocity —0.8 of the vorticity pattern so that we can identify the individual vortices. (Note,
however, that the position of vortices moves to and fro considerably because the flow motion is
much more violent and the instantaneous angular velocity fluctuates quite a large around the
mean value.) By tracing the individual anti-cyclones carefully, we find that they have a com-
mon life cycle. As stated before, the number of anti-cyclones changes in time between 4 and
6, which implies that they have finite life-times. Just after an anti-cyclone has disappeared,
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Figure 14(b): See page 34 for caption.

there remain weak fluctuations of vorticity at the place where it was. After a while, a new
anti-cyclone is born somewhere around the above place. It develops with increasing vorticity.
At the same time magnetic flux density is being intensified inside of this anti-cyclone. In the
meanwhile the vorticity contours (of the same level) get doubled, meaning the appearance
of a vorticity hollow at the center. Thereafter such a double contour shows a little complex
behaviour. It weakens to a single contour, returns to a double once again, then weakens to a
single, and finally disappears completely.

Let us trace some of typical vortices which exhibit (a part of) the above life cycle of
anti-cylones. Anti-cyclone #6 is born in 13(a-ii) between those of #3 and #4. It is gradually
intensified to grow up to a hollow vortex in 13(a-vi). Then, it keeps its shape for some time and
disappears between 13(a-xii) and 14(a-i). Similar behaviours are observed for other vortices
except for #4 and #8. This life cycle of anti-cyclones will be discussed in more detail in §6.
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5.4 Spatiotemporal overview of most intensified locations

As seen in the preceding three subsections, there are three distinct periods in the development
of the magnetic field, i.e. the linear, and first-equilibrium and second-equilibrium periods.
The mechanism and the place of magnetic field intensification are different in the respective
periods. In this section we take an overview of the most intensified locations of the magnetic
field over the whole volume of the spherical shell and over all the simulation period.

Since the full three-dimensional structure of the magnetic field is too complicated to under-
stand what is actually going on, it is useful to focus and extract the most prominent character-
istics of it. Here we take up the spatiotemporal distributions of locations of the maximums of
|b;| and |b|, the former of which plays a key role in the interaction with the convection velocity
field.

In figures 15 and 16, we plot (a) the latitudinal and (b) the radial positions of the maximums
of |b,| and |b| over the whole simulation period, respectively. The maximums are searched in
each hemisphere separately since the field is nearly symmetric with respect to the equatorial
plane. Different colours of dots distinguish the areas of locations of the maximums. They are
divided into three in the temporal and latitudinal (¢,6) plane, namely, the regions of higher
latitude than 20° both in the northern and southern hemispheres at earlier times ¢ < 40 and
the rest. The former two are distinguished with red and green points, respectively. The rest is
divided further into three by the radial coordinate, i.e. the inner-sphere side (r—r, < 0.3d, light
blue), the middle region (0.3d < 7 —r; < 0.7d, yellow) and the outer-sphere side (r —r; > 0.74,
dark blue). 3

It is seen in figure 15(a) that the maximums are localized at the middle latitude (37° + 6°,
where + denotes the standard deviation) from the beginning through the end of the first-
equilibrium period. The maximum distributes symmetrically, in the statistical sense, in the
northern and southern hemispheres. These are the part (a) of the strong magnetic field inten-
sified between cyclones and their western neighbouring anti-cyclones (see table 1 and figure
7). Their radial position is scattered over the outer half (0.26d < r —r; < 0.94d) of the spher-
ical shell (figure 15(b)). Around t = 28, the beginning of the first-equilibrium period, new
maximums, shown with yellow dots, appear around the middle radial region on the equatorial
plane. They are localized in & narrow annulus at 0.26d < r — r; < 0.40d throughout the
first-equilibrium period (28 < ¢ < 38). This is nothing but the central region of anti-cyclones
at which the magnetic field is intensified through stretching of magnetic lines of force perpen-
dicularly to the equatorial plane, which is classified as (b) in Table 1. The maximums of the
part {a) are still observed at the same place. Coexistence of (a} and (b} are the characteristics
of the first-equilibrium period (see below for the third one (c})).

Later, in the second-equilibrium period (¢ > 43) these maximum positions of (b} spread out
more in both the latitudinal and radial directions, which is the manifestation of more violent
activity of the magnetic field. The red and green dots (maximums classified as (a)) disappear

3There are a few exceptional points which are categorized wrongly by this formal criterion. For example,
the lowest red on at the initial time is located just below 20° latitude (see figure 15(a)). These points are
classified appropriately by hand.
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Figure 15: Location of the maximum of |b,|. The maximum of |b,| is searched in each hemi-
sphere separately. The location of the maximum is plotted with dots on (a) the latitudinal
and (b) radial coordinates versus time plane. Colours distinguish the areas of locations of
the maximums: Red and green refer to higher latitude than 20° in the northern and southern
hemispheres, respectively, at earlier times (¢t < 40), whereas dark blue, yellow, and light blue
to the outer-sphere side (r — r; > 0.7d), the middle radial region (0.3d < r — r; < 0.7d), and
the inner-sphere side (r — r; < 0.3d), respectively, in the whole time period except for the red

and green areas.
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Figure 16: Same as figure 15 for |b|.

in this period. Instead, another group of maximums (shown by dark blue) appear near the
outer boundary (r — r; > 0.78d) and at low latitude (30° + 3°), which corresponds to the
banana-shaped blobs (classified as {c) in Table 1) of strong magnetic field intensified along
accelerating streamlines through the stagnation point just outside of the Ekman boundary
layer along the outer sphere. It is interesting to note that these dark blue dots appear more in
the periods of lower magnetic energy (50 < ¢ < 60 and 70 < ¢ < 80), while they are very rare
when the activity of the magnetic field is higher (40 <t < 50 and 60 < t < 70) (see figure 2).

Although |b,| is the strongest component of the magnetic field in the present system, the
other components are not negligible but play substantial roles in the dynamics. In figure 16,
we plot the location of the maximum of |b| in the same manner as figure 15. These two figures
show both similarity and difference. The red and green dots (classified as (a)) in the linear
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and first-equilibrium periods are commonly observed at similar places in the both figures. Also
common are the groups of points appearing after around ¢t = 38.4 which are plotted with yellow
(classified as (b)) and dark blue dots (classified as (c)). Since the component not parallel to
the rotation axis of the magnetic flux density in {c) is substantial, more dark blue dots are
observed in figure 16. In contrast, light-blue dots are completely new in figure 16, which
could not have been found without this plot. We classify this group as (d). These points are
located near the inner core on the equatorial plane in which the component perpendicular to
the rotation axis of the magnetic flux density is dominant. This is located between cyclones
and their western neighbouring anti-cyclones (see the equatorial plane on the inner-sphere side
in figures 13(b-iii), (b-ix)-(b-xi) and 14(b-iii), (b-v), (b-vi), (b-viii), (b-ix)). This is the same
as that observed before in Kitauchi & Kida (1998) in the case of weak magnetic field, which
is also generated by a concentrate-and-stretch of magnetic lines of force.

6 Competition between magnetic field and convection
vortices

As seen in §5.3, there is an interesting dynamical competition between anti-cyclonic vortex
blobs and the magnetic field which repeat cyclically in time. A single cycle is composed of
three elementary processes, which are (i) the birth of convection vortices, (ii) the growth of
anti-cyclones together with the intensification of magnetic field therein, and (iii) the break-
down of anti-cyclones and the diminution of magnetic field. In the following we consider the
dynamical mechanism in each of these processes separately.

6.1 Birth of Convection Vortices

First of all, we recall that there is a steady driving force by a temperature difference between
the inner and outer spheres against the gravity force pointed to the system center. Since the
cyclic process is repeated, it does not matter to begin with any step of the cycle. We start
considering the birth of an anti-cyclone. Figure 17 is a typical time-series which show the
birth of an anti-cyclone. Here, the velocity and magnetic fields are plotted on the equatorial
plane. Time elapses from (a} to (d), which is a subdivision of the period between figures
13(vi) and (vii). Red lines with black dots represent streamlines, along which the fluid flows
toward the dot. Vorticity distribution is depicted by contour lines with black for cyclones and
white for anti-cyclones. Temperature distribution is represented by colour map with red for
hotter areas and blue for cooler. There are five strong anti-cyclones in (a). All of them are
wrapping high-temperature fluid blobs on their east side. Cyclones of much weaker intensity
are accompanied with most of the anti-cyclones. The five anti-cyclones are more or less equally
separated with each other. Notice, however, that the distance between anti-cyclones #5 and
#6 is a bit longer than the others, and increases as time progresses from (b) to (d). In the
meanwhilie, high-temperature fiuid biobs extend along the hot inner boundary, and at the same
time a cyclone adjacent to anti-cyclone #6 grows. A new anti-cyclone #7 is born and grows
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Figure 17: Birth of an anti-cyclone. Streamlines are represented on the equatorial annular
plane by brown lines with black dots to which the flow is pointed. Vorticity contours are
drawn with black for w, > 0 and white for w, < 0. Only a single value of the vorticity
magnitude |w,| is chosen for the contours. Therefore, a double contour indicates the existence
of a hollow at the center. The areas surrounded by contours are larger for anti-cyclones than for
cyclones, implying that the former is stronger in intensity than the latter. Colour map shows
the temperature distribution with red for hot areas and blue for cold. (a) t = 58.7, (b) 59.1,
(c) 59.5, and (d) 59.6. Five cyclonic and anti-cyclonic swirling motions arrange alternatively
over the annulus in (a). High-temperature blobs are pulled out from the inner boundary to
the east side of each anti-cyclone. As time goes on, anti-cyclones #5 and #6 move away from
each other, and a new high-temperature blob emanates in the middle, which creates a new
anti-cyclone on the west side.
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in (c) and (d). This is nothing but the Rayleigh-Bénard instability mechanism of thermal
convection. Soon later, this new anti-cyclone grows to a strong one, whereas the neighbouring
cyclone weakens (see figures 13(a-ix)-(a-xii)).

The same birth process of a new anti-cyclone is often observed. See, for example, the one
numbered 6 in figure 13(a-ii), #8 in figure 14(a-i), #9 in figure 14(a-ii), and #10 in figure
14(a-iii). The one numbered 5 in figure 13(a-x) seems to have been generated in the same way
as the above. Since, however, it was born at the place where a strong anti-cyclone was broken
down (see #5 in figure 13(a-viii)), we assign the same number 5 to it.

6.2 Growth of anti-cyclones and intensification of magnetic field

It is observed in the second-equilibrium period that the anti-cyclones are much stronger in
intensity than the cyclones. The primary cause of this inequality in intensity may be attributed
to the Colioris force, which is pointed to (or away from) the center of anti-cyclones (or cyclones),
and therefore the pressure tends to be higher (or lower) inside anti-cyclones (or cyclones). Since

Figure 18: Helical streamlines around a cyclone and anti-cyclone. Streamlines (in the frame
rotating with vortices) are drawn in the central regions of an anti-cyclone (which is #7 in
figure 13(a-viii) viewed from the right) and its eastern neighbouring cyclone. Colour denotes
the direction of velocity: Red for northward flows and pink for southward. There are helical
motions both in a cyclone and in an anti-cyclone. The flow is pointed toward (or away from)
the equatorial plane in the former (or the latter). The sense of rotation of the helical motion
is like as a left-handed screw in the northern hemisphere both in the cyclone and anti-cyclone.
Because of stretching (or shrinking) motions perpendicular to the equatorial plane in the anti-
cyclone (or cyclone) the vorticity is intensified (or weakened) accordingly in the respective
cases. Viewed from 20° north latitude at ¢t = 60.5.
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Figure 19: Intensification of magnetic field by stretching. Magnetic lines of force which pass
through an anti-cyclone (#7 in figure 13(a-ix) viewed from the right) are drawn with purple
lines, the magnetic flux of which is pointed to the south. Helical lines surrounding the magnetic
lines of force represent streamlines. The red and pink indicate the northward and southward
flows, respectively. The flow approaches spirally the center of the anti-cyclone on the equatorial
plane, changes the direction by a right angle, and separates helically away from the plane both
in the northern and southern hemispheres. Advected by this flow, the magnetic lines of force
are stretched to intensify the magnetic field. Viewed from 10° north-latitude at ¢ = 61.4.

the flow in the second-equilibrium period is rather unstable and genuinely three-dimensional
(unlike the linear and first-equilibrium periods), the above dynamical process is taking place
mostly near the equatorial plane. Thus, the high-pressure blobs inside anti-cyclones flow to
higher latitudes (i.e. away from the equatorial plane), and vice versa inside cyclones. This
mechanism of inducing axial flow inside the convection vortices is different from that due to
the Ekman pumping on the outer boundary which is applied to a quasi-two dimensional flow
along the rotation axis of the spherical shell in the linear and first-equilibrium periods.

In order to see what is happening in the two kinds of oppositely rotating convection vortices,
we plot, in figure 18, typical streamlines in an anti-cyclone (which is #7 in figure 13(viii) ) and
in its eastern neighbouring cyclone. Note that we are viewing figure 13(viii) from the right. Red
and pink colours of streamlines denote northward and southward flows, respectively. There are
helical motions of the same sense of helicity both in the anti-cyclone and cyclone. The flow is
pointed to the equatorial plane in the cyclone, whereas it is away from in the anti-cyclone. As a
result, the vorticity lines inside the cyclone (or anti-cyclone) are being shrinked (or stretched)
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to weaken (or intensify) the strength of vorticity. This self-growing process is taking place in
all the anti-cyclones, which is also accompanied with the intensification of magnetic field as
described below.

Anti-cyclones draw fluid elements spirally into themselves in the equatorial plane and blow
them up along their rotating axes helically. Advected by this flow, the magnetic lines of
force are gathered at the center of anti-cyclones on the equatorial plane and stretched along
their rotation axes. In figure 19, we plot streamlines around an anti-cyclone (which is #7
in figure 13(a-ix))} with red-and-pink lines together with magnetic field lines (purple lines)
which pass through the central region of the anti-cyclone. It is seen that the magnetic flux
is transported toward the center along the equatorial plane, which is then stretched in the
direction perpendicular to the equatorial plane. This concentrate-and-stretch of magnetic field
lines is observed in every anti-cyclone and should be the main mechanism of the magnetic field
intensification (Kidauchi & Kida 1998).

6.3 Break-down of anti-cyclones and diminution of magnetic field

As discussed in the preceding section the magnetic field is intensified by stretching of magnetic
field lines of force inside anti-cyclones. But it can not continue forever. The intensified magnetic
field concentrated in a tube region induces electric current around it by the Ampére law which
couples with the surrounding magnetic field to generate the Lorentz force in the outward
radial direction. As a result, the flow toward the center of anti-cyclones is weakened and even
reversed the direction to lead to breakdown of the anti-cyclones, and the magnetic field faints
away because it loses the support.

The situation that anti-cyclones having strong magnetic field in them are suffering from
the Lorentz force directed to the outward radial directions is shown in figure 20, which is a
snapshot at ¢ = 62.3. Here, the lines of Lorentz force are drawn on the equatorial plane by
red lines with a dot to which the Lorentz force is pointed. Convection vortices are shown
by contours of w, with black for cyclones and white for anti-cyclones. Only a single level of
|w;| are drawn here so that a double contour implies the existence of a hollow at the center.
The colour map represents the distribution of the z component of magnetic field with red for
b. > 0 and blue for b, < 0. At this time all the anti-cyclones happen to have negative b,,
whereas positive one is hardly seen. There are four double-contour anti-cyclones having strong
magnetic field in them. The Lorentz force is very strong inside these anti-cyclones and pointed
to the outward radial directions. We can also see that the Lorentz force is pointed to the
inward in cyclones represented by black lines. Similar behaviours are observed on other planes
z = const. parallel to the equatorial plane at least where |z] < 1.

At the place where an anti-cyclone has broken down and the magnetic field has disappeared
only weak random fluctuations of vorticity and magnetic flux are left. Thereafter, sooner or
later, a new anti-cyclone is created by the Rayleigh-Bénard instability (see §6.1), and the
dynamical process will be repeated.

This stage of the birth of a new convection vortex may have a key ingredient with relation
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Figure 20: Lines of Lorentz force. Red lines with a white dot represent the lines of Lorentz
force directed to the dot. The z component of vorticity is shown by contours with black for
cyclones and white for anti-cyclones. The magnitude of all the contours is same so that a
double contour of an anti-cyclone indicate a hollow at the center. Colour map represents the
z component of magnetic field with red (hardly seen) for b, > 0 and blue for b, < 0. This
equatorial plane is viewed from the north at ¢ = 62.3.

to the magnetic field reversal. This is because the direction of the grown magnetic field may
be determined by an accidental sign of a random weak magnetic field. Since the remnant of
previous magnetic field has some influence to determine the next sign, some violent event of
substantial strength may be necessary to change the sign. This scenario is not observed in the
present numerical simulation, but it is possible to occur in a longer run.

7 Concluding Remarks

The convection dynamo in a rotating spherical shell has been investigated numerically and
visually with the aim of finding a mechanism of magnetic field intensification. An electrically
conducting Boussinesq fluid is confined in a spherical shell which rotates with constant an-
gular velocity. The temperature on the inner and outer spherical boundaries are fixed to be
uniform and constant at all times. The inner sphere is hotter than the outer, which drives a
thermal convection against a gravity force pointed to the system center. The non-slip bound-
ary condition is imposed for the velocity. The magnetic field is connected smoothly on the
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boundaries with potential fields in vacuum outside the spherical shell. The initial condition
of the MHD simulation is given by a random weak magnetic seed on a statistically stationary
thermal convection at the Rayleigh number double the critical. This is one of the simplest
nontrivial dynamical models (which retain three fundamental factors, i.e. the system rotation,
the spherical boundaries, and the convective motion of an electrically conducting fluid) for
realization of self-sustained magnetic fields observed in many of celestial bodies. The following
scenario of magnetic field intensification has been observed at the Roberts number of 0.68
times the critical.

The purely thermal convection before imposing the magnetic field is composed of nine (this
number should change depending on the control parameters) pairs of cyclonic and anti-cyclonic
convection vortices which are stretched along the rotation axis and retrograde with a nearly
constant angular velocity. In the initial stage of evolution when the magnetic field is still
weak in intensity, the vortex columns are two-dimensional and robust. The magnetic field
is intensified predominantly between cyclones and their western neighbouring anti-cyclones
at middle latitude, where the stretching rate of the convection velocity field is maximum.
The intensity of the magnetic field increases exponentially in time. This is called the linear
period. Before long, the magnetic field grows strong enough to alter the convection velecity
field through the Lorentz force. Then the two-dimensional vortex columns are deformed, the
maximum stretching rate is reduced, and the intensification mechanism in the above-mentioned
place stops. On the other hand, the concentrate-and-stretch mechanism of magnetic lines of
force keeps going inside anti-cyclones. The growth rate of the magnetic field there is not so large
to break down the vortex columns. This is the first-equilibrium period. Thereafter, sooner
or later, the magnetic field develops to be strong enough to destroy anti-cyclones. Then, the
number of anti-cyclones decreases to 4 ~ 6, a half of the initial number 9. This is the second-
equilibrium period, in which three sequential dynamical processes repeat. That is, the birth
of the convection vortices through the Rayleigh-Bénard instability, the growth of anti-cyclones
and the intensification of magnetic field therein by concentrate-and-stretch mechanism, and the
break-down of anti-cyclones through the Lorentz force induced by the intensified magnetic field.
The transfer of magnetic energy to the kinetic is taking place mostly in this recurrent cycle of
creation-and-annihilation of convection vortices and magnetic field. It is interesting to see that
the dissipation rates of the kinetic and the magnetic energy are almost equal throughout the
second-equilibrium period. Incidentally, there is no strong magnetic field observed inside the
Ekman boundary layer in spite of strong shearing motions there. This is because the resistive
dissipation is also large to compensate it.

Because of complexity of the spatiotemporal behaviour of velocity and magnetic fields
their longitudinal averages have often been investigated as a simplified surrogate of the full
three-dimensional structure. As we have seen in this paper, however, the fields are far from
axi-symmetric and the dynamo action is a non-axi-symmetric local phenomenon. A correct
dynamo mechanism could be identified only by looking hard at local instantaneous structures
of the velocity and magnetic fields. For example, a banana-shaped bich of intense magnetic
field always appears together with a cigar-shape inside an anti-cyclone in the above recurrent
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Figure 21: Longitudinal averaged structure of velocity and magnetic fields in a meridional
plane. (a) Velocity field. The meridional component of velocity is represented by streamlines
with white for clockwise rotation and black for counter-clockwise rotation. Colour map denotes
the angular velocity relative to the mean value over the whole spherical shell with red for
positive (eastward) and blue for negative (westward). (b) Magnetic field. Black lines shows
the meridional (poloidal) component of magnetic lines of force which is pointed to the south
(downward). The longitudinal (toroidal) component is represented by colour map with red
for positive and blue for negative. There is no longitudinal component in vacuum outside the
spherical shell. £ = 64.1.

dynamical process. These two blobs are connected to make a ‘twist-turn’ loop of intense
magnetic flux density. This unique loop constitutes a key structure in the sense that it gives
the main contribution, after a longitudinal averag, to a commonly observed dipole pattern of
the poloidal components of the magnetic field and bull’s-eyes pattern of the toroidal component.

In figures 21, we plot the longitudinal average of (a) the velocity and (b) magnetic fields
at some time instant in the second-equilibrium period. The longitudinal and meridional com-
ponents are shown on a meridional plane with colour map and lines, respectively. We see, in
these figures, the well-known characteristics of the axi-symmetric components of the velocity
and magnetic fields: [1] There is a differential rotation in which the flow near the rotation
axis progrades faster on the equatorial plane. [2] The toroidal magnetic field has a pair of
strong peaks of opposite sense at low latitude near the outer boundary, and another pair of
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weaker peaks near the rotation axis. [3] The poroidal magnetic field shows a dipole structure
(see Sakuraba & Kono 1999, Christensen. Olson & Glatzmaier 1999). It is a common practice
that the conversion (w effects) from the poloidal to toroidal components of magnetic lines of
force is explained by a differential rotation in the longitudinal averaged velocity. We should
note, however. how it is difficult to imagine an instantaneous local structure of the velocity
and magnetic fields from the longitudinal averages. This gives us a warning that the argument
of the o and/or # dynamo based on only the longitudinal average may not be able to capture
the true dynamics of local nature.

There remain several interesting questions on behaviour of the generation mechanism and
structure of the magnetic field. First, why is the magnetic field intensified much more in the
second-equiltbrium period than in the first 7 We note there are two important differences
in the structure of anti-cyclones between the first- and second-equilibrium periods. That
is, in the latter, the number of anti-cyclones is decreased by half, and the two-dimensional
structure is broken down, and the vorticity is localized near the equatorial plane. These changes
may work to strengthen the intensity of anti-cyclones themselves and also the magnetic field.
Secondly, how is a reversal of the dipole polarity possible ? Although no reversal observed in the
present numerical simulation, there is a possible trigger of the reversal. It is the unpredictable
direction of weak magnetic flux density near the equatorial plane just after an anti-cyclone
is broken down and the magnetic field associated with it diminishes in the recurrent cycle of
creation-and-annihilation of convection vortices and magnetic field. Thirdly, how general are
the mechanisms of magnetic field intensification observed in the present numerical simulation
? Variant appearances of the convection field structure depending on the control parameters
make us inclined to suppose that there may be many different mechanisms. The stretching of
magnetic lines of force is the only mechanism of the magnetic field intensification, though. A
comparison of many studies by different authors suggests that the concentrate-and-stretch of
magnetic lines of force, especially in anti-cyclones, seems to be a common dynamo mechanism
{Kageyama & Sato 1997. Olson. Christensen & Glatzmaier 1999, Katayama, Matsushita &
Honkura 1999, Sakuraba & Kono 1999}. It should not forget, however, to note that there
are two completely different types of flow structure of thermal convection depending on the
magnitude of the Rayleigh number. The convection inside the imaginary tangent cylinder
(a circular cylinder parallel to the rotation axis and tangent to the inner sphere) is more
active than the outside if the Rayleigh number exceeds some critical value (Glatzmaier &
Roberts 1995, 1997; Olson, Christensen & Glatzmaier 1999). Accordingly, their magnetic
field is intensified more inside the tangent cylinder than the outside, which is compietely
different from the one realized by the present numerical simulation. It is one of the interesting
challenging problems whether there is any unified dynamo mechanism applied both inside and
outside the tantentical cylinder.
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