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Abstract.

Statistical properties of the particle radial diffusion are clarified in the various
types of the radially bounded irregular magnetic field inside a torus plasma, where
the collisional (statistical) stochasticity due to the Coulomb collision and the magnetic
{deterministic) stochasticity due to a radially bounded perturbed field coexist. The
former is initialized in the velocity space, and the latter is in the configuration space.
Extensive numerical analyses are performed in the two dimensional parameter space
(s8/8bc, /1), where s, and » are the strength of a magnetic field perturbation and
the collision (deflection) frequency, respectively. The normalization parameter s,
corresponds to the islands overlapping criterion, and 14 is the characteristic frequency of
the passing particle orbits in the corresponding regular magnetic field. In the absence of
the Coulomb collision, as sp/sp.(> 1) increases, the magnetic field stochasticity or the
particle radial diffusion with only parallel drift motion comes to appear as a uniform
mixing process reflecting the non-locality of orbits in a radially bounded stochastic
region, which is a non-diffusive, uniform, statistically stationary, and Markov process
after the exponentially fast relaxation of correlations. The Coulomb collisions interrupt
the fast non-local radial displacement of particles along the stochastic magnetic field
lines, however, the radial displacement is still non-local, so that the particle radial
diffusion develops as a strange diffusive process in the long time limit: subdiffusive,
neither uniform nor Gaussian, and statistically non-stationary process, in almost all
{56/ Sbc, v/vs) parameter space. When the collisions are fairly frequent (v/v; > 1) and
uniformity of the magnetic field stochasticity is fairly lost (s5/s5c > 1), the locality of
the particle motion is recovered, leading to a Wiener process with normal diffusivity,
Gaussianity, statistical non-stationarity, and Markovianity, as well as the neoclassical
diffusion in the regular magnetic field. Non-locality of particle orbits due to magnetic
stochasticity produces the various types of diffusion process under the influence of the
Coulomb collisions.
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1. Introduction

The particle radial diffusion is a problem of great importance in the context of the
transport in a magnetically confined torus plasma. The earliest theoretical approaches
[1-6], being developed with premise to determine the constant diffusion coefficient, are
based on the analogy between. the diffusion process in an unbounded, homogeneous
media and the Gaussian random walk or standard Brownian motion. Thus, the
Gaussianity, Markovianity, and normal diffusivity of the collisional radial diffusion are
assumed a priori. The usual diffusion constant is then evaluated from the long time limit
of the second cumulant (mean square displacement) under a constraint that the diffusion
is local. This constraint is necessary in order to treat a real bounded, inhomogeneous
system as a unbounded and homogeneous one near a thermodynamical equilibrium.
Note that the mean square displacement is taken as a fundamental quantity from the
statistical viewpoint. In the regular magnetic field with topologically nested flux surfaces
(domain of the neoclassical theory [1, 2]}, the radial diffusion in the configuration space
is completely determined by both the deterministic drift motion of particle guiding
centers inherent in such a geometry and the stochasticity due to the Coulomb collisions
in the velocity space. In such a case the locality constraint is ensured with respect to the
smallness of the particle displacement which satisfies p,/a < 1, where p, is the particle
poloidal gyroradius, and a is the minor radius.

However, experimentally obtained diffusion coefficients are usually much greater
than the neoclassical ones. As one of the reasons, the destruction of the regular
magnetic surfaces due to MHD instabilities and error fields is suggested. Even if the
amplitude of the magnetic field perturbations is small, they can change the topology
of the magnetic field structure due to the resonance at their mode rational surfaces,
namely, the magnetic islands and stochastic region are created [7, 8]. Usually, many
Fourier modes of the magnetic perturbation can be simultaneously excited, and so
the radially extended magnetic stochastic region appears after the overlapping of the
magnetic island chains, i.e. the global magnetic stochasticity is created as the amplitude
of the magnetic perturbation increases {7, 8]. Thus, with the increase of the stochasticity
level, the particle radial diffusion in the stochastic magnetic field region comes to be
prescribed by the statistical properties of the stochastic magnetic field lines themselves.

In order to estimate the diffusion coefficient of the static highly stochastic magnetic
field, the correlation of the radial component of the perturbed magnetic field between
two different points (Eulerian correlation) is specified by two characteristic lengths of
the stochastic magnetic field lines: the parallel L and perpendicular length L; to
the equilibrium magnetic field lines [3]. Moreover, the stochastic magnetic field is
characterized by another characteristic length, radial Kolmogorov length Lg, which is
associated with the fast exponential divergence of the stochastic magnetic field lines in
the radial direction [8]. Depending on the relative magnitude of these three characteristic
lengths: Ly, Ly and Lg, the various types of diffusive regimes are defined. The most
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famous one is the quasilinear regime, where the relation
LH L L L <L

holds, and L is the length of the stochastic region. In this limit, the constant diffusion
coefficient of the stochastic magnetic field lines (the diffusion coefficient not depending
on the length of the magnetic field lines in evaluation of the correlation) is derived by
postulating that in a radially unbounded stochastic magnetic field region (L — o0),
the magnetic field stochasticity appears as a radially homogeneous, Gaussian random
process with Ly <« L; — o0o. Note that the radial unboundedness of the homogeneous
stochastic region is equivalent of the locality constraint in the neoclassical particle radial
diffusion in the regular magnetic field configuration. In the quasilinear regime, the
evaluation of the Lagrangian correlation, i.e. evaluation of the correlations along the
magnetic field lines, is easily performed due to the feature of L — oo [9]. When the
perpendicular characteristic length L is finite, the Corrsin approximation is used to
evaluate the Lagrangian correlation [9]. However, this approximation is valid only for a
homogeneous equilibrium magnetic fleld without a magnetic shear [10].

On the basis of the diffusion of the stochastic magnetic field lines, the diffusion
coefficient of the radial heat (particle) transport is calculated under the influence of
the Coulomb collisions. It is reasonably assumed that the particle displacements due
to collisions appear as a standard (Gaussian) Brownian process with the mean free
path Ay s, as the characteristic length. Thus, depending on the relative magnitude of
four characteristic lengths: L), L, Lx, and Anjp, several asymptotic diffusive regimes
are obtained. In the pioneering paper [4], both the collisionless and collisional limits
are considered in the quasilinear regime of the magnetic field stochasticity. For both
of them, the time independent diffusion coefficient is found, which means that the
particle radial diffusion is a normal diffusive process like a standard Brownian motion.
However, the particle diffusion coefficient becomes time-dependent in the absence of any
perpendicular motion to the stochastic magnetic field lines. This case corresponds to the
subdiffusive process, where the diffusion coefficient decreases with time. The existence
of subdiffusivity influenced extensive investigations of the particle radial diffusion in
the highly stochastic magnetic field {11, 12, 13]. It is shown that the mean square
displacement is not sufficient in order to understand statistical properties of the particle
radial diffusion [12].

In these treatments of the particle radial diffusion in the highly stochastic magnetic
field, it is worth to stress that the allowable analytical approaches are influenced to
assume unboundedness and homogeneity of the highly stochastic magnetic field and to
specify the statistical characteristics of the magnetic field perturbation. Thus, there
are ambiguous points when such analytical results are applied to a realistic system as
the ideal limits. Especially, the treatment of the statistical properties of the stochastic
magnetic field in the radial direction leads to problems. In torus systems, generally, the
equilibrium magnetic field is inhomogeneous in the radial direction due to the magnetic
shear, and the magnetic stochastic region created by perturbed magnetic fields, e.g. due
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to MHD instabilities or error fields, is usually bounded in the radial direction. It means
that the Corrsin approximation is not valid and the perpendicular characteristic length
L can not be treated as infinity, but finite. From the technical point of view, due to the
inhomogeneity and boundedness in the radial direction, the Fourier transformation is not
applicable to the radial direction, which means that the approach to assume the Eulerian
correlation function in the Fourier space may not be directly applicable to the systems
with inhomogeneous and bounded stochastic region in the radial direction. Thus, in
the realistic magnetic field configurations with radially bounded and inhomogeneous
stochastic regions, the applicability of the previous analytical resuits is under question.
As another aspect, it should be pointed out that the physical interpretation why the
above mentioned subdiffusivity of the radial diffusion occurs is not so clear. Although
the cause may not be unique depending on the situations investigated, as one of the
reasons, the non-locality of the particle radial displacements is considered. Up fo now,
however the role of the non-locality has not been mentioned.

On the other hand in the case before overlapping, near overlapping, and moderate
overlapping, the magnetic field inside the stochastic region is generally neither entirely
regular nor entirely irregular, but a complicated mixture of regular and irregular regions.
In the regular island like regions, the magnetic field lines lie on tori or KAM surfaces
[7, 8], while in irregular domains the magnetic field lines are apparently stochastic, or
chaotic indicating the deterministic stochasticity {7, 8]. With stress on the enhancement
of the time-independent diffusion coefficient of the collisional radial diffusion by the
magnetic field destruction, the series of research are developed [14, 15]. To ensure
locality, i.e. not to allow large particle radial displacements from the initial flux surface,
the value of the diffusion coefficient is evaluated in the interval of the order of several
collisional times. In these cases, the statistical treatment of the particle radial diffusion
inside the partially destroyed magnetic field region is missing.

To avoid problems coming from the applicability of the analytical results in an
idealized situation to a realistic one, to clarify the relationship between expected various
diffusion processes and non-locality of the particle radial displacements, and to clarify
the statistical properties of the various types of irregular maguetic field themselves,
in this paper, the statistical properties of the magnetic and particle radial diffusion
have been examined for various values of the stochasticity parameter and the Coulomb
collision frequency by using direct numerical calculations of the trajectories of magnetic
field lines and Monte Carlo simulations of the particle radial diffusion. The adopted
system consists of both an axisymmetric MHD equilibrium with perfect nested flux
surfaces and a radially bounded irregular magnetic field created by superposing the
three Fourier harmonics of a magnetic perturbation which resonate at their mode
rational surfaces. By changing values of the strength of perturbation, which is
treated as a stochasticity parameter, the level of stochasticity is controlled. Thus,
four types of the radially bounded magnetic stochastic region are created: state with
isolated island chains under the overlapping threshold, with weak overlapping of the
magnetic islands, with moderate overlapping characterized by the mixture of regular
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and irregular domains, and with highly irregular stochastic magnetic field lines. The
statistical properties of the magnetic stochasticity, which realizes within the radially
bounded stochastic region, are not assumed, but examined by numerically calculating
the Liapunov exponent {8], the cumulant up to the fourth order [16, 17], and the
autocorrelation coefficient [16, 18]. It is found that as the level of stochasticity increases,
the magnetic field stochasticity inside the radially bounded perturbed magnetic field
region tends to appear as a uniform mixing process characterized by non-diffusivity,
radially uniform distribution, statistical stationarity, and Markovianity. The uniform
mixing process, which stems from both the radial boundedness of the stochastic region
and fast exponential divergence of the magnetic field lines in the radial direction, is
firstly mentioned in the context of the particle radial diffusion in the stochastic magnetic
field. Note that the radial diffusion of the guiding center particles tied to the stochastic
magnetic field lines without both the perpendicular drifts and Coulomb collisions is
equivalent to the radial diffusion of the magnetic field lines.

After clarifying the statistical properties of the magnetic field stochasticity within
the radially bounded magnetic field region, the effects of the perpendicular drift of
guiding centers and of the Coulomb collisions are investigated through the Monte Carlo
technique. The perpendicular drifts qualitatively do not change the statistical properties
of the particle radial diffusion, since the non-local radial displacement due to the fast
parallel drift motions along the stochastic magnetic field lines is dominant compared with
the local radial displacement due to the slow perpendicular drift motions. Thus, the
statistical properties of the collisionless particle radial diffusion in the radially bounded
stochastic magnetic field are prescribed by those of the stochastic magnetic field, and
the particle radial diffusion is non-local. The Coulomb collisions interrupt the fast non-
local motions along the stochastic magnetic field lines. As the stochasticity parameter
increases and collision frequency decreases, the particle radial diffusion appears as a
strange diffusive process characterized by subdiffusivity, neither uniform nor Gaussian
profile, statistical non-stationarity, reflecting the statistical properties of the magnetic
stochasticity. The radial diffusion is still non-local in this regime. In the opposite limit
with small stochasticity parameter and a high collision frequency, the radial exponential
divergence of the magnetic field lines is suppressed, and the frequent collisions recover
the locality of the diffusion, so that the diffusion appears as the Wiener process which
is previously recognized in the neoclassical radial diffusion in the regular magnetic field
[19]. 1t is clarified that non-locality of the particle radial displacements leads to non-
diffusivity or subdiffusivity in a radially bounded stochastic magnetic field region. The
stochastic parameter is interpreted as the indicator of the non-locality of the particle
radial displacements, and the Coulomb collision frequency is recognized as the scattering
rate of such the non-local displacements. Thus, as a result of the superposition of
these two effects, the degree of the non-locality of the particle radial displacements is
determined, leading to various types of diffusion process.

‘The organization of this paper is as follows. In section 2, the basic equations of
the guiding center electrons, the numerical Monte Carlo method, and magnetic field
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configuration consisting of an axisymmetric MHD equilibrium and a radially bounded
magnetic field region with irregularities are described. As the statistical measures
the cumulant up to the fourth order, the diffusion coefficient and autocorrelation
coeflicient are defined in section 3. Additionally, the effective radial Liapunov exponent
is introduced in connection with the magnetic stochasticity. By using these measures,
the statistical analyses are performed in section 4 by comparing numerically obtained
process with the fundamental diffusive process: the Wiener process in infinite domain;
and the fundamental process from the viewpoint of the deterministic stochasticity:
the uniform mixing in finite domain of configuration space. Section 4.1 is devoted
to the statistical analysis of the magnetic field stochasticity which is meaningful in
the region of so called global magnetic stochasticity initialized by the overlapping
between two neighboring islands. One fitting equation is given for all mentioned
stochastic levels in the region of global stochasticity, by which the saturated value of
the effective radial Liapunov exponent is estimated. Additionally the number of the
magnetic field lines with positive radial Liapunov exponent is taken as an indicator
of the existence of the regular structures inside the stochastic region. In section 4.2,
the effects of the perpendicular drift motions on the statistical properties of the radial
diffusion in the radially bounded stochastic magnetic field region are presented. The
statistical properties of the particle radial diffusion in the presence of both the magnetic
field stochasticity inside the radially bounded perturbed magnetic field region and the
collisional stochasticity due to the Coulomb collisions are investigated in section 4.3.
The statistical properties are investigated in two-parameter space consisting of above
mentioned four levels of stochasticity and for three collision frequencies corresponding
to plateau, and Pfirsch-Schliiter regimes. In section 5, the characteristic lengths, the
locality of diffusion, the second cumulant, and the ballistic phase in the highly stochastic
magnetic field are discussed. It is shown that the present situation with radially bounded
stochastic field is characterized by completely different ordering of the characteristic
lengths from that in the quasilinear regime. Also, it is shown that the diffusion coeflicient
defined by the time derivative of the second cumulant has no clear physical meaning
when the locality of the diffusion is not ensured. Moreover, the short time ballistic
phase in the highly stochastic magnetic field is discussed associated with the dynamical
relaxation to an equilibrium. Section 6 presents the conchusions.

2. Establishment of model

2.1. Model equations

The test particle diffusion in the presence of destroyed magnetic surfaces is evaluated
by the solution of the linearized gyro-phase averaged Boltzmann equation

af _
2 +v.vr=c), ®)

where f = f(t,r,F,p) is the distribution function of guiding center particles, and
C(f) is the linearized pitch-angle scattering operator due to Coulomb collisions. The
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background plasma is assumed to be uniform, the energy E of each guiding center

particle is conserved, and only the magnetic moment p is changed by the Coulomb
collisions.

The stationary magnetic field B, is assumed to be of the form

where B is an equilibrium magnetic field, and B is a small perturbation expressed as
[14]

§B=Vx(B), (I6B/B|< 1) (3)

Hence, the test particle drift velocity v is given by

B+Vx ((pH + b)B)
V=5 ; (4)
B+a-Vx{(p+b)B)
where v) is the parallel velocity to the equilibrium magnetic field B, py = vy /S is the
parallel gyro-radius, 2 is the gyrofrequency, and # = B/B.
Instead of solving equation (1) directly, the Monte Carlo technique is used {20].
Equations for each guiding center particle equivalent to equation (1) consist of two parts:

orbit, and collision part. Without the Coulomb collisions the characteristic equations
of equation (1} are obtained from [14]

_dE
= =v-V§ (5)

where £ = (¢,0,(, p.). The variables v, 8,( are the Boozer coordinates: v is the label
of a flux surface defined as the toroidal flux/2r, 8 is the poloidal, and { is the toroidal

angle. The forth variable is expressed as p. = p; + b. The equations of the guiding
center in the Boozer coordinates become

. 1 8B  HAB\ B2 ob b
= — — — =)=, g=E
v=-7 {5 (J % 5 ) el (Jae Iag)}’ (6)
. 5§ 0B B? . b
. § OB e2B? ob
= ——I—+ 1+pd' +1-1, 8
¢ o0 T om ol { J4 ad)} (8)
. 5 .. OB , BB]
pc——;[(é—ch)EJr(lerJ)gd 9)
szpH " 8b ' Bb
+— (a—ch)@wL(HpcI)g ,
and
y=elJ +ul +p(JI' = 1], (10)
€2B AR
§=p+—p, Sy

where 2nJ (2n1) are the poloidal (toroidal) current outside (inside) the flux surface.
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To investigate the structure of the magnetic field lines, similar equations are
constructed as follows. By neglecting the particle drift motion, the equation (4) becomes

B
V== tA. (12)
B = TR (2

Substituting equation (12} into equation (5) the equation of the magnetic field lines is
obtained

dp  d0  d  ydt
B,-V¢ B:;-V8 B,-V( B;-#
where the time ¢ can be taken as an independent variable. Three equations on %, 6, and

{ obtained from equation (13) are expressed by equations (6), (7), and (8) by putting
§ = 0 and p. = b, namely

(13)

. m&¥p { .Ob @
Y= 5 (‘I%"Ic?g)’ (14)
N mQQpH 8(Jb)
g = " (é——-—8w ), (15)
;o mﬂzpn 8(Ib)

where
y=e(J+¢ +b(JI'—IJ). (17)

The equations (14)-(16) are solved under the condition that v = const. and p = 0.
The pitch angle scattering in equation (1) is expressed as

af v 8 A 18)

5;=C(f)=§5((1*’/\ VA (18)
where the pitch angle A = v; /v is used instead of 4, and v is the deflection frequency [14].
Since a uniform background plasma is assumed, the deflection frequency is constant in
both space and time. Knowing the solution of equation (18) with the initial condition
F(At = 0) = 8(A — Xg) a Langevin equation giving the same mean value of A and
standard deviation o is constructed [20]

dA

i vA = F(t). (19
The white noise source F'(t) is characterized by

(F(H) =0 and (FOF(E)) = (1 - Rwd( — 1) (20)
From the solution (19), for a discrete time step At satisfying Atv <1, A is changed as

Mtn) = Mtnoi 1 — vAL) £ /(1 = A2(ta_1) VAL, (21)

for one step from ¢,_; = (n — 1)Af s0 £, = nAi. The symboi = indicates that the sign
is to be chosen randomly, but with equal probability for plus and minus.

The magnetic field stochasticity and pitch angle scattering due to Coulomb
collisions introduce stochasticity in the system, so that the particle ensemble allows
statistical treatment.
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2.2. The structure of magnetic field

In the Boozer coordinates, the contravariant form of the equilibrium magnetic field B
is expressed as

B =Vy x V8 - eV x V(. (22)

Hence, the topology of the equilibrium magnetic field B is torus consisting of nested
toroidal flux surfaces. In the small perturbation given by equation (3), the function b,
which has unit of length, is used to represent the structure of destroyed magnetic field
By, i.e. the islands and stochastic regions. Its Fourier representation is

b(1,6,0) = Y bmn(th)cos(mb — né + {mn), (23)

where (rm n is the phase and |bma|/a < 1. The form of b,,,(1)) is assumed to be
bmn - Y¥mn 2
O _ o (-0 ).

a Ay?
where parameter s indicates the strength of perturbation, so called a stochasticity
parameter. The width of perturbation is controlled by the parameter Ay which is
chosen to be fixed.

The equations of the magnetic field lines are given by equation (13). Thus, by using

equations (22), (3), and (23), the topological changes of the magnetic configuration are
dominated by

(24)

](S}I:—ggé = > (mJ — nDbpma(¥)sin(mb — n¢ + Cmp) (25)

mn

For the equilibrium field B, the Poincare plot of the magnetic field lines satisfying
df/d{ =+ = n/m corresponds to fixed points with period m [7, §] in a poloidal cross
section with { = const.. In the presence of a small perturbation the resonances at
t(¥)) = n/m are origins for eventually topological changes in the system. According
to the KAM theorem [8], some of the fixed points remain after the small perturbation
is added, and the Poincare-Birkhoff theorem [8] proves that they are of elliptic and
hyperbolic type: alternate appearance of elliptic and hyperbolic points is a generic
property of the system at sufficiently small stochasticity parameter. Near every rational
surface with ¢(1) = n/m, closed regular orbits appear encircling the m elliptic points,
and forming a chain of m islands. The motion around hyperbolic points which are
connected by separatrices is apparently irregular. The island width [8] is approximately

given by
faR
Wmn = m,n‘\/gu Wm,n = (49 ?) 3 (26)

where 7., , is the radial position of the rational surface with g = m/n, ¢’ = dg/dr, and
a and A are minor and major radii, respectively. Most of irrational surfaces subsist
as KAM barriers among the island chains. As the stochasticity parameter increases
it reaches value at which the KAM curve changes its character from a continuous to

_9___
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curve with holes. Thus, the KAM curve is transformed into so called cantory (7, 8|.
Magnetic field lines, previously blocked by the KAM barriers, could chaotically wander
through the formed holes. Different KAM barriers disappear at different value of the
stochasticity parameter, and some occupy more and more area in phase space. Finally
at a critical parameter the last KAM barrier is destroyed: overlapping is started. The
value of the stochasticity parameter at which the overlapping starts is estimated from
equalizing the distance between two selected neighboring rational surfaces Ar to the
sum of the half widths of the corresponding islands:

Wm,n + Wm! nf Wm,n + Wm’,n’

S N (27)

Thus, the threshold value for overlapping is

2Ar 2

Se & (me’ﬂ n Wm,ﬂ’) . (28)
However, there still remain regions bounded by islands which shrink as the stochasticity
parameter increases. Thus, according to initial conditions and values of stochasticity
parameter, orbits with different topology appear: cycles (which correspond to the elliptic
points), invariant KAM curves (trapped orbits inside of island chains, and passing orbits
on irrational KAM barriers), and chaotic orbits (in stochastic regions) whose intersection

points densely fill a two dimensional region.
As an MHD equilibrium an axisymmetric FCT tokamak with regular nested flux
surfaces is adopted. The boundary is circular, B = 3T, and major and minor radii

are R = 3m, and ¢ = 1.01m, respectively. The profile of the rotational transform is
specified as

r\2
¢ = 0.9 — 0.5875 (;) , (29)
the aspect ratio is given by
a 1
£ == E = g, (30)

and B ==(kinetic pressure/magnetic pressure)= 0.
The Fourier harmonics of the magnetic field perturbation expressed by equation

(23) are chosen to be

n 7 27
m 10 3’ 11’
with (um = 0 and Ae)/2p, = 0.1. The relative magnitude of the perturbation is given by
sp = {0B - 7|/ B & ms/(Tmn/a) = 4.8s for the Fourier mode with (m,n) = (3,2). Thus,
according to equation (28), the critical value of s; is

85 27 x 1075, (31)
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2.8. Numerwcal model

The DCOM code [21] is used as well as in the neoclassical caleulation [19). The
monoenergetic (£ = 3keV) ensemble of N = 10000 guiding center electrons with
randomly distributed X is started from the same flux surface with ¢ = 2/3 (rational
surface) at r/a = 0.63, and with uniformly distributed poloidal and toroidal angles.
Each of electrons evolutes independent of the others, and its motion is described by
equations (6)-(9). The electron guiding center equations are solved using the 6th order
Runge-Kutta method. Based on the equation (21}, the pitch angle scattering due to
Coulomb collisions is added at every particle orbit step.

In order to satisfy the energy conservation condition, the time orbit step size At of
the numerical calculations is adopted to be At = 0.5 x 107 %s. The relative error of the
energy conservation is tolerated up to 107°% during the calculations.

When the magnetic field line diffusion is investigated {section 4.1) the test magnetic
field line ensemble is initially loaded at ¢+ = 2/3 with randomly distributed 8,(. The
magnetic field line is followed by numerically solving equations (14)-(16), with u = 0
and E = 3keV.

3. Establishment of the statistical approach

The particle radial diffusion is a realization of the collisional stochasticity (statistical
stochasticity [7]), and the magnetic stochasticity {deterministic stochasticity [8, 11]).

As the statistical measures, the cumulant, diffusion and autocorrelation coefficients
are calculated with respect to the radial particle displacement

or(t) = r(t) — r{0),
adopting ensemble average:
1N
(X) = EZX*’ (32)
i=1

where NN is the number of particles.
The dimensionless n-th cumulant coeflicient v,, {16, 17] is given by

Tolt) = Cf/ﬁz) (33)
where Cp(t) is n-th cumulant. The cumulants up to the 4th order are calculated as [17)
Ci(e) = (or (1)), (34)
Ca(t) = ((br(t) - (Sr(t))"),  n=2,3 (35)
Cult) = ((6r(t) — (r(th))") ~ 3C5(2)- (36)

The first cumulant is a measure of the advective effect or convective diffusion [17]. This
advective effect is eliminated from the higher cumulants. The second cumulant, i.e.
the mean square displacement, is the dispersion around {(§r{¢)), and a measure of the
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conductive diffusion. Its time development determines the type of diffusivity [7]. The
linear increasing in time corresponds to the normal diffusivity, slower, and faster than
linear increasing in time are then associated with the subdiffusivity, and superditusivity,

respectively.

The effective diffusion coefficient is defined as

_ dCs(¢)
D(t)=—_— (37)
and its power-law equivalent as
Co(t
Dpu(t) = 28, (38)

Note that both definitions have physical meaning, when the diffusion process is local.
This point will be discussed in section 5. When the power-law behaviour of Cy(t) is
assumed as

Cy(t) = t7%, (39)
the value of the diffusion exponent denotes normal diffusive (o = 1), subdiffusive
(o < 1), and superdiffusive (@ > 1} behaviour. Additionally, the relative difference of
Dy(t) from D(t) is calculated in order to evaluate how much the power-law behaviour
of Co(t) given by equation {39) holds
. |D@} — oDy (t)]
AD(%) = D)
When C is well approximated by equation (39), AD(%) vanishes.

It is proved [17] that the only physically acceptable random process with a finite
number of nonvanishing cumulant coefficients is Gaussian with -2 = 0. Therefore,
the cumulant coefficients v,~o generically carry information about non-Gaussianity [17]
1. The degree of asymmetry around {(d7(t)) and relative peakedness or flatness of a
particle distribution compared with Gaussian, are characterized by 7z (skewness), and
74 (kurtosis), respectively. A positive (negative) value of skewness signifies a distribution
with an asymmetric tail extending out towards dr(t) > (r(t)) (6r(t) < (dr(t))). On
the other hand, a positive (negative} value of kurtosis indicates more peaked (flatted)
distribution than the Gaussian one, i.e. the importance of the tails of the distribution
is enhanced (reduced), respectively.

The autocorrelation coefficient [16] is given by

Al ¢y = ) — Graere) — Gri2)) )
V{Or(®) — Ere)((ErE) — (ErE))?)
The statistical stationarity is ensured when the following relations are satisfied with
arbitrary time T’

x 100. (40)

Cialt+T) = Cialt), (42)
Y24t +T) = 734(t), (43)
A +T,¢' +T) = A(t - t). (44)

1 The non-Gaussianity is then related to the existence of the correlation effects in the treated diffusive
process
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In other words, when the cumulant, and autocorrelation coefficients are not affected
by a shift in time, the stochastic process is statistically stationary. In this stationary
process, corresponding o vanishes (non-diffusive behaviour), and the system of test
particle {magnetic field line} ensemble is relaxed to an equilibrium state. Note that this
definition of the statistical stationarity is more rigorous compared with that in [19], since
more general types of diffusive processes are treated. In the following all the cumulants
are normalized by the minor radius a.

In the context of the radial diffusion the degree of stochasticity of the magnetic field
lines, or of the particle trajectories tied to magnetic field lines is additionally indicated
by the effective radial Liapunov exponent. Generally, the Liapunov exponent of the #th
particle trajectory or -th magnetic field line, for given initial conditions {(position, and
initial orientation of the infinitesimal displacement) indicates the exponential rate of
divergence between it and initially neighboring trajectory

le,(t) = %ln (Ké}(i)—o)) : (45)
where d,(¢) is the distance at time ¢ between two initially neighboring trajectories, which
is usually evaluated in the tangential space of the trajectory [8]. The positive value of the
Liapunov exponent [; > 0 denotes exponential separation of two initially neighboring
trajectories. On the other hand, I, < 0 indicates that two initially neighboring
trajectories are stuck to each other, and their distance does not change for I;; = 0. Note
that in N-dimensional system the Liapunov exponents can be defined with respect to
any of the N directions {8]. The radial Liapunov exponent is expressed by the equation
(45), by taking d;(t) as the radial distance. The effective radial Liapunov exponent is
defined as the averaged radial Liapunov exponent over different initial conditions

) = F 2ttt (46)

where ¢ denctes different initial conditions.

The radial diffusion due to collisional stochasticity (initialized in the velocity space)
appears in the configuration space as a Wiener like process {19] in the presence of regular
magnetic field. On the other hand, being of a deterministic type, the radial diffusion
due to magnetic stochasticity inside the radially bounded irregular domains (initialized
in the configuration space) is considered to be of a mixing type [22]. Hence, both the
Wiener and the uniform mixing type process are used as references.

§.1. The Wiener process

The Wiener process in infinite domain [16, 18| is a Markov process described by the
Langevin equation

& P, (47)
at

where F(t) is the white noise characterized by
(F(t)) =0, (FRIF({)) = Dé(t —1'),
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with a constant D. Note that the particle position z(t) is expressed by the time
integration of independent random events.
Corresponding Fokker-Plank equation [18] is

5
gft(ﬂi,t!l‘o, 0) = 5 Br th(m tlzo, 0),

whose solution is the Gaussian conditional (transition) probability f;(zx,t|xo, 0) with the
initial condition fi(z,0}ze,0) = 8(z — zo).

The Markov property of the Wiener process [16, 18] is expressed as the complete
determination of the system by both the probability of any of its states (for example
initial state , f(zo,0)) and the transition probabilities fi(z,t|zo,0) from the referent
state to the i-th one

f(I'H ) ft(mza tlmﬂao)f(fﬂ, 0) Vit;.

In other words the successive transitions are statistically independent [18].
The cumulant coefficients, diffusion coefficient, diffusion exponent, and autocorre-
lation coefficient for 8z (t) == z{t) — zo are

Ci=0,Co=Dt,13=0,1u=0, (48)
D t
D(t) = Dpu(t) = 5 =1, Aft,t) = \/; t<t.

Thus, the Wiener process is a normal diffusive, Markov, Gaussian, and statistically
non-stationary process {16, 18].

Here a criterion of the Wiener process on the numerically obtained processes, which
will be used in section 4, is introduced. It is defined as

law—1| <0.1, Hys)w, (va)wl < 0.1, good fitting to Aw(2,¢') = \/tz,(zig)

3.2. Uniform mizing process

Following Krilov’s determination of the mixing type systems [23], the mixing can be
signed by a tendency of the points of an initially given phase-space region to be
uniformly distributed over a bounded surface of the single-valued integrals of motion as
time increases. Thus, the mixing is generically associated with the exponentially fast
relaxation of distribution function to the uniform distribution:

limt>’rca-r1’f($1 t) = (f(:l), t»a (50)

where T.rr is the correlation time, or the characteristic time of mixing, and with
exponentially vanishing correlations :

ry o~ a\T/T
Emmymy—iorenr, CLG1{E), g2 () s e T/Teor) (51)

where C(g,(t), g2(t')} denotes the correlation between arbitrary functions of the system’s
states, g:(¢) and g2(t'). One of the exponentially vanishing correlations among the states
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of system may be expressed by the autocorrelation coefficients (g;(t) = g(¢). g2(t') =
g(t)) as

A(t,t)) & Alr = ' — 1) = exp (~ ) . t<t (52)

The weaker concept of mixing, which allows slower relaxation than exponential decay
[23, 24}, is suggested in the physical systems recently, so that the exponentially fast
mixing is declared as the uniform mixing process. Note that the uniform mixing process

shows the ergodic property {23] over the bounded region of phase space where mixing
has been realized.

Teorr

In uniform mixing-type systems trajectories starting from two points laying close to
each other diverge rapidly following an exponential law {23]. This behaviour is described
by the positive effective Liapunov exponent (section 3}, and the positive Kolmogorov
entropy [8]. Thus, the uniform mixing process in the configuration space is characterized
by a time independent positive effective radial Liapunov exponent

(le) = limg oo (le(t)) (> 0) (53)

The Kolmogorov entropy is estimated as a sum over all positive Liapunov exponents.
In the absence of external forces, after the uniform mixing is established, the effective
radial Liapunov exponent and then the Kolmogorov entropy saturate to finite positive
value as a maximum entropy state.

The randomness with respect to the dynamical instability of motion, i.e. the
exponential divergence of the close trajectories [8, 7], is called the deterministic
stochasticity: the probability concept becomes applicable. Thus, neglecting the regular
phase appearing in the growth of exponential instability, the Markov property is
established [23].

The uniform mixing inside a bounded one-dimensional region ¢ < = < b is
characterized by

a+b (b a)? 6
Cl 2 y C2 12 » V3 0) Y4 5: ( ) 01 a D? (54)

and the autocorrelation coefficient given by equation (52) for ¢ > 7,,.. Hence, the
uniform mixing process is a non-diffusive, Markov, uniform, and statistically stationary
process for £ > Teorr

A criterion of the uniform mixing process on the numerically obtained processes is
defined as

2

w 6
oy < 0.1, Cy ~ *1—53, [(va)v, (va)u + gl < 0.1,
good fitting to A(t,t)) = Ay(t =t — t) = e 7eorr, (55)

where wy, is the radial width of the stochastic region.
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In such a case, various relaxation processes may exist. In the context of the radial
particle diffusion in the radially bounded stochastic magnetic field region, however, the
diffusive process, which is neither the Wiener nor the uniform mixing process in the long
time lmit, is categorized as subdiffusive or non-diffusive, profile neither uniform nor
Gaussian, statistically non-stationary, and (maybe) non-Markov process, which belongs
to the domain of so called fractal Brownian motion {25]. Thus, when a numerically
obtained radial diffusion does not satisfy the criteria given by equations (49) and (55),
the radial diffusion is recognized as the strange diffusive process with above mentioned
statistical properties.

4. Statistical properties of the particle radial diffusion

4.1. Statistical properties of the magnetic field stochasticity

To investigate the statistical properties of the magnetic field structure, namely the
cumulant, diffusion coeflicient, diffusion exponent, and autocorrelation coefficient, the
equations of the magnetic field line given by (14)-(16) are solved under the condition
of p = 0,E = 3keV, for various values of s, in equation (24). In this treatment the
time ¢ is used as independent variable, so that the direct comparison of statistical
quantities of the magnetic field structure with those of particles under Coulomb collision
becomes possible. Moreover, obtained statistical properties are interpreted as those
of guiding center particles without both perpendicular drift motion and Coulomb
collisions. To create various types of magnetic field structure, s;/sy. is chosen as 0.33
(before overlapping), 1.3 (near overlapping), 3.3 (moderate overlapping), and 33 (highly
overlapping), respectively. The critical value of sy corresponding to the overlapping
condition: s is given by equation (31).

The magnetic field stochasticity appears in the configuration space through the
growth of irregular domains. Thus, as long as the overlapping of neighboring islands
(developing of the global magnetic stochasticity) has not been started, the irregularities
are localized around the island separatrix regions, and the statistical treatment is
meaningless. However, the values of the cumulant, and autocorrelation coefficients in
the absence of the global magnetic stochasticity are mentioned because of comparison.

The magnetic field structures, for s3/ss. = 0.33,1.3,3.3, and 33, are the isolated
island chain at ¢ = 3/2(wsz2/a = 0.024), overlapping among islands at ¢ =
3/2,10/7,11/7(ws/a == 0.14), stochastic sea (ws/a = 0.17) with isolated island
structures at ¢ = 10/7,11/7(wWmn/ws ~ 1/4), and stochastic sea without structures
(wsi/a =~ 0.25). The wp, and wg are the width of the island and stochastic region,
respectively. In figures la-1d, the corresponding Poincare plots at the poloidal cross
section with { = 2.4drad are shown. The iime intervai for sequentiai pioiting is
100 x dt = 10~ 7s, and the test magnetic field lines are followed during the time interval
of 0 < t < 1.5 x 107*s for s3/s3. = 0.33,3.3, and 33, and the time interval of 1.3 x 1035
<t < 1.5 x 10735 for sp/85. = 1.3.
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4.1.1. Effectwve Liapunov erponent The effective radial Liapunov exponent given by
equation (46) provides a quantitative measure of the degree of stochasticity for magnetic
field lines. Thus, the effective radial Liapunov exponent is caiculated for a sample of
N = 1000 magnetic field lines. The numerical approach of reference {26] is adopted for
the magnetic field line described by equations (14)-(16), where the toroidal angle ( is
treated as an independent variable instead of time ¢ by combining equations as di/d(
and df/d(. The transformation to time is done by ¢ ~ ¢{ with ¢ = Rfvy, vy = /2E/m,
and E = 3keV.

Under the threshold for overlapping, sp/Sp < 1, although the effective radial
Liapunov exponent ([.(¢)} increases almost monotonically in time, it is always negative
during the calculation as is shown in figure 2a for sb/5c = 0.33. The corresponding
number of the magnetic field lines with positive Liapunov exponent N,(f) is very
few as is indicated in figure 3a. On the other hand, in the region of the global
magnetic stochasticity: s,/spc > 1, the effective radial Liapunov exponent (I.(t)) and
the number of the magnetic field lines with positive Liapunov exponent Np{t) almost
monotonically increase with time, as are shown in figures 2b (3b), 2¢ (3c), and 2d (3d)
for sp/su. = 1.3,3.3, and 33, respectively. The {{.(¢)) changes from negative to positive
values, asymptotically leading to saturation. The Np(t) also shows tendency to saturate
as time increases, and it saturates faster than (l.(#)). A characteristic time £, is defined
for sp/sp. > 1, as a time at which the effective radial Liapunov exponent becomes zero:
{le(ta}) = 0. As is understood from figures 3b-3d, as /s increases, about half of
the magnetic field lines come to have positive I.;(t) at t = #5. After g, Np(t) still
continuously increases, and (l(t)) becomes positive, which means that the divergence
of the magnetic field lines starts in the sense of average. Thus, the time tg 1s recognized
as the decorrelation time of the stochastic magnetic field lines. Judging from figures
2b-2d, the simple analytical model expression of (I.(t)} may be introduced as

) =t (1-72). (56)
where {l.) is the asymptotic value of (I.(¢)). By fitting the above expression to the
numerically obtained one, the asymptotic value (I.) is determined. The fitting curves
are shown in figures 2b-2d by dotted lines, where good agreement between the numerical
data and the model expression is seen. It may be concluded from this good fitting
that the time independent effective radial Liapunov exponent is indeed asymptotically
cbtained, namely, in the infinite time limit, as is indicated by equation (53). Thus, it
is useful to introduce such a finite time ¢, that indicates how the system is near a final
relaxed state. In the present case, such the time ¢, is defined as {l.(,))/{l) = 0.9,
namely, t; = 10 x t; from equation (56). Note that f, depends only on #4, once the
ratio (l.(t)}/{l.) is determined. The time ¢, is also interpreted as an indicator of the
relaxation of the effective radial Liapunov exponent. Times ¢4 and ¢, and the estimated

P

enoted in figures 2 and 3, and are summarized as
ta =12 x 107",t, = 10 X tg,c{le) = 5.4 x 1073, for sp/sp. = 1.3,
ta=2.0 x 107°8,1, = 10 X tg, c{le) = 3.7 x 1072, for sp/spe = 3.3,  (57)
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t; = 1.8 x 10755, ¢, = 10 x tg,c{le) = 4.5 x 1077, for sp/ 85 = 33,

Note that the larger sp/ss is, the shorter tq4, £, ts — tq become, and the larger (l.) is.
Moreover, by assuming {Ind(t)) = In{d{t)), from the equations (45}, (46) and (56},

(d(2)) ~ (d(0))et "), (58)

is obtained. This relation means that the averaged distance (d(t)) between two initially
neighboring trajectories exponentially grows after ¢ == 4. As one of the measures of the
uniformity, the dispersion of the effective radial Liapunov exponent around the mean
value is defined as

Y{(6)?) — (e(t))?

(Le(t)) '
The dispersion monotonically decreases with time after t = tg. For sp/sp. = 1.3 and
3.3, Al,(t) has a tendency to saturate to a finite value, namely, Al (t = 1) = 0.99
and 0.27, respectively. However, Al (t) tends to become zero for sp/sp. = 33, and
Al (t = t5) = 0.093. This tendency leads to interpretation that the uniform exponential
divergence of magnetic field lines is obtained as s5/ss increases.

Oun the other hand, as is shown in figures 3a-3d, approximately 0%, 82%, 98%, and
100% of magnetic feld lines have a positive radial Liapunov exponent for sp/se. =
0.33,1.3,3.3, and 33, respectively. The existence of magnetic field lines with a non-
positive Liapunov exponent for sp/s5. = 0.33,1.3, and 3.3 is related to regular structures
in the destroyed magnetic field region. As long as the test magnetic field lines are stuck
to the regular siructures (e.g. isiand like structures) or around them {e.g. separatrix
regions), freely wandering of the magnetic field lines, whichisa characteristic of magnetic
field lines in the irregular regions, is prohibited, leading to the negative or zero radial
Liapunov exponent. For example, the mentioned very slow increase of {l¢(f)} and Ny(t)
with time in the region of overlapping threshold, ss/sp. = 1.3, can be associated with
the fact that approximately 20% of magnetic field lines are prevented from wandering
by sticking to regular structures at ¢ > t4. Additional confirmation is obtained from the
Poincare sections. Roughly, the part of magnetic field lines, which is started from flux
surface with ¢ = 3/2 and is stuck to island like structure around g = 3/2 for t < {4, can
wander into the region around g == 11/7 after t = 4, and at t = {; wandering into the
region g = 10/7 starts. Thus, being temporary stuck to regular structures, the magnetic
field lines need long time to experience all allowable bounded destroyed region, and the
tendency of {{.(t)) and N,(t) to saturate becomes slow.

As it is clear from the above argument, even if the overlapping condition of
magnetic islands is satisfied {s5/sp > 1), the statistical treatment of the magnetic field
stochasticity is meaningless before ¢ = t4. From figures 3a-3d it is seen that the number
of the magnetic field lines with positive Liapunov exponent becomes constant before
t = t,(> tyg) for sp/sse = 3.3, and 33, and almost constant for sp/sp. = 1.3. Since the
magnetic field lines with positive Liapunov exponent have similar expanding properties,
once the number of magnetic field lines with positive Liapunov exponent becomes nearly

Al (t) = (59)
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constant, the statistical properties of the magnetic field stochasticity are considered not
to change, but to become uniquely clear at least qualitatively. Hence, the statistical
properties of the magnetic field stochasticity are mainly examined after the number
of the magnetic field lines with positive Liapunov exponent becomes constant, namely
after t = £, in order to save the computational time. In the following calculations, this
condition is satisfied for sp/s,. = 3.3, and 33, and it is weakly satisfied for 53/, = 1.3.

4.1.2. Type of diffuswe behawviour The case with isolated magnetic field irregularities
{85/ 84 = 0.33) is characterized by the oscillatory behaviour of the second cumulant Cy(t)
around 2 x 107° and the diffusion exponent « around 0. Those oscillatory behaviours
come from regular motions.

In figure 4 the time developments of the second cumulant in the region of global
stochasticity (sp/$se = 1) are shown for sp/8,. = 1.3 (solid line), for s/ 5. = 3.3 (dashed
line), and for s5/ss. = 33 (dotted line), respectively. Note that C, for sp/s,. = 1.3
is enlarged by the factor 4. After the transient phase (f > ¢4 = t5/10), the second
cumulants gradually increase. This behaviour is completely different from that of the
Wiener process shown in figure 2 in [19]. The corresponding diffusion exponent «, two
types of diffusion coefficient D(t), Dy, (t), and the relative difference AD(%) in the long
time limit (¢t > t5) are shown in tables 1 and 2 (the corresponding row is indicated
by v/vy = 0{vgr = 0)). In the case of sp/sp. == 1.3 with regular structures in the
stochastic region, the diffusion exponent « is fairly less than unity, but finite. Thus,
it is understood that the radial magnetic field diffusion behaves as subdiffusive. In
this case, the relative difference AD(%) given by equation (40) between D(t) given
by equation (37) and D,,(f) given by equation (38) is not so large. The power-law
approximation of the diffusion coefficient is not so wrong. However, as s;/ss. increases,
e.g., Sp/Spe = 3.3 or 33, this difference becomes quite large, and the diffusion exponent
becomes significantly smalil. Thus, the radial magnetic field diffusion is cousidered to
be non-diffusive.

After the overlapping of the magnetic islands, as s;/sp. increases, the type of
diffusive behaviour changes from subdiffusivity to non-diffusivity in the long time limit.
This tendency is natural in the considered magnetic field. The stochastic magnetic field
considered here is bounded in the radial direction, namely outside of the stochastic region
KAM surfaces exist. Thus, the maximum relative radial displacement |6t} — {67{t)} max
in the duration of the calculation is bounded by ws/2 for each field line. Moreover, as
Sp/8pe increases, the magnitude of the average Liapunov exponent (l.) rapidly increases
as is shown in figure 2, so that majority of magnetic field lines reach the boundary of the
stochastic region in a short time. Hence Cy(f) rapidly increases up to the order of the
bounded value (w;)?/12, which means the non-diffusive behaviour in the long time limit.
Indeed as is shown in figure 4, Cy(t) for sp/ss. = 3.3 and 33 is of the order of (w)?/12
after ¢ = 4. In the iong time iimit, Cy & (w)>/16 for sp/sp. = 3.3 and Cy = {(wy)?/12
for sy/ss. = 33. Note that the non-locality of the trajectories leads to sub- or non-
diffusivity. The situation of the radial particle diffusion in the regular magnetic field
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investigated in {19] is completely different. Although the system is bounded by the minor
radius a, the relative radial displacement ér(t) — (dr(t)) is significantly small compared
with a because of the quite small radial drift width, so that the particles never reach
the plasma boundary in the observation duration, or the particles can not recognize the
existence of the boundary. Therefore, the locality of particle diffusion is ensured and
the relative radial displacement can act as §7(t) — (0r(t)) ~ +/vtc (c is positive constant)
by the collisional effect, leading to the normal diffusion.

4.1.8. Autocorrelation coefficient The oscillatory behaviour of A(¢, 1) with respect to
7 1s one of characteristics of the dynamical motions in the region of isolated island chain
with sb/sbc = 0.33.

In figure 5, the autocorrelation coefficients A{t,7 = ¢’ —t) vs 7/t; are plotted at
t = 0.56¢, for sp/sp. = 1.3 (solid line)}, for s5/sp. = 3.3 (dashed line), and for sp/sp = 33
(dotted line), respectively. The reminiscent oscillatory pattern on the power-law like
envelope for sp/spe = 1.3 (where overlapping between islands has just been started
(figure 1b)) is the indication of the relative importance of the regular motion inside the
stochastic region. It is indicated by P, in table 3. As sp/sp. increases, this oscillatory
behaviour of A(¢,t") vanishes, and a stationary power-law like behaviour appears. For
sp/ spe = 3.3, this stationary power-law like behaviour can be fitted as

At t) == A(T) = 77087, (60)
for large 7 (figure 5, dashed line), and is indicated by P in table 3.

In the presence of stochastic sea without structures (ss/ss. = 33}, the exponentialiy
fast vanishing autocorrelation coeflicient (denoted by E in table 3) is obtained (figure
5, dotted curve). Note that 7 is normalized by ¢5. Since the autocorrelation coefficient
has been found to be independent of the starting time £, it may be expressed as

Alt, ') ~ A(r) = exp (_ T ) , (61)

CoTT

where 7. is the autocorrelation time. The numerically evaluated 7., is around
2.4 x 10 ®%s. This time corresponds to £4 given by equation (57).

According to figure 5 and the above discussion, as sp/sy. increases, the time
correlations are lost faster, and the tendency of A(Z,t') to be stationary becomes
stronger. For sp/sp. > 1, as it is shown in figure 3, some of magnetic field lines have
a negative Liapunov exponent, which means that those field lines stick on the regular
structures inside the stochastic region as mentioned in section 4.1.1. This sticking may
be related with the slow power-law like decay of A(f,t') without the autocorrelation
time. As sp/ss increases more {sp/sy. > 1), regular structures disappear, so that all of
the magnetic field lines have a positive Liapunov exponent as is shown in figure 3d and
the effective radial Liapunov exponent has an almost time independent positive value in
the long time limit with ¢ > £,. Since relative dispersion of the effective radial Liapunov
exponent is small: Al (¢} = 0.093, all magnetic field lines have time-independent similar
magnitude of the Liapunov exponent in the average sense. In other words, it is connected
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with ergodicity of the magnetic field lines. Hence, the autocorrelation coefficient A(t,t)
may become independent of time, namely stationary: A(t,t') = A(r = t' — ¢), and
shows an exponentially fast decay with the autocorrelation time 7., ~ tg, after which
the time correlation vanishes,

4.1.4.  Cumulant coefficients Although the first cumulants C; show complicate
temporal behaviours depending on s;/ss., the magnitude normalized by the minor radius
is always quite small independent ou s,/ s, as is indicated in table 4 for the long time
limit.

Before island overlapping with s,/sy. << 1, as well as C; and Cs, both the skewness
vs and kurtosis 4 show oscillatory behaviours in time around 3 ~ 0 and 4 ~ —0.4,
reflecting the regular motions in the magnetic islands.

After the overlapping with s;/s,. > 1, such oscillatory behaviours in time disappear,
and the radial distribution of the stochastic magnetic field lines or particles strongly tied
to them is completely different between the state near island overlapping threshold with
5p/88c ~ 1 and the more stochastic state with s;/s,. > 1. Near the threshold of island
overlapping, both the skewness v3 and kurtosis v, rapidly increase in the ballistic phase
corresponding to the time ¢ < ¢4, and gradually decrease keeping the values positive,
as is indicated in figures 6 and 7 by solid lines. Thus, the radial distribution is a
peaked profile compared with Gaussian, and also the distribution has an asymmetric
tail extending out towards ér > (ér), which is consistent to the Poincare plot shown in
figure 1b.

In the moderate overlapping case with s,/s,. > 1, sticking of the magnetic field lines
to O-points and around X-points of the magnetic island chain near the flux surface, from
which magnetic field lines are started, is fairly released as is shown in figure lc. Thus,
except for such sticking regions and inside of the magnetic islands with different helicity,
the Poincare plots of the field lines are almost uniform. Reflecting the results of the
Poincare plots, the kurtosis v, has a tendency to reach the values similar to the uniform
mixing process: ¥4 = —6/5, as is shown in figure 7 by the dashed line. As s;/sp increases
more, the uniformity of the Poincare plots becomes stronger as is shown in figure 1d, so
that within the ballistic phase (¢ < ¢4), the kurtosis v4 almost reaches the value of the
uniform mixing process, as is indicated in figure 7 by the dotted line. The skewness -3
of the moderate or highly overlapping case takes a small negative value within ballistic
phase, and keeps the sign and the magnitude unchanged after ¢ = i4, as is shown in
figure 6 by dashed and dotted lines. Thus, in these cases, the radial distribution of
the stochastic magnetic field or particles strongly tied to them is fairly or almost the
uniform distribution with a small asymmetric tail towards dr < {dr).

4.1.5. Type of statistical process Judging from the criteria given by equations (49)
and (55), in the partially destroyed magnetic field structure with mixture of regular
and irregular regions (ss/ss. > 1), the magnetic field stochasticity appears in the long
time limit with £ > £, or ¢ > {; as a strange diffusive process: subdiffusive or non-
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diffusive, profile neither Gaussian nor uniform, and statistically non-stationary or almost
stationary process. This strange diffusive process is symbolized by S in table 7. As
s/ Spe increases, the autocorrelation coefficient changes from oscillatory for sp/sp. = 1.3
to stationary power-law like behaviour given by equation (60) for s3/s5. = 3.3. Thus, in
order to distinguish these properties, Sysc and Ss: are used in table 7, respectively.
When sp/s5. > 1, the magnetic stochasticity in the long time limit with ¢ 2> 7oy =
tg appears as a uniform mixing process (equation 55): non-diffusive, uniform, Markov,
statistically stationary process with exponentially vanishing autocorrelation coefficient.
It is denoted by symbol U in table 7. Note that the criterion of the skewness 3 is
violated for uniform mixing process: vz = —0.13 < (—0.1) in table 5. This deviation
of 43 from the uniform mixing process comes from inhomogeneity of the system: the
asymmetry of the system due to a fairly wide (wy/a = 0.24) stochastic region in the
circular bounded cross section and a not so small equilibrium magnetic shear. However,
this asymmetry indicated by 73 looks like not affecting other statistical properties, thus
the highly overlapping case with s,/sp = 33 is treated as a uniform mixing process.
The question about Markovianity remains open. The Markovian approximation is
justified whenever the correlations are rapidly lost during the relaxation of the system
[7, 24]. In the present case, the Markov approximation is applicable only to the case
with highly developed magnetic field stochasticity (sp/see > 1) in the long time limit.
In the partially destroyed magnetic field structure with mixture of regular and irregular
domains (sp/spe > 1), however, the non-uniform particle distribution, and power-law like
or oscillatory like behaviour of the autocorrelation coefficient indicate that the space-
time correlations remain in the long time limit ¢ > ¢5. Thus, from the statistical point of
view, it is considered that obstruction of the uniform mixing by sticking of test magnetic
field lines to the local regular structures or around them leads to non-Markovianity.

4.2. Collisionless drift decorrelation

In section 4.1, the statistical properties of the magnetic field are examined from the
view point of the radial displacement. As is mentioned in section 4.1, those properties
are interpreted as the statistical properties of the radial particle diffusion without both
the perpendicular drift motion and Coulomb collision. In this section, the influences
of the perpendicular drift motion on the statistical properties of the radial particle
diffusion without Coulomb collision are investigated. For such purposes, equations (6)-
(9) are solved in the stochastic magnetic field considered in section 4.1 without Coulomb
collision, under the initial conditions mentioned in section 2.3.

Even if the Coulomb collision does not exist, the particle can move from one
magnetic field line to another due to the perpendicular drift motion. This effect
is called the collisionless drift decorrelation from the magnetic field line. However,
since the drift velocity perpendicular to the magnetic field lines is much smaller
than the parallel velocity, effects due to drift motion across magnetic field lines on
the statistical properties are considered to be small. Indeed, although quantitative
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differences exist as shown in tables (1)-(7), qualitative differences are not seen except
for the autocorrelation coefficient for s3/s5- = 33 > 1. In figure 8, the autocorrelation
coefficients A(t, 7 = t' - t) vs time interval 7/, arc drawn for several starting times ¢:
t = (2.7x107%,0.74 and 3.3)¢,. Although the autocorrelation coefficients exponentially
vanish independent of the starting time, a finite correlation A(t, ') = 0.05 is recovered
after the correlation time 7 > 7.,,, when the starting times are taken as large as
t > Teorr- It is denoted by E ., in table 3 and U, in table 7. Due to the perpendicular
drift, the particles are redistributed compared with case without drift. However, the
physical reason of the finite correlations is not clear.

As summary, although quantitative differences (and qualitative differences in the
limited range of parameter s;/s;.) exist, the statistical properties of the radial diffusion
without Coulomb collision are determined by those of the stochastic magnetic field.

4.3. Particle radial diffusion in the presence of both magnetic and collisional
stochasticity

The statistical properties of the particle radial diffusion in the presence of the magnetic
field stochasticity without Coulomb collisions have been examined in 4.1 (without
perpendicular drift motion) and 4.2 (with them), respectively. In this section the
statistical properties of the radial particle diffusion in the presence of both magnetic
field and collisional stochasticities are considered. The same magnetic configurations
as in sections 4.1 and 4.2 are used. Three cases of collisionality are chosen to be
vfve = 0.45,4.5, and 45, where 14 = 2.21 x 10%7! is the transit frequency of passing
particles defined in the equilibrium magnetic field [19]. Thus, v/v; = 0.45 corresponds
to plateau collisionality regime, and v/v, = 4.5, and 45 correspond to Pfirsch-Schliiter
collisionality regime, respectively.

When the global magnetic stochasticity has not been developed (s3/sp. < 1), the
particle radial diffusion is governed by the collisional stochasticity. In the collisionless
limit the test particles started inside the islands are prevented from escaping there into
the regular KAM regions. Thus, the trapped particles inside islands execute periodic
motion as long as they are tied to the magnetic field line. The characteristic time
of this motion around O-point is estimated to be ¢, ~ 27, ~ 8.7 x 1077s, where
7: = vy = 435 x 1077s is the characteristic time of passing particle motion [19].
Thus, the long time limit in the presence of collisions is determined by

t > max(7,, {ts)), (62)

where 7, = v~ ! is the collisional characteristic time and (ty) = 1.8, = 1.6 x 107 %s is the
averaged time of ¢,, which is obtained by simple approximation of the motions in the
magnetic islands as one dimensional pendulum. The ratios of (¢;) to 7. are shown in
table 8 for s,/sp. = 0.33. Since {t;} > 7., the long time limit for s5/ss. = 0.33 is defined
ast>» (tb).

In the region of global magnetic stochasticity with s,/s;. > 1 the relaxation time of
the effective radial Liapunov exponent, £, (section 4.1.1) is compared with the collisional
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characteristic time, and the long time limit is defined as
t > max(7e,ts) (63)

The ratios of t; to 7. are shown in table 8 for s5/s5. = 1.3,3.3, and 33, respectively.
Because of t, > t; > 7., the long time limit for these cases is defined as ¢ > ;. However
as well as the magnetic field structure in 4.1, once t > ¢, is satisfied, the statistical
properties do not change qualitatively. Thus, to save computational time, the long time
limit is treated as t > t;.

4.8.1. Type of diffusive behavour The collisional effects on the second curnulant (the
mean square displacement) Cy(£) are shown in figure 9, (a) for sy/sec = 0.33, (b) for
sp/s5. = 1.3, (c) for sp/8s. = 3.3, and (d) for sp/sp. = 33, respectively. Before the island
overlapping (ss/s5. = 0.33), (l.(t)) is always negative as is discussed in 4.1. When the
collisions are absent , Cy(t) shows a superdiffusive phase due to the ballistic motion
in the early time (f < #4), where the maximum of C; becomes of the order of that in
the corresponding uniform mixing process: Co™ ™ = (wy3)?/12 ~ 4.8 x 107°. After
such the superdiffusive phase, C3(¢) decreases and oscillates around a constant value,
because of stickness to the regular structures inside of the magnetic islands ({(l.(¢}) is
always negative). When the collisions are introduced, such the superdiffusive phase and
oscillatory behaviour are suppressed because of 7, < (¢} as is shown in table 8, and
C5 comes to monotonically increase in time. As the collision frequency increases, the
diffusive behaviour in the long time limit changes from subdiffusive for v/1; = 0.45 to
normal diffusive for v/1; = 4.5 and 45 as is shown in table 1, and the magnitude of the
diffusion coefficient decreases up to the level of the neoclassical diffusion in the regular
magnetic field, independent of the definition of the diffusion coefficient, as is indicated in
table 2. The magnetic structure before overlapping considered here has both magnetic
islands with small widths and quite tiny stochastic region around the separatrix. Thus,
when the Coulomb collisions are fairly frequent (7. < {ts)), particle orbits scattered by
the collisions can not follow the magnetic field lines inside of small magnetic islands and
of tiny stochastic region, leading to the normal diffusion with the magnitude similar
to that in the neoclassical diffusion. As the collision frequency decreases (7., < {fs}),
particles can trace the magnetic field lines, which may lead to the subdiffusivity reflecting
magnetic field structures. Note that the change of the magnitude of C; with respect to
v/v; is not monotonic. Since this behaviour becomes more clear for sp/sp. = 1.3, the
reason is considered there.

Near the threshold of the island overlapping (s3/s5. = 1.3), the behaviour of (s, and
so, the behaviour of the diffusion exponent and the diffusion coefficient, are qualitatively
similar to those before the island overlapping (sy/sp. = 0.33), as are shown in figure 9(b),
and tables 1 and 2, namely with increasing in the collision frequency, type of diffusivity
changes from the subdiffusive for /1 = 0.45 to the normal diffusivity for v/v; = 4.5
and 45. As is similar to the case before overlapping, the change of the magnitude of
C, with respect to v/v; is not mounotonic. In the absence of the Coulomb collision, a
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superdiffusive phase due to ballistic motion exists in the early time (¢t < t4) as well as
before overlapping, where {{.(¢)} is negative and the maximum of C; becomes the order
of that in the corresponding uniform mixing process: Cy™/™ = (wg)?/12 ~ 6.6 x 1071,
After decreasing, C,{t) increases in time with oscillatory behaviour because (I.(t))
becomes positive and the number of field lines with positive radial Liapunov exponent
N,(t) increases with time as is seen in figures 2 and 3. When weak collisions with
v/ve = 045 are introduced, such the superdiffusive phase and oscillatory behaviour
disappear according to 7. < tg as shown in table 8, and the magnitude of C5(¢)
decreases. This phenomenon is due to the interruption of the parallel free streaming by
the pitch angle scattering. Since the mean free path is still long (Aps = vy7e ~ 32m),
however, the subdiffusivity due to the magnetic field is still strong. As the collision
frequency increases more (v/1; = 4.5), according to the reduction of the mean free
path (Amsp ~ 3.2m}, the subdiffusive properties and the magnitude of Cy(t) are more
reduced. When the collision frequency becomes extremely large (v/v; = 45), the mean
free path becomes considerably short (Amy, ~ 0.32m}, so that the diffusion due to the
stochastic magnetic field is lost and the normal diffusion due to the pitch angle scattering
appear. This collisional effect is understood in terms of the Kolmogorov length defined
as Lxg = v)/{l.). From this equation, the relative average radial displacement of the
stochastic magnetic field lines Ad in the duration of the collision time 7, after t = t4 is
expressed as

Ad= (d(t +Tc)> _ <d(t)> ~ e/\mfp/LK —1. (64)

(d(z))

In the case with s3/s5. = 1.3, as is shown in figure 2b, {l.}c is the order of 5.4 x 1073,
so that Ad ~ A5 /Lx < 1, namely the relative average radial displacement of the
stochastic magnetic field lines in the duration of the collision time is too small in the
range of the collision frequency considered here, and the radial displacements due to
collisions themselves become significant as v increases. In the weak stochastic magnetic
field with sp/sp. < 1, infrequent collisions reduce the mean square displacement C,
however, frequent collisions enhance it in the long time limit.

In the moderate overlapping case with s;/s5. = 3.3, when the collision is absent,
the mean square displacement C becomes as large as the corresponding uniform mixing
level in the early superdiffusive phase: C&™/™™ = (19,)2/12 ~ 2.4x 1073, After that, Cs
does not decreases so much, but hold the level in the interval of £ < t4, where the effective
radial Liapunov exponent (l.) is still negative. Since the magnetic field is considerably
stochastic compared with those for s;/s5. < 1, field lines or particles with only parallel
drift spreading in the superdiffusive phase are considered not to return near the original
position. After ¢ = 4, the effective radial Liapunov exponent becomes positive, and both
(l.) and the number of field lines with (l.) > O increase, so that C; gradually increases
keep the level of the uniform mixing process. Weak collisions with v/v; = 0.45 do not
disturb so much the radial diffusion due to magnetic field stochasticity, because {l.)c is
larger than that for s3/s5. = 1.3 by one order of magnitude as is understood from figure
2, so that the relative average radial displacement of the stochastic magnetic field lines
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in the duration of the collision time is fairly large, e.g., Ad ~ 0.45 for (I.)c = 3.7 x 1072
Hence, subdiffusivity stemming from the magnetic field stochasticity remains, and the
level Cy is in the range of the uniform mixing process. When the collision frequency
increases as v/v, = 4.5 and 45, Ad decreases and the property of subdiffusivity is
gradually lost, and finally the normal diffusivity appears, as is shown in table 1. In
the range of the collision frequency considered here, the magnitude of C, monotonically
decreases as the collision frequency increases.

In the highly overlapped case with $3/ss. = 33, as well as the moderate overlapping,
the mean square displacement C5 becomes as large as the uniform mixing level in the
early superdiffusive phase: CF™™ — (w4)?/12 ~ 5.2 x 1073, Since the stochastic
magnetic field has no regular structures, t4 is quite small, and all of magnetic field lines
have positive Liapunov exponent in a short time as is seen in figure 2, then C3 becomes
almost constant with the level of uniform mixing process except for the small oscillatory
behaviour. The relative average radial displacement of the stochastic magnetic field lines
in the duration of the collision time Ad is 89.,0.58, and 4.7 x 102 for v/1; = 0.45,4.5,
and 45, respectively. Thus, the collisional effects are so weak that the process always
shows subdiffusivity due to the magnetic field stochasticity in the range of the collision
frequency considered here, and the magnitude of Cy monotonically decreases as the
collision frequency increases.

4.3.2.  Autocorrelation coefficients The effect of collisions on the autocorrelation
coefficient A(¢,¢") is shown in figures 10a-d: (a) for s/ see = 0.33, (b) for sp/sp. = 1.3, (¢)
for sp/ss. = 3.3, and (d) for s/sp. = 33, respectively. In each figure, the autocorrelation
coefficients A(f,t") = A(t,7 = ¢’ — t) are plotted as the functions of the normalized
time interval between the ending time ¢’ and the starting time t: 7 = (¢ — £)/{tp) for
Sp/85c = 0.33 and 7/t for sp/see = 1.3,3.3, and 33, respectively. Two starting times
t =t and ¢t = 5 are specified. The starting time £ = ¢; corresponds to the early time:
t = 3.1 x 1073{ty) for sp/sp. = 0.33, t = 8.3 x 107%, for sp/sp. = 1.3, t = 2.5 x 1074,
for sp/s6. = 3.3, and t = 2.8 x 1073, for s/sp. = 33; and the starting time t = o
corresponds to the late time: t = 41.(t;) for sp/sp. = 0.33, t = 0.56¢, for 35/35. = 1.3,
t = 0.56t; for sp/se. = 3.3, and t = 1.51¢;, for sp/ss. = 33. The dashed, dot-dashed, and
dotted curves correspond to v/vy = 0.45,4.5, and 45, respectively and the corresponding
Wiener cases are drown by solid curves. As the collision frequency v/v; increases,
independent of sp/sp., the autocorrelation coefficient A(¢,7) has a tendency to become
non-stationary power law like, whose values for a fixed ¢ and 7 are smaller than those of
the corresponding Wiener process in the range of the collision frequency considered here.
When the collision frequency v/v; increases and s;/s;. decreases, A{t, 7) finally becomes
Wiener like. In table 3, the types of the behaviour of A(¢, 7) as a function of ¢ and 7 are
indicated, where Py means that the behaviour of A{f,7) is well approximated by the
Wiener process in the whole starting time or in the long time limit, and P indicates the
above mentioned power-law like behaviour. These properties are understood as follows.
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The numerator of the autocorrelation coeflicient A(t.t) is expressed as

((or(t) — (8r(£)))(r (") — (or{t')))) ~ (dr(t)ér(t"))
= (6r(t)?) + ((6r(t") — 8r(t))or{t)), for ' >t (65)

where the first cumulant Ci(¢t) = (dr(¢)} is neglected, because it is quite small as
indicated in table 4. Thus, the starting time ¢ appearing in A{¢,7) is interpreted as
the common time interval between two trajectories é7(¢) and ér(¢’) for ¢’ > ¢. In the
case of the Wiener process, as is understood from equation (47), the radial displacement
is a superposition (time integration) of completely independent events created by the
white noise. In this context, the pitch-angle scattering acts as the white noise (although
both the pitch-angle scattering frequency and the width of perpendicular particle
drifts determine the magnitude of the correlation of the white noise). Therefore, the
correlation without common time interval vanishes, namely, ((8r{t')—&r(£))ér(t)) = 0 in
the above equation. In other words, the correlation is created within the common time
interval £. For a fixed 7, the longer such the common time interval ¢ becomes, the more
the correlation persists. This property of the Wiener process is one of the characteristics
of the particle radial diffusion by the Coulomb collision in the regular magnetic field
[19], and is closely related to the locality of the particle orbits and particle diffusion
in the radial direction. Partially because the drift width is quite small compared with
the system size, and partially because the accumulation of small pitch-angle scatterings
created in the velocity space gradually change the particle radial drift motions, the
locality of the radial diffusion is ensured. Thus,the correlation indicating that the
constituents of the particie ensemble stays near each other between two different times
is increased, as the common time interval ¢ or the starting time of A{¢,7) increases for
a fixed 7.

On the other hand, the stochastic magnetic field in the radially bounded region
shows the uniform mixing properties when sp/sp.(> 1) increases, as discussed in 4.1. In
these cases, the stochasticity of the magnetic field lines is characterized by the positive
radial effective Liapunov exponent (l.){> 0), namely the ensemble of field lines or
particles tied to the magnetic field lines have a tendency to exponentially spread in
the radial direction. Thus, the knowledge that the field lines or particles stay near
to each other is easily lost even if the common time interval t is large, so that the
correlation between stochastic field lines or particle trajectories, comes to be rapidly lost
independent of the common time interval or starting time ¢. As sp/sp{> 1) increases,
the autocorrelation coeflicient has a tendency to be reduced faster with stationary form:
A(t, ) ~ A(7). Note that the parallel motion of particles along stochastic magnetic field
lines leads to the decorrelation in the radial direction. In other words, the non-locality
of the radial displacements due to the stochastic magnetic field lines makes fast loss of
the correlations or fast decorrelation in the radial direction.

When the collisions are introduced to the particle radial diffusion in the stochastic
magnetic field, the fast radial spreading of the particles along the perturbed field
lines is interrupted. As a result, particles can stay nearer compared with the case
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without collisions, which means that the fast loss of the correlations by the stochastic
magnetic field is suppressed by the Coulomb collisions. The fact that the Coulomb
collisions suppress the decorrelation due to the magnetic field stochasticity appears
as the non-stationary power-law like behaviour of the autocorrelation coefficient. As
b/ she increases, such the collisional suppression of the decorrelation is reduced, since
{le)Te = Amjsp/ Lic increases, where Angp = vy7. and Lg = v /(L) are the mean free path
and the Kolmogorov length, respectively. Note that the Coulomb collisions themselves
do not make the correlation, but suppress the decorrelation by the stochastic magnetic
field. In the case of the neoclassical particle radial diffusion, perpendicular particle drifts
are decorrelated by the Coulomb collisions, and superposion of such random events leads
to the Wiener process according to the central limit theorem [22]. In contrast with it,
in the particle diffusion in the highly stochastic magnetic field, parallel particle drift
along stochastic magnetic field lines leads to the decorrelation in the radial direction,
and Coulomb collisions suppress such the decorrelation through the scattering of the
parallel particle drift.

In figures 11a,b, A(f, 7) vs 7/t, for sp/sp. = 3.3 is plotted by solid curve with respect
to various starting times: (a) for v/y, = 0.45, and (b) for v/u, — 45, respectively. The
corresponding A(f, 7) of the Wiener process is also drawn by dashed curve. The starting
time is chosen as £ = (2.5 x 107%,6.2 x 1072, ..., 0.56) t,. It is quite clear that the A(t,7)
becomes that of the Wiener process, as v/v; increases.

4.3.8. Cumulant coefficients As is shown in table 4, the convective effect indicated by
C; is quite weak independent of both s3/sp. and v/v;. Although the values of C, are
larger that those in the necclassical cases in {19}, they are still too small compared with
the minor radius a (C: is normalized by a).

As is mentioned in section 2, the both non-vanishing skewness 3 and kurtosis 4
indicate the deviation of the particle distribution from a Gaussian profile, and y4 = —6/5
corresponds to the uniform mixing process.

Before the island overlapping with s3/s,. < 1, the oscillatory behaviours coming
from the particle regular motions, observed in the case without Coulomb collisions, are
suppressed by the Coulomb collisions. Since the particle radial displacements stemming
from the isolated magnetic island chain are quite small (particles are initially loaded
at the corresponding rational surface), the radial displacements are mainly governed
by the Coulomb collisions, leading to the distribution with vanishing both ~; and
¢ (tables 5 and 6). Note that the vanishing of the skewness and kurtosis together
with the previously mentioned normal diffusivity (section 4.3.1) and the Wiener like
autocorrelation coefficient (section 4.3.2) for v/v, = 4.5 and 45 means that the particle
distribution is Gaussian according to the criterion given by equation (49).

In the highly overlapping case with s;/ss. > 1, the scattering due to the Coulomb
collision of the parallel particle motion along the stochastic magnetic field lines is so
weak that the particle radial distribution is similar to the corresponding uniform profile
with 4 = —6/5, as is shown in table 6. As is mentioned in section 3, inhomogeneity of
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the equilibrium magnetic field due to the magnetic shear creates the finite skewness vy,
but the values of 3 are similar to the cases without collisions.

The behaviour of 3 and =4 in the case near the island overlapping threshold
and the moderate overlapping are fairly complicated. The reason may be due to the
regular structures inside the stochastic sea, to or around which particles stick. The
Coulomb collisions scatter particle motions: they sometimes scatter the particle from
the stochastic field line to the particle stuck by regular structure and vice versa. The
change of the temporal behaviours of v4 due to the Coulomb collisions is shown in figure
12 for sp/spe = 3.3, where the change of the radial profile in the long time limit from a
broad profile (4 < 0) to a peaked one {4 > 0) is understood as v/v; increases.

4.3.4. Type of statustical process The type of statistical process is summarized in table
7, being based on the results presented in 4.3.1-4.3.3, where U and W indicate the
uniform mixing and Wiener process, respectively, and the symbol S denotes the strange
diffusive process.

In the absence of the Coulomb collision, as s3/sp.(> 1) increases, the magnetic
field stochasticity or the particle radial diffusion with only parallel drift motion comes
to appear as a uniform mixing process reflecting non-locality of orbits, which is a non-
diffusive, uniform, statistically stationary, and Markov process after the exponentially
fast relaxation during the time interval t ~ 7., & t5. The Coulomb collisions interrupts
the fast non-local radial displacement of particles along the stochastic magnetic field
lines. When the collision frequency is not so frequent {v/v; < 1), however, the locality
is not established. Thus, the particle radial diffusion develops as a strange diffusive
process in the long time limit: subdiffusive, profile neither uniform nor Gaussian,
and statistically non-stationary process, in almost all (sy/ss., /1) parameter space.
'The Markovianity in the strange diffusive process is still open question, which will be
considered in future. When the collisions are fairly frequent (v/v, > 1) and uniformity
of the magnetic field stochasticity is fairly lost (s;/s > 1), the locality of the particle
motion is recovered. Then the particle radial diffusion is governed as the Wiener process
with normal diffusivity, Gaussianity, statistical non-stationarity, and Markovianity, as
well as the neoclassical diffusion in the regular magnetic field.

The process corresponding to s;/sp. = 3.3 and v/y; = 45 is similar to the Wiener
process. However, only the kurtosis 4 does not satisfy the criterion given by equation
(49), and so this process is expressed by Wp in table 7. As is understood from this
example and other cases recognized as the strange diffusive process in table 7, the
various types of the strange diffusive process exist, e.g., even if the process shows a
normal diffusivity: a ~ 0.92 for s5/s,. = 1.3 and v /1y = 4.5, the radial profile is broader
than a Gaussian and the autocorrelation is not Wiener like. The significant point is not
the detail differences in the diffusive process, but the overall tendency in two-parameter
space {Ss/Spe, ¥/11). Table 7 shows that the change in the type of diffusive process is
prescribed by the Coulomb collisional suppression of the non-locality of radial particle
displacements due to the stochastic magnetic field.
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5. Discussion

Here, following several points are discussed.

5.1. Characteristic lengths of magnetic field lines

In this work, the several types of radially bounded stochastic magnetic field region are
treated. On the contrary, in the most of previous works the statistical properties of
the magnetic stochasticity are given a priori, mainly as a static, homogeneous Gaussian
process which develops in the radially unbounded magnetic field region 13,4, 5, 6, 9.
In other words, all these cases correspond to the parametric domain s /s > 1 in
actual model. In order to clarify the effects of the boundedness, three characteristic
lengths associated with the magnetic field stochasticity are examined: the perpendicular
correlation length L, , the parallel correlation length Ly, and the Kolmogorov length
Lg. The most significant difference in the present context is connected with the
perpendicular correlation length L. For example, in the quasi-linear approximation
(4,5,6,9,11], in order to obtain a constant diffusion coefficient of the magnetic field lines,
a radially unbounded, homogeneous stochastic region is used, where the perpendicular
correlation length may be treated as infinity: L; — oc. However, in present situation,
L, is limited, namely, L, < wg, where wg is radial width of the stochastic region.
According to the discussion in 4.1.1, the parallel correlation length L)) is recognized as
a length which corresponds to the decorrelation time of the stochastic magnetic field
Hnes tq: Ly = tqu). Indeed, such the decorrelation time is similar to the correlation time
Toorr OF the autocorrelation coefficient in the highly stochastic case with sp/se. > 1.
The Kolmogorov length is obtained from the asymptotic value of the effective radial
Liapunov exponent {l.} as Lx = v/ {l). Substituting the corresponding values to the
three characteristic lengths, the following ordering is obtained for s5/s3. > 1:

L) « Lg < Ly. (66)

Note that ordering in the radially bounded stochastic magnetic field is completely
different from other situations, especially from the quasi-linear approximation [4, 5, 6].

The ordering between the collisional mean free path Az, and the characteristic
lengths of the stochastic magnetic field lines for sp/spe = 1 is summarized in table 9.
As v/v, decreases, and as s/sy increases, the collisional mean free path Amg, becomes
comparable to the Kolmogorov length Lg, and finally larger than Ly and comparable
to the parallel correlation length Ly. Thus, it is understood that the collisional effects
becomes more significant as the level of stochasticity of the magnetic perturbation
decreases or sp/s;. decreases. Moreover, it will be expected that in more collisionless
cases with Lj < Amgp, whose condition will be established for banana collisicnality
regime, the statistical properties of the particle radial diffusion become closer to those
of the magnetic field stochasticity. In order to obtain the proper statistical properties
in the parameter space considered here, all of calculations have been performed up to
z> Lyport ~t, =10x i3 > ta In the case before overlapping with sp/s,. < 1,
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the ensemble averaged Liapunov exponent is always negative. Thus, Ly and L are
interpreted as infinity, so that the ordering L, < Anyp €« Lk, L — oo holds, where
I., is recognized as the width of the magnetic islands at ¢ = m/n = 3/2: w,3. Note
that the characteristic lengths and orderings discussed here have not strict sense in the
inhomogeneous magnetic field stochastic region: the mixture of regular and irregular
structures. In such a case, the stickness of the magnetic field lines to or around regular
structures, indicated by the presence of magnetic field lines with a negative Liapunov
exponent in the long time limit £ > ¢, means the existence of many different scales
125]. To investigate more precise properties of the radial diffusion in such a case, the
method of the continuous time random walk [12] may be suggested. However, in order to
understand the general and global tendencies of the particle radial diffusion, the concept
of characteristic lengths is useful for all s,/sp. > 1 cases, because both Ly and L) are

definitely determined by the effective radial Liapunov exponent (I.{t)} in average sense
without ambiguity.

5.2. Locality of the radwal diffusion

In this section the relation between locality of the diffusion and the constant diffusion
coefficient is investigated. In the standard theory of Brownian motion, according to the

Gaussian central limit theorem [24], the spreading of the Gaussian is described by the
diffusion coeflicient given by

. _ dCy(t
D =lim_D(t) = hme—%. (67)
Such a diffusion coefficient is analogy of that in the standard random walk [18]
_ (Ax)?
D=7 (68)

where Az, and At are the characteristic space and time steps of random walker,
respectively. Following these developments, in the classical diffusion theory [7], the
diffusion process in an unbounded, homogeneous media is characterized by the diffusion
coefficient. In the context of the confinement physics, it is ensured by the demand for
locality of diffusion. In order to understand the meaning of the locality, the standard
neoclassical radial diffusion treated in [19] is reconsidered. By integrating the linearized
gyro-phase averaged Boltzmann equation given by equation (1) in the velocity space (in
the present case, the energy E is a parameter , so that integration is done only over the
magnetic moment g), and by taking the flux surface average, the equation of continuity
in the radial direction is obtained

8(;?}’ = —%% (VT - Vr)p), (69)
where (Q(7, 1)) is the flux surface average of Q{7,t), and {(Q(7,t}) r becomes a function
with respect to r and t. Also, (n)r is the flux surface averaged density, [' = n(7, £)3(7, t)
is the particle flux, and V' = dV/dr with the volume V surrounded by the flux surface
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specified by an appropriate radial coordinate 7. The diffusion coeflicient D) is introduced
through the phenomenological Fick’s law in the radial direction given by

i
F.vr = -,y 200, (70)
or )
Since the radial diffusion is concerned, by assuming a weak poloidal and toroidal
dependence (this is usually ensured by the strong magnetic field and the rotational

transform), the flux surface averaged Fick’s law becomes

0% ¢~ ~D(r, ) 20" ()
where D(r,t) = {(D)r. As is clear from the form of the above equation, the standard
Fick’s law is based on the locality of the diffusion, since the particle flux at a position
r is completely determined only by the diffusion coefficient D and the gradient of
{n)r at the same position 7. By using the Fick’s law, and defining the probability
f(r,t) = (n(r,t)) /N where N is the total number of the particles, the diffusion equation
of the particles is obtained

af(rt) 10 (V, - )8f(nt))‘

(T-Vryp=—(D

ot Vior ar (72)

Here, how to obtain the diffusion coefficient D(r,t) by the Monte Carlo method is
considered [20]. In the Monte Carlo method, the particles are initially loaded on a flux
surface as f(r,0) = 8(r — rg). Putting dr = r — ro, from the equation (72),

2~ o= (D). 73)
where two partial integrations in 7 are done, assuming f = 8f/0r =0 at r = 0 and a.
Similarly,

2= 26r— e =20y 2 (T L)), ()
is obtained. Thus, when the particle distribution f does not spread so much in the
radial direction (in this case the above boundary conditions are satisfied), namely the
locality of the radial diffusion is ensured: |6r|/L < 1, where L is scale length of the
equilibrium (in this case L ~ a),
1dC,
2 dt’
is obtained, partially because the second term in the right-hand side of the equation
(74) is neglected due to |6r — (dr)|/L <« 1, where L = |1/D - 8D/8r|™! (note that the
diffusion coefficient is determined by the equilibrium quantities), and partially because
{DY ~ Dfrg, 1) by the condition [{§r)|/L <« 1. The equation (75) means that the local
diffusion coefficient at the position where particles are initially loaded is obtained, when
the locality of the diffusion is ensured.

From above consideration, it is known that

D(ro,t) = (75)
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{a) The definition of the diffusion coefficient through the second cumulant given by the
equation (37) has meaning, when the locality of the diffusion is satisfied. Note that
the validity of this definition of the diffusion coefficient is not directly related to
the time-dependence of the diffusion coefficient.

(b) The more significant point is that the concept of the diffusion process itself using

the diffusion coefficient assumes the locality of the diffusion process as is seen in
the standard Fick’s law.

In the present parameter space (v/vy, 5,/ ss. )}, except for the Wiener domain, the locality
of the diffusion process does not hold, where the diffusion coefficient defined by equation
(37) does not have clear meaning, and moreover, the standard local Fick’s law may not
hold. In such strange diffusive processes and a uniform mixing process, the diffusion
coefficient defined by the equation (37) have to be understood as the time derivative

of the second cumulant itself, and the particle radial transport must be treated as a
non-local transport.

5.8, The second cumulant

As is discussed in section 5.2, the diffusion coefficient, introduced through the local
Fick’s law, have no clear physical meaning in the diffusive process without locality like
a strange diffusive process and uniform mixing process. On the contrary, the second
cumulant itself always has a clear physical meaning as the mean square displacement
[11, 16]. The time dependence of the second cumulant Cy(t) indicates how fast the
radial dispersion of particles spread out as time increases. Thus, when the systems with
time-dependent diffusion coefficient are compared in order to evaluate how long or how
much particles are confined near their initial position, the temporal behaviour of C,
must be evaluated instead of the diffusion coefficient.

9.4. Ballistic phase of uniform mizing process

The uniform mixing process and the strange diffusive process strongly affected by the
fast exponential divergence of magnetic field lines in the radial direction, are observed
in the highly stochastic magnetic field with s, /86 > 1. Asis understood from figure 9d,
as the collision frequency decreases, the magnitude of 5 almost reaches the final state
within the short ballistic phase {# < #;), which indicates that the process for particle
to spread in the radial direction up to the level of the fast exponential divergence, is
not regarded as a diffusive process, but as a dynamical relaxation process. After such a
ballistic phase or dynamical relaxation process (t > tq), the uniform mixing properties
of the magnetic field lines mainly make the particle radial motions diffusive process. In
contrast with it, in the case of Wiener process, although the ballistic phase exists in the
early time, such a phase does not influence the time evolution of the systein after that, or
it does not prescribe the final state of the system, because of the locality of the particle
orbits. Thus, the time evolution of the system showing the Wiener behaviour is treated
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as a diffusive process in almost all time. However, in the uniform mixing process and the
strange diffusive process similar to that, created by the non-local particle motions, the
ballistic phase almost prescribes the final state of the system. Hence, the time evolution
of such non-local fast processes should be treated in the framework of 2 fast dynamical
relaxation process of a system to an equilibrium.

6. Conclusion

In the present paper, the statistical properties of the electron radial diffusion are
investigated in a radially bounded stochastic magnetic field region existing in the
axisymmetric torus MHD equilibrium. In order to take account of the practical situation
that magnetic field perturbations usually create a radially bounded stochastic region in
the axisymmetric torus equilibria and to avoid the assumptions related to the statistical
properties of the stochastic magnetic field, a radially bounded stochastic magnetic field
is created by superposing three Fourier harmonics of the perturbed magnetic field which
resonate at their mode rational surfaces in an axisymmetric MHD equilibrium. Due to
the radial boundedness, the statistical properties of such a stochastic magnetic field are
completely different from those used in the previous works [4, 5,6, 9, 7, 12]. Especially,
the radially bounded stochastic magnetic field has a finite correlation length in the
radial direction. It is opposite to the quasi-linear approximation [4, 5, 6] where usually
the radial (perpendicular) correlation length is treated as infinity by assuming radially
infinite homogeneous stochastic field.

By changing the amplitude of the perturbed magnetic field, several types of
stochastic field structure are created: state before overlapping {ss/se. < 1), state near
the overlapping threshold (ss/sp ~ 1), moderate overlapping (ss/sec > 1), and state
of highly overlapping (ss/se > 1). The stochasticity parameter s, corresponds to
the amplitude of the perturbation (strength of perturbation), and sp. is the value of
stochasticity parameter at the overlapping threshold. These four types of stochastic
magnetic field region correspond to the Poincare plots in the poloidal cross section
with the isolated magnetic island chains (sp/se < 1), the overlapping of island chains
(s/8ec ~ 1), stochastic sea with regular structures (ss/sec > 1), and stochastic sea
without regular structures (ss/ss. 3> 1), respectively. One aspect of the stochasticity of
the resonantly perturbed magnetic field is understood from the temporal behaviour of
the effective radial Liapunov exponent (I.(¢)) and the number of the magnetic field lines
with the positive Liapunov exponent N,(t), where time ¢ is used as the independent
variable. The conversion into the length along the equilibrium field direction is
performed as z ~ R({ ~ vyt with the major radius R and the parallel velocity of
particle vy tied to the magnetic field line. Before overlapping with sp/sp. < 1, the
number of the magnetic field lines with the positive Liapunov exponent Ny(t) is zero
or quite a few, and the effective radial Liapunov exponent {{. (t)) is always negative.
After overlapping with sp/sec > 1, Ny almost monotonically increases with time, finally
leading to the saturation. As sp/ss(> 1) increases, the saturated value of N, increases,
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Le. from N, < N for sp/sp. > 1to N, = N for sp/85- >> I, where N is the total number of
observed field lines. The existence of the magnetic field lines with the negative Liapunov
exponent for s3/s5c > 1 indicates the existence of sticking of the magnetic field lines to
regular structures inside the stochastic region. Associated with the variation of N(t),
{le(t}} almost monotonically increases from negative to positive value, finally leading to
asymptotic saturation, as time ¢ increases. In spite of the various stochasticity levels
depending on s,/ s, after overlapping, the effective radial Liapunov exponent has such
a common feature that the time dependence is (I.(t)) = (L}(1 — t4/t), where tq is
the decorrelation time of the magnetic field lines satisfying (l.(t;)) = 0, and (L) is
the saturated value of {{.(¢)). In other words, the effective radial Liapunov exponent is
characterized by two independent quantities ¢4 and (l.). Recognizing t4vy as the parallel
correlation length of the magnetic field lines: L; = ¢4v;, and defining the Kolmogorov
length Lk = v)/{l}.it is seen that both the parallel correlation length L; and the
Kolmogorov length Ly decrease as sp/sp{> 1) increases. Since the perpendicular
(radial) correlation length of the magnetic field lines L | = wy, where w,, is the radial
width of the stochastic region, L; <« Lg < Ly holds independent of sp/sp.(> 1) in
the considered cases. Note that this ordering is different from that of the usual quasi-
linear approximation. To obtain the statistically meaningful results, the calculations
are performed up to z » L or t ~ ¢, = 10 X t4 > t4, where £, is defined as a time
satistying (l.(ts))/{le) = 0.9. The evaluation in the long time limit is done at £ > ¢, for
5p/50c = 1 or at t 3> (ty) for sp/spe < 1, where (t) is a typical time of particle motion
trapped by the islands. As s/s5(> 1) increases, the dispersion of the effective radial
Liapunov exponent Al. decreases, which means that all the magnetic field lines have a
tendency to radially spread with almost same exponential divergence rate.

The statistical properties of the magnetic field stochasticity are examined by
evaluating the cumulant coefficients up to the fourth order, the effective diffusion
coefficient, the diffusion exponent «, and autocorrelation coefficient A(,t') between
two different times ¢ and t’. Due to the above mentioned fast exponential divergence
of the magnetic field lines in a radially bounded stochastic magnetic field region, the
radial diffusion of magnetic fleld stochasticity or particles tied to magnetic field lines
without the perpendicular drift and Coulomb collisions has a tendency to become a
uniform mixing process, as $p/$p.(> 1) increases. Namely, the stochastic process is
characterized by non-diffusivity (o ~ 0), uniform distribution, statistical stationarity,
and Markovianity alter the correlation time 7. 2 ¢, which is estimated from
the exponentially vanishing autocorrelation coefficient: A{t,t") ~ A(r = t' — ) ~
exp(—t/Teors). A clear uniform mixing process is obtained for s3/ss. > 1. When the
regular structures exist inside stochastic sea (s;/sp. > 1), the magnetic field stochasticity
in the long time limit appears as one of strange diffusive processes characterized by non-
diftusivity, uniform like broad distribution, almost statistical stationarity and power-law
autocorrelation coeflicient: A(t,t') ~ A{r =t — i) ~ 77° with a positive constant ¢.
Near the overlapping threshold with s;/ss. ~ 1, the process in the long time limit more
deviate from the uniform mixing process. The magnetic field stochasticity appears as
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a strange diffusive process with subdiffusivity (o < 1), distribution far from uniform
and Gaussian, statistical non-stationarity. Sticking of the magnetic field lines to or
around regular structures inside the stochastic region leads to the space and time
correlations compared with uniform mixing process, so that in these strange processes
non-Markovianity may be suggested.

The uniform mixing process and the strange processes are related to the non-locality
of particle radial motions. Particles tied to the stochastic magnetic field lines easily
spread out in the radial direction and reach up to the boundary, so that the radial
displacement &7 is prescribed by the radial width of the stochastic region wy : 67 ~ wg,
leading to the non-locality of the radial diffusion where ér/a < 1 with the minor radius
a as the scale length of the system. In contrast with it, the particle radial diffusion in
the regular nested flux surfaces, namely, the neoclassical radial diffusion has different
property [19]. In such a case, collisionless particle motions are regular periodic motions,
whose drift width dr is at most the poloidal gyroradius p, in the axisymmetric systems,
hence §r ~ p, < a. The pitch-angle scattering created in the A(= v);/v) velocity space
as a uniform mixing process acts as the white noise on the perpendicular drift motions
(although the magnitude of the correlation of the white noise is determined by both
the pitch-angle scattering and the drift width). Thus, due to the radial locality of the
collisionless particle motion: ér/a < 1 and the accumulation effect of the small pitch-
angle scattering acting as a white noise, the locality of the particle radial diffusion is
ensured and the radial diffusion appears as a Wiener process with normal diffusivity,
Gaussian distribution, statistical non-stationarity and Markovianity.

The deviation of the particle orbits by the collisionless perpendicular drift motion
from the stochastic magnetic field qualitatively do not change the above mentioned
statistical properties of the radial diffusion of particles tied to stochastic magnetic field
lines, except for generation of the small correlation of A(%,t) after Teo for sp/sp. > 1.
Hence, it is concluded that the stochastic properties of the collisionless particle radial
diffusion are almost all determined by those of the stochastic magnetic field lines. The
reason is due to the fact that the parallel drift velocity of particles along the stochastic
magnetic field is quite larger than the perpendicular drift velocity. The fast parallel
drift motions along the stochastic magnetic field themselves make the stochastic radial
displacement quite larger than that due to the slow perpendicular drift motions.

In the presence of the Coulomb collisions, the Coulomb collisions interrupts the fast
non-local motions along the stochastic magnetic field lines. The range of the collision
frequency considered here is from the neoclassical plateau regime with v/v, < 1, to
Pfirsch-Schliiter regime with v/ > 1 and v/y; > 1, where 14 is the transit frequency
of particles in the regular magnetic field. Since 7. < (t3) and 7. < t, hold, the long time
Hmit is defined as ¢ > max(t,,7.) = t. for so/ss. > 1, and as ¢t >> max({),7) = (ts)
for sp/spe < 1, where 7, is the collision characteristic time defined as 7. = 1/v. As
83/ 8pc(> 1) increases, both the Kolmogorov length Lg and the parallel correlation length
Lj; become shorter with keeping the inequality L; < Lx < L. The significance of
collisional scattering of parallel drift motions for s;/s, > 1 is qualitatively determined

_36___
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by the relative magnitude of the mean free path Amjsp to characteristic lengths of
the stochastic magnetic field lines: L, Lg. and Ly, especially the relative magnitude
between Amsp and Ly is important. When Amys, < L, the collisional interruption of
the non-local parallel drift along the stochastic magnetic field lines becomes significant.
In contrast, when A5 > Lx particles spread out in the radial direction along the
stochastic magnetic field lines before they suffer significant scattering due to collisions.
Thus, the collisions become significant as sy/sp. decreases for a fixed viv or as v/,
increases for a fixed s3/sy.. Before overlapping with sy/spc < 1, (I.(t)} is always negative,
thus the collisional scattering are more significant than that after overiapping with
sp/see = 1. So, as v/v, decreases and as b/ See Increases, the particle radial diffusion
reflects the statistical properties of the magnetic field stochasticity, and behaves as
a strange diffusive process with subdiffusivity, profile neither uniform nor Gaussian,
statistical non-stationarity. The autocorrelation coefficient shows power-law like, non-
stationary decay, A(t,t") = A(f,7 = t' — ), and non-locality of the stochastic process
still remains by reflecting fast non-local motion along the stochastic magnetic field lines.
The Markovianity is still open question. In opposite limit, namely, in the region with
viv, » 1 and sp/see < 1, the collisional scattering of parallel drift motions becomes
so significant that the stochastic radial particle displacements are created not by non-
local drift motions along the stochastic field lines, but by the collisional scattering of
the local perpendicular drift motions, leading to Wiener process through recovering the
locality of the particle displacements. Note that the non-locality of the particle radial
displacements caused by the radially bounded stochastic magnetic field creates various
types of diffusion process under the influence of the Coulomb collision.

The normal diffusivity with time independent diffusion coefficient is obtained only
in the Wiener domain, where locality of the diffusion is ensured. In other processes,
namely, a strange or uniform mixing process, time dependent or vanishing diffusion
coefficient is obtained, where the locality of the diffusion process is not ensured. In the
present situations with radially bounded stochastic magnetic region, the subdiffusivity
and non-diffusivity appear associated with the non-locality of the stochastic process. in
such a non-local process, the diffusion coefficient defined by the time derivative of the
second cumulant does not, have the clear physical meaning, or rather the second cumulant
itself is a better indicator of the process compared with the diffusion coefficient. Note
that the diffusion coefficient is introduced through standard phenomenological Fick’s
iaw based on the locality of the diffusion process, hence if the locality is not ensured,
then such a Fick’s law does not hold as it is. Associated with such a doubt about
applicability of the Fick’s law, it should be pointed out that the role of the ballistic
phase (t < £4) becomes more significant, as the level of the magnetic field stochasticity
increases and the collision frequency decreases. Within the ballistic phase, the mean
square displacement, i.e., Cy almost reaches the level of the uniform mixing process. In
other words, the system almost reaches the final state within the ballistic phase. The fast
process in the ballistic phase is closely related te the non-locality of the particle radial
displacements, because in the Wiener process, the ballistic phase does not prescribe
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the final state of the system. Thus, in such the non-local process, the radial particle
diffusion should be reconsidered from the viewpoint of the dynamical relaxation process
of the system. The consideration about non-locality of the particle displacements, the
dynamical relaxation process in the ballistic phase, and their relation will be persued.
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Tables and table captions

Table 1. The values of the diffusion exponent « in the long time limit in the parameter
space {sp/Spc, v/1).

u/ut\sb/sbc 0.33 1.3 3.3 33

0(vgy =0) osc~0.0 040 001 0.02
0(vgl #0) osc~00 029 0.01 0.02

0.45 0.73 0.63 030 0.07
4.5 0.97 092 052 0.12
45 1.07 1.00 1.04 0.22

Table 2. The values of the effective diffusion coefficient D(t}, Dpy, and AD(%) =
| D{£) — aDp,(¢){100/D(t) in the long time limit in (s3/spc,v/v:) parametric space.
In the circumstances when AD becomes enormously high (e.g. > 100%) the system
behaviour is noted as the exponentially like. Note that in the presence of collisions D(f)
and Dy, are normalized by the corresponding neoclassical value of diffusion coefficient

D,..
viv\sp/sp.  0.33 1.3 33 33
G(vqyr =0) osc 0.07¢  0.26 0.60
0sC. 0.18 3.3 100
(1%)  (exp) (exp.)
O(vgr #0) osc. 0.042 0.26 0.62
osc. 0.13 3.3 80.0
(10%) (exp.) (exp.)
0.45 4.08 4.7 67.1 93.0
5.2 7.7 190 1170
(7.5%) (6.5%) (15%) (11%)
4.5 1.2 2.2 14, 38.1
1.2 2.5 25. 270
(0.6%) (2.7%) (7.2%) (5%)
45 1.01 1.10 1.85 4.53
0.96 1.10 1.8 20

Q%) (00%) (0.1%) (3%)
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Table 3. The time behaviour of the autocorrelation coefficient in the parametric space
(86/ 8bes ¥ ve)-

U/Vt\Sb/Sbc 0 033 13 3.3 33

0(vgy =0) osc. Pose Pa E

0 ('Ud.i. 7é 0) osc. Posc Pu Ecorr
0.45 Py Pf Py P Py
4.5 Py Py Py Py Py
45 Py Pw Py Py, Pf

Table 4. The values of the first cumulant C({t) in the long time limit in the parameter
space {8/ Sbe, ¥/Vt)-

vivi\sy/sp. 0.33 1.3 33 33

0(vgy =0) 15x107% 57x107% —5x1078 —6 % 1073
O(vgl #0) 20x107% 6.2x10% —65x10"% —5x107°
0.45 2.0 x 10~° 14x107% 2.0x10™* -6 x 1073
45 ~30x107% 11x107® 20x 10~ ~4 x 1073
45 3.0x%x 1074 29x107% 1.1x10°3 ~-1x 1073

Table 5. The values of the third cumulant, 73 in the long time limit in the parameter
space {sp/ Spe, ¥/ Vt)-

v/v\sp/spe  0.33 1.3 33 33

O(vgL =0) osc. 0.66 -0.08 -0.13
O{vqy #0) osc. 0.60 -0.02 -0.18

0.45 0.0 0.70 -0.20 -0.11
4.5 005 025 -0.15 -0.15
45 0.045 0.10 002 -0.17

Table 6. The values of the forth cumulant, 4 in the long time limit in the parameter
space (85/8be, V/ve).

viviss/se 033 13 33 33

Of{var =0) osc. 18 -095 -1.15
0 ('U'd_l_ #0) osc. 1.7 095 -0.85

0.45 005 30 4015 -11
4.5 005 1.7 14 -1.0
45 -0.10 0.02 0.6 -0.8
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Table 7. The type of diffusion process in the parametric space (s/spe, v/iv).

vivi\syfse. 0 033 1.3 33 33

0 (v = 0) Sosc St U
0 (Udi % 0) Sose Sst Usorr
0.45 w 8 b by S
4.5 W W S S S
45 wow w Wep &S

Table 8. The relation of characteristic times in (s3/sp, v/v;) parametric space: {tp)/7.
for sp/spe = 0.33, and t4/7. for sp/spc > 1. The time {tp) is the characteristic
time for trapping by the island, 7. is the collisional characteristic time, and t; is
the decorrelation time of the effective radial Liapunov exponent. Note that ;/7. =

L1/ Amyp {see table 9).

v/vi\sp/spe 0.33 1.3 33 33

0.45 1.6 120 20 1.8
4.5 16 1200 200 18
45 160 12000 2000 180

Table 9. The ordering of the characteristic lengths: L;; the parallel characteristic
length, L, the perpendicular characteristic length, Lx the Kolmogorov length, and
Amsp the mean free path; with respect to sy/sp. > 1 and v/ > 0 parameter space.

3.3

33

vivi\sp/see 1.3

.45 LL<<)\mfp<<LK<<L”
4.5 L: « a\mfp L Lg <« L“
45 Ly < Amsp €« Lg < Ly

L <<;\mfp<LK<<LH
L <</\m_fp(<LK <<L”
Ly <Ampp €« Lg < Ly

L) &« Ly <</"\mfp (L“
L, <« /\m.fp < Lg <« L“
Ly <dmpp € Lg < L))
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Figure captions

p;o-nvo 1. The Ppincar p! g

"h

of the test magnetic field line ensemble in (r, 4} plane
at C 2.4: (a) su/spc = 0.33, (b) sp/58c = 1.3, {€) sp/50c = 3.3, and (d) sp/spc = 33.
The arrows show positions of the rational surfaces, ¢ = 10/7,3/2, and 11/7.

Figure 2. The time behaviour of the effective radial Liapunov exponent (l.(t))c
vs t for sp/spe = 0.33,1.3,3.3, and 33 is plotted in figures (a), {b), (c), and (d),
respectively. The asymptotic value of the effective Liapunov exponent, (L), multiplied

with conversion factor ¢ is given by dotted line, and values of ¢4 and £, indicated by
arrows.

Figure 3. The number of magnetic field lines N, with positive radial Liapunov
exponent vs time t for sp/spe = 0.33,1.3,3.3, and 33 is plotted in figures (2), (b),
{c), and (d), respectively. The arrows show the values of ¢; and ..

Figure 4. The 2nd cumulant time behaviour in the region of the global magnetic
stochasticity: sp/ssc = 1.3 (Ca(t) x 4) (solid curve), sp/spc = 3.3 (dashed curve), and
sp/8sc = 33 (dotted curve). Time is normalized with .

Figure 5. The autocorrelation coefficient, A(t,t") = A(r = t' — 1), in the long time
limit, ¢ = 0.56t,, with respect to 7/t;. The solid line corresponds to the value:
sp/spe = 1.3; the dashed line to: sp/sec = 3.3 ; the dotted line to: sp/spe = 33,
respectively.

Figure 6. The time development of the third cumulant, vz, with respect to the
strength of the magnetic perturbation. The solid, dashed, and dotted curve correspond
to ss/spe = 1.3,3.3, and 33, respectively. Time is normalized with ¢,.

Figure 7. Kurtosis, 74, is the measure of the narrowness of the magnetic field
line distribution function. The positive value of kurtosis for sp/sp. = 1.3 (solid
curve) indicates more peaked distribution function than Gaussian. On the other
hand, the values of 4 in the stochastic sea with, sp/sp. = 3.3, (dashed curve), and
without structures, sp/sp. = 33 (dotted curve) show more flatted distribution than the
Gaussian, and uniform distribution, respectively. On axis the values £/t are plotted.
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Figure 8. The autocorreiation coeflicients A(t,t") vs 7/t; = (' — t)/t, for the
stochastic sea without structures in the presence of the drift decorrelation. The curves
are calculated at starting time t: ¢/t, = 2.7 x 1072,0.74, and ¢/t, = 3.3.

Figure 9. The second cumulant vs time for s3/sp, = 0.33,1.3,3.3, and 33 is drawn
in figures (a), (b), (¢}, and (d), respectively. On each figure the solid curve presents
the case with v/, = 0 (only magnetic field stochasticity exists); dashed curve presents
case with v /iy = 0.45; dot-dashed curve presents case with v/ = 4.5; and dotted
curve presents case v /1, = 45. Time is normalized with ¢,.

Figure 10. The autocorrelation coeflicient versus v/t = (¢’ — t}/t, for the starting
times t = ¢; = 3.1 x 1073 {tp),t = to = 41.{tp} for sp/spe = 0.33 (a); &; =
8.3 x 107 %¢,, ta m 0.56, for sp/spc = 1.3 (b); &, & 2.5 x 107%¢,, t, =~ 0.56¢, for
Sp/spc = 3.3 (c) and t; = 2.8 x 1073 ¢,, tp = 1.51t, for sp/spc. = 33 (d), respectively.
The solid, dashed, dot-dashed, and dotted line correspond to the Wiener curve, and
v/v, = 0.45,4.5, and 45, respectively.

Figure 11. The autocorrelation coefficient versus + = ¢’ — ¢t for (a) v/v; = 0.45, and
(b} 45 at fixed value of parameter s3/sp. = 3.3. Different curves correspond to the
starting time t = (2.5 x 1074,6.2 x 1072, ..., 0.56)¢; (arrow in figure is in direction of
increasing t}. Because of comparison the Wiener curves (equation (48)) are shown by
the dashed curves. Time T is normalized with respect to t,.

Figure 12. The qualitative change from broader than Gaussian distribution, v, < 0,
for sp/s5c = 3.3,v/¥y = 0 {solid curve), v/v; = 0.45 (dashed curve), to the pesked
compared with Gaussian distribution, 4 > 0, for v/v; = 4.5 (dot- dashed curve), and
85/ 88 = 1.3, /vy = 45 (dotted curve).
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