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Theoretical study of transition of electric field in helical plasmas

1. Introduction

The internal transport barrier has been found in electron cyclotron resonance heating
(ECRH) plasma in CHS and the steep gradient in the profile of the radial electric
field has been obtained in the inner region {1]. There are two important issues. The
first is the formation of the electric-field domain interface, which is associated with
the steep gradient of the radial electric field E,. The generation of the electric field
in helical systems could be investigated more quantitatively because the neoclassical
transport is found to play the dominant role in generating the radial electric field
(See reviews, e.g.. [2, 3]). Study on the localized structure of the gradient of E,
has been performed. [4] The second is the study of the turbulent transport and the
neoclassical energy transport so as to understand the formation of the internal transport
barrier. The self-consistent transport study has been done in which both the electric field
bifurcation and suppression of the anomalous transport are included in order to analyze
the structure of the electric field quantitatively {5]. The transport model (e.g. [6]} for
anomalous diffusivities was adopted in CHS typical machine parameters.

In this article, types of the structure of the radial electric field is studied and =
phase diagram of a bifurcation of E, profile is investigated. In addition, the transport
analysis is extended to simulate an LHD plasma. The £, structure is examined in the
both cases by use of the CHS and LHD machine parameters. The parameter region
with respect to the density and the temperature is shown to obtain the electron root
(Er > 0).

2. One-dimensional Model Equations

The cylindrical coordinate is used and r-axis is taken in the radial cylindrical plasma
in this article. The region 0 < r < a is considered, where a is the minor radius.
The total particle flux I'" is written as I* = I™ — D,n’, where D, is the anomalous
particle diffusivity and the prime denotes the derivative with respect to the radial
direction. Here, I'* is the radial neoclassical flux associated with helical-ripple trapped
particle [7]. The total heat flux Q% of the species 7 is written as Q% = Q7 — nx.Tj,
where X, is the anomalous heat diffusivity and Q7" is the energy flux by the ripple
transport, respectively. The theoretical model for the anomalous heat conductivity will
be explained later. The neoclassical diffusion coefficient for the electric field is shown in
ref. [8] and is denoted by Dg,. The one-dimensional transport equations used here are
same as those shown in ref. [4].

3. Boundary conditions and the model of anomalous transport coefficients

We fix the boundary condition at the center of the plasma (r=0) such that n’ = T/ =
T, = E, = 0. For the radial electric field E,, the boundary condition at the edge
(r=a} is chosen as ¥ ,Z,I'; = 0. This simplification is-employed because the electric
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Theoretical study of transition of clectric field in helical plasmas

field bifurcation i the core plasma is the main subject of this study. The boundary
conditions at the edge (r=a) with respect to the density are those expected in the CHS
and the LHD: —n/n’ = 0.05(m). —=7./T, = —=T,/T) = 0.02{m). The machine parameters
are similar to those of CHS device. such as R = 1m, a = 0.2m. the toroidal magnetic
field B = 1T. toroidal mode number m = 8 and the poloidal mode number £ = 2. We
set the safety factor and the helical ripple coefficient as g = 3.3 — 3.8(r/a)® + 1.5(r/a)*
and g5 = 0 231(r/a)* + 0.00231(r/a)", respectively [1]. On the other hand, the machine
parameters which are similar to those of LHD device are set to be f = 3.6m. a = 0.6m,
B = 3T, m = 10 and ¢ = 2. In this case. we set the safety factor and the helical
ripple coefficient as ¢ = 1/(0.4+1.2{r/a)?) and ), = 2\/1 —(2/(mg(0)) — 1)2)I5(mr/R).
respectively. Here, g(0) is the value of the safety factor at r = 0 and I is the second order
modified Bessel function. The particle source S, is set to be S, = Spexp((r — a)/ Lo},
where Lg is set to be 0.01(m) and the value of Sp is strongly influenced by the particle
confinement time. The value for the anomalous diffusivities of the particle is chosen
D, = 10m?s~!. This value is set to be constant spatially and temporally.

In this study, we adopt the model for the anomalous heat conductivity based on the
theory of the self-sustained turbulence due to the ballooning mode and the interchange
mode, both driven by the current difffusivity [6, 9]. The reduction of the anomalous
transport due to the inhomogeneous radial electric field was theoretically reported in the
toroidal helical system. (The validity of this model for heliotron/torsatron plasmas has
not completely been investigated. This model predicted a trend of x, that x, can reduce
as the magnetic axis is shifted inward. This has some relevance for the experimental
observation [10]. The anomalous transport coefficient for the temperatures is given as
Xe = Xof/ (1 + Gwl,), where xo = F(s,a)a?c?vs/(w?,qR). The factor F(s,a) is the
function of the magnetic shear s and the normalized pressure gradient a, defined by
s =7¢/q and a = —¢>Rf’. For the ballooning mode turbulence for the system with
a magnetic well, we employ the anomalous thermal conductivity Xxqsm. The details
about the coefficients F(s, @), G, and the factor wg,, which stands for the effect of the
electric field shear, are given in ref. [9] in the balloonig mode turbulence. In the case
of the interchange mode turbulence for the system of the magnetic hill {6}, we adopt
the the anomalous thermal conductivity xq7ar- The details about F, GG, and the factor
we, in the case of the interchange mode were given in ref. [6]. The greater one of the
two diffusivities is adopted, x, = max(xa.BMm, Xaia). The approximation Dge, = X4 I8
employed, where the validity of this approximation is discussed in ref. [11].

4. Results of analysis

4.1. Solutions by use of machine parameters of CHS

At first, we use the machine parameters of CHS. In order to set the line-averaged
temperature of electrons to be around 7, = 250eV (7, at the center, T.(0} = 900eV)
and the line-averaged density to be around 7 = 1 x 10"°m™3, the absorbed power of
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electrons is 100kW and the coefficient Sy is 7x 10**m 357! for the choice of above values
of the anomalous transport coefficients. The line-averaged ion temperature 7; is chosen
to be about T; = 150eV (7; at the center, T,(0) = 500eV), where the absorbed power of
ions is fixed at 50kW.

The stationary solutions of the radial electric field are shown in figure 1(a). At the
point (p = pr(0.6)). the transition of the radial electric field is found. The circles in
figure 1(a) show the values of the electric field which satisfy the local ambipolar condition
for the calculated profiles of the density and the temperatures. Multiple solutions exist
for the local ambipolar condition in the parameter region examined here. We call the
hard transition when the transition occurs between the multiple solutions for the local
ambipolar condition. In the case of figure 1(a), the electron root for p < pr is sharply
connected to the ion root for p > pr with a thin layer between them. The absolute value
of the gradient for the electric field at the transition point p = pr is about 1.6 x 10V /m?.
The transport barrier is obtained for the both channels of the sum of the neoclassical
transport and the anomalous transport, although it is not very clear in both the electron
and ion temperature profiles. In figure 1(b), the reduction of y, is obtained due to the
strong gradient of the electric field at the transition point. The neoclassical diffusivities
of electrons xY¥° and ions x"E© are also shown with the dashed line and the dotted
line, respectively. In the case of the spatial transition in figure 1(a), the electric field
goes across zero at p = pr. Therefore, the neoclassical diffusivities have a peak near the
surface where the relation F, =~ 0, because they depend on the value of E., itself. The
total suppression is found to exist but is small compared with that of the anomalous
diffusivity.

4.2. Phase diagram of the bifurcation of the E, structure

When the value of the temperature or the density changes, the profile of the stationary
electric field takes three types of roots. At first, all stationary electric fields in the
radial points takes the electron root (E; > 0). Secondly, when the density increases, the
stationary electric field in the core plasma takes the electron root and the electric field in
the outer plasma takes the ion root (E, < 0). Furthermore, in this case, the type of the
transition is classified to the soft or hard one. When the value of the density becomes
much larger (A &~ 10%m™?), all radial stationary electric fields take the ion root. The
parameter region of the three root patterns of the stationary electric field is shown in
the @ — 7./T, plane. The multiple solutions are obtained in the region: T,/7, ~ 2 and
fi=(2—7)x 10"¥®m™>. Iun this region, the hard transition occurs between the multiple
solutions and the reduction of the anomalous conductivity is found due to the strong
gradient of the radial electric field. In the region where the electron root and the ion
root co-exist outside this region, the spatial soft transition occurs without the multiple
solutions.
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4.3. Solutions by usc of the machine parameters of LHD

We next study the case by use of the machine parameters of LHD. We choose the case
that the absolute power 1s 500W. We set the electron heating is IMW and the particle
source term Sp = 2 x 102m~3s~!. The stationary solutions of the radial electric field
are obtained for 7 = 4 x 10¥m=3, T, = 1600eV (T, at the center: T.(0} = 4200eV)
and 7, = 800eV (T, at the center: T;(0) = 2200eV ). The other parameters are same as
those in Sec 4.1. The ratio of the electron temperature of the jon temperature takes the
value T./T, = 2. The profile of the stationary radial electric field is shown in figure 2({a).
The multiple solutions (open marks in figure 2(a}) exist and the gradient of the electric
field is strong enough to suppress the turbulence: [E7| = 8.5 % 10°V/m?. Therefore, the
reduction of the anomalous heat conductivity is found in the parameter region examined
here in figure 2{b). The reduction of x, is smaller than that in the case by use of CHS
device parameters. The value of the reduction depends on the choice of the model of the
anomalous heat conductivity. The test of the anomalous heat conductivity will be done
by the experiment in LHD. In the other parameter regimes, e.g., To/7T, ~ 9, the multiple
solutions do not exist and the transition is found to occur smoothly from electron root
to the ion root. Detailed study in the wide parameter is needed by use of the LHD
typical device parameters.

5. Summary and Discussions

In this paper, the structure of the radial electric field in helical plasmas is theoretically
studied. Theoretical model of the ballooning mode or the interchange mode is adopted
for the anomalous heat conductivity and the anomalous diffusion coefficient of the
electric field. At first, the typical machine parameters of CHS are adapted. The hard
transition of the E, structure between the multiple ambipolar E, is obtained in this study
of T./T; =~ 2. When T./T; ~ 3 and the value of the density takes about 1 x 10'"*m™2, the
transition type is found to become soft (without multiple ambipolar E.). The condition
for the suppression of the anomalous diffusivities is suggested to be rather high 7; in
addition to the low density and high 7¢. Next, the typical machine parameters of LHD
are used. The hard transition (with the multiple solutions of E;) is shown in the E,
structure in the parameter region examined here.

In CHS device, the spatial transition from the larger positive Er to the smaller
positive E, is observed [1]. Such a spatial transition dose not induce a local peak of
XN¥EC_ and should be searched for in simulations. The study by use of the LHD typical
machine parameters is necessary to show the region in which the multiple solutions of
ambipolar F, exist in the phase diagram of the it — T, / T, plane. These are left for future
studies.
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Figure 1. (a) Radial dependence of the electric field (full curve). Open circles show
the values of the ambipolar electric field. (b) Radial dependence of the diffusivities.
The suppression of the anomalous diffusivity is obtained due to the strong gradient of
the electric field. The absorbed power of electrons is 100kW and that of ions is 530kW,
respectively. The coefficient S of the particle source is 7 x 10%*m—3s~!. The result in
figure 1 is derived by use of the CHS typical parameters.
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Figure 2. (a) Radial dependence of the electric field {full curve). Open circles show
the values of the ambipolar electric field. The multiple solutions are obtained in the
parameter regime examined here. (b} Radial dependence of the diffusivities. The
absorbed power of electrons is IMW and that of ions is 500kW, respectively. The
coefficient Sy of the particle source is 2 x 16**m~3s~1. The result in figure 2 is derived
by use of the LHD typical parameters.
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Abstract

Transition phenomena between thermal noise state and turbulent
state observed in a submarginal turbulent plasma are analyzed with
statistical theory. Time-development of turbulent fluctuation is ob-
tained by numerical simulations of Langevin equation which contains
hysteresis characteristics. Transition rates between two states are ana-
lyzed. Transition from turbulent state to thermal noise state occurs in
entire region between subcritical bifurcation point and linear stability
boundary.

1 Introduction

There have been observed various kinds of formations and destructions of
transport barriers. Both in edge and internal regions of high temperature
plasmas, the dynamical change often occurs on the short time scale, some-
times triggered by subcritical bifurcation. These features naturally lead to
the concept of transition.

The transition takes place as a statistical process in the presence of sta-
tistical noise source induced by strong turbulence fluctuation. As the generic
feature the transition occurs with a finite probability when a parameter ap-
proaches the critical value.



The nonequilibrium statistical mechanics, which deals with dynamical
phase transitions and critical phenomena, should be extended for inhomoge-
neous plasma turbulence [1]. To this end, statistical theory for plasma turbu-
lence has been developed and stochastic equations of motion (the Langevin
equations) of turbulent plasma were derived [2]. The framework to calculate
the probability density function (PDF), the transition rates etc. have also
been made.

In this paper, we apply the theoretical algorithm to an inhomogeneous
plasma with the pressure gradient and the shear of the magnetic field. Mi-
cro turbulence is known to be subcritically excited from the thermal noise
state [3]. The transition between thermal noise state and turbulent state is
studied. We show that the transition occurs stochastically by numerically
solving the Langevin equation of the turbulent plasmas. In order to charac-
terize the stochastic nature of the transition, the frequency of occurence of
a transition per unit time (the transition rates) are calculated as a function
of the pressure-gradient and the plasma temperature. The results show that
the transition from the turbulent state to the thermal noise state occurs in
a wide region instead of at a transition point.

2 Theoretical Framework

In this section, we briefly review the theoretical framework {2} used in our
analysis of turbulent plasmas.

The theory is based on the Langevin equation Eq. (1) derived by renor-
malizing with the direct-interaction approximation the reduced MHD for the
three fields: the electro-static potential, the current and the pressure.

v 8(0)
— +LE=N(t), where f(t) = | J(t) |. (1)
ot

p(t)

Since N (t) is a force which fluctuates randomly in time, the Langevin equa-
tion describes the stochastic time-development of the fluctuation of the three
fields.

By analyzing the Langevin equation Eq. (1), a number of statistical
properties of turbulent plasmas can be derived. For example, it was shown
that asymptotic forms of the probability distribution functions for the energy
of the fluctuation of the electric field obeys a power-law. The analytical
formulae of the rate of change of states of plasmas, the transition rates, were
also derived. Furthermore, since the renormalized transport coefficients come
from the term of the random force N (¢), relations between the fluctuation



levels of turbulence and the transport coefhcients like the viscosity and the
thermal diffusivity were derived.

3 A Model

With the theoretical framework brieflv described in the previous section, we
analyze a model of inhomogeneous plasmas with the pressure-gradient and
the shear of magnetic field [2]. The model is formulated with the reduced
MHD of the three fields of the electro-static potential, the current and the
pressure. The shear of magnetic field is given as B = (0. Bysz, Bg) where
Bo(z) = const x (1 + Qx4+ ---). The pressure is assumed to change in
z—direction.

It has been known that in this system bifurcation due to the subcritical
excitation of the current diffusive interchange mode (CDIM) occurs [3] as
shown in Fig. (1). Figure (1) shows the pressure-gradient dependence of
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Figure 1: The pressure-gradient dependence of the renormalized ion-viscosity.
It is clearly seen that the bifurcation between a low viscosity state (the
thermal noise state) and a high viscosity state (the turbulent state) occurs.

the turbulent ion-viscosity which is proportional to the fluctuation level. It
is clearly seen that the bifurcation between a low viscosity state and a high
viscosity state occurs. Due to the bifurcation. tfransition between the two
states and hysteresis are expected to be observed. We call the low viscosity
state “the thermal noise state”, since in this state the system fluctuates with
thermal noise considered in the model [4]. We call the high viscosity state
“the turbulent state”, since the fluctuation level is also large in a strong tur-
bulent limit [2]. The ridge point where the turbulent branch ends is denoted



“the subcritical bifurcation point”. The region between the subcritical bifur-
cation point and the ridge near the linear stability boundary is called “the
bi-stable regime”.

From the deterministic point of view, the transition from the thermal
noise state to the turbulent state is expected to occur at the ridge point near
the linear stability boundary and the transition in the opposite direction is
expected to occur at the subcritical bifurcation point.

4 Stochastic Occurence of the Transition

In order to capture the characteristics of the two states, we concentrate on
the time-development of the energy of fluctuation of the electric field, £(¢).
The quantity £(¢) obeys the coarse-grained Langevin equation Eq. (2) which
has been derived in [2].

Doty = ~2AE)e) + () Re) )
Here, E(t) is the Gaussian white noise. For the detailed formulae of A(e)
and 7(¢), sce [4]. The essential point is that the function A(z) takes both
a positive and a negative value in the bi-stable regime. So, the fluctuation
of the electric field is suppresed when A is positive and it is excited when A
is negative. Consequently, there are two metastable states in the bi-stable
regime. In addition, n(e) is a positive function.

By solving numerically Eq. (2), we obtain the following samples of a
time serieses. When the pressure-gradient is fixed at the value smaller than
the subcritical bifurcation value, as shown in Fig. (2), there is only smal
fluctuation since the system is always in the thermal noise state.

On the other hand, when the pressure-gradient takes a value in the bi-
stable regime, bursts are observed intermittently as shown in Fig. (3). That
is, transition between the thermal noise state and the turbulent state occurs
stochastically. The bursts corresponds to the turbulent state and the laminar
corresponds to the thermal noise state. The fact that the residence times at
the each states are random leads to the statistical description of the transition
with the transition rates described in the next section.

When the value of the pressure-gradient is larger than that of the linear
stability boundary (see Fig. (4)), bursts are always observed. It means that
the system is always in the turbulent state.
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Figure 2: A sample of a time-series of the energy of fluctuation of the electric
field £(t) when the pressure-gradient is fixed at the value smaller than that
of the suberitical bifurcation point. There is only small fluctuation since the
system is always in the thermal noise state.
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Figure 3: A sample of a time-series of £(z} when the pressure-gradient takes
a value in the bi-stable regime. Bursts are observed intermittently. It means
+he transition between the thermal noise state and the turbulent state occurs
stochastically.
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Figure 4: A sample of a time-series of varepsilon(t) when the value of the
pressure-gradient is larger than that of the linear stability boundary. Bursts
occurs simultaneously since the system in the turbulent state.

5 The Transition Rates

In order to formulate the above stochastic transition phenomena, in the bi-
stable regime, we introduce the transition rates. There are transtions in two
opposite direction: the transition from the thermal noise state to the tur-
bulent noise state, which we call “the forward transition, and the transition
in the opposite direction is called “the backward transition”. There are two
transition rates. One is the forward transition rates r; which is the frequency
of oceurence of the forward transition per unit time and the other is the back-
ward transition rate r, defined similarly as the frequency of occurence of the
backward transition per unit time.

It is important to note that these quantities are observable quantities. It
is easily shown that the forward transition rate is equal to the average of
inverse of the residence time at the thermal noise state and the backward
transition rate is equal to the average of inverse of the residence time at the
turbulent state. Therefore, these transition rates can be measured from the
time serieses of fluctuation.

We analyze in which region of the value of the pressure-gradient the
transtion occurs frequently. The transition rates are calculated with the
formulae derived in [5]. The two figures, Fig. (5) and Fig. (6), show pressure-
gradient dependence of the forward transition rate and the backward transi-
tion rates in the bi-stable regime. The forward transition triggered by the
thermal noise occurs mainly in the vicinity of the linear stability boundary.
In contrast to that. it is clearly seen that the backward transition aceurs in
the almost entire bi-stable regime. This behavior is due to strong turbulent
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Figure 5: The pressure-gradient (g) dependence of the forward transition rate
in the bi-stable regime. The left edge and the right edge of the horizoutal
axis corresponds to the subcritical bifurcation point and the linear stability
boundary. It is seen that the forward transition occurs mainly in the vicinity
of the linear stability boundary.

25

o15
| -

0.5

1.45 1.5 1.55 1.6 1.65

Figure 6: The pressure-gradient dependence of the backward transition rate
in the bi-stable regime. It is seen that the backward transition occurs in the
almost entire bi-stable regime.



fluctuation. It is noted that the backward transition, i.e. the transition in a
turbulence, occurs in a “region” instead of a “point”.

6 Summary

Summarizing our work, we applied the statistical theory of plasma turbu-
lence to problems of the transition phenomena of submarginal turbulence.
By numerically solving the Langevin equation, typical time-development of
Huctuation is obtained. It tells that the transition for the model of inhomo-
geneous plasma occurs stochastically and suggests how the transition phe-
nomena due to subcritical bifurcation may look in time-serieses obtained in
real experiments. Furthermore, we obtained pressure-gradient dependence
of the transition rates. It is shown that the backward transition occur with
almost equal frequency in the entire bi-stable regime, so the transition occurs
in a “region”. The concept “transition region” is necessary in the analysis of
data obtained by real experiments.
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Abstract,

An improved confinement state can be attained by imposing a radial electric
field at the plasma edge. This is characterized by a change of the radial electric field
structure. A charge conservation equation with a diffusion term has been solved to
explain this mechanism. When the distance between electrodes is finite, various types
of radial electric field structures with multiple peaks are allowed for the same
boundary condition. The distance between clectrodes determines the number of
possible solutions. The relationship between the voltage and the current is obtained by
numerical calculation. Both stable and unstable regions exist in the stationary solutions
and their boundary points are critical points for transition from one state to another.
Multiple transitions and hysteresis are predicted. The magnitude of the collision
frequency affects the existence of multiple solitary solutions.

1.Introduction

The steep gradient of the electric field and the self-sustaining mechanism of
its structure are key issues in physics of H-mode and improved confinement states.
Radial electric field structure bifurcation,! which has a variation of the radial direction,
and poloidal shock,® which has a variation of the poloidal direction are both studied
theoretically., Various measurements have been carried out to understand the radial
electric field structure bifurcation.>*”

The transition from L-mode to H-mode is characterized by a sudden change of
the radial electric field structure. An improved confinement state can also be attained
by imposing a radial electric field at the plasma edge.>*®’ The H-mode has been
attained by inserting an electrode into the plasma and applying a voltage. This method
provides a controllable way of attaining an improved confinement state. In TEXTOR
biasing experiments the spatial profile of the radial electric field at the plasma edge
changed from a flat one before the transition to a peaked one after the transition.”

‘There arc several theories that can explain the characteristic structure of the
radial electric field®° (sce Ref.15 for a review). The case of infinite distance between



electrodes and of finite distance with a simplified conductivity model were described
in Ref.13 and Ref.14, respectively. Solitary radial electric field structures were derived
in these references. An extension of the work of Ref.14 with the conductivity that has

the form of the imaginary part of the plasma dispersion function is described in this
paper.

2.Model equation

The essence of the method for obtaining the radial electric field structure was
described in Ref.13. The first step combines the Poisson's equation and the charge
conservation law to obtain

1

_.a_.Er = - (Jr —EBE_LV'[.L,-VE,_ _qu ) (21)
at £,E,

where J, is the local current, y; is the shear viscosity of ions, J.. is the current driven
into the electrode by the external circuit, g is the vacuum susceptibility, and £, is the
dielectric constant of a magnetized plasma. The local current is determined by the
radial electric field at the same radial location. The second term of the right hand side
of eq.(2.1) acts as a diffusion term due to anomalous shear viscosity. Anomalous
transport is ambipolar in the lowest order, and it influences the radial electric field
through ion viscosity.

In stationary state a normalized form of the equation can be written as,

;x—sz—f(X,y)X+I=0, 22)
whete X-ep £ [T =E[(vB), 1=lep,/To@Y.. x=r—r}l: 1= fuee,jo0) a0d y=rv,B[v,B, -
In the definition above, X is the normalized radial electric field, 7 is the normalized
external current, x is the radius normalized by /, y is the normalized collision frequency,
o(0) is the conductivity when the radial electric field is zero, pp is the ion poloidal
gyroradius, 7; is the ion temperature, vy; is the jon thermal velocity and vj; is the ion
collision frequency. The radius rp is chosen to be the mid-point between the two
electrodes. This radial electric field equation is a nonlinear differential equation. Here
all parameters that do not involve the radial electric field are treated as constants in
space for simplicity. We are interested in the steep gradient of the radial electric field,
and therefore neglect the spatial variation of other slowly varying parameters. In
€q.(2.2) f(X,y) is a function that relates the conductivity and the radial electric field,

J, =o(E, JE, =o(0)f(X,y )E,, 23)
where ofE,;) is the conductivity when the radial electric field is E,.

H anomalous transport is ambipolar in the lowest order, the radial current is
determined by neoclassical transport, mostly of ions. The radial current, which is
induced by the neoclassical transport process, has a dependency on the imaginary part
of Z(Xy) [=ImZ(X.y)], where Z(X,y) is the plasma dispersion function. Here we take



f(X,y)=ImZ(X,y}, (2.4)
1 w

2
z{x.y)= m/z.‘:m exf(_-zt )dt’ (z=X +iy), @)

for simplicity, though the ambipolar electric field and other components affect the
radial current. That is because we are interested in capturing the physical basis, not in
explaining the details of experiments.

3 Solitary solutions

To solve eq.(2.2), the boundary condition at the position of electrodes is
chosen to be 8X/dx = 0. One half of the distance between electrodes is denoted d.

Equation (2.2) has spatially constant solutions X1 and X2, which satisfy
X f{x,y)-I=0. Other than these trivial solutions, solitary solutions are obtained by
solving eq.(2.2) numerically. Figure 1 shows an example of the spatial profile of the
radial electric field structure. Since eq.(2.2) has transition invariance in space, two
solutions for half the distance between electrodes joined in series, is also a solution
with the boundary condition 3X/dx =0. In this way solutions with many peaks can
exist when the distance 4 is finite.

There exists the minimum distance between electrodes for a solitary solution
of eq.(2.2) to exist. This distance was calculated in Ref.14 for the case when a

simplified form of function f(X,y) was adopted. In the same way, the minimum
distance is given by

dun =/ l8] 3.1
where we take ga{a[Xf(X, y )]/aX}X_m. This quantity determines the maximum

number of peaks that a solitary solution can have. In the case of Fig.1 the maximum
number of the peaks is three.
The shape of the solitary solution is affected by physical parameters, such as

the viscosity and the conductivity. Measurement of this structure gives information on
those parameters.

X
™
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Fig.1 Solitary structures of the radial eiectric field when d=18, y=0.1 and /=0.5. 2, b



and c are solutions that have one, two and three peaks, respectively.

4.Multiple transitions

Integrating X(x) obtained in the previous section gives the voltage between
electrodes,

(4.1)
V= J:X(x)dx.

The voltage V can be calculated for a given current / numericaily.

Figure 2 shows ¥V — I curves for the case of d=18 and y=0.1. The spatially
constant solutions X1 and X2 exist on the branches T1 and T2, respectively. S1~S3 are
solutions having solitary structures. S1 has one peak, S2 has two peaks, and so on.

Solutions that have more than three peaks are not allowed for this choice of d because
the minimum peak width is given by eq.(3.1).

vid

Fig.2 The relationship between voltage and current. A~E, A1, B, etc. denote
intersections with or points of tangency to the line ¥ = V.. —FI plotted as dashed
lines. Solid lines are stable and dotted lines are unstable in each branch. This is the

case whend=18,y=0.1 and 7 =4.0.

The parameters V' and [ are determined by the intersection of the solutions T1,
T2, §1~83 and the circuit equation

V=V, -f, (42)

where 7 is the internal resistance of the external circuit. The voltage V' is that across
the piasma, and Ve is the appiied voitage beiween electrodes. If the externally
supplied voltage V,,, is varied, the values of V and [ change accordingly.

Among the obtained solutions, both stable and unstable solutions exist.

Stability of the solutions is evaluated by eq.(2.2) with an additional time derivative



term. When a perturbation is given to the radial electric field, thatis X (x) =~ X(x)+ X ,
the linearized equation for the perturbation is given as
d & 43 = 1

3 N
S5 8 5 90y rxyE-
. et aX[Xf( v 7

where T is the time normalized by ¢, =¢&,¢, /0(0) and A corresponds to the growth

rate of perturbation. The electrode current / depends on the electric field in the entire

3)

indx=;\X~1

range between electrodes, so that its perturbation becomes the integral of X, as
denoted in eq.(4.3). Noted that perturbed quantities must be held under the constraint
of the circuit equation eq.(4.2). Equation (4.3) is solved as an eigenvalue problem. The
integral of X in eq.(4.3) acts as a stabilizing term. Figure 3 shows the dependence of
the maximum growth rate on the current I for the same case as Fig.2. It shows that it
becomes unstable at larger and smaller current. The points where the maximum growth
rate is zero give the boundaries between stable and unstable regions, and they

correspond to the points of tangency to the circuit relation on the solitary solution
branch S1~83.
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Fig.3 The maximum growth rate plotted as a function of the current / for the case of
d=18,y=0.1 and 7 =4.0.S1~S3 denote the solutions that have 1~3 peaks,
respectively.

Solid lines are stable and dotted lines are unstable in Fig.2. The entire region
of T1 is stable but some region of T2 is unstable given the constraint of V =V, -7l
The boundary point is the point of tangency to the line V =V, - rI with appropriate
V.a. When V. is small, only one intersection exists on T1. For larger Ve, an
intersection can exist on S1 (one peak solution). The transition from a constant solution
to a solitary one occurs at the critical point C. In the case shown in Fig.2 the tangential
line at C intersects with S1, S2 and T2. Which solution is taken after the transition
depends on the stability of the solution. If solution S2 is taken, the next transition to S1



will occur at D2, and the next at E1 to the constant solution T2 takes place. In this way
multiple transitions are possible for a range of resistance 7. For different 7, the
number of intersections that the tangential line at C has with solitary solutions is
different. When the resistance is much laiger, transitions to solitary solutions cannot
take place and only transition from a constant solution to another constant solution
takes place. In contrast, when the resistance is much smaller, the entire range of T2
becomes stable and transitions are not possible. The number of transition steps depends

on the value of the resistance 7. In case of Fig.2 (d=18) transitions can take place four
times at most.

When V., decreases from point E’ on T2, a back transition can take place at
B’, and multiple back transitions can occur. These back transition points are not the
same as the forward transition points, so that there is a hysteresis in the electric field
structure as a function of the applied voltage.

5.Effects of collision

The transitions shown in the previous section are for the case of y=0.7 when
lon-ion collision is not effective. The collision frequency affects the solitary structure
through the function f(Xy)=ImZ(X,y). Figure 4(a) shows the V - I curve for the
collisional case (y=5.0). The existence range of solitary solutions becomes smaller
than in the collisionless case. In the collisionless limit, neoclassical transport is
dominated by the resonant particles which satisfy v, B, ~ E, , so that necclassical
radial current Xf(X)y} has a large maximum at X=]. For the collisional case the
collisional effect on neoclassical transport is dominant for radial electric field X larger
than one, so that the neoclassical radial current X f(Xy) has a broader profile 3¢
Figure 4(b) is a plot of dm, which is the minimum distance between electrodes for a
solitary solution to éxist, deduced from eq.(3.1). Increasing the viscosity y leads to
larger drix at the same current /. Solitary solutions have a finite curvature 3°X/ax?,
which is sustained by the neoclassical radial current from €q.(2.2). When the collision
frequency y is large, the gradient of Xf(X,y) becomes close 1o zero, so that the variation
of the radial electric field makes little change in the neoclassical radial current.
Therefore, the curvature of the solitary solution cannot be sustained when y is large.
This is why solitary solutions are hard to exist in the collisional case.



(a) (b)

o6 < a0

0 0.2 04 .
s} 2 4 v/d 6 8 I 0.8

Fig4. (a) is the relationship between the voltage and the current when d=18 and y=5.0,
which is the collisional case. (b) is the minimum distance between electrodes for a
solitary solution to exist when y=0.1, 2.0 and 5.0.

6.Summary

The radial electric field structure is derived from a charge conservation
equation with a diffusion term. An extension to the case of finite distance between
electrodes and using f(X,y) with the form of ImZ(X)y) is carried out. In this case various
types of radial electric field structures with multiple peaks are allowed for the same
boundary condition. The distance between electrodes determines the number of
solutions for a given applied voltage. There is a2 minimum distance for solitary
solutions to exist. Both stable and unstable regions exist in the stationary solutions, and
their boundary points give critical points for transition from one state to another. The
existence of many solutions predicts the possibility of multiple transitions and
hysteresis. The magnitude of the collision frequency affects the existence of multiple
solitary solutions. In the collisional case the range where solitary solutions exist is
narrow, so that transitions to solitary structures are less likely to take place. Nonlinear
response functions could be interpreted from the radial electric field structure and its
bifurcation.

Basic properties such as peaked structures of the radial electric field and
transitions in the V-I relationship can be explained. However, some features of
experimental resulis’, such as the asymmetry between positive and negative biasing,
are not reproduced. Components neglected in this work, such as the neoclassical
ambipolar electric field, must be included for a more quantitative comparison.
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