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Abstract. Mean-field theory of dynamo is discussed with emphasis on the statistical
formulation of turbulence effects on the magnetohydrodynamic equations and the
construction of a self-consistent dynamo model. The dynamo mechanism is sought in the
combination of the turbulent residual-helicity and cross-helicity effects. On the basis of
this mechanism, discussions are made on the generation of planetary magnetic fields such
as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in
planetary and fusion phenomena.
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1. Introduction

Magnetic-field generation in stellar objects such as the earth and the sun is a
structure-formation phenomenon in nature. The interiors of the earth and the sun are
schematically shown in Figs. 1 and 2 (the radii of the earth and the sun are 6300 km and
700000 km, respectively). The earth consists of the mantle, the outer core, and the
inner core, whose primary ingredients are silicon, melted iron, and solid iron,
respectively. Earth's magnetic field (the geomagnetic field) occurs from the motion of
melted iron in the outer core. There the velocity is inferred to be O(107*) m s™! from
some geophysical observations, and the kinematic viscosity of melted iron is of the same
order as for water [about O{107°) m? s7'). Then the Reynolds number R, is estimated

to be O( 103), suggesting that the fluid motion in the outer core is turbulent.
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Fig. 1. Interior of the earth. Fig. 2. Interior of the sun.

One of the prominent features of turbulent flow is the enhancement of diffusion or
mixing effects. They often destroy distinct global structures of flow. Such a typical
instance is a flow in a circular pipe. In the laminar state, the flow is subject to a parabolic
velocity profile. With the intensification of velocity fluctuations, this velocity profile is
lost. In the fully-developed turbulent state, the flattened mean velocity profile appears
except the vicinity of the pipe wall. This change of flow structure may be captured
through the enhancement of momentum diffusion across the cross section of the pipe. In
the context of the foregoing geomagnetic field, its distinct global profile persists against
the enhanced diffusion effect by turbulent motion. This mechanism is generally called



dynamo, and its study from the viewpoint of turbulence theory is one of the primary

subjects in this review.
Some typical features of the geomagnetic field are summarized as follows [1, 2]

(E1) The main component of the geomagnetic field observed at the surface is the dipole
field whose present axis is nearly along earth's rotation axis. The strength of the field is
about a few Gauss (G).

(E2) The toroidal component is not observable at the surface since it 1s confined below the
bottom of the mantle that is electrically nonconducting. The unobservable toroidal
component is inferred to be of O(10) ~ 0(10%) G, which is stronger than the dipole

one.

‘(E3) The polarity of the geomagnetic field reverses irregularly in the interval of
0(10%) ~ O(107) years, but the time necessary for the reversal is much shorter and is
less than O(10*) years.

The formation of the distinct di]ﬁole field in a turbulent fluid motion is a central
concern in the study of the generation mechanism of geomagnetic field (geodynamo). The
situation that the toroidal field is not observable is a big stumbling block for the study of
geodynamo. The magnetic energy of 1 G per unit mass of iron is equivalent to the kinetic
energy of velocity 0(107®) m s™L. Then the energy of the dipole field of a few G is
some hundred times the kinetic energy of the melted iron with an estimated velocity
0(10_4) m s~!. With the unobservable toroidal component included, the energy of the
geomagnetic field is 0(10*) ~ 0(10°) times the kinetic energy of the fluid motion or the
gencrator of the former. This leads us to a rather surprising conclusion that the
geomagnetic field is generated quite efficiently by the turbulent fluid motion in the outer
core. A proposed geodynamo model needs to address this point adequately. The
persistence of one geomagnetic polarity is quite long, compared with the sun referred to
below, which indicates that the dipole field along earth's rotation axis is very stable. The
clarification of the mechanism for such stableness is also an important theme of

geodynamo.

In contrast to the earth, the solar constitution is simple, and its constituents are
hydrogen (90 percent) and helium (10 percent). All the solar energy arises from the
* thermonuclear fusion reaction in the core, and the resulting heat is supplied to the
outermost or convective zone through the intermediate or radiative zone. The motion of
highly ionized hydrogen gases in the convective zone is strongly turbulent. It is the origin

of solar magnetic fields, whose most typical manifestation is sunspots. Inside the zone,
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 the toroidal field aligned with the equator is generated, and loops of this field rise up
owing to buoyancy effects and break through the photosphere above the convective zone.
Their cross sections are observed as pairs of sunspots (Fig. 3). The intensity of a large-
sunspot magnetic field is a few kG, and the toroidal field with the intensity stronger By
one order is inferred to be generated near the bottom of the convective zone.

<+ > < _— >
Fig. 3. Sunspot's polarity rule.

Sunspots obey the well-known polarity rule, whose primary parts may be stated as
follows [3, 4]. ' ' '

(S1) Sunspots are limited to the middle- to low-latitude region. The polarity reverses quite

regularly, that is, in about 11 years.

(S2) The polarity of the leading sunspot is coincident with the polarity of the polar field or
the poloidal field near the pole of the hemisphere (Fig. 3). The latter is a few G and is
very weak, compared with sunspot's magnetic field.

In the relative intensity of poloidal to toroidal components, the solar poloidal field is very
weak than its geomagnetic counterpart, as was noted above. It is important to clarify the
relationship of this point with the regular polarity reversal.

At the early stage of the dynamo study, the kinematic approach plays a leading role.
There the generation mechanism of magnetic fields is examined using the magnetic
induction equation with a properly chosen fixed velocity field [5]. Afterwards, the
computer simulation based on a combined system of fluid and magnetic-field equations
became feasible with the remarkable advancement of computer capability. In reality, a
large amount of information has already been obtainéd about the generation processes of
magnetic fields in the presence of a highly three-dimensional motion of an electrically
conducting fluid [6-7].



A computer simulation in the dynamo study does not take the place of an analytical
method developing from the kinematic approach. The reason may be stated as follows.

(i) Nondimensional parameters characterizing the fluid motion in stellar objects are very
large. They are the Taylor number { 7,), the Rayleigh number ( R, ), etc., where 7, is the

square of the ratio of Coriolis to molecular viscous forces, and R, is the product of the

Prandtl number (the ratio of kinematic viscosity to thermal diffusivity) and the square of
the ratio of buoyancy to molecular viscous forces. In the current study of electrically
nonconducting flows such as channel flow, the complete computer simulation capturing
energy-dissipative components of motion is limited for R, < 0(10*). Then a computer
simulation closely mimicking the situation close to the earth and the sun is not possible in

the near future.

(ii) In a computer dynamo simulation, a large amount of numerical data is available in
general. Those data are analyzed on the basis of computer graphics, and spatial and
temporal properties of magnetic fields are investigated. The current geodynamo
simulations may really show that the energy of generated magnetic fields is much larger
than the kinetic energy of flow, as is consistent with the foregoing conjecture. These
simulations, however, have not yet succeeded in revealing what is the key process in
storing such a large amount of magnetic energy.

A representative analytical approach to dynamo is mean-field theory [9-12]. In the
approach based on the application of ensemble averaging, attention is focused on global
characteristics of magnetic fields at the cost of highly time-dependent properties. As a
result, large nondimensional parameters are not a critical stumbling block for mean-field
theory. Specifically, the theory is suitable for detecting the properties common to
geodynamo, solar dynamo, etc. since the key dynamo processes are explored in a
mathematical but not numerical form. From each merit of mean-field theory and a

computer simulation, one is complementary to the other in the study of planetary dynamo.

An astronomical instance of distinct global flow profiles in turbulence is the
collimation of astronomical jets. High-mass objects such as active galactic nuclei, neutron
stars, protostars, etc. are surrounded by gases in the form of a disk [13-15]. The disk is
called an accretion disk (Fig. 4). Gases accrete onto the objects while rotating, resulting
in the release of the gravitational energy and the angular momentum. The gravitational

energy is a primary source of energetic activities of those objects.

The process through which gases release the angular momentum is a great concern in

understanding the physics of accretion-disk phenomena. Two mechanisms may be



mentioned for the release of angular momentum. One is the angular-momentum transport
by the turbulent motion of gases towards the outer part of the disk. The other is the
release by ubiquitously observed bipolar jets that are composed of parts of accreting gases
and are driven in the two directions normal to the disk. The jet speed is
0(10) ~ 0(10%) km s™ for protostars and several ten percent of light speed for active

/

galactic nuclei, respecti{/cly.
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Fig. 4. Accretion disk and bipolar jets.

A noteworthy feature of the foregoing bipolar jets is the high collimation; namely,
they keep a straight shape with an extremely small growth of jet width. For the
mechanism of high collimation, there are two candidates. One is the suppression of jet
growth due to high-Mach-number cffects on turbulent flow, and the other is the
confinement of gases by magnetic fields since accretion gases are often ionized owing to

their high temperature.

The present review is organized as follows. In § 2, we give a brief explanation of a
system of one-fluid magnetohydrodynamic (MHD) equations. In § 3, we refer to
Cowling's anti-dynamo theorem leading to the introduction of the concept of turbulent
dynamo. In § 4, we give the fundamentals of mean field theory. In § 5, we discuss on the
dynamo effects by turbulence from three different viewpoints: quasi-kinematic, counter-
kinematic, and MHD approaches. In § 6, we make full use of these findings and
construct a one-point dynamo model applicable to real-world phenomena, with emphasis
put on its self-consistency. In § 7, we discuss on some typical processes of magnetic-
field generation and the resulting feedback effects. In § 8, we investigate into the
generation of planetary magnetic fields and the flow occurrence by magnetic effects in

planetary and fusion phenomena. In § 9, we give a simple summary of this review. In



Appendix, we explain a statistical theory of turbulence that is helpful to the derivation of
dynamo effects in the MHD system.

2. One-Fluid Magnetohydrodynamic Approximation
2.1. Fundamental equations

In § 1, we referred to the generation of large-scale magnetic-field structures by fluid
motion and the high collimation of bipolar jets from an accretion disk. A useful tool for
investigating into these phenomena is the magnetohydrodynamic (MHD) approximation,
specifically, the one-fluid approximation [16, 17]. In what follows, we shall give its brief

account and refer to the limitation.

The motions of electron and ion gases are governed by

(M)
2*(-’észL—4~V’-(png)vS)=0, 2.1
) 0
> p§ g + v pe ugvg = - %.xﬁ +pF e+ vg X b), +Cg;, (2.2)
J i

with subscript S denoting E and I for electron and ion, respectively. Here p?) is the
mass density, v is the gas velocity, pg is the gas pressure, p(SC) is the charge density,
e is the electric field, and b is the magnetic field. On the right-hand side of Eq. (2.2),
the second term is the Lorentz force, and Cg is the force arising from the collision

between electron and ion, which is expressed as

Cg=-C; =—p@P(vg—v;)ver. (2.3)

with vg; as the collision frequency. The mass density P and the charge density P

are written as

pd! = ngmg, (2.4)
p¥ = ngeg, : (2.5)

with e = ~e, and e; = Ze,, where ng and mg are the number density and the mass of

ion or electron, respectively, and e, is the charge of an electron.

In the one-fluid MHD approximation, we introduce the total mass density p, the
associated fluid velocity u, the total pressure p, and the electric current density j as



p=pp? +pM, (2.6)
(M) (M)
u= PE Vg +Pi , (2.7)
P
P=pgtp;, (2.8)
j = -—npeyVg + n,ZeOVI, (29)

respectively. Here we note the difference between the masses of electron and ion, that is,

Mg _ 0(10-3) ) (2.10)
m;
which signifies
p=pi”, 2.11)
u=v,. (2.12)

The key assumption of the one-fluid MHD approximation is the quasi-neutrality of charge
density,

pe =P +p = —ngey+ Znse, = 0. (2.13)
Under Eq. (2.13), Eq. (2.9) is rewritten as
J=—ngey(vg -vy). (2.14)

We combine Eq. (2.1) for electron gas with its ion counterpart, and use Eqs. (2.6)
and (2.7). Then we have

3_p +V-(pu)=0. (2.15)

ot

Similarly, the combination of Eq. (2.2) with Eqgs. (2.11)-(2.13) results in

ipu-+ipu-u-=—-@-+(ij)i

ot e P T o,
ou, _ |



Here we should note the following two points. One is the disappearance of the electric
field e, which arises from the quasi-neutrality assumption, Eq. (2.13). As a result, the
study of fusion phenomena closely related to e effects is beyond the scope of the one-
fluid MHD approximation. The other is that the diffusion effect arising from the collision
among ions themselves is supplemented as the last part of Eq. (2.16), where u is the
viscosity, and { is the bulk viscosity.

In this review, we shall pay special attention to the case of constant mass density and
discuss on the generation mechanism of magnetic fields as well as their feedback effects.
Density-variation effects will be partially taken into account through the buoyancy force.
By this approach, we do not intend to say that effects of density variation are not
important in those studies, but we aim at abstracting some of essential ingredients in the

generation process of magnetic fields.

In the frame rotating with angular velocity ®g, the constant-density counterparts of
Eqgs. (2.15) and (2.16) are [18, 19]

V-u=0, (2.17)
2" +5i—juju,- =(gt—+u-V)ui = ——;—%+vvzui
"‘%(j xb); + 2(u x oF ), —op(0-6g)g;. (2.18)

with v = g/ p (kinematic viscosity). In the second relation of Eq. (2.18), the fourth term

is the Coriolis force, and the fifth term is the buoyancy force based on the Boussinesq
approximation ( &y is the thermal-expansion coefficient, 8y, is the reference temperature,

and g is the gravitational-acceleration vector). In Eq. (2.18), p denotes the deviation
from the static pressure. The temperature € obeys

2 1V (ou) = 4,9, (2.19)

The Boussinesq approximation is originally appropriate for the situation that the
temperature difference in fluid motion is not so large. Then the approximation needs
careful treatment in the application to the phenomena subject to large temperature
difference such as the sun. The buoyancy force originating in the density difference of
constituents may also become important in geodynamo. In the outer core of the earth, its
main constituent is melted iron, but silicon is also included there. Their mass difference is

a promising candidate for the force driving melted iron, as well as the thermal force.



We consider Eq. (2.2) for electron gas, and retain the Lorentz and collision forces.

Then we have

e+vyxb+ TEVEL (vg-v;)=0, (2.20)
€p
which is reduced to
e+vyxb-TEEL j_q, (2.21)
npéy

under Eq. (2.14). From Eqgs. (2.12) and (2.14), we have

Vp=u- J (2.22)
ng€o
We substitute Eq. (2.22) into Eq. (2.21), and have
| . g .
J=O’(e+u><b)+—m.]>(b, (223)
C
where o is the electric conducﬁvity defined by
nge 2
=—£0 (2.24)
MgVEr

The retention of the first part in.Eq. (2.23) leads to the simplest Ohm's law.

In the case of constant fluid density, the use of Alfven-velocity units leads to the
concise form of fundamental equations. In the units, b/ \/pu, has the dimension of

velocity, where L, is the magnetic permeability. We make use of this fact and make the

replacement
b J . e p
——’\/T—O—-)b,ma,],m—ee,z—)p. (2.25)
Under this replacement, Eq. (2.18) is reduced to
%+8xijujui = (%+u-V)ui = —(—iii+vvzui
+{ixb), +2(uxwy), - ar(6-05)g; (2.26a)



or

-aﬂ+iu-u-=—-—a— +22— + Wy,
x T T E\PT e *
J 6

J

In Alfven-velocity units, the magnetic induction equation, the Ampere's law, and the
Ohm's law are written as

D _ _vxe. 2.27)
ot
j=Vxb, (2.28)
N |
j=—/(e+uxhb), (2.29)
Am
respectively, where A,, is defined by
Ay = 1 (2.30)
Gty

We use Eqs. (2.28) and (2.29), and eliminate e from Eq. (2.27). As a result, we have

%‘t—) =Vx(uxb)+1, Vb (2.31a)

or
b 2
—+(u-V)b—(b-Vju=1,Vb, (2.31b)

from which we may see that 1, signifies the magnetic diffusivity. Here we should recall

that the disappearance of e effects is closely related to the quasi-neutrality assumption,
Eq. (2.13), leading to Eq. (2.14).

2.2. Nondimensional parameters characterizing flows

The importance of each term in Egs. (2.26) and (2.31) changes greatly from one
phenomenon to another. The most familiar parameter is the Reynolds number R,, which

is defined by



{(U-V)U}CR,HR _ ‘eRuR ‘
{szu} v

€R,uR

R = (2.32)

Here {5 and up are the reference length and the reference velocity, respectively, and
{F} ¢ n denotes the magnitude of f that is estimated using quantities & and 7.

The nondimensional parameter related to the Coriolis force is the Taylor number

2
T {“ X mF}uR _ fR4wF2
¢ {vVgu} v2

ZR,U.R

(2.33)_

Since £pop is the velocity associated with frame rotation, we may see that T, is the
square of the Reynolds number R, based on velocity £z@y and length £5.

The magnitude of the buoyancy force due to the Boussinesq approximation is
characterized by the Rayleigh number

2
6-6

fpug

where ABp, is the reference temperature difference characterizing 8 ~ 8, and P. is the

Prandtl number denoted by

R=— (2.35)

The reference velocity linked with the buoyancy force is estimated as
{(u- Viup, . ={ar(6- eR)g}ABR : (2.36)
which gives
up = JargAbply. L @37
We substitute Eq. (2.37) into Eq. (2.34), and have

_ apgABgls’
VA,

R

(]

: (2.38)



as the Rayleigh number for the Boussinesq buoyancy force. As is seen from Eqgs. (2.34)
and (2.36), R, may be regarded as the square of R, in the case of F, = 0(1).

The magnetic-field counterpart of R, is the magnetic Reynolds number

{V * (u X b)}fR X ERU’R
= =RP,,. 2.39
{Amv2b} A'm et rM ( )

fRp.ug

ReM=

Here P, is the magnetic Prandtl number given by

v
P, =— 2.40

In Eq. (2.32), large R, signifies that the advection or inertia effect is dominant at the
length scale £ and its associated velocity scale up, compared with the molecular
diffusion effect. This fact does not mean that the latter effect is not important at large R,
but that it may become important at the spatial scale much smaller than £p.

In order to see the physical meaning of T,,, we drop the Lorentz and buoyancy forces
in Eq. (2.26), and take its curl. Then we have

% = Vx(ux(0+20;))+ W, (2.41)

where @ (= Vxu) is the vorticity. In the case of large R,, we pay special attention to
the length scale £ and drop the molecular diffusion term. In the stationery state, we have

Vx(ux(o+20p))=0. (2.42)
For the case of a strong Coriolis effect or T, >> R,, Eq. (2.42) is reduced to
Vx{ux@y)=0, (2.43)
which is equivalent to
(07 -Vu=0. (2.44)

Namely, the fluid motion does not change along the axis of frame rotation. In this sense,
the motion becomes two dimensional. This finding is called the Taylor-Proudman
theorem.



The Taylor-Proudman theorem becomes important in a spherical or spherical-shell
region with the buoyancy force in the radial direction as a primary cause of fluid motion.
The buoyancy force whose strength is characterized by the Rayleigh number R, drives
fluid from the inner to outer part of the region. With the increase in the Taylor number
T,, a fluid blob at one location is trapped around an axis along the frame-rotation vector
@y. As a result, fluid comes up or down along this axis, while rotating; namely, it is
subject to helical motion (the similar situation fnay be seen in the motion of a charged
particle around a magnetic field line). Such fluid motion cénstitutes the so-called
convection columns [20], as is depicted schematically in Fig. 5. A typical quantity
characterizing the columns is the helicity u-®. The properties of convection columns
found by computer simulations will be later referred to in the light of geodynamo and

solar dynamo.

Fig. 5. Convection columns.

In the case of the earth's outer core, we have
bp = 0(106) m,V= 0(10'6) m®s u, = 0(10"4) ms™,
P, = 0(10"), B, = 0(107). (2.45)

Here v, F,, and F,), are the values for melted iron, and uy, is the value inferred from

geophysical observations. We use @y =7x 107 rad s, and have

R,=0(10%), T, =0(10"), R, =0(10%), R, =0(10%)  (2.46)



[R, is estimated from the discussion below Eq. (2.38), and R, is found from Eq.
(2.39)]. From Eq. (2.46), the magnetic field in the outer core is much more diffusive than

the momentum.

In the case of the solar convective zone, the flow velocity and the spatial scale are
much larger, compared with the earth's outer core. Moreover, the convective zone is
highly electrically conducting, resulting in the lower magnetic diffusivity. As a result,
both R, and R,,, are much larger than the values in Eq. (2.46). On the other hand, T, in
the convective zone is of O(10%°), which is smaller than the counterpart in Eq. (2.46).
This fact indicates that the role of the convective columns becomes smaller in the solar
convective zone. Geometrically, the solar convective zone is a thin spherical shell, and
convective columns are limited to the low-latitude region. This situation also suggests a
smaller role of helicity effects in the zone.

2.3. Elsasser's variables and conservation properties

For an electrically nonconducting fluid of constant density, the total amount of kinetic
energy is conserved in the absence of molecular viscous effects. In the case, the
turbulence part of kinetic energy obeys the equation whose mathematical and physical
bases are firm. This point will become clear in later discussions. In order to see what

quantities may be conserved in MHD flows, we introduce Elsasser's variables

¢=u+b, y=u-b, (2.47)
which lead to
L L N (2.48)
2 2

In Eq. (2.26b), we drop the Corioclis and Boussinesq terms, and apply Eq. (2.47) to the
resulting equation. Then we have

Py (b)Y vtAy e, VoA o

<+ Vip=-V| p+— [+ —FVo+— V', (2.49)

ot 7 2) 2 2

a"’ ( b2\ V+A-M ) V—A,M 2

§+(¢-V)\p=—v p+? +—TV \p+TV $. (2.50)
\ J

In the absence of the molecular effects, Eqs. (2.49) and (2.50) give



J . ¢ 2 b2 2 b2
gjv %-dV = _IVV'(% ‘I’+[P+?]¢}1V = —ISn-[% \|r+(p+?J¢]dS,

(2.51)

| 2 2 | 2
%jv %dv = —jVV-(—q;— ¢+(p+%—]\|f}iv = —jsn{—";- ¢+(p+%)\|l]ds,
(2.52)

with the aid of the Gauss integral theorem (V and S denote the whole flow region and
its surrounding surface, respectively). Then the total amounts of ¢2 and \Vz are

conserved so long as there are neither their net supply nor loss across the surface.

The electrically-nonconducting counterpart of Eq. (2.51) or (2.52) is written as

;%jv (% uZJdV =~[¢m ((% u?+ p)quS. (2.53)

From Eq. (2.53), we may simpiy confirm that the total amount of kinetic energy is

conserved in the absence of molecular viscous effects.

The conservation of the total amounts of ¢ and \|l2 is equivalent to that of ¢Z % y?.
From Eq. (2.47), we have

2 2
%(qﬁ +y?)= 32-+%, (2.54)
%(4,2 -y’)=u-b, (2.555

which are called the MHD energy and cross helicity, respectively. These two quantities
are also conserved in the absence of molecular effects and their net supply or loss across a
boundary. In MHD flows, however, the kinetic helicity u-@ is not subject to such a
conservation law, unlike the electrically nonconducting case. The foregoing discussions
suggest that the MHD energy and the cross helicity are the fundamental quantities in the
investigation into MHD flow.

Between the MHD energy and cross helicity, we have the relation

2 2
LI PR (2.56)
2 2



Here the equality holds for
u+b=0 or u-b=0, (2.57a)
which is equivalent to
$=0 or y=0. (2.57b)
3. Cowling's Anti-Dynamo Theorem

We introduce the spherical coordinates (r,8,¢) for examining MHD phenomena in a

spherical region, as in Fig. 6. We write the toroidal and poloidal components of magnetic
fields, by and by, as

bp = b,.e,. + bgee, (32)

where e_, €,, and e, are the unit vector in each of three directions. In earth's magnetic
fields, the outer core is covered with the electrically nonconducting mantle, and b is not

observable. Of the poloidal component, the strongest is the dipole field whose axis is
nearly along the axis of earth's rotation.

N

> @

Fig. 6. Spherical and cylindrical coordinate systems.

In relation to the sustainment of axisymmetric magnetic fields, we have Cowling's
anti-dynamo theorem [21, 22]. It says

"An axisymmetric flow cannot sustain an axisymmetric magnetic field in a

stationary sense."



For understanding this theorem, we consider the axisymmetric poloidal field b, as in
Fig. 7. There C expresses the line along which b vanishes. On this line, we may
rewrite the Ohm's law (2.29) as

. 1 1
JT:A_(e+UXbT)T=A_eT' (3.3)
M

M

Here we should note that the toroidal current j, is axisymmetric owing to the
axisymmetry of u and b. We integrate j; along C and have

. 1 1 b

from the Stokes integral theorem, where § is an arbitrary surface spanned on C, and n
is the unit vector normal to the surface. In a stationary state, Eq. (3.4) gives

fcir-ds=0, | (3.5)

which signifies vanishing of jo itself owing to its axisymmetry. As a result, b is not

sustainable.

Fig. 7. Cowling's anti-dynamo theorem,

Cowling's anti-dynamo theorem indicates that a nonaxisymmetric motion is
indispensable for the stationary sustainment of an axisymmetric components of b. From
the theorem, the analytical approach to the magnetic-field generation mechanism or
dynamo is roughly divided into two categories. In one category, we introduce a small
number of asymmetric flow components and study the process through which an



axisymmetric component of magnetic field occurs. This method is called laminar dynamo
[9, 23].

The other is called mean-field theory or turbulent dynamo [9-12]. As was seen in §
2.2, Reynolds numbers encountered in astro/geophysical phenomena are very large,
signifying that fluid motion is turbulent or highly asymmetric. In this method, our interest
lies in the exploration of the mechanism under which symmetric fields are generated by

highly asymmetric motion. The mechanism is the main theme of this review.
4. Fundamentals of Mean-Field Theory
4.1. Mean-Field Equations

In mean-field theory of dynamo, we are interested in large-scale properties of
magnetic fields that are represented by earth's dipole field and solar toroidal field as the
origin of sunspots. In order to abstract such properties, we apply the ensemble averaging
procedure. In a spherical body such as the earth and the sun, we may regard it as
equivalent to the averaging around the axis of rotation. In the averaging, the mean field is
inevitably axisymmetric around the axis, and asymmetric properties are beyond the scope
of this method. We shall pay special attention to axisymmetric components of field and
discuss on theoretical aspects of dynamo.

We use the ensemble average { ) and divide a quantity f into the mean F and the

fluctuation around it, /', as

f=F+f, F={f), (4.1)

where f, F, and f' denote
f=(u,p68b,je)), (4.2a)
F=(UP,Q6,BJdE), f'=(u,p,a,0'b,j,e) (4.2b)

We take the ensemble average of Eq. (2.26) with the Coriolis and buoyancy terms

dropped, and have
DU, d b2 2 -
o =‘_i(P+<‘2—>]+(JXB)i+_7(“Rfj)_+"v U, 4.3)

with the solenoidal condition V-U = 0. Here R;; is the Reynolds stress in MHD flow
and is defined by



L

Ry =(u'u;'-b'b"). 4.4)

We may insert the neglected Coriolis and buoyancy effects into Eq. (4.3) when

necessary.

The equation for the mean temperature @ is

De

o =V (-Hg)+ 4,V°0, (4.5)

from Eq. (2.19). Here H, is the turbulent heat flux and is defined by
H, = (u'd). (4.6)

From Eq. (2.31), the mean magnetic field B obeys

%:VX(UX_B+EM)+AMVZB, .7

where E,, is defined by
E, = (u'xb") (4.8)

and is called the turbulent electromotive force. In this context, the mean Ohm's law is

written as

Jzi(E+UxB+EM). (4.9)
Ay

In the original Ohm's law (2.29), the electric current arising from the direct interaction
between u and b is normal to b, resulting in Cowling's anti-dynamo theorem. In the
presence of the turbulence effect E,,, Eq. (3.4) is replaced with

fedr- ds——--—jsg ndS+ }CEM -ds. (4.10)

The occurrence of the second term in Eq. (4.10) leads to the possibility that axisymmetric
Jp does not vanish in the stationary state with vanishing JB/df, escaping from

Cowling's anti-dynamo theorem.



4.2. Turbulence Equations

In order to close Eqs. (4.3), (4.5), and (4.7), we need to express R,-j, H,, and E,,

in terms of the mean field and the quantities characterizing MHD turbulent state. In § 2.3,
we showed that the total amount of MHD energy {Eq. (2.54)] and the cross helicity [Eq.
(2.55)] are conserved in the absence of molecular viscous and resistive forces. In order to
explain the importance of this fact in the light of turbulence equations, we consider the
case of electrically nonconducting flow. There the mean and turbulence parts of kinetic

energy obey

] d (U?

+v.[_<“7'2>u_<(% u” +p']u'>+vv<“7'2>]‘ | 4.12)

On the right-hand side of Eq. (4.12), each term is called the production, dissipation, and
diffusion terms of turbulent energy.

In order to see the physical meaning of Eq. (4.12), we integrate it over the whole
fluid region and have

% i <“?'2>dv =f, (-(u; u;') i%r[:j )dV ~vf, <(Z—J) >dV

+g [—KU - <(~;— u'? +p']u'> + vVK) -ndS. (4.13)

In the absence of mean flow, the first term on the right-hand side vanishes. The third term
expresses the net supply or loss of turbulent energy across the boundary. In the absence
of the latter, the turbulent state inevitably decays since the second term with the minus
sign attached is negative. In other words, the first term related to U plays the role of

sustaining the turbulent state and needs to be |



0.
Jy (—(uﬁ u;') (Zx’ ]dV >0. 4.14)

(]

The mean-flow counterpart of the first term on the right-hand side of Eq. (4.12) is the
first term in Eq. (4.11) with the sign opposite to the former. This fact signifies that the
energy is drained from the mean flow and is supplied to the fluctuating field. Such an
energy transfer from large- to small-scale components of motion is generally called the

energy cascade.

We mentioned that the MHD energy and the cross helicity, which are given by Egs.
(2.54) and (2.55), are conserved in the absence of molecular viscous and resistive
effects. Then we attach special importance to their turbulent parts,

12 12
K= <“_+,_‘3__> (4.15)
2 .
W = (u' b') (416)
The fluctuations u' and b' obey
Du,-' a ' 7 1 1 1 {;ﬁ" 1
BE"JFXJ(W u;'~b;'b; ‘Ra;r')”gi_vvz_u"
ob.' U, dB;
BB, iy 9B “.17)
4 axj J axj J axj
Dbi' a 1 t 1 [ !
Dt +gj(uj bi =U; b_, _enyME)_Ayvzbi
=B‘3u,» Yy ,aBl-+b.,3U£, (4.18)

Jaxj J&xj J&x‘

J

with the solenoidat conditions V-u'=V-b'= 0, where
b? b?
¥=p+—-({p+—). 4.19
P+ <p 5 > | (4.19)
From Egs. (4.17) and (4.18), we have the transport equations for K and W,

%: % —€2+V-T, (Z=K or W), (4.20)



where

BU 1

;'Y b;'Y
E=¢gp = v<(?":) >+AM<(EJT] > (4.22)
12 12 12 12
Ty =WB+<—(%+§']u'+(u' .b')b'>+vV<u2 >+2.Mv<b > 4.23)

0B,
=-R; E-—EM Q. (4.24)
u.'ob;'
= A ERnd B 4.25
gw=(v+ M)<axi axl.> (4.25)
] 1 ] u'z +b'2 ] ] ] 1 1 1
Ty = KB+(—~(u'bu'+ ——-3'1b +v{(b," Vi, W+ Ag (' VB,')).
. : (4.26)
In Eq. (4.21), we used
oU. 1
-a—xii = 5(8.'3 +0;), (4.27)
where
aU; dU,
S, = Elﬁgj, (4.28)
8U aU
y 4.29

In Eq. (4.20), P;, £, and V-T, are the MHD counterparts of the terms on the

right-hand side of Eq. (4.12), respectively. Specifically, the MHD energy and the cross
helicity are supplied from the mean to fluctuating field through Py and Fy. These two

terms will play a critical role in the discussion on the sustainment of MHD turbulent state.

In the frame rotating with angular velocity @y, the mean vorticity €2 is subject to the
transformation



Q- Q+20, (4.30)

as may be seen from Eq. (2.41). In this context, we have

dB;

2

whereas the @ cffect does not occur explicitly for P . Equation (4.31) indicates that W

is sensitive to the frame rotation.

In the presence of the buoyancy force, Py and Py are supplemented with the

thermal effects as
Pg:—op{6'u')y- g =—a;H, g, (4.32)
Py:—ap(6'b) g. (4.33)

In § 6.1.3, it will be shown that the buoyancy effect contributes to the generation of
turbulent energy in a thermally unstable case, that is, in the presence of the temperature
gradient parallel to the gravitational acceleration vector. This point will be further referred

to later.

In corespondence to Eq. (2.56), we have

<1 (4.34)

This relation will be later found to be very useful in the estimate of the strength of
magnetic fields generated by turbulent motion.

5. Theoretical Analysis of Turbulence Effects

For the estimate of R; and E,/, we start from a kinematic approach and then

proceed to a MHD approach. In what follows, we shall drop effects of Coriolis and
buoyancy forces for simplicity of discussion and refer to them when necessary.

5.1. Quasi-kinematic method

Once the statistics of u' are given, we may evaluate E,, on the basis of Eq. (4.18)
and examine its relationship with the generation process of B. This approach is called

kinematic dynamo. Here we follow the two-scale direct-interaction approximation



(TSDIA) method [12, 24] and perform kinematic dynamo modeling. The theoretical
framework of the TSDIA is explained in Appendix.

5.1.1. Introduction of two scales and scale-parameter expansion

In order to distinguish between spatial and temporal variations of F' and f' (see Fig.

Al in Appendix), we introduce a positive parameter
8¢ << 1. (5.1)
Using it, we construct two spatial and temporal variables, that is, fast and slow variables,
E(=x),7(=¢t); X(=8sx), T(=Sst), (5.2)

respectively. Here 8¢ is not a real nondimensional parameter such as Reynolds number

and is called the scale parameter hereafter. Its physical meaning is discussed in Appendix.
We use two spatial and temporal scales given by Eq. (5.2), and write f [Eq. (4.1)] as

f=FX,T)+f (&5:XT). (5.3)

Then Eq. (4.18) may be rewritten as

‘Zb;' U, g‘gi + ;j (4, b~ by') = Ay V.78
Bg.ug_a(gxib X Dhp 2
—a’%(uj'bi'—u,-'bj'-swEm)], (5.4)
where
@) e
%:%w-vx, | (5.6)

respectively, and we should that Ej, is a function of X and T'.



We introduce the Fourier representation in the frame moving with the velocity U;

namely, we write
fE&X1,T)=|f (kX;7,T)exp(-ik-(§- Ur))dE.
We apply Eq. (5.7) to Eq. (5.4), and have

3b'(k,’l') 2
— =<+ 1, k°b.' (K;

~iN(k)]fu;' (p;7)b,' (q; 7)6(k - p—q)dpdq

- —i(k-By,' (k; 1)+ 58[-u (& 7) j; (ks 7) g;z

_Dbi (lfit)_i_Baux (?;T)+NBE ,
DT T

where

J ij*

D"/ DT" and Vy were defined by

D D
(DT* ,VXJmexp( ik Uf)(—l—ﬁ; VX]exp(lk Ur),

(5.7)

(5.8)

(5.9)

(5.10)

and Np expresses the terms that are nonlinear in u' and b' and are not dependent

directly on the mean field U and B. We focus attention on the interaction between the

mean field and fluctuations, and neglect Ny in what follows. Moreover, the dependence

of u' and b' on X and T are not written explicitly.

We expand b' as
b'(k;7)= 3657, (K; 7).
n=0

The first two parts are governed by

by ' (k; 7)
ot

—iN (k)] ;' (p; 7)by,' (q; T)(U, B)6(k - p— q)dpdq

+ An by, (I 7)

(5.11)



= Igoi(Kk; 7) = —i(k-B)y;' (k; 7), (5.12)

b 057) Ly k28, (s )

—iN(K)ff u;' (p; 7)by, ' (q; 7)6(k - p - q)dpdq

: B; , U, D'by'(k;t du' (k7
J J J .
(5.13)

In order to solve Egs. (5.12) and (5.13), we introduce the Green's function GM,-J-',

which obeys

Iy (K7, 7°)

+ Ak’ Gy (K3 7, 7)

~iN i () ' (95 7)Giagmy' (37, 7')8(k — p - Q)dpdq = 8;6(7 - 7).

(5.14)
With the aid of Gy’ Eq. (5.12) may be integrated as
boi' (I T) = by, (K; T) + [ Gy (&5 7, 7)) g j (5 71 )Ty - (5.15)
Here by,' is governed by .Eq. (5.12) with the B-related part dropped, that is,
Phos 117) ;,(rk; ) + Apkbog;' (I 7)
=iNy, (k) u;' (9; 7)boo, ' (@ 7)0(k — p —q)?ipdq =0. (5.16)

This equation contains no factors generating and sustaining the statistical anisotropy of
bg,'. In what follows, the statistics related to bgy' will be assumed to be isotropic, but

their nonmirrorsymmetry is taken into account when necessary.
Entirely similarly, Eq. (5.13) results in
by' (k; 1) = [, Gy (O 7, 1) gy (K 71 )d 74 (5.17)
5.1.2. Evaluation of turbulent electromotive force

Equations (5.15) and (5.17) indicate that b' is expressed in terms of by,' under

given u'. Then E,; may be evaluated once the statistics of u' are known. As the



simplest turbulent state, we assume the isotropy of w'. In this case, the covariance of u'

may be expressed as

(ui' (s T)u; ' (K'; 'r'))
5k +k')

=D;(K)@ (ks 7,7") + -;- :—g g x(kT,7),  (5.18)

where subscript K denotes kinetic, and

kk;
D;(k)=4 -/

R (5.19)

Then the turbulent kinetic energy and the turbulent kinetic helicity are expressed by
u|2

Hy =(u'@) = | I (k %,r)dk, ‘ (5.21)

respectively. In relation to the second term of Eq. (5.18), we should recall Taylor

columns referred to in § 2.2. The columns are characterized by nonvanishing helicity.

In the present discussion, we further introduce the correlation between by,' and u’,

that is, the cross helicity. Its importance was discussed in § 2.3 in the light of MHD
conservation properties. We write

(ui' (k; 7)byo ;' (k' Tt))

5(k + k') = Dy(k)A(k; 7,7) (5.22)
which gives
(u- by, -) =2[ Alk; 1, r)dk_ (5.23)

In purely kinematic dynamo, there is no necessity to retain A. In real dynamo,
however, there is the close connection between magnetic field and velocity through Eq.
(4.17). With this point in mind, we perform the analysis of E,, on the basis of Egs.
(5.18) and (5.22). The introduction of A will be shown to lead to a new dynamo effect
that does not occur in the purely kinematic approach. It is proper to call this approach
with Eq. (5.22) incorporated a quasi-kinematic dynamo, in contrast to the usual kinematic
dynamo.



From Eq. (5.14), the Green's function G,;' is dependent on u' only that is

statistically isotropic. Then we write
(GMij' (k; 7, r')) =6,;Gy(k;1,7'). (5.24)
We expand E,; as
By, = £55((u" b, ) + 85w’ by'))+0(85%). (5.25)
We substitute Egs. (5.15) and (5.17) into Eq. (5.25), and have

Ey; = Eije{j <ujr (s 7)buoe (K ;T)) dk]

S(k+k')

Gy (K57, 70 (K T)e, (K T
+ew[-i3njkn'dkj;( mt it (86 T | 1))d11]

S(k+k')
] ] ] \
JB (Gmm'(k';'r, Tu;' (K 7)u, (k ;11))
+g;,| ——= | dK|® d

Eljf[ (9xn J J—o-o 5(k+k') Tl

oU . (GMem'(k';T,ﬁ)uj' (k;f)bOOR'(k1;Tl)> W
” 2 [dk dry{, (5.26
+5‘~’f[ Pl 5(k+K) Bl 020

after the replacement concerning X and T,

X - 8gx, T — dgt. (5.27)

In the context of the last two terms, we retained the first two terms in Ep; of Eq. (5.13)

that are linearly dependent on U and B.

In the first term of Eq. (5.26), we use

jf’kTJdk=%6ij dk, (5.28)
and have

To the second term, we apply the renormalization procedure (see Appendix), and have



EUF[BHJ dk|’, Gy (K57, 7)) (_iknl)(u; (s e (I T1)> dTlJ

5(k+ k)
= (wgljdkfm Gy (ks T, 7)) Tk (R 7, Tl)dfl)Bi- (5:30)

Here we should note that the second part of Eq. (5.18), which is related to the helicity
effect, contributes to this result. The third and fourth terms may be evaluated in entirely

the same way. Summarizing these results, we have

Coefficients ag, By, and yj are expressed in the form

Ay =-— % [dk[L, Gyl 7, 7)) (R 7, 71)d 7, (5.32)
2 . . .

By = 3 JdK[" Gyk;7,7,)@ (ks T, 7,)d Ty, (5.33)

Yk = 2| K[ Gyl 7, 7) Ak 7,7 ), (5:34)

On dropping the third term on the left-hand side of Eq. (5.14), Eqs. (5.33) and (5.34) are
reduced to the expressions obtained by the first-order smoothing approximation [9]. We
should note that the approximation is applicable to the case of low magnetic Reynolds
number. |

Equation (5.31) shows that turbulence effects generate the electromotive force
aligned with the mean magnetic field, the mean electric current density, and the mean

vorticity. Their physical meanings will be later discussed in detail.
5.1.3. Evaluation of Reynolds stress

In the usual kinematic approach, our concern is focused on the evaluation of E,,,
that is, the effect of velocity fluctuation on the equation for B. In the present approach,
we are also interested in the effect arising from the correlation between velocity and
magnetic field or the turbulent cross helicity. By taking the effect into account, we may
examine the feedback effect of the generated magnetic field on the equation for U. The
velocity-related part of R:-j is simply evaluated from Eq. (5.18) and is given in the

1sotropic form



(' u;") = ( [Qx(k; T, Tl)dk) - (5.35)

We use Eqgs. (5.15) and (5.17), and evaluate (bi'bj'). For the isotropic part of

magnetic fluctuation, bg,', we write

(bODi' (k; 7)byo ;" (K5 T'))'=
S(k+k')

D;(k)@y(k; 7, 7"). (5.36)

Here we may add the nonmirrorsymmetric part, which is confirmed not to contribute to

the following analysis. As is similar to Eq. (5.31), we pay special attention to the
contributions linearly related to U and B. After the combination with Eq. (5.35), R;; is

written as
2
RU = "§ KR5 VTMS +VMMMl”’ (537)

where the mean velocity-strain tensor \S; is given by Eq. (4.28), M;; is its magnetic-

field counterpart defined by

dB; L 9B;
M. = 5.38

i= ax (5.38)

and the turbulent residual energy Kp, is

ut2 _b12
Ky = <—2“"“‘“'> = | Qg (k; 7, T)dK - [ @y (k; 7, T)IK. (5.39)
Coefficients vy, and Vg, are
Vrm = %f dk|”_ Gy (k; 7, 7,)@u(k; 7,71)d 7y, . (40
2 .

Vup = 3 [dKk[" Gy (k;1,7,)AlR; T, T,)d T, . (5.41)

In Eq. (5,37), the vy, -related term expresses the so-called turbulent-viscosity effect
(see Appendix). On the other hand, the v, -related term denotes the feedback effect by
the generated magnetic field on the mean flow. The importance of this effect will be
clarified in later discussions.



5.2. Counter-kinematic method

In § 5.1, we analyzed effects of velocity fluctuation on the B equation, which are
represented by E,, . In what follows, we consider effects of magnetic-field fluctuation on

the B and U equations. This approach, which is called the counter-kinematic method,
will be instrumental to understanding the interaction process between U and B.

5.2.1. Scale-parameter expansion

In terms of two-scale variables, Eq. (4.17) may be written as

ou;' 5u' d a0’

a; +U; % ag (1w, =B, b )Jra—éi-v\;qE
'axij( “b,'b'-R,)- :;;J (5.42)
with the solenoidal condition
‘;”_é' _5, ‘;;; (5.43)

We apply the moving-frame Fourier representation, Eq. (5.7), to Egs. (5.42) and (5.43),

and have

ay;' (k; 7)
M

~ik; [fu;' (p; ;' (q; 7)6(k - p- q)dpdq

+ vy, (k; 7) - ik (k; 7)

=-i(k-B)b,(k; 7) + ik, f b (p; T)b;' (q; T)8(k — p— q)dpdq

U, oB; -
gl —u;' (k1) —>+b;' (k; 1) —
+ S[ u_}' ( T) aXJ + J ( T) aXJ
_Dy'(ls1) I (k1) B d'u;' (k; 1)
DT” ax; ) ¢



*

. (' (25 7)e;’ (g 7) - &' (0 7)B; ' (@ 7))8(k —p - q)dpdq], (5.44)

ax;
Ay (k1)
k-u'(k;7)=6g| -i ——=—|. 5.45
u'(k; 7) s( ¢ Fre ) (5.45)
We expand u' and 8 as
u'(k;7)= Eﬁsnun‘(k;r), ¥ (k; 1) = Y 85"3," (k; 1), (5.46)
=0 n=0

and substitute them into Eqs. (5.44) and (5.45). The leading parts u,' and ¢,' obey

iy, '5(;‘; T)) +

—ik; [lug;' (0 T)uﬂjl (q; 7)6(k - p-q)dpdq

=—ik;b,(k; T)B; +ik; | ' (p; T)b;' (q; 7)6(k - p— q)dpdq, (5.47)

vkPuy, ' (k; 7)~ ik 8,y (K; T)

k-u,'(k7)=0. (5.48)
We use Eq. (5.48) and eliminate #;'. The resulting equation is written as

——-———aum (k; ) + viu,," (k; )

—iM;, (K)uy ;' (P; )y, (q; 7)6(k — p - q)dpdq = —i(k- B)b;" (k; 7)
+iM;,(K)[[ 5 (p; 7)b;' (g 7)6(k - p-a)dpdq, (5.49)
where M;;,(k) is defined by

1
M, (k)= 2 (%, D;,(K) + k,D;(k)). (5.50)

In the present counter-kinematic approach, b' is assumed to be statistically known,

and the right-hand side of Eq. (5.48) may be regarded as external forces imposed on the
u,' equation. It is difficult to exactly solve Eq. (5.48) owing to its nonlinearity. Then we

treat those forces in the perturbational manner. We write u,' as

u,'=uy' (k1) +uy' (k7)+--. (5.51)



The first two terms are govern by

dugy;' (k; 7))
ot

_iMije(k)H Ugo;' (P; 7)ugo,' (@ 7)6(k -~ p-q)dpdq = 0, (3-52)

duyy;' (k; T))

+ szumi' (k; T)

+ vk uy, (k; 1)

~2iM ;o (K)|f 20, (P; T)ugr,' (s 7)8(k — p— q)dpdq

= Iy = —ikb;" (k; 7)B; +iM;,(K)[[ b,' (p; T)b,' (q; )6(k — p - q)dpdq.
(5.53)
Equation (5.53) is linear in w,,'
function Gy;;' obeying

and may be integrated in terms of the Green's

m __l k. [}
' { ’T’T)+vk2ij'(k;r,t')

at
—2iM 4, (K)[f g0, (95 )Gy (57, 7')6(k — p ~ q)dpdq = 5,;6(7 - 7').
(5.54)
As a result, we have
uoy' (K T) = [ Gy (& 7, T o (K 71 )d 7y, (5.55)
For obtaining the O(8¢) part of u', u,', we write [12, 25]

' (I 1) = v, (K 7) - i %2 "*L:;X(!‘-i) (5.56)

leading to the solenoidal condition concerning Kk,
| k-v,'(k;7)=0. (5.57)

The solenoidal part v,' obeys

vy (k; 7)
o

~2iM,,,, (K)ff ug,' (95 T)0r,' (P; 7)6(k — p - q)dpdq

+vk?v,,' (k; 7)



;) U D'uy ;' (k;7)
= D, (Kb, (ki 7) 2ot - D,y (K)o ;' (k; 7) 2ot - Dyi(k) —=2——— + Ni;.
i X, j X, DT

(5.58)

Here N expresses the terms nonlinear in u,' and b’ related to the last term of the
O(85) part in Eq. (5.44). It will be dropped in the following discussion since our

interest lies in the interaction between the mean field and fluctuation.

We substitute Eq. (5.51) into the right-hand side of Eq. (5.58) and retain the
contributions from w,' for minimizing the mathematical complexity. This approximation

is helpful for abstracting the effects linear in B and U and neglecting the contribution
from the nonlinear term N . We may integrate the resulting equation by using Eq.

(5.54), and have

. ki C.")*Uooj" (k; 7)

ulil (k! T) = k2 (?X;
aBﬂ T ' '
+D£m(k)§xh_j-—mGKim (k; 7, r1)bj (k;’fl)d"'l
J
aUE T 1 '
*D@mrf,(l“)_—.[_m Gkim (k; 7, Tl)u’OOj (k; 7,)d T,
MJ’
D'uy, ;' (K;
-7, Gy (ks 7, 74) Yoo (,., Tl)drl. (5.59)

DT

5.2.2. Evaluation of turbulent electromotive force

For b', we also assume the same statistical property as for u' in the quasi-kinematic
method. Namely, we write

(&' (k;7)b;" (K'5 7"))
S(k+k')

&
:Dij(k)QM(kQT,T')+%k—g&‘iﬂrM(k;’t,T'). (5.60)

Equation (5.60) gives

b|2
Ky = <7> = | Qu(k; 7, 1)K, O (56D)
Hy =(b'-j) = [ Iy (k; T, 7)dk. (5.62)



The helicity w - @ is an indicator of helical or spiral structures of fluid motion. From
the Elsasser's variables in § 2.3, we may see the close correspondence between u and
b, resulting in the similar correspo.ndence between @ and j. Then b-j expresses a
helical property of magnetic-field lines. In what follows, the turbulent part of b-j, H,,,
will be shown to play an important role in mean-field theory of dynamo, through the
combination with the turbulent kinetic helicity Hy defined by Eq. (5.21).

The leading part in Eq. (5.51), uy,', obeys Eq. (5.52), which is not explicitly

dependent on the mean field generating the anisotropy of turbulent state. We assume the
statistical isotropy of wg,':

(ucmi' (k; Titgo;' (K's T')) _
5(k+k')

D, (k)@ (%7, 7'), (5.63)

as well as

(Gry' (5 7,7)) = 8,G (ks 7, 7). (5.64)

In Eq. (5.63), we may add the nonmirrorsymmetric part, as in Eq. (5.18), which is

confirmed not to contribute to the following analysis. Moreover we keep the correlation
between wy,' and b' in the form

(uom'(k; 7)b;' (k'; 1:')) _ o |
5(k + k) = D;(k)A(k; 7, 7'). (5.65)

The physical meanings of Egs. (5.63) and (5.65) have already been mentioned in the
quasi-kinematic method.

We expand E,, as
E,; = em((u(, 5B+ 85 ({u' by ))) +0(55%)
- eijf(<u00j' b, ') + (umj' bf') +-- ) + 6S(égg(u1j ' b{)) + 0(632), (5.66)

by using Eq. (5.51). We substitute Egs. (5.55) and (5.59) into Eq. (5.66)_, and make use
of the statistics designated by Egs. (5.60) and (5.63)-(5.65). The evaluation of E,, is

essentially the same as for Eq. (5.31), resulting in

where



1

oy =3 | d&[ ., Gk T, 7))y (ks T, Ty)d Ty, (5.68)
1 T

By = 3 [dk[*_ Gy (k;T,7)@u kT, 7)d T, (5.69)

Yar = %jdkj; Gy (k; T, 1) Alk; T, 7,)d Ty . (5.70)

In Eq. (5.67), the explicit dependence of E,; on the mean field is the same as for
Eq. (5.31). A typical difference between the two expressions may be seen in Eqgs. (5.32)
and (5.68). These coefficients are associated with helical statistical properties of velocity
and magnetic-field fluctuations, respectively, but those properties occur with opposite

signs attached.

5.2.3. Evaluation of Reynolds stress

In the counter-kinematic method, the magnetic part of R;; is simply written as
' t 2 .
(-8'8;") = 5] Qu (B 7, 1)k 3y, (5.71)

from Eq. (5.60).
The velocity counterpart of Eq. (5.71) is expanded as
(' ") = (e ")+ B (s wa) + (' 1)) + O(35°)
= (100" g0 ")+ {tta0: thon ")+ (Uon oo )+
+ 85 {uoas" 1) + (s tgn; ) +++-) + O(857), (5.72)

where use has been made of Eq. (5.51). We substitute Egs. (5.55) and (5.59) into Eq.
(5.72), and use Egs. (5.60) and (5.63)-(5.65). After the combination with Eq. (5.71),

we have

2
R'J - “:‘3' KR5U - VTKSl:j + VMKMI'" (5'73)
where
7 t
Vg = e [dK[* Gi(k;T,7))Qk kT, 7)d 1y, (3.74)



Vg = % JdK|' Gy (k;T,1)AR; T, T)d T, (5.75)
and the leading part of the turbulent residual energy Kp, is writtcﬁ in the same form as
Eq. (5.39).

5.3. Discussions on dynamo effects from quasi-kinematic and counter-kinematic methods
5.3.1. Mathematical features of obtained expressions

From both the quasi-kinematic and counter-kinematic methods, we have the same
types of expressions for the Reynolds stress R,; and the turbulent electromotive force

E,:
2 | .

Ey =aB-BJ+. (5.77)

For R, the quasi-kinematic method gives
if q g

On the other hand, the counter-kinematic method leads to
vr = v [Eq. (5.74)], vy = vyx [Eq. (5.75)]. (5.79)

From the comparison among these expressions, we may see that vy, and Vg possess a

common feature. They are related to the intensities of fluctuations, as is shown by the
dependence on &, and Q. Such close relationship also holds between vy, and vy

since they are expressed in terms of A (the spectrum of the turbulent cross helicity).

For E,,, the quasi-kinematic and counter-kinematic methods give
o =ayg [Eq. (5.32)]), =Py [Eq. (5.33)], ¥ = yx [Eq. (5.34)], (5.80)
a = oty [Eq. (5.68)], B =Py [Eq. (5.69)), ¥ =¥y [Eq. 5700,  (5.81)

respectively. Concerning f3 and ¥, we may see the properties entirely similar to v, and
Var- On the other hand, « is related to the helical properties of magnetic-field and

velocity fluctuations in an opposite manner, as is seen from the difference of signs in
Eqs. (5.32) and (5.68).



In the investigation into real dynamos related to planetary magnetic fields, the
interaction between velocity and magnetic field is very important. It is meaningful to infer
such an interaction from the results by the separate treaiment of velocity and magnetic-
field fluctuations. In the simultaneous presence of those fluctuations, v, and f are

inferred to be associated with their total spectrum. We symbolically write this situation as
Qx +Qu = vy, B. (5.82)
Concerning v,,; and 7, their relationship with the cross-helicity effect is clear, which is
AV, ¥. (5.83)
On the other hand, we may infer
Iy —-T'y=0. (5.84)

The difference I'y, — I'y is called the turbulent residual helicity. Its importance was first

pointed out in the study of isotropic MHD turbulence by the eddy-damped quasi-normal
Markovianized approximation [26].

5.3.2. Physical meanings of obtained expressions

We substitute Eqs. (5.76) and (5.77) into Egs. (4.3), (4.7), and (4.9), and have

12
DU, __2 [P 2 Kp + <b7>) +(dxB); + &% (VTSij - VMMij) +WU,

Dt x| 3 y
(5.85)
B 2
—37=Vx(E+UxB+aB—ﬁJ+m)+/’LMV B, (5.86)
J=ﬁ+1lM (E+UxB+aB+1). (5.87)

In order to simply see the physical structures of these equations, we neglect the spatial
dependence of vy, v,,, a, B, and y. Under this approximation, Eqs. (5.85) and
(5.86) are reduced to

2
% = -V{P+§KE +<%>J+J xB+(vp +vIVEU - v, V’B,  (5.88)

§=Vx(E+UxB)+aJ+(/3+;LM)VZB—szU. (5.89)



From Eqgs. (5.87) and (5.89), we may easily confirm that B expresses the enhancement
of the magnetic diffusivity by fluctuations. It is called the turbulent magnetic diffusivity in
the light of the turbulent viscosity vy that is familiar in turbulent flow of electrically

nonconducting fluids. It is also named the anomalous or turbulent resistivity.

Next, we consider the physical meaning of the «-related effect with the aid of Eq.
(5.87). There the a-related term, which was first proposed by Parker [27], expresses the
occurrence of J parallel or anti-parallel to B, depending on the sign of & (see [9-11] for
the historical development of the study of the effect). This point makes a sharp contrast
with the original U x B term generating J normal to B. This ¢ -related mechanism is
usually called the alpha effect or dynamo. In Eq. (5.84), we saw that o is expressed in
terms of two types of turbulent helical properties, namely, statistical helical properties of
velocity and magnetic-field fluctuations.

Of the two helical properties, the relationship of & with the turbulent kinetic helicity
{(u'-@'} is explained schematically by the use of Fig. 8. In the case of small Ay or large

R, 5, magnetic-field lines are frozen in fluid motion, and positive (u'-@') tends to

generate o anti-parallel to B. This anti-parallelness is expressed by the negative sign in
Eq. (5.32).

%’ u"-0)>0

Fig. 8. Alpha dynamo.

The alpha effect due to the helical magnetic property is expressed by Eq. (5.67) with
Eq. (5.68). There positive (b'-j') contributes to positive &. Such o generates the

occurrence of J parallel to B or positive B-oJ. This process is not so easy to explain
schematically, as is done for {(u'-@'). The linkage between the signs of B-<J and

(b'-j'), however, is understandable since the scale separation between B and b' is not

so definite.



B
(u’-b")>0

U

Fig. 9. Cross-helicity dynamo.

In Eq. (5.87), the y-related term expresses the occurrence of J aligned with €,
which is equivalent to the alignment between B and U. The coefficient ¥ is related to
the turbulent cross helicity {(u'-b') through Egs. (5.34) and (5.70). This alignment may
be schematically depicted in Fig. 9. The linkage between U-B and (u''b') resembles
the situation concerning B-<J and (b' -j"). The former linkage, however, is much closer
from the conservation property referred to in § 2.3. In the absence of molecular viscosity
and diffusivity, the total amount of cross helicity, jvu-de, is conserved. In the
presence of molecular viscosity and diffusivity, the cross helicity cascades from large- to
small-scale components of MHD motion, as is the sum of kinetic and magnetic energy.

Such a cascade process may be regarded as a cause of the linkage between U-B and
(u'b). |

In the frame rotating with the angular velocity @y, the mean vorticity € is subject to

the transformation (4.30). As a result, we have

1

J =
B+Ay

(E+UxB+aB+7y(Q+205)). (5.90)

This indicates that the frame rotation may exert influence on the mean magnetic field in the
presence of {u'-b’). The importance of the fact will be discussed in the investigation into

geodynamo. The other typical feature of the turbulent cross helicity is the explicit
feedback effect on fluid motion through the Lorentz force

JxB=

" (E+UxB+y(Q+20;))xB (5.91)
M

with no explicit alpha effect.



Fig. 10. Feedback effect of fluid motion by tension of magnetic field

We have the other feedback effect on fluid motion through (u'-b'"), which occurs as

the last term in Eq. (5.88). It arises from the effect of mean magnetic strain that is
expressed by the last term in Eq. (5.37) or (5.73). In the situation that the magnetic-field
line is deformed as in Fig. 10, we may write

B, =(0,B,,0) » B=(B,(y),B,(7),0), (5.92)
with dsz / dy* < 0. The last term in Eq. (5.88) gives

2
Y

which signifies that the magnetic field deformed in the positive x direction drives the

fluid in the direction.
5.4. Magnetohydrodynamic method

In§5 1and§5. 2 we investigated into the effects of magnetic-field and velocity
fluctugtions on the mean magnetic-field and velocity equations in a separative manner.
Through the discussions, we reached expressions (5.82)-(5.84). Of these expressions,
Eqgs. (5.82) and (5.84) remain as a conjecture in a fully MHD sense. In order to clarify
this point, we need to treat the equations for u' and b' simultaneously. Such an analysis
1s very complicated. A method of alleviating the mathematical complexity is the use of
Elsasser's variables introduced by Eq. (2.47). In what follows,A we perform the TSDIA
analysis based on these variables [12, 28, 29].



5.4.1. Elsasser's variables and two-scale description

We divide Elsasser's variables into mean and fluctuating parts, as in Eq. (4.1):

$=0+¢', y=VY+y'. (5.94)
We define
R =(0'y,"). | (5.95)
In terms of (JE] the turbulent electromotive force E,; and the Reynolds stress R;; are
rewritten as
E, =-1¢ R® (5.96)
ML — 2 yf jf » .
1
R; = E(R'-(JE) +R§f)). (5.97)

We may call R,g-E) Elsasser's Reynolds stress. In the equations for the mean field
(@, ¥), it plays entirely the same role as R;; in the equation for U. From Egs. (5.96)

and (5.97), however, R{,-E ) is found to be a more fundamental second-order correlation

function in MHD turbulent flows.

In order to evaluate Rig-E ), we consider the equations for ¢' and '. There we take
v = A;, and simplify the mathematical manipulation. In the case of high kinetic and
magnetic Reynolds numbers, this approximation is supposed to give rise to no critical
inaccuracy. From Eqg. (2.49), ¢' obeys

op;' o0 o

9¢;’ (E) T2 -
+'¥,; + DR ) —— =W =y 5.98
s J axj axj (WJ ¢1 ) axi ¢: y i &rj ( )
with the solenoidal condition

V.¢'=0, | (5.99)

where ¥ is defined by Eq. (4.19). The equation for y' may be obtained through the

replacement
oy, yoo, Y, Y@ R 5 RP. (5.100)

We apply the two-scale description to Eqs. (5.98) and (5.99), and have



a¢" a¢' d Vo s’ 2. a¢‘
LU, —+ W' +—-V,59,'=B. -
or ok o o R T g
ra¢i a¢1. a¢i' d vl (E) s
+5S(""f'§x";_73?_ fan_Kj( /' -R) x| O
a¢il a¢il
% . _5. %% 102
%k, e

Following the approach in the quasi- and counter-kinematic methods, we introduce the
moving-frame Fourier representation, Eq. (5.7). Then Eqgs. (5.101) and (5.102) are
reduced to

d¢;' (k; 1)
or

~ik;[Jy;' (p;7)¢;' (q; 7)6(k ~ p - q)dpdq = '—i(k -B)g," (I 7)

+ vk, (k; 1)~ ik (k; 7)

9P, _ D*¢i'(k§f)+B_ 3*¢i'(k;r)_ 3*v' (k; 1)
29 DT’ ) ¢ X

7 i

| +53(—uf,-'(k;f)

—%H y;' (0 r)¢,-'(q;f)5(k—p—q)dpdq], (5.103)

J

o (ko1 — sl 98 (1)
.k¢(k,1:)—6( % J (5.104)

H

We write ¢' as

¢'(k;7)=¢'(k; 1)+ 53(-i k% %{E-QJ (5.105)
Then ¢ obeys the solenoidal condition concerning k:
k- ¢"(k; 1) =0. (5.106)
5.4.2. Perturbational solution
We expand ¢' and ¢9' as
¢ (k;7)= 2053”4;; (k; 7), ¢ (k;7) = 2053"4;; (k; 7), (5.107)



o' (1) = T840, (k;7), (5.108)
n=0

with the similar expressions for y'. In the oD analysis, we have
&' (k1)=& (k1), (5.109)

from Eq. (5.106). Then &' obeys

a_qbgi:a(fk—;f) + vk 9y (K; 7) - ik Dy’ (K; 7)

—ik; [ wo;' (9 7)00:' (@ 7)0(k — p — q)dpdq = -i(k - B)gy;' (k; 7), (5.110)
k-¢' (k;7)=0. (5.111)
We apply Eq. (5.111) to Eq. (5.110), and have

kik;

ﬂot(k; T) =— k2

fwo' (s T)e0;' (@; 7)8(k - p-q)dpdg.  (5.112)

The substitution of Eq. (5.112) into Eq. (5.110) results in

od,;' (K; ,
B 157) 3(1_ T)+Vk2¢’0i (k; 1)

- iZijZ(k)H V’Oj' (P; T)¢0f' (q;7)o(k-p- ‘I)dl’dq = -i(k- B)‘i»”o;" (k; 7),
(5.113)

where
Z;;(k) = k; D, (k). (5.114)

The ' counterpart of Eq. (5.113) is given by

awOEaik’ T) + szl'llm. (k, T)

- i'Zije(k)H ¢0j' (P§ Ty, (a5 T)a(k e q)dpdq = "i(k : B)V’o;" (k; T)-
(5.115)

Equations (5.114) and (5.115) are dependent linearly on B, but they are coupled
with each other, leading to the nonlinear dependence of ¢,' and y,' on B. It is difficult

to exactly solve this coupled system of equations in an analytical manner. We expand



&'(k7)= i;o%m'(k; 1), (5.116)

with the similar expression for ', and solve the system by an iterative method with the
p Yo Y y

right-hand sides regarded as perturbation terms. The leading term obeys

gy (I; 7)
ot

- izijt(k)” WUOj' (P; T)‘Pooe' (q; T)a(k -P- (I)deq =0, (5.117)

+ V2940, (K; 7)

We introduce the Green's function for Eq. (5.117) as

IGy;' (k& 7,7')

+vk*Gy;' (k; 7,7)

~iZ0 () Woo¢' (B T)Giy' (257, 7')8(k ~ p - q)dpd = 8,6(7 —7').
(5.118)

With the aid of G#!;r'l , we have
$or' (I 7) = ~i(k-B)[* G,;' (k; T, T1)¢0o, ' (K 71)d 7y . (5.119)

The terms ¢,'(n=>2) are expressed in terms of d,'(m<n-1) and

Vo' (m < n—1), resulting in the nonlinear dependence on B.

The foregoing nonlinear dependence has been sought in the light of the dependence
of & in Eq. (5.77) on B. Such dependence arises from the interaction between the
equations for u' and b', and attention has been paid to it from the viewpoint of
determining the saturation level of induced B. [30-32]. On the other hand, the turbulent
cross helicity is an important indicator of the correlation between u' and b'. By taking
this fact into account, we may examine the interaction effects in an entirely different
manner, as is shown by the last terms of Eqgs. (5.76) and (5.77). In the present chapter,
we prefer to the latter methodology and do not consider ¢,,' (= 2 2). This point will be

discussed in detail through the application to planetary dynamos.

For the O(8g) parts in Egs. (5.107) and (5.108), we have

opy;' (k; 7)
ot

—ik;[[w,;' (P T)¢y' (q; 7)6(k - p- q)dpdq

+ vk (k; 7) - ik, (I 7)



= -i(k-B)¢;' (k; 7) - ¥o,' (k; 7) oP 2 oi' (& T) —_3 " goi' (I3 7)

&, DT 5 X
30 (k7
-_—g}é——) ik; H le (p, )¢01 (q, )5(k_P—(I)deq
a* 1 1
~ = Ivo; (p; 7)90;' (q; 7)8(k — p— q)dpdq, (5.120)
J
k 9 ¢y (k;7)
k k —_— 5.121
' (1 7) = 81 (I 7) iy S 6.121)
with the similar expressions for y,', where
k-ﬁ’(k;r)=0. (5.122)

As may be seen from Eqs. (5.76) and (5.77), our main interest lies in the relationship
of R;; and E,, with the mean field B and U. In solving (5.120), we focus attention on

the first four terms on the right-hand side and drop the last two terms. We apply Egs.
(5.121) and (5.122) to Eq. (5.120), and eliminate ¥,'. As a result, we have

a¢y; (k; 7)

Fraa vk2¢7.(k; 1)

-iZ;;,(K)[f wo;' (P; 7)¢1,(q; 7)6(k — p—q)dpdq

' P I)*¢0iI (k; T) a*¢0i ' (k; T) - +t
= -D,,(k)y,; (k1) 2t — ot g 2P BTk B (k7).
ST dX; DT ¢ g

(5.123)

We substitute Eq. (5.116) and its counterpart for y,' into Eq. (5.123), and retain the

contributions from their leading parts. We may integrate the resulting equation formally
with the aid of Eq. (5.118), as

@,

ok 7) = m(K)[5, G (K5 7,71 ;' (K3 74 )d 7y

J

D*¢00j' (I 74)

-5 Gy (5 7,4) DT

dt,



+Bj J-:,o G¢¢‘f' (k; T, TI) "‘—a ¢00§}i’ Tl)

J

dt,

—i(k - B)[" Gy '(k7,7))87; (ks 7,)d 7, . (5.124)

—00

Then the 0(63) solution is given by Eq. (5.121) combined with Eq. (5.124). Here we
should note that Eq. (5.124) is still dependent on ¢ though the last term. We evaluate

the term in an iterative manner by using the first three terms, when necessary.

5.4.3. Evaluation of Elsasser's Reynolds stress

From Eqs. (5.119), (5.124), and their counterparts for y,," and y,', the O(1) and
O(84) solutions may be written in terms of ®o'. Woo'» Gg;'s and G;' in addition to
B and U. Equation (5.117) and its counterpart for w,," are not dependent explicitly on
the mean field that is a primary generator of the statistical anisotropy of ¢' and y'. Then

we assume their isotropic correlation functions, as is similar to Eqs. (5.18) and (5.60):

(Yl 7)Z,(k'; 7))
d(k+k')

- _
= D,(K)@yz (7, T') + % Zg; &5 Hyy (k;7,7), (5.125)

(Gyy' (k;7,7")) = 8, Gy, (k; 7, 7). (5.126)
Here Y and Z represent one of ¢y, and y,,'. For instance, we write

Pooi' (K; 7)o ;' (K'; 7Y ik |
2 6(kf:i') )=Dif(k)Qw(k;_T»T)+‘;"k—§£ijgﬂw(k; 7,7').

(5.127)

The velocity and the magnetic field corresponding to ¢y, and W' are given by

%0 Voo o o ~Voo' (5.128)

un
00 9 + M00 9

They obey Eqgs. (5.16) and (5.52). We also write the correlation functions of u,," and
by, by using Eq. (5.125) with one of ug,' and by,"' chosen as Y or Z. For instance,

(uom" (h; T)ugy ;' (K'; 1")) ik |
5(k+l;') - Dij(k)Q”“(k; LT )+_2-k_g£ij€Huu(k; T,T)
| (5.129)

corresponds to Eq. (5.18). The choice of ¥ = u,,' and Z = by, leads to



(1sg0:" (1&; T)byo ;' (I’ 7))

1 i k 1
= Dy(k)Q,(k; 7,7 )+ Ek—g EijEHub(k; 1,7'),

5(k+k')
(5.130)
which gives
(g bo") = 2 Q4 (k; 7, T)K, (5.131)
(oo Joo") = § Hop(l; 7, 7)dks. (5.132)

In the following discussions on dynamo effects, Eq. (5.132) will not play a significant
role, compared with Eq. (5.131) related to the cross-helicity effect.

Among the correlation functions between (dyy’, Woo') and (upg', bgy'), we have the

relations

Quo(k;7,7)+Q,, (K 7,7") 2(Quu(k 7,7)+ @k 7,1)),  (5.133a)
),  (5.133b)

Qup (5 T, T) = @y (ks 7, 7") = 2(Qu (s 7, T') + Qpu (B 7, T)
Qpy (BT, 7)+Quu(k; 7,7") = 2AQ,. (k7,7 - Qu(k; 7, 7)), (5.133¢)

)
2@, (BT, 7) - Quulk;7,7')),  (5.133d)

Qpy (BT, 7)— QB 7,7 (

H,,(k;t,7')+ Hy, (R 7,7') )=2(H,,(k; 7,7)+ Hyy(k; 7,7 ), (5.134a)

Hg(k;1,7")~ Hyp (ks 7, 7') = 2(H (B 7, 7') + Hy, (K5 T, T ), (5.134b)
H,,(k7,7')+ Hyy(ks 7,7") = 2(H,, (ks 7,7) - Hp(k; 7, 7)), (5.134c)

H,,(k1,7)— Hy(k;7,7") = 2(H,, (ks 7,7) - Hp(ks 7,7Y).  (5.1344)

In the use of Elsasser's variables, Elsasser's Reynolds stress defined by Eq. (5.95)
plays a central role and is expanded as

R(E) (¢o; Yo >+5s(<¢1; Wo;) (¢05'V’1j'>)+0(582)
= (%m' Voo, ') + (¢01i' Yoo, ') + (¢ooi' Yoy, ') +

+ 53((¢n' Woof)'* (%Oi' le.) "'“')'*' 0(532)- (5.135)



We substitute Egs. (5.116) and (5.121) into Eq. (5.135), and make use of Egs. (5.125)

and (5.126). After a little lengthy mathematical manipulation, we have
R® = 2k®s +(L1axp_c, (ke o) H,, (k1 7,)dz, e, B
i T3 T Ef I w( sT’TI) w( ;T,7,)d T, Eje Ly

4
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]j dk[T, G, (k; 7, 7,)Qu(k; T, Ty )d T,

(2909 1 99
3 & 15 &

]f dk[’, G,k 1,7,)Q,, (B 7,7,)d T, (5.136)
with
1
K% = P (¢' w5, = IQw(k; 7,7)dk
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5.4.4. Comparison with quasi-kinematic and counter-kinematic methods

The turbulent electromotive force E,; and the Reynolds stress R;; may be evaluated
from Elsasser's Reynolds stress RE), Eq. (5.136), with the aid of Egs. (5.96) and

ij
(5.97). In the formalism based on Elsasser's variables, RéE ) is expressed in terms of the

correlation functions concerning ¢y,' and Wg,'. In investigating into astrophysical

phenomena on the basis of these findings, it is more understandable to wrote E,, and
R; in terms of the original variables, that is, the velocity and magnetic field

corresponding to ¢y,' and y,', Eq. (5.128).



In correspondence to Eq. (5.128), we introduce

G,+G G, -G
G, = ¢2 Y. G = *’2‘”. (5.138)

In order to see the physical meaning of these quantities, we consider the reflection of the
coordinate system, X — ~ X, under which we have

u_)_u’b—)b, ¢—)—w, W—)—¢, G@:jl_)G':Vij" ij'-—) ¢ij.-
(5.139)

As aresult, G, and G_ are reflectionally symmetric and anti-symmetric, respectively.

We substitute Eq. (5.136) into Eq. (5.96), and make use of Eqs. (5.133) and
(5.134). Then we have

E, =oB- J+1Q, (5.140)
where

o =% [dKk[’_ G, (kx;7,74, t)(—Huu (B, %; 7,7, t)+ Hy (R, X; 7,7, t))ch'1

- —;- jdk[_ G (kx;7,7,, t)(—Hbu(k, X; T, Ty, t)+ H (R, X5 T, 7y, t))dl’l ,
(5.141)

B == K[ G, (b X7, 71, t)Qua X3, 2, )+ Qo 7, 4, ),

- % [dk[" G_(k,x; 7,7, t) @k X; T, 71, )+ @, (B, X5 T, 7, 8))d Ty,

(5.142)

1 1
y=3 Jdk[", G, (k% 7,7, ) Qup(k %; T, 71, £)+ @y, (B, %57, 7y, £))d Ty

- —91: [dK[’ G_(k,x;7,14, t)(Quu (B, x;T, Ty, t)+ Qs (%, X; T, T4, t‘))d*r1 ,
(5.143)

with the dependence on slow variables explicitly shown through x and ¢.

Entirely similarly, we may evaluate the Reynolds stress R;; as



Ry =2 Ky, ~viS, + vy, (5.144)

where K, is defined by the first relation of Eq. (5.38), and

Vp = zﬁ, (5.145)
5
Vi = gy. ' (5.146)

The ratio v / B is called the turbulent magnetic Prandtl number. In the TSDIA analysis,

it 1s larger than one, and its physical meaning will become important in § 8.2.2.

Both Eqgs. (5.140) and (5.144) possess the same dependence on the mean field as
their counterparts by the quasi-kinematic and counter-kinematic methods that are
summarized in § 5.3.1. We are in a position to make the comparison between the
coefficients by these three methods. In Eq. (5.141), the first part is related to the
spectrum of the turbulent residual helicity that is defined by '

- uool ‘(000| +b00| 'jo[).. (5 147)

This finding guarantees the conjecture by the Quasi-kinematic and counter-kinematic
methods, expression (5.84), and indicates the importance of the turbulent residual
helicity, but not each of the kinetic and magnetic helicity. Such conclusion was also
confirmed by the method based on the low/Reynolds-number expansion [33]. In the case
that the MHD turbulent state may be regarded as stationary in fast time 7, we have

Hy,(k1,7') = Hy,(k;T',7) = H,(k; 7,7, (5.148)
which leads to vanishing of the second part of Eq. (5.141).

In this context, we should refer to the concept of magnetic helicity. The
representative quantity characterizing helical properties of magnetic field is the helicity
based on the magnetic potential a, which is defined by

a'b (b=Vxa). (5.149)

The total amount of a-b in a whole region, [, a-bdV, is conserved so long as there is

neither net supply nor loss of magnetic helicity across the boundary. This point makes a
sharp contrast with the other magnetic helicity b- j that is linked with the alpha effect.
The absence of any conservation law concerning b-j is a stumbling block for



constructing a self-consistent dynamo model applicable to real-world phenomena, as will

be seen later.

For the turbulent resistivity B, the first part of Eq. (5.142) indicates that the
conjecture given by Eq. (5.82) is plausible; namely, B is related to the spectrum of
turbulent MHD energy (the sum of turbulent kinetic and magnetic energy). The second
part expresses the contribution from the turbulent cross-helicity effect in the combination

of G_ (the Green's function anti-symmetric with respect to the reflection of a coordinate
system). Green's functions Gy;' and G;' characterize the time scales of MHD

turbulence that are originally pure scalars or reflectionally invariant. Then we consider
that G, plays a bigger role, and neglect effects of G_ in the remaining parts of this
review. We may make quite similar discussions on ¥, as is seen from the
correspondence between Eq. (5.83) and (5.143).

As one of the prominent features of the formalism based on Elsasser's variables, we

may mention Egs. (5.145) and (5.146). There we can see the clear relationship between
the coefficients in Ej; and R;;. In this context, we should note that no turbulent helicity

effects corresponding to the alpha effect oB enter R;; in the analysis up to O(8g). There
what connects the equations for U and B at the level of fluctuations is the turbulent
cross-helicity effect (see [34] for the discussion about the cross-helicity effect on Ej, in
the absence of mean field). In later discussions, the effect will be shown to play an

important role of determining the saturation level of generated B.
6. One-Point Dynamo Modeling with Emphasis on Self-Consistency
6.1. Necessity and significance of one-point modeling

In § 5, we examined the turbulence effects on the equations for the mean flow and
magnetic field, that is, the Reynolds stress Ej; and the turbulent electromotive force E,,

from a few different viewpoints. The most orthodox method of closing Eqgs. (4.3) and
(4.7) seems to construct the equations for the two-time spectral quantities such as
Q..(k;7,7") and H,,(k;7,7') in terms of which the coefficients in R;; and E,; are
written. The method is not feasible in the study of highly inhomogeneous MHD
turbulence at all.

The foregoing circumstances are well recognized in the study of electrically
nonconducting turbulent flows. In the method based on the ensemble averaging

procedure, the flow components except the mean velocity are eliminated, and their effects
are taken into account through the modeling of R;;. Its typical model is the turbulent-



viscosity representation, Eq. (A93), in Appendix. The concept of turbulent viscosity is
physically useful in describing enhanced diffusion effects on fluid motion, but there are
many flow properties beyond the scope of the concept alone, and the work for adding
other effects to the turbulent-viscosity representation is still in progress.

In the study of real-world flows, various types of boundary conditions, which are
the origin of inhomogeneity of turbulence, become a stumbling block to the use of
spectral expressions such as Eq. (A95). A great merit of the ensemble-mean method is the
capability of examining complex flows at high Reynolds numbers that are far beyond the
reach of the computer simulation of the primitive equations. The constraints on the
method, such as the decrease in handled flow properties, should be compensated for by
this merit. Then those spectral expressions need to be replaced with much more

manageable one-point expressions in physical space.

The computer simulation of astrophysical and geophysical MHD flows is in progress
with the advancement of a computer and a numerical scheme. The flows within the scope
of the simulation, however, are still far from real-world flows in the magnitude of
Reynolds and magnetic Reynolds numbers, Taylor number, etc. One of the major merits
of the mean-field theory is to get a comprehensive understanding of magnetic-field
generation and its feedback mechanisms, with no special constraints on the magnitude of
those nondimensional parameters, although the subject of interest is limited to global
MHD properties. For this purpose, we need to construct a manageable and self-consist
dynamo model mimicking real-world astrophysical phenomena, with the aid of the
theoretical findings. In what follows, we express the coefficients in Rl-j and E,, in terms
of one-point quantities in physical space. Such a method may be called turbulent MHD or
dynamo modeling after the terminology in the electrically nonconducting case.

6.2. Modeling policy and procedures

One-point modeling of electrically nonconducting turbulent flows in physical space is
explained theoretically in Appendix. The key task there is the choice of statistical
quantities characterizing turbulent flows. It is necessary to make the number of those

quantities as small as possible for reducing the mathematical burden in solving the
resulting system of turbulence equations. The simplest model of the Reynolds stress R;

in electrically nonconducting turbulent flows is the turbulent-viscosity (vy)
representation, Eq. (A93) with Eq. (A108) lacking the D/ DT -related parts. Equation
(5.144) is essentially the same level of approximation as Eq. (A93), apart from the newly
occurring magnetic-field effect. There we adopted the turbulent kinetic energy K and its
dissipation rate € as the characteristic turbulence quantities, which are defined below by



Egs. (6.1) and (6.3) with the magnetic parts dropped, respectively. This is the choice of
the least number of turbulence quantities for constructing the characteristic time scale as
K/e.

The present MHD modeling consists of the two key procedures. One is the choice of
fundamental quantities characterizing MHD turbulence statistically, in terms of which the
coefficients in R;; and E,, are expressed. The other is the construction of the transport
equations for those quantities. In the traditional dynamo modeling with attention focused
on the alpha effect, little attention has been paid to the latter point.

As the fundamental turbulence quantities, we choose the turbulent MHD energy K,
the turbulent cross helicity W, the turbulent residual helicity H, and the MHD energy
dissipation rate €, which are given by

u|2 +b|2
={— 6.
o)
W =('b), 6.2)
H = (-—u' '(l)' +b' -j'), (63)

o\ b\
e=v{| =L )+ Ayl =] ) 6.4
<(ax)> M((axi) e
respectively. In Eq. (5.141) for «, the first term is related to the spectrum of the
turbulent residual helicity. Then the introduction of H is reasonable from the viewpoint

of one-point modeling. The entirely similar situation holds for the choice of K and W in
modeling B and 7.

Here we should note that the spectra of the turbulent residual helicity, MHD energy,
and cross helicity occurring in Egs. (5.141)-(5.143) correspond to the lowest-order terms

in the TSDIA formalism, as may be seen from the use of Eq. (5.125). We denote those
lowest-order contributions to K, W, H, and € by K,,, W,, H,, and g, respectively.

In the present one-point modeling, we use their full counterparts, X, W, H, and ¢
through the replacement

K,—-K W,-oW, Hy > H, g¢g—¢. (6.5)

This procedure may be regarded as the physical-space renormalization in the comparison
with the wavenumber-space renormalization such as Eq. (A45). In additionto K, W,



and H, e is necessary for the construction of a characteristic time scale of MHD
turbulent flow since W and H are pseudoscalars.

Under the choice of Egs. (6.1)-(6.4), the one-point modeling of Egs. (5.141)-
(5.143) is straightforward. For instance, we write |

Hy =[(-H,,(k,x;7,7,t)+ Hy,(k, x; 7, 7,2))dk, (6.6)
tu(k)= [ G.(kx;7,7,,t)dT,. (6.7)

Equation (6.7) expresses the time scale associated with the spatial length k™. We take the
energy-containing length

K302
kt=20 (6.8)
£
and model
k' _ K,
Tylky) = /== —2. (6.9)
(o) ===
As aresult, Eq. (5.141) with only the first part retained is modeled as
a=C£—I£H, (6.10)
£

after the renormalization, Eq. (6.5), where C, is a positive model constant. Entirely

similarly, we have

2
ﬁ=Cg£ (=Cﬁ.£K], (6.11)
_ € £
K
y=C, W, (6.12)

with positive constants Cy and C,.

In order to close the foregoing expressions, we need the transport equations
governing K, W, H, and &. The first two quantities are linked with the conservation
laws, as was noted in § 2.3. This property results in the equations for KX and W, Eq.
(4.20), whose mathematical structures are firm and clear. In Eq. (4.20) with Z =K,
what is to be modeled is the second part of Eq. (4.23). We pay attention to the first term
of the part and model it as '



12 12
<(——“ ;b + a'Ju'> -1 vg, (6.13)

where Oy is a positive constant. The hydrodynamic counterpart of this modeling is

referred to in § A3.2 from the viewpoint of turbulence theory.

In Eq. (4.20) with Z = W, we need to model Eqs. (4.25) and (4.26). In the latter,
the first term of the second part denotes the transport of W by turbulence, which is
modeled as

(0 b)u)y=- T VW, (6.14)
Ow

similar to Eq. (6.13), where Oy, is a positive constant.

Equation (4.25) is the destruction rate of W due to molecular viscous and resistive
effects. As the characteristic time scale of MHD turbulence, we may consider two time

scales. One is the foregoing time scale based on K and ¢, and is given by K /¢&. The
other is its counterpart of W, that is, W /gy,. We assume that they are close to each

other. Then we have

w=Cy =W, (6.15)

where Cy is a positive constant close to one.

In hydrodynamic one-point modeling, we adopt a phenomenological model equation
for € since it is related to no conservation constraint, unlike K and W . In the present

MHD one-point modeling, its simplest extension to the MHD version is

2
Dt K K o,

where C,,, C,,, and o, are positive model constants.

Finally, we refer to the equation for the turbulent residual helicity H . Its equation
may be written as [12]

DH ; , . o002 4. .\0U . ,
= =+ b') 5+ (b J) S+ xo')-Q-V-((u?/2)0)

Jj
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where R denotes the remaining part that is not dependent explicitly on the mean field
and is composed of the correlation functions of the third order in u', b', @', and j'.
This complicated form makes a sharp contrast with the case for the turbulent kinetic
helicity in electrically nonconducting turbulent flows. In the latter, the total amount of
kinetic helicity u- @ is conserved in the absence of molecular viscous effects.

The foregoing fact is a big stumbling block for the construction of a self-consistent
dynamo model that is applicable to various types of astrophysical phenomena. In the
current study of mean-field theory with the alpha effect as a cornerstone, it is rather
curious that little attention has been paid to this difficulty. We may mention two reasons
for this situation. One is that the coefficient ¢ is often assumed to be a given parameter
and that its self-consistent determination is out of interest. The other is that attention is
paid to the kinetic part of H from the kinematic viewpoint. In this case, we have its
equation with the firm mathematical basis. -

6.3. Summary of dynamo model

We summarize the one-point dynamo model that has been obtained with the aid of
statistical methods [12, 28, 29]. We give the model by explicitly including effects of
frame rotation and the buoyancy force based on the Boussinesq approximation.

6.3.1. System of model equations

The mean velocity U, the mean magneﬁc field B, and the mean temperature & obey

DU, 9 b'? J 2
o= “;{_(P"'(?)}"(JXB);' +§j(—R[j)+VV U,
+2(Uxwg), -0 (0-0),g;, (6.18)
JB ' 2
—a—t—=VX(UXB+EM)"‘AMV B, (6.19)
Plg = V- (-H,)+ 2,V%0, (6.20)



with the solenoidal condition V-U=V-B=0. In Eq. (6.19), @ is the angular
velocity of frame rotation, @p is the reference temperature, @y is the coefficient of

thermal expansion, and g is the vector of gravitational acceleration.

The Reynolds stress R;;, the turbulent electromotive force E,,, and the turbulent
heat flux H, are expressed as

RU E(uzluj'_bl'bjl)ngﬂay_VTSI_]+VMMI_]’ (621)
E, ={u'xb") = aB-pJ +y(Q+2w0F), (6.22)
H, = (u'6)=-2vo, (6.23)
Oy
where
12 _ 12
Ky = <“—-b—> (6.24)
2
an oU,
Sr;j = -E+T9x—1 (6.25)
JdB;, OB
M. =—L4y 6.26
= (6.26)

In relation to Eq. (6.22), we should note the vorticity transformation rule in the rotating
frame,

Q- O+ 205. (6.27)

Equation (6.23) is the so-called turbulent-diffusivity model for Hy, which is at the same

level approximation as Eq. (6.21) with the turbulent-viscosity representation as its
primary part.

The coefficients in Eqgs. (6.21)-(6.23) are given by

vp==B, (6.28)

7
VM =57 (6.29)



a=C,—H,
E
K2
=C, — ,
B=Cp=
7=Cy'{(‘*W,
£
where
K- ur2+b|2
= 5 ,
W=(u'-b'),

H=(-u''+b'j),
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Between K and W, we have a very important relationship

(6.30)

6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

It will be later confirmed to play a critical role in the discussions on the generation

processes of astro/geophysical magnetic fields.

Of Eqgs. (6.33)-(6.36), the turbulent MHD energy K and the turbulent cross helicity

W are governed by

DZ
Dt

where €, = £, and

U

Py ='sz_j_EM'J_aTH9‘gs

oK

Ty = WB+ L VK,

Ok

—=P,-¢,+V-T; (Z=KorW),

(6.38)

(6.3%9)

(6.40)



R ——Ri-ﬁ—E (24 20;)-«a lV-H : (6.41)
L L} o M F T K o 8 -
ew = Cw %W , (6.42)
Ty = KB+ L VW. (6.43)
Ow

In Eq. (6.39), we should note that the buoyancy-force effect is included explicitly
through the last term [see Eq. (4.32)]. In Eq. (6.41), the third term arises from Eq.
(4.33) in the combination with a simple model

W
b'=—u' 6.44
K (6.44)
This model is plausible in the sense that its product with u' leads to an identity relation

and is used only for the estimate of expression (4.33).
As the model equation for £, we adopt

De £ £’ v
o, =P, -C.,=—+V.|LvVe]| 6.45
Dt 9Kk UK [o ] (6.45)

E

This is a phenomenological equation, unlike Eq. (6.38), but its hydrodynamic version
has been tested in various types of flows and shown to be an acceptable model, although
there is still room for its improvement.

Concerning H , we have no model equation whose reliability is comparable to Eqgs.
(6.38) and (6.45). The sole model equation was constructed for the case of no mean
velocity and was studied in the investigation into reversed-field pinches of plasmas 35,
36). Modeling the equation for H in the presence of both the mean velocity and magnetic
field is a primary unresolved subject in mean-field theory of dynamo. In the following
application of the present dynamo model to the study of astro/geophysical magnetic
fields, we shall make discussions without resort to the details of H -transport processes.

6.3.2. Model constants

The model constants in the present dynamo model are adopted as follows;

R;, Ey: C,=0.02,C; =0.05, C, =0.04, (6.46a)



Hy, 06,=1, (6.46b)

Equation for K: o =1, ' (6.46¢)
Equation for W: Cy = 1.1, 6 = 1, (6.46d)
Equation for £: C,; =14,C,, =1.9, 0, = 1.3. (6.46¢)

Of these ten model constants, 0y, 0k, C,;, C.y, and @, survive in the hydrodynamic

case. Then we adopt the same values as for the case.

The model: constants given by Eq. (6.46a) were estimated with the aid of the
computer experiment of MHD turbulent flow in a cubic region [37]. There the turbulent
state is ithomogeneous in one direction and homogeneous in the other two directions.

The inhomogeneity of state is sustained through the imposition of an external force.

The modeling of &y in the form of Eq. (6.15) or (6.42) arises from the assumption
that Cy is close to one. We consider the homogeneous MHD turbulent state with

vanishing U and B. In this situation, Eq. (6.38) results in

%tf.{_ - e, (6.47)
%Vt_" ~Cw =W, (6.48)

which gives
2 = {Ca- )W, (6.49)

For Cy <1, initially nonvanishing |W]/ K continues to grow and eventually exceeds
one. This result violates the constraint on [W|/ K, Eq. (6.37). Then we need Cy > 1

and adopt the first of Eq. (6.46d).
7. Typical Magnetic-Field Generation Processes

In the dynamo model summarized in § 6.3, we have two typical generation
mechanisms of magnetic fields; one is the alpha or turbulent residual-helicity effect, and
the other is the turbulent cross-helicity effect. In what follows, we shall show that entirely
different magnetic-field generation processes occur according to the relative importance of

these two effects.



7.1. Dominant-helicity dynamo
7.1.1. Convection columns and helicity

In § 1, the characteristics of the geomagnetic and solar magnetic fields were
explained in the light of the geometrical features of the earth's outer core (Fig. 1) and the
solar convective zone (Fig. 2). The magnitude of nondimensional parameters of flows in
the outer core and the convective zone was discussed in § 2.2. There the largeness of the
Taylor number of the outer core was emphasized, compared with its solar counterparts,
indicating the greater importance of frame-rotation effects on the geomagnetic-field

generation process.

Effects of frame rotation occur typically through convection columns along the axis
of rotation, as was mentioned in § 2.2. Each column is composed of the fluid motion
coming up or down while rotating, leading to the occurrence of helicity. The spherical-
shell region of the earth's outer core is much wider than the solar convective zone. Then

the convection columns may occur more clearly in the outer core.

A computer simulation based on a system of primitive equations is a method
appropriate for the study of highly three-dimensional, time-dependent global MHD flows,
unlike the mean-field theory focusing on a stationary or quasi-stationary MHD state. In a
number of computer simulations mimicking geodynamo [6-8, 38-42], the column-like or
elongated flow structure along the rotation axis has been clearly detected. The structure
consists of a few pairs of distinct convection columns. In each pair, the fluid in one
column rotating in the same direction as the rotating shell sinks from the column ends
towards the equatorial plane, whereas the fluid in the another rotating in the opposite
direction rises from the equatorial plane towards the ends (Fig. 5). As a result, the
kinematic helicity tends to be negative and positive in the northern and southern
hemispheres, respectively. The column-like or elongated structure is shpposcd to be
linked with the generation of poloidal magnetic field. Readers may consult [43, 44] for

recent reviews of geodynamo.

These findings by the computer simulations signify an important role of helicity
effects on MHD flows in a spherical-shell region such as the earth's outer core. In what
follow, we examine the situation in which effects of helicity play a dominant role in the
magnetic-field generation process. In this context, we should note that each of convection
columns observed in the computer simulations is beyond the scope of the mean-field
theory of dynamo. What may be dealt with explicitly by the theory is the helicity effect

arising from the ensemble mean of such convective-column flows or their average around



the axis of frame. rotation. We examine the helicity effect through the turbulent
electromotive force Ky, and the Reynolds stress R;;.

7.1.2. Mean-field equations

We consider the mean magnetic induction equation (6.19) with Eq. (6.22) or

%g=VxUJxB+aB-ﬂJ+ﬂQ+2mﬂy (7.1)

where the molecular magnetic diffusivity A;, was neglected, compared with its turbulent
counterpart . We seek the stationary state of the magnetic field B that is subject to

Vx(UxB+ocB—ﬁJ+y(Q+2(oF))=0. (7.2)

Here the turbulent-resistivity part —fJ contributes to the diffusion of magnetic-field
structure due to turbulent motion. In order that a distinctive global structure of B may
continue to persist, there needs to be the effect that balances with — BJ and cancels the
diffusion effect arising from it. We assume the dominant-helicity state in which the aIpha
term aB due to the helicity effect balances with —3J ; namely, we put

(44
J=—8B, (7.3)
B
where
@ = &E (7.4)

from Egs. (6.30) and (6.31).

Equation (7.3) represents the typical manifestation of the turbulent-helicity or alpha
effect. There oJ is aligned with B, which results in vanishing of the Lorentz force J xB
in the mean-flow equation (6.18). From this property, the magnetic field obeying Eq.
(7.3) is called the force-free field.

Of the remaining two parts in Eq. (7.2), we consider the ¥ -related term. A primary
cause generating helicity effects is the frame rotation. Then we retain the @g-related part
and put aside the first term or U x B. We shall later refer to it. Then we have

J=2B+2tq,, a5

B B



with

|

, (7.6)

™=
“O|*O

from Egs. (6.31) and (6.32).

Let us see Eq. (7.3) in light of the magnetic-field growth. From Eq. (7.1), we have

d. B’ B’
-at—jv—{dv=—jS?U-ndS+jVB-((B«V)U)dV

+jVBA(V><(aB—ﬁJ+y(ﬂ+2mF)))dV, (7.7

where V and S denote the volume and surface of a spherical-shell region, respectively,
and n is the outward unit vector normal to the surface. On the right-hand side, the first
two terms arise from the U x B-related part in Eq. (7.1). The first term, which was
rewritten using the Stokes' integral theorem, does not contribute to the net energy
increase so long as there is no net energy inflow across the boundary. The second term
represents the energy increase due to the stretching of magnetic field lines by fluid
motion. These facts indicates that the alignment between B and U, which means
vanishing of Ux B, is linked with the saturation of the magnetic-energy growth,
resulting in the stationary state of B.

Next, we consider the mean-flow equation (6.18) with Eq. (6.21). For simplicity of
discussion, we assume the quasi-homogeneity of turbulent state; namely, the spatial
derivatives of ¢, B, and ¥ are neglected, and their spatial variation is taken into account

through the implicit dependence on location. Under Eq. (7.5), it may be rewritten as

DU b?\ 2
E = _V[P+<?>+§KR}_aT(@_@)Rg

+2(U—%B]me+vTV2(U—%B} (7.8)

where Egs. (6.28) and (6.29) were used. In Eq. (7.8), the third term comes from the
combination of the Lorentz and Coriclis forces. We mentioned above that the alignment
between B and U is important for the saturation of B. In Eq. (7.8), the alignment

u=YB o B=Lu. (7.9)
B 14



signifies the cancellation of the momentum-diffusion effect due to turbulent motion,
vpV2U, by the magnetic feedback effect — v,/ V?B. The cancellation leads to the
sustainment of the mean-flow structure that is coupled with a distinct global structure of
magnetic field. We should note that vanishing of U x B on which Eq. (7.5) is founded
has been assured by Eq. (7.9).

Equation (7.9) also expresses the balance between the Lorentz and Coriolis forces.
The ratio of Lorentz to Coriolis forces is called the Elsasser number. From the computer
simulation of the magnetoconvection [8], the persistence of column structures is closely
related to the state with the Elsasser number close to one. This state is realized by Eq.
(7.9) .

Equation (7.9) stipulates the saturation level of generated B. The alpha effect aB is
linear in B so long as e is not dependent explicitly on B. As a result, Eq. (6.19) with
the effect embedded cannot determine the saturation level. A method for overcoming this
difficulty is the incorporation of nonlinear effects in B into o, as was noted in § 5.4.2
{30-32]. Equation (7.9), however, indicates that the inclusion of the turbulent cross-
helicity effect results in the automatic determination of the level through the combination

with the mean-flow equation.
7.1.3. Turbulence equations

In § 7.1.2, we made discussions on B and U on the basis of nonvanishing a, 8,
and y . These quantities are expressed in terms of the turbulent energy K, the turbulent
cross helicity W, the turbulent residual helicity H , and the energy dissipation rate £, as
in Egs. (6.28)-(6.32). To show how these turbulence quantities are sustajnéd consistently
with B and U is indispensable for the self-consistent understanding of dynamo
processes. In the past study of mean-field theory of dynamo, the sustainment of
nonvanishing @ and f was assumed, and little attention was paid to this aspect.

The turbulent energy K is generated by the production term in Eq. (6.38), Py [Eq.
(6.39)]. Under Egs. (7.5) and (7.9), we have

R;=E, =0, (7.10)

which results in



Equation (7.11) indicates that the turbulent MHD state subject to dominant helicity effects
is sustained through the turbulent-energy supply by an external force such as the
buoyancy force. In the case of a spherical-shell region like the earth's outer core, we have
vy (20
H,=--L —,0,0), =(-g,0,0), 7.12

o=—(Z2.0.0) £=(-£00 .12
in the spherical coordinate system (r, 8, ¢) of Fig. 6, where use has been made of Eq.
(6.23). As a result, Py is written as

PK=—aTg0_——>O, (7.13)

since 90 / dr < 0. Namely, K continues to be generated by Py . The energy dissipation

rate £ obeys Eq. (6.45). Nonvanishing & is sustained by the first term proportional to
Py under Eq. (7.13).

Entirely similarly, the production term for W, Eq. (6.41), is given by

p -V P, 7.14
W F( K ( )

which leads to

W>0-5PF; >0 and W<0— By <0. (7.15)

This finding signifies that positive and negative W are generated in the region with
positive and negative W , respectively, resulting in the sustainment of nonvanishing W .

In the above discussions, the buoyancy force plays a key role of sustaining the
turbulent state represented by K and W . Is the dominant-helicity state possible in the
absence of an external force such as the buoyancy force? In this case, we have no
production mechanisms of K and W . This point will be later discussed in the context of
the collimation of accretion jets that was referred toin § 1.

In the present stage of mean-field theory, the discussion comparable to those on K
and W cannot be made on the turbulent residual helicity H, owing to the lack of the
reliable model equation for it. The construction of the model equation is the biggest
unresolved subject of mean-field theory.



7.2. Dominant/cross-helicity state

In the. solar convective zone (Fig. 2), the spherical-shell region is much thinner than
that of the earth's outer core. This fact suggests that convection column structures are
hard to be clearly formed, compared with the outer core. With this point in mind, we shall -
consider the situation opposite to § 7.1, that is, the dominant/cross-helicity case.

7.2.1. Mean-field equations

As one of the prominent difference between the fluid motions in the convective zone
and the outer core, we may mention the strong differential rotation in the former [45]. In
the zone, the angular velocity of the rotational motion is highly dependent on location.
The angular velocity decreases by about ten percent at the bottom near the equatorial
plane; namely, there is the steep radial velocity gradient there. In order to properly treat
this situation in an analytical manner, we adopt the inertial frame (the frame not rotating)
with no translational velocity relative to the astronomical object concerned (for instance,

the sun).

The mean magnetic field B obeys

2 - VX(UxB+aB- I + 1) (7.16)

We seek its stationary state in the sense of a special solution, similar to the discussions on

Eq. (7.1), as _
Vx(UxB+aB—BJ+1£_2)=O. (7.17)

We consider the dominant/cross-helicity state and deal with the alpha effect in a
perturbational manner. We write

B=YB,6 J=134d,, (7.18)
n=0 ]

n=0

where B, and J,, are of the nthorder in &, which are symbolically written as
B,,d, =0(a"). (7.19)

The first two parts obey

Vx(UxB, - BJ, + 1K) =0, (7.20)



Vx(UxB,+aB, - pJ;)=0. (7.21)

As was done in § 7.1.2, we assume the quasi-homogeneity of turbulent state and
neglect the spatial derivatives of o, §, and y. Under this approximation, a solution of

equation (7.20) is ’
B, = %U, (7.22)
4
Jo=10, (7.23)
B

with Eq. (7.6) for ¥/ 8. Here we should note U x Bj = 0. Equation (7.22) shows that

the toroidal field is generated from the toroidal velocity. This point will be discussed in
detail in the context of solar magnetic fields.

Let us consider equation (7.21) for B;. We first drop the U x B,-related part and

examine this approximation below. Then we take

14 (44 :
J1=EBO=-ﬁ—ZU. (7.24)

Since the primary motion in the convection zone is the toroidal or rotational motion, we
write

U =(0,0,U,(r,8)), (7.25)

in the spherical coordinate system (7,8, ¢) (see Fig. 6). In this situation, J, is toroidal.

From the Ampere's law J, = VxB,, B, is poloidal and is expresses as

with e, and e, as the unit vectors-in the r and @ directions, respectively. Here we
should recall that B, is of O(«) in the a expansion, Eq. (7.18).

We examine the foregoing approximation of dropping the U x B, -related part. From
equation (7.25) and (7.26), we have

U 1 U
Vx(UxB,)={0,0,B, —%+B,-—*|, 7.27
x(xl)(ﬂ’lrar+13rae) ( )



where use has been made of V-B, =V-U =0 and U-V=0. In the case that the
primary part of B, 1s of dipole type (see Fig. 11 bellow), it is nearly along the rotation

axis in the low-latitude region or near the equatorial plane (the occurrence of the dipole
component of B, will be mentioned further in the later discussion on the solar field). In

this situation, the radial component B,, is small in the low-latitude region, indicating the
smallness of By, (dU,/dr) there. On the other hand, the rotational velocity U is

symmetric across the equatorial plane, and B,,(U, /(rd@)) also becomes small in the

low-latitude region. As a result, Eq. (7.24) is an approximate solution of Eq. (7.21) in
the low-latitude region. With this point in mind, we use Eq. (7.24) in later discussions.

We consider the mean-flow equation (6.18) with Eq. (6.21). We drop the Coriolis

term and have
JU 1 2 b'?
-ét_ = —V(P'i‘EUz +§KR +<—2—>J—GT(@—@R)g

+UxQ+IxB+ v VU -v, V°B. (7.28)

In Eq. (7.18), we retain the leading terms, which are given by Egs. (7.22) and (7.23).
Then Eq. (7.28) may be rewritten as

JU 1 2 b'?
'Et— = —V[P+§U2 +§KR +<7>]‘“T(@_@R)g

2 2
+ 1-(1) UxQ+vy 1-(1) VeU. (7.29)
B B
As will be shown later, we have y/ 8 < 1. Then the feedback influence on the fluid
motion due to generated B is not strong in this case. Such a situation makes a sharp

contrast with the dominant-helicity state in which the saturation level of B is determined

through the interaction with the fluid motion.
7.2.2. Turbulence equations

In § 7.1.3, we investigated into the production term. Py {Eq. (6.39)] for
understanding how nonvanishing K is sustained. We now retain the leading parts in Eq.
(7.18), that is, Eqs. (7.22) and (7.23) while neglecting the alpha effect. Under this
approximation, we have



The combination of Eq. (6.21) with Egs. (7.22) and (7.30) gives

2
Py = %v,{l—(%) ]s,.f —o;H,-g. (7.31)

In the context of the remark on Eq. (7.29), we drop the y / B-related part and have
1 2

Both of these two terms are positive and contribute to the sustainment of the turbulent
state from Eqs. (7.12) and (7.13).

A big difference between the Py 's in the dominant-helicity and dominant/cross-
helicity dynamos lies in the first term in Eq. (7.32). In the dominant/cross-helicity case,
the supply of energy is made through the mean flow and the buoyancy force, unlike the
dominant-helicity case with the buoyancy force as the sole turbulent-energy source. This
mechanism is essentially the same as for electrically nonconducting flows. The same

situation holds for £.

In relation to the generation of turbulent energy due to Py, we should emphasize the
differential rotation, which is specifically prominent near the bottom of the solar

convective zone. The toroidal velocity given by Eq. (7.25) is written as
U=(0,U,(0,2),0) (7.33)

in the cylindrical coordinate system (o, 9, z) (see Fig. 6). Under Eq. (7.33), Eq. (7.32)

is rewritten as

3 U \Y
Py =vp|O % o —arHy-g. (7.34)

The first term clearly indicates that the differential part of rotation plays the role of energy
supply from mean to fluctuating flows. This point makes a sharp contrast with the
relationship of the mean magnetic field with the mean flow. In the latter, the whole

rotational motion appears explicitly, as is seen from Eq. (7.22).

The production term for the turbulent cross helicity W, By [Eq. (6.41)], is written



C

from Eqgs. (6.31) and (6.32). Inside the parenthesis of Eq. (7.35), both parts are positive
from the discussion on Py, leading to Eq. (7.15). Namely, W is sustained through the
velocity-strain and buoyancy effects. As is the same as for Py, the occurrence of the

strain effect is the feature not shared by the dominant-helicity case.
7.3. Traditional kinematic dynamos

In § 7.1 and § 7.2, we discussed two different magnetic-field generation
mechanisms. One is the alpha dynamo arising from the turbulent helicity effect, and the
other is the cross-helicity dynamo linked with the mean rotational motion. In the former,
the cross-helicity effect becomes important in the stage of determining the saturation level
of generated magnetic field. The cross-helicity effects are not treated explicitly in the
traditional kinematic dynamo. In what flows, we shall scrutinize the primary differences

between the present and traditional dynamos.
7.3.1. Alpha-alpha dynamo

For the comparison with the traditional kinematic dynamo, we consider Eq. (7.1)
with the cross-helicity effect dropped; namely, we have

%?=Vx(UxB+aB—ﬁJ). (7.36)

For U and B axisymmetric around the axis of frame rotafion, we write
U=Use, +Up, _ (1.37)
B=Be,+B,, (7.38)
| where the poloidal components Up and B are given by
Up=U,e,+Uge,, (7.39)
B =Be, +Bje, = Vx(Ase,) (7.40)

(A, is the toroidal component of the vector potential A). From Egs. (7.37)-(7.40), we
may rewrite Eq. (7.36) as [3, 9]



dB B u 1
¢ ¢ _ ¢
7+O'(UP V)? = a(VXBP)¢+O'(BP V)?'l'ﬁ(vz -?)B,ﬁ,
(7.41)
A, 1 2 1
7+E(UP-V)(O'A¢)=(XB¢+[3 v. -— A, (7.42)
where the spatial variation of ¢ and B has been dropped, as is similarto § 7.1 and § 7.2,

and use has been made of the relation ¢ = r sin 8 (see Fig. 6).

Let us consider the role of each term in Eqgs. (7.41) and (7.42). There the second
terms on the left-hand sides represent the advection effect. The generation of magnetic
fields arises from the first two terms and the first term on the right-hand sides,
respectively. We focus attention on the two eo-related terms. They represent the
following generation cycle of magnetic field:

Poloidal field Bp

— Toroidal current V X Bp by the Ampere law (7.43a)
— Toroidal field B, by the alpha effect a(VxBp) o (7.43b)
— Toroidal current </, by the alpha effect aB, (7.43c)
— Poloidal field B by the Ampere law. (7.43d)

In the above processes, the helicity dynamo has been used twice, completing the magnetic

generation cycle [9-11]. This process is called the alpha-alpha dynamo.

In the stationary state, the processes (7.43a-d) correspond to Eq. (7.4). Therefore the
saturation level of B cannot be determined within the framework of Eq. (7.41) and
(7.42), as was stressed in § 7.1‘2. To overcome this difficulty, the inclusion of nonlinear
effects on the & has been studied in the kinematic approach [30-32].

7.3.2. Alpha-omega dynamo

In Eq. (7.41), we have one more term that leads to the generation of the toroidal
magnetic field Bj. It is the second term on the right-hand side, which is linked with the

spatial 'nonuniformity of the angular velocity U, / & or the differential rotation. In §

7.2.2, its importance was stressed in the light of the sustainment mechanism of turbulent



MHD state [recall Eq. (7.34)]. In the context of Eq. (7.41), the differential rotation

signifies

Generation of the toroidal field B, by the distortion
of the poloidal field Bp. - (7.44)

The physical meaning of the process (7.44) may be explained as follows. As a
typical case, we consider a magnetic-field tube parallel to the rotation or z axis. The
quantity (Bp -V)U¢ / o signifies the change of the angular velocity U, /o along the

poloidal component of the tube. At high Reynolds numbers, magnetic fields are nearly
frozen in a fluid and move with it. For positive (Bp 'V)U¢ / 6, the upper part of the
poloidal magnetic tube moves faster in the toroidal direction than its lower counterpart.
The resulting deformation of the tube leads to the occurrence of the toroidal component of
magnetic field. This process is called the omega dynamo. In the case that the tube is
stretched, its cross section decreases and the strength of magnetic tension increases. The
over-stretched: tube overcomes the stretching by the fluid motion and, in turn, shrinks
(recall the motion of a spring). As a result, the omega dynamo indicates oscillatory
behaviors in time. The cycle consisting of the processes (7.43c, d) and (7.44) is named

the alpha-omega dynamo.

In the foregoing two different types of generation circles, which works preferentially
is dependent on the relative magnitude of the first to second terms on the right-hand side
of Eq. (7.41). We denote the reference values of @, the length, and the angular velocity
of the mean fluid motion by ap, Lg, and £, respectively. The relative magnitude is

given by

a
D, =—8_
Ly

(7.45)

In solar magnetic fields, the differential rotation is prominent specifically near the bottom
of the convective zone, as was noted in § 7.2.2. In their past study, much more attention
was paid to the alpha-omega dynamo in close relation to the solar polarity reversal [5,
46].

8. Application to Astro/Geophysical and Fusion Dynamos
8.1. Solar magnetic fields

In § 1, we summarized some representative observational properties associated with
sunspots [3, 4]. In this section, we shall consider how those properties may be



interpreted with the aid of the findings by the mean-field dynamo model obtained in § 7,
specifically, the model based on the dominant/cross-helicity concept [47, 48].

8.1.1. Sunspot's magnetic field

Sunspots represent the cross sections of an intense toroidal magnetic-field tube when
it rises up owing to buoyancy forces and break through the photosphere that is the thin

layer adjacent to the outer boundary of the convective zone. In the light of Eq. (7.22), the
mean toroidal magnetic field B, is related to the mean toroidal velocity U, as

_CTW

B =—_U, 8.1
N &b

where use has been made of Eq. (7.6).

One of the prominent solar polarity properties is that the polarity of a pair of sunspots
is opposite in the northern and southern hemispheres (see Fig. 3). This property signifies
that the direction of the toroidal magnetic field in the convective zone is opposite in the
two hemispheres. We may seek its cause in the turbulent cross helicity W in Eq. (8.1).
The quantity changes its sign under the reflection of a coordinate system, namely, it is a

pseudo-scalar.

In rotating spherical objects such as the sun and the earth, the axis of rotation is the
sole factor distinguishing between the northern and southern hemispheres in a dynamical
sense. Scalars are statistically symmetric with respect to the equatorial plane, but pseudo-
scalars become statistically antisymmetric. Then we have

W(r,n-08)=-W(r,0), (8.2)

in the spherical coordinate (Fig. 6), where the dependence on ¢ was dropped since the
MHD state is assumed to be axisymmetric. The same situation holds for the turbulent
residual helicity H as

H(r,x-0)=-H(r,0). (8.3)

From Egs. (8.1) and (8.2), the toroidal field B¢ is anti-symmetric with respect to the

equatorial plane, resulting in the sunspot's polarity depicted in Fig. 3.

Let us examine Eq. (8.1) from a quantitative viewpoint. A typical velocity associated
with the solar rotational motion is the equatorial speed, which is about 2000 m s71.

Then we adopt



a4 G
Uy,=1000ms™, —L=1 (8.4)
Cp

[see Eq. (6.46a) for the latter]. Equations (8.1) and (8.4) give
w
_103 v -1
B,=10°— (ms™). (8.5)
The magnetic field in original Gauss units, B, , is related to B, as
B, =0.4x107%VnB, (G), (8.6)

from Eq. (2.25), where n (m™3) is the number density of hydrogen [3]. We combine
Eq. (8.5) with Eq. (8.6), and have

. oW
B, =04x107 —-n (G). (8.7)

Concerning the magnitude of W/ K, we have the strong constraint, Eq. (6.37). In
the convective zone, the fluid is highly electrically conducting owing to the high
temperature, resulting in large magnetic Reynolds number in addition to large Reynolds
number. This situation suggests that the correlation between velocity and magnetic field is
not low. Then we assume -

Wl fao- |
= o(107), (8.8)
which results in
B, =0(10"Wn (G). (8.9)

As a typical magnetic field of large sunspots, we choose B,; = 0(10%) G, which

gives
n=0(10%) m™, (8.10)
From observations (3], n is estimated as

n= 0(1032) m™ in the core, (8.11a)

n= 0(1023) m™ in the photosphere. (8.11b)



Equation (8.10) falls between these two values. Then Eqs. (8.1) and (8.8) are consistent
with the occurrence of the toroidal field of @(10%) G in sunspots.

8.1.2. Relationship of sunspot's polarity with polar field

As is shown in Fig. 3, the polarity of the leading sunspot is coincident with the
polarity of the polar field (the magnetic field in the pole region). In order to see this
relationship, we consider Eq. (7.17) in the pole region. There we divide £ into the
- uniform rotation part @y and the deviation from it, £}, as

Q=20;+Q, (8.12)

(subscript D denotes differential-rotation part). In the pole region, £, is small,
compared with its counterpart near the equatorial plane, and the rotational velocity U is
also low. Then Eq. (7.17) is approximated by

Vx(oB - fJ+21m,)=0. (8.13)
It is satisfied by
B=—2—7mF (8.14)
o

since this B leads to vanishing of J (the spatial derivatives of ¢ and y are neglected).
Equation (8.14) shows that the polar field is aligned with the rotation axis. Such

alignment was really observed in the computer simulation [49].

We examine the polarity rule with the aid of Eq. (8.14). With the left side of Fig. 3 in

mind, we consider

Northern hemisphere: W >0, H > 0; (8.15a)
Southern hemisphere: W <0, H <0, (8.15b)
which is equivalent to
Northern hemisphere: ¥ >0, ¢ >0; - (8.16a)
Southern hemisphere: y <0, @ <0, (8.16b)

from Egs. (6.30) and (6.32). The assumption about the sign of H is based on the

computer experiment mimicking the solar convection zone. It suggests that —u-® and



b j tend to be positive in the northern hemisphere [50]; namely, the local residual
helicity —u-w+ b j tends to be positive there.

From Eq. (8.1), the positive toroidal magnetic field B, is induced in the northern

hemisphere under the condition (8.15). Rising-up of the loops of the field under the
buoyancy effect leads to the sunspot's polarity at the left-side of Fig. 3. In the pole
region, Eq. (8.14) shows that the negative poloidal field or the field anti-parallel to the
rotation axis is induced. This polarity is coincident with the leading-sunspot polarity.

Fig. 11. Configuration of generated magnetic fields.

From Eq. (7.24), J, is symmetric across the equatorial plane since oy > 0. The
resulting field B, is anti-symmetric; namely it is of dipole fype with the axis parallel to
the axis of rotation [recall the reference to the dipole field below Eq. (7.27)]. The polar
field is anti-parallel to the rotation axis. The configuration of these fields is schematically

summarized in Fig. 11.
The right side of Fig. 3 corresponds to

Northern hemisphere: W <0, H > 0; (8.17a)
Southern hemisphere: W >0, H <0. (8.17b)

Namely, the transition of the left-side to right-side polarity occurs through the change of
the sign of W, but not H . This conclusion is reasonable from the fact that the sign of the
residual helicity —u-@+b- j is invariant under the reversal of the sign of b, that is,

b — -b.



8.1.3. Lorentz force and meridicnal flow

One of the representative flows observed at the solar surface is the meridional flow or
circulation {3, 51-53]. The flow of 20~30 m s-! is nearly stationary and is towards the

poles. It is considered to be parts of large convection cells.

In § 8.1.1 and § 8.1.2, attention was focused on effects of turbulence on the mean
magnetic field. One of the merits of introducing cross-helicity effects is that feedback

effects of induced magnetic fields on fluid motion may be treated efficiently. They occur
twofold; one is the effect through the Reynolds stress R,.j, and another is the Lorentz

force JxB.

We examine the poleward meridional flow from the viewpoint of the Lorentz force
exerted to the fluid motion. We approximate B and J by B, [Eq. (7.22)] and J [Eq.

(7.23)]. We retain the solid-rotation part in Eq. (8.12), and have
2
JyxB, = (%) rwp2(—2 sin® @, - sin 26, 0), (8.18)

in the spherical coordinate system, which consists of the » and @ components. Of these

components, what is interesting in relation to the meridional flow is the latter, that is,
2
(Jo xByg), = _(%) rog’ sin 20, (8.19)

Irréspective of the sign of W in y, Eq. (8.19) is negative (positive) in the northern
(southern) hemisphere. This force contributes to the driving of fluid towards the poles in
both the hemispheres.

The dependence of the velocity of observed meridional flow is approximately
proportional to [51]

Csinf-sin 20, (8.20)
with
C=02. (8.21)

Namely, the velocity is nearly proportional to sin 28. It is noteworthy that such 8
dependence is coincident with its Lorentz-force counterpart, Eq. (8.19). This fact
indicates that the force is a candidate for the cause of the meridional flow.



8.1.4. Mean-field-theory interpretation of polarity reversal

We use Eqgs. (7.22)-(7.24) and seek a cause of the polarity reversal from the
viewpoint of mean-field theory. We examine an initial stage in which the magnetic field
B is weak, with a small seed of positive (negative) turbulent cross helicity W in the
northern (southern) hemisphere [condition (8.15)]. In this stage, the alpha effect oB ié
considered smaller than the cross-helicity effect 1, owing to weak B. Such a situation
is described by Eqs. (7.22) and (7.23) in a quasi-stationary sense. The alpha effect, in
turn, induces the toroidal current J, through Eq. (7.24), resulting in the occurrence of
the poloidal field B, from the Ampere law (see Fig. 11).

In the foregoing generation process of the mean magnetic field, we pay attention to

the change of the cross helicity. The cross helicity of the mean field given by Eqs. (7.22)
and (7.23) is U-By. In Fig. 11, the poloidal field B, is combined with the alpha effect

to generate the poloidal current oJ,. This current is aligned with B, under the condition
(8.15). The occurrence of such o, leads to the toroidal field B, under the Ampere law,
and the direction is the same as By. As a result, the cross helicity of the mean field

Increases as

U'BO _)U'B0+U'B2, . (8.22)
in the northern hemisphere.

It was noted in § 2.3 that the total amount of cross helicity is conserved in the
absence of molecular viscosity and magnetic diffusivity so long as there is no supply of
cross helicity by external effects. Nonvanishing molecular viscosity and magnetic
diffusivity give rise to the decrease in the total amount. In the solar convective zone, the
buoyancy term in Eq. (7.32) contributes to the external supply of cross helicity, enabling
the existence of the quasi-stationary state of the total amount of cross helicity. In the
northern hemisphere, the increase in the cross helicity of the mean field given by Eq.

(8.22) needs to be balanced with the decrease in the cross helicity of the turbulent part. In
other words, the occurrence of B, gives rise to the destruction of W, which also means

the destruction of By since the latter is generated from U through the intermediary of the
W . The weakening of B, leads to the decrease in the cross helicity of the mean field,
which, in turn, brings the increase in W connecting B, and U. These features of the

cross helicity suggest a periodic variation of the solar mean field. Its more detailed
investigation into the polarity reversal may be done with the aid of the production term of
W, Eq. (6.41) [48].



8.2. Geomagnetic fields
8.2.1. Computer simulation of geodynamo

In § 7.1.1, we mentioned the accomplishments by computer simulations mimjéking
the geodynamo. The most prominent feature there is the occurrence of the elongated flow
structure along the rotation axis. Its details, however, differ from one computer

simulation from another. Such a difference is considered to arise from the relative
strength of the buoyancy to Coriolis effects, that is, the relative magnitude of R,

(Rayleigh number) to T, (Taylor number). In the earth's outer core, R, and T, are
0(10') and 0(10%7), respectively [see Eq. (2.46)].

The elongated flow structure in the simulation by Glatzmaier and Roberts [6] with
R, = 0(10™) and T, = 0(10") is more irregular, compared with that by Kageyama
and Sato [7] with R, = 0(10*) and 7, = O(10°) . This finding suggests that larger T,
results in more irregular elongated structures. In these two simulations, it is concluded

that the generation process of magnetic fields is closer to the alpha-omega dynamo of §
7.3.2. The simulation by Olson et al. [8] with R, = 0(10%)and T, = 0(108) is closer
to the earth-like condition in the relative magnitude of T, to R, . There the magnetic-field

generation process resembles the alpha-alpha dynamo of § 7.3.1.

In the earth's outer core, P.;, (magnetic Prandtl number) is 0O(107%). This means
that the magnetic field is much more dissipative, compared with the momentum.
Nevertheless the geomagnetic energy is inferred to be 0(10*) ~ 0(10°) times the kinetic
energy, as was noted in § 1. In the current simulations, the energy of the generated
magnetic field is 0(10) ~ 0(10?) times larger than the energy of fluid motion in the
rotating frame. This result is consistent with the above inference. In the simulations,
howéver, P, is usually chosen to be larger than one; namely, the fluid motion is more
dissipative. The simulation by Olson et al. adopting P,, =1 is closer to the cuter-core

situation, but it is still much larger than its real value.

With this reservation concerning the nondimensional parameters, the computer-

simulation findings about the geodynamo may be summarized as follows.

(i) A prominent feature of MHD flows in a spherical-shell region is the occurrence of the

column-like or elongated structure owing to the frame-rotation or Coriolis-force effect.
Increasing 7, with fixed R,, however, leads to larger deformation or higher irregularity

of the structure.



(i1) The flow inside the column is linked with the generation of the poloidal component of
magnetic field, specifically, the dipole one.

(ii1) The energy of induced magnetic fields is much larger than the kinetic energy of the
flow driven by the buoyancy force.

(iv) The toroidal magnetic field is stronger than the poloidal magnetic field.

The mean-field theory is founded on the ensemble averaging or the averaging around
the rotation axis. Then it cannot detect the elongated flow structure consisting of a few
pairs of convection columns. It should be stressed that the concern of the theory as to the
geodynamo is the resultant fluid motion, the resultant turbulent helicity, etc. after the
averaging of flow [54].

8.2.2. Saturation of generated magnetic field

In § 7.1, we discussed the MHD state subject to dominant effects of helicity. In the
state, the mean magnetic field B obeys Eq. (7.3) that is linear in B. The saturation level
of B is determined by Eq. (7.9) through the interaction with the mean flow U. In the
mean-field theory based on the ensemble averaging, the fluid motion consists of the
axisymmetric poloidal and toroidal components, Up and Uy, which are written as

Up =U,(r,0)e, +U,(r,0)e,, (8.23)
Uy =U,(r,6)e,, (8.24)

respectively, in the spherical coordinate system (r,8,¢). Here U, comes from the
ensemble average of the flow in the column structure. Equation (7.9) indicates that B is
determined by this U p, as is consistent with the item (ii) in § 8.2.1. Specifically, U, is
reflectionally symmetric with respect to the equatorial plane. Then B is reflectionally
anti-symmetric since W in ¥ is a pseudo-scalar, signifying that Bp contains the dipole

component.

From Eq. (7.9), the ratio of the magnetic energy T}, to the flow energy Ty is

2 2 2 2
&=B2’2= BY _|%s (E) (8.25)
T, Uiz \r) |¢ |\&

It is written as



2
T_M;(E] >1, (8.26)
T, \K

with the aid of Eqgs. (6.37) and (6.46a). The energy of the induced magnetic field is larger
than the energy of the fluid motion that is the generator of the former.

In order to estimate the magnitude of T}, / Ty, we consider the toroidal and poloidal
components of the magnetic field, B, and Bp. The flow velocity in the outer core is
inferred to be O(10™) m g1 through the indirect observations, for instance, the
westward immigration of magnetic fields. It corresponds to Uy, and U is inferred to

be by one order smaller than Ur.. Then we assume
U7|=10* ms™, [Up|=10"° ms™. (8.27)

The primary part of the poloidal field is the dipole component, whose magnitude at
the surface is O(1) G. We may write the poloidal field in original Gauss units, B, , as

By'| = Voo |B2| = 0(1) G, (8.28)

from Eq. (2.25). We use the physical parameters [1]
p =0.8x10* Kg m™ (iron), (8.292)
Mo =1.3% 107 henry m™ (vacuum). (8.29b)

Under Eq. (8.29), Eq. (8.28) gives

B,|=10°ms™. (8.30)

From the latter of Eq. (8.27), this suggests

% = 0(10‘2) (8.31)

in the outer core. On the other hand, the former gives

123

B, =
Brl= ¢!

%mﬂ = 0(10) G, (8.32)

which is consistent with the observational inference about the toroidal field [recall the item
(iv)in § 8.2.1].



In relation to Eq. (8.31), we should recall Eq. (8.8) for the solar convective zone.
The zone mainly consists of hydrogen gases that are highly ionized owing to high
temperature. On other hand, the outer core consists of melted iron, and the magnetic
Prandt] number P, is much lower than one. This fact indicates that the correlation
between the magnetic field and the velocity, which may be characterized by W, is lower
than its solar counterpart. Considering the difference between these two regions, Eq.
(8.31) is reasonable, and Eq. (8.26) results in

T _0(104), (8.33)
Tk

in correspondence to the item (iii) in § 8.2.1.

From the viewpoint of the molecular magnetic Prandtl number P,,,, the conclusion
such as Eq. (8.33) is rather curious since P,, << 1. In a turbulent MHD state, however,

the turbulent magnetic Prandtl number

Vp -
Pyr=-2L (8.34)
B
is more important. From Eq. (6.28), we have
7
Por =—, 8.35
™ 5 ( )

in sharp contrast with P,,, << 1. This reversal of magnitude between P,, and P,, may
be considered to be a cause of T, >> T

8.2.3. Frame-rotation effect on magnetic field

In the item (i) of § 8.2.1, it was stated that effects of frame rotation occur twofold;
one leads to the formation of convection columns, and another gives rise to their
deformation or irregularity. In the present mean-field theory, the former signifies the
importance of the resultant helicity, whereas the latter may be interpreted as the
disturbance to the Coriolis force. The explicit effect of frame rotation on the magnetic
field in the dominant-helicity state occurs through the third term of the right-hand side of
Eq. (7.5). It gives rise to the nonvanishing Lorentz force

JxB=—2%meF, (8.36)

resulting in parts of the third term on the right-hand side of Eq. (7.8).



As the magnetic field B approaches the saturation level given by Eq. (7.9), both the
original frame-rotation effect and the turbulent diffusion effect decrease in Eq. (7.8),
owing to the feedback effect by the generated magnetic field. The weakening of the
frame-rotation effect at the level of mean motion is considered to be linked with that of a
clear column-like structure before averaging. In short, the Coriolis force combined with
the Lorentz force may play a role different from the Coriolis effect in the absence of
magnetic field. This may be considered to be a cause of the T}, effect that was noted in the
item (i) of § 8.2.1. The picture presented here for the velocity and magnetic-field

interaction processes is summarized in Fig. 12.

INDUCTION EQUATION

Quasi-force-free state due to
the helicity effect

|

Feedback effect due to
the deviation from
the force-free state

Linkage due to
the cross-helicity effect

FLUID-MOTION EQUATION

Transport suppressien due to
the cross-helicity effect

Fig. 12. Magnelic-ﬁeld generation and feedback effect on fluid motion.
8.3. Collimation of accretion jets
8.3.1. Computer simulation and mean-field theory

In § 1, we remarked that high-speed jets are ubiquitously observed around high-mass
astronomical objects such as galactic nuclei, protostars, binary x-ray sources, etc. [13-15]
(see also Fig. 13). These jets are often flows of electrically conducting gases, and one of
the prominent features of the jets is their high collimation. As the representative interests
of accretion jets, we may mention their generation and collimation mechanisms.



A computer simulation based on a system of primitive MHD equations is a powerful
tool for the investigation into flows around an accretion disk. The generation mechanism
of accretion jets has been explored by the computer simulations [55-57]. There magnetic
field lines are twisted by accreting, rotating gases, and the reconnection of these lines is
the cause of the force driving the jets in the two directions normal to the disk. At present,
the simulation of the océurrence of jets is limited to their initial stage since the simulation
of their stationary behavior needs a big computational domain and a large amount of
computational time. The similar difficulty is encountered in the simulation of jet

collimation.

With these situations of a computer simulation in mind, it is meaningful to examine
accretion jets, specifically, the collimation mechanism of jets from the viewpoint of the
mean-field theory [58]. In the mean-field model developed above, no effect of fluid
compressibility is taken into account. In the electrically nonconducting case, fluid
compressibility has influence on the suppression of turbulence, resulting in the decrease
in the growth of jet width. Therefore it is ﬁecessary to seek the relationship of jet
collimation with both of compressibility and magnetic-field effects. Moreover, relativistic
effects become critical for the jets related to active galactic nuclei whose speed approaches
light speed. In what follows, we shall confine ourselves to the magnetic effect and seek

the collimation mechanism.
8.3.2. Driving force of bipolar jets

To understand the later analysis of jet collimation, we simply refer to the toroidal-

field generation process due to the cross-helicity effect in disk geometry. We adopt the

cylindrical coordinate system (o,8,¢)} (Fig. 6). Accretion disks obey the so-called

’% and is highly

Keplerian motion, whose angular velocity is proportional to ¢!
differential. Then we adopt the inertial frame, as in § 7.2.1. The mean magnetic field B

is governed by Eq. (7.17), that is,

Vx(UxB+aB- GJ+1Q)=0. (8.37)

An accretion disk is thin in the vertical or z direction, compared with its horizontal
extent. Owing to the absence of the vertical flow comparable to the horizontal motion,
there is little room for the occurrence of strong helicity effects. Then we neglect the
helicity effect in Eq. (8.37) and have

Y
B==1U, (8.38)
B



which is the same as Eq. (7.22). Equation (8.38) shows that the rotational motion
generates the toroidal field B, in the presence of nonvanishing B and y. The sign of ¥

proportional to W is opposite in the upper and lower halves of the disk since W is a
pseudoscalar. In the case of positive W in the upper half, the toroidal field is shown in
Fig. 13.

>

[

\J

Fig. 13. Magnetic-field configuration in an accretion disk.

The other important feature in relation to Eq. (8.38) is the occurrence of the radial
electric current towards the center of the disk, /. Parts of <J; become the current along

the rotation axis, o/,. This J, generates the toroidal field under the Ampere law, which

gives rise to a strong magnetic pressure near the central part in the disk and contributes to
driving of jets [59, 60].

The foregoing discussions are based on nonvanishing K and W. We need to
consider their sustainment mechanism. In Eq. (6.38), they are generated by Py [Eq.
(6.39)] and By [Eq. (6.41)], in both of which the buoyancy effects are dropped. In the

stationary state, we have Eq. (7.30), that is, vanishing E,,. Then we have

2 2
P = % VT[I—(%) ]S,.f = vT[o[;; %D , (8.39)

Py = — Py, (8.40)



from Egs. (7.31), (7.34), and (7.35). In the second relation of Eq. (8.39), the y/ B-

related part was neglected owing to the reason explained below. The Keplerian rotation
leads to positive Py and sustains K. As result, W is also sustained under Eq. (8.40).

In this context, we refer to |W|/ K in galactic magnetic fields. Galaxies are rotating
with constant velocity in their great portion, except the central part. The magnitude of
magnetic fields observed in each galaxy is nearly proportional to its rotational speed. The
application of Eq. (8.38) to this relation gives the estimate [61]

'%’1 =0(107), (8.41)

which is similar to its solar counterpart, Eq. (8.8) . The second relation in Eq. (8.39) is
guaranteed under Eq. (8.41).

The motion of gases is turbulent inside the disk. Then jets carry away nonvanishing
K and W from the disk region, in addition to the angular momentum associated with the

Keplerian rotation. As a result, the jet region continues to be in a MHD turbulent state
even if K and W are not produced through P, and Py inside the jet. This point will

become important in the later discussion on the jet collimation.
8.3.3. Collimation mechanism due to magnetic effect

We focus attention on the intermediate region far from the top of the jet and the root
adjacent to the disk, and consider its stationary MHD state. Vanishing of dB /2t is
guaranteed by

J=-%B+Yo+luxs, - (8.42)

BB B

as 1s confirmed from Eq. (8.37). The occurrence of bipolar jets is considered to be related
to the release of the angular momentum possessed by the gases accreting onto a central
high-mass body. Then jets are composed of the longitudinal and rotational motion,
resulting in the helicity at the mean-flow level. This situation resembles the motion inside
each convection column discussed in geodynamo, and indicates the importance of helicity
effects in the study of jet collimation.

From Eq. (8.42), the mean Lorentz force is

JxB:—%Ux(H%(UxB)xB. (8.43)



We now assume
UxB=0, (8.44)

which reduces Eq. (8.43) to

JxB= -%an. (8.45)

Equation (8.44) will be found to be consistent with the later discussion.

The mean rotational motion of jets is characterized by the mean vorticity £2. In order
to examine its behavior, we consider the mean-flow equation (6.18) with both the

Coriolis and buoyancy effects dropped, which is given by

Ju 1,0 2 b2
& ylproU2ss 2
5 V( +2 +3KR+<2>]

+UxQ+dJ xB+v, VU -v, V'B (8.46)

. (the spatial variation of vy and v, is neglected from the assumption of local
homogeneity). We substitute Eq. (8.45) into Eq. (8.46), and take the curl of the resulting

equation. Then we have

%zVx([U—%B]xQ+vTV2(U—%B)], 8.47)
where use has been made of Egs. (6.28) and (6.29).
The stationary state of Eq. (8.47), that is,
%z» =0 (8.48)
is guaranteed by
B= gU. (8.49)

The growth of jet width arises from the diffusion of £, which originally arises from the
term

V x (VTVZU) =vpVQ (8.50)



in Eq. (8.47). Under Eq. (8.49), this Q diffusion effect disappears through the feedback
effect of the generated magnetic field. Equation (8.49) also guarantees Eq. (8.44)
previously assumed, reducing Eq. (8.42) to

1 «
J=——-—B, (8.51)
B

S 1-(y/B)

since Q= (y/ B)dJ from Eq. (8.49).
Under Eq. (8.41), Eq. (8.51) is written as

o
J="B. (8.52)
B

This relation is a typical manifestation of the helicity or alpha effect, as is entirely similar
to the geodynamo. Equation (8.51) is linear in B and cannot determine the magnitude of
B. The coupling with the fluid motion through the cross-helicity effect relates B to U,
as in Eq. (8.49), leading to the determination of its saturation level. This situation is also
the same as for the geodynamo.

Under Eq. (8.49) guaranteeing the stationary state of Q, Eq. (8.46) results in

12
P+1U2+3KR+ L =0, (8.53)
2 3 2

and the mean pressure P is determined by the Bernoulli's theorem

P+%U2+%K+%KR=const, (8.54)

where use has been made of (b'z) =K-Kp.

8.3.4. Sustainment of turbulent state

In § 8.3.3, we investigated into the MHD state that is free from the diffusion effect,
although the state is turbulent. The MHD turbulent state characterized by nonvanishing
K and W is the most important ingredient in the present jet-collimation mechanism, as is
seen from the dependence of f and ¥ on these two quantities. The elucidation of the
mechanism of sustaining K and W is critical for understanding the jet collimation from
the viewpoint of mean-field theory. As was emphasized in § 6.2, we do not still have the
model equation for the turbulent residual helicity H whose mathematical and physical



bases are as firm as the equations for K and W . In order to avoid the uncertainty arising
from this situation, we shall make the following discussion with the full use of the

equations for K and W.

From Eqs. (8.49) and (8.51), we have

2
R; =3 Kg, (8.55)

E, =0. (8.56)

In the absence of buoyancy effects, Eqs. (6.39) and (6.41) result in

P =P, =0, (8.57)

and the most typical production mechanisms of K and W are lost in the jet-collimation
process developed in § 8.3.3. This situation seems to contradict the foregoing
discussions and should be addressed consistently.

Gases in a disk accrete onto a central high-mass body, while differentially rotating,
and they are in turbulent state, as was noted in § 8.3.2. Some of those gases are ejected
as bipolar jets, which signifies the transfer of the turbulent energy K from the disk to
the jet region. This transfer is the source of K in the jet.

In order to see this situation in mathematical terms, we use Eqs. (6.42), (8.55), and
(8.56), and rewrite Eq. (6.38) as

V(KU-WB) = —¢, (8.58)
K
V(WU - KB) = ~Cy — W, (8.59)

where the transport effects due to the fluctuations only, Ty and Ty, were discarded,
compared with the mean-field/dependent parts WB and KB (|B| and |U] are usually
much larger than |b'| and [u'|). We substitute Eq. (8.49) into Egs. (8.58) and (8.59), and

have

[& - 1)(U -V)K =¢, (8.60)
(U. V)Hg—ﬁ [%]2 _ JWJ ~Cy %W, @61



where use has been made of Eqgs. (6.31) and (6.32). In this context, we should note

Cs
51, (8.62)
CT
C.(K) -
Bl s 8.63
Cy(w)>, (8.63)

from Eqgs. (6.37) and (6.46a).

In accretion-disk jets, mean MHD turbulent flows are statistically axisymmetric
around the rotation or z axis (Fig. 13). Considering that U, is the main component of

mean flow, we rewrite (8.60) as

c K

| =B

Zp gy . 8.64
[Cy )"’az € (8.64)

The disk is in a turbulent state with nonvanishing K. Equation (8.64) indicates that this
K is advected and transported to the jet region, balancing with the energy dissipation £.

In Eq. (8.61), we discard the spatial variation of the nondimensional quantity
(Cﬁ / C YK /W)? - 1. Then the mathematical structure of the resulting equatlon is

similar to Eq. (8.64), and W is advected and transported from the disk to jet region.

Finally, we refer to the sustainment of the turbulent residual helicity H that is related
to a as Eq. (6.30). In the present stage of the progress in mean-field theory, we have no
reliable model equation for it, as has already been noted. This situation arises from the
fact that no conservation property holds for the residual helicity ~w-@+ b- j in ideal

MHD flow. We seek a cause of nonvanishing H from the residual helicity of mean field

H. =-U.Q+B-J. (8.65)
It may be rewritten as
Cs (K )2 Cp (K
H, = —[——) -1 U-Q’:‘—(——— U.-Q, (8.66)
C \W C,\W

from Eqgs. (6.31), (6.32), (8.49), and (8.52). One of the prominent characteristics of

accretion-disk jets is that gases flow while rotating. This fact signifies nonvanishing of
U-Qor H, . Asaresult, it is highly probable that nonvanishing H is also sustained in

the presence of nonvanishing H,, .



8.3.5. Physical interpretation of jet collimation

In § 8.3.3, we showed that the turbulent diffusion of the momentum and magnetic
field may be suppressed under the combined cross-helicity and helicity effects. The
suppression of turbulent diffusion is a cause of jet collimation. The saturation level of B
is given by Eq. (8.49). Here we should note that the primary component of B is of the
dipole type since W or 7 is antisymmetric with respect to the midplane of the disk. From
Eqs. (6.37) and (8.49), we have

-B-Z)— > U—2 (8.67)
2 2
Namely, the magnetic energy is.larger than the kinetic energy. Specifically, the magnetic
field may become very large under (8.41). One of the prominent features of magnetic
field is the force of tension, under which magnetic field lines resist against their bending
due to fluid motion. It is highly probable that the jet possessing such an intense magnetic
field inside may strongly resist against their bending.

8.4. Reversed-field pinches of plasmas

The representative approach to plasma confinement by magnetic fields is tokamaks in
torus geometry (Fig. 14). In the approach, the toroidal magnetic field B, generated by
external coils wrapped with a torus is much stronger than the poloidal one By coming
from a toroidal plasma current. Compared with the motion of plasmas along this strong
toroidal field, the motion normal to it is highly suppressed owing to the tension of the
toroidal field. The relationship between B, and Bp in tokamaks is characterized by

a [By|
gs =——>1, (8.68)
R By
where R and a are the major and minor radii, respectively. The quantity gg is called the

safety factor [16). From this constraint, the minor radius @ cannot be made much smaller
than R.

In the context of gg, a confinement approach that is in a directly opposite position to

tokamaks is reversed-field pinches of plasmas (RFP's) [62-64]. In the approach, the
poloidal magnetic field is nearly comparable to the toroidal field. The RFP state is
characterized by

qs << 1, (8.69)



and a can be chosen to be much smaller than R. In the theoretical investigation into

RFP's, the torus is ofien approximated by a circular cylinder.

|
: toroidal
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Fig. 14. Toroidal geometry in controlled fusion.
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Fig. 15. Reversal of toroidal magnetic field.

The most prominent feature of RFP's is the reversal of the toroidal magnetic field at
the outer edge of plasma. This phenomenon may be explained intuitively as follows. In
the initial setting-up phase, the poloidal field generated by a strong toroidal plasma current
interacts with the toroidal magnetic field, and a large deformation of the latter is induced
by kink and sausage instability. Such deformation leads to the formation of the loop of a
magnetic-field line because of its tension, as in Fig. 15, and the reconnection of the field
line resuits in the reversal of the toroidal magnetic field at the plasma edge. In the
situation, the continuation of plasma currents is equivalent to that of the reversed toroidal
magnetic field. As a result, the alignment between the imposed current and the generated
reversed magnetic field is a key ingredient of RFP's. Mathematically, this property is
closely associated with Eq. (7.3). The process of magnetic-field reversal was examined in
detail by the computer simulation of the MHD equations [65, 66].



8.4.1. Derivation of force-free field by mean-field theory

In RFP's, there is no macroscopic plasma flow. Then we have no mechanism of
generating and sustaining the turbulent cross helicity, as is seen from Eq. (6.41) with the
frame-rotation term dropped. We neglect the effect and write -

E, =oB-5J, (8.70)

from which the equation for the mean magnetic field B obeys

—=Vx(aB-BJ). (8.71)

The solution

J=x,B (8.72)

K, =— (8.73)

This close relationship between the mean-field theory and RFP's was first pointed out by
Gimblett and Watkins [67].

We seek the solution of Eq. (8.72) in cylindrical geometry and examine its
relationship with RFP's. To this end, we employ the cylindrical coordinates (o, ¢, z),

where the ¢ and z directions represent the poloidal and toroidal directions, respectively.
We assume the constancy of @ and take the curl of Eq. (8.72). Then we have

VB +«,’B=0. (8.74)

Under the condition of the axisymmetry and z independence of B, we are led to

d?’B, 1dB 2
Ed +_ 2 + B = 0, 875
dr® r dr Km 5e (8.75)
1 dB
B -1 9% 8.76
¢ K, dr (8.76)

from Egs. (8.72) and (8.74). The solution of Eq. (8.75) and (8.76) is given by

B, = ByJy(k,.r), (8.77a)



B, = By, (x,,r). (8.77b)
where B, = J(0), and J, is the first-kind Bessel function of the nth order.

The Bessel function o, (s) possesses an infinite number of zero points, s,'s, at
which o, (s, )=0. The first zero point s, is about 2.4. This fact indicates that the

toroidal magnetic field reverses its sign at the edge of plasma under the condition

[kna|>24. (8.78)

This situation is depicted schematically in Fig. 16. The solution of the Bessel-function
type, Eq. (8.77), may capture well the feature of the global magnetic fields in RFP's and
has been a guiding principle in studying RFP's experimentally and theoretically.

B

2

Fig. 16. Magnetic-field profile in RFP's.

Equation. (8.77) with constant «,, suffers from some shortfalls near the edge of

plasma. For instance, it cannot satisfy the condition of vanishing J there. Within the
framework of mean-field theory, a and f are not constant, but they are determined by

the equations for K, H, and £. A model equation for H was proposed as [35, 36]

oH g £
where Cpy, Cyy, and 0 are positive constants. The mean-field theory with Eq. (8.79)

added was confirmed to reproduce the primary features of RFP's under spatially varying

K-



8.4.2. Derivation of force-free field by variational method

The force-free field, Eq. (8.70), was originally derived by Taylor [68] from an
entirely different viewpoint. There RFP's were regarded as a state relaxing from an initial

unstable state subject a proper constraint. From the fact that the total amount of magnetic
helicity; f,, a-bdV, is conserved in the absence of molecular effects, Taylor considered

that the final state in the relaxation process may be described by the condition

minimum [, % b%2dV under constant j,a-bdV. (8.80)

Here V denotes the region occupied by plasma, and a is the vector potential and is
related to b as b =V xa. In the comparison between these two integrals, the former
contains higher-wavenumber components, owing to the relation b=V xa. As a result,
the former is considered to be affected more strongly by small-scale destruction effects.

We write the condition (8.80) in the variational form
b® «,
o -[V ?—?a'b dV |=0, (8.81)

with a fixed at the surface of V, where «,, /2 is a constant Lagrange multiplier. By

partial integration, Eq. (8.81) is reduced to

[y (Vxb-x,b)-éadV =0, (3.82)

resulting in the same type of expression as Eq. (8.72). We should note that the constancy
of k,, is a key factor in this derivation.

8.5. Plasma rotation in Tokamaks

A big breakthrough of tokamaks was attained through the so-called high-confinement
(H) modes [69). The transition of plasma state from low-confinement (L) to H modes
may be characterized by a steep radial electric field and a poloidal plasma rotation, just
inside the separatrix [70-74]. Their occurrence resulting in the formation of transport
barriers of thermal energy may be regarded as a kind of structure formation in plasmas
[75]. Understanding of this mechanism is expected to pave the way for the further
improvement of plasma confinement and is a central subject in the study of magnetically
confined plasmas. |



In a sharp contrast with the foregoing edge transport barriers, the discharges with
transport barriers in a core region, which are called the internal or core transport barriers,
have recently attracted much attention [76-79]. Such discharges are characterized by the
negative magnetic shear s,,, that is,

Sy =(0'/qs)%(;f~<0 (8.83)

[ gg is the safety factor defined by Eq. (8.68), and r is the minor radial coordinate]. The
transport barrier in a core region is accompanied by a steep gradient of poloidal flow, as

in an edge region of H modes. Here the discharge characterized by negative s,, is simply
called reversed-shear (RS) modes. The inhomogeneous plasma rotation, which is
observed in the region with minimum gg, is considered to play a critical role for those
modes. The internal transport barriers are very similar to the H-mode counterparts in the
sense that both are accompanied by the steep spatial variation of a radial electric field and
a poloidal flow.
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Fig. 17. Safety factor and current density in RS mode.

One of the prominent characteristics in RS modes is the existence of minimum gg,
as in Fig. 17, where p=r/a (a is the minor radius). This gg profile comes from the
concave profile of the electric current density «J, that is also shown in Fig. 17 [80]. The
transport barrier accompanied by the poloidal rotation of plasma is formed near the
minimum- g point. We examine the relationship of concave J, with the occurrence of
plasma rotation, with the aid of the mean-field theory {81]. It should be recalled,
however, that many interesting phenomena associated with electric-field effects on
tokamaks are beyond the scope of the one-fluid MHD system on which the mean-field
theory is founded.



We assume the axisymmetry of all statistical quantities and neglect the dependence on
the toroidal or z direction. In the mean-flow equation (6.18), we drop the Coriolis and
buoyancy terms. The resulting equation and its counterpart for the mean vorticity €2 are
given by Eqgs. (8.46) and (8.47), respectively. In the latter equation, £ is small at the
onset stage of the plasma rotation. We drop the first term on its right-hand side. The
poloidal rotation is characterized by the z component of the mean vorticity, which obeys

agz =V V20 — v, V2

Z*

(8.84)

where the spatial dependence of v and vy, was neglected for simplicity of discussion.

In the absence of the second v, -related term in Eq. (8.84), £2, is subject to the

resistive effect only, and there is no room for its autonomous generation. We now seek
the 2, generation process due to the v,,-related effect. For this purpose, we pick up its

contribution and write
(2 6C, K
_38: =-ZL WV, + Ry, (8.85)
where use has been made of Eqgs. (6.29) and (6.32), and R,;; denotes the remaining
contribution. Of three turbulence quantities K, £, and W, the last quantity is a pseudo-

scalar that changes its sign under the reflection of the coordinate system, X — —X. This
fact indicates that W plays a critical role in the £2, generation since the sign of rotational

motion is dependent on the choice of a coordinate system.
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Fig. 18. Magnitude of J,V2J, corresponding to Fig. 17.

The quantity W is generated by Py [Eq. (6.41)]. At the onset of £2,, the second
term in Eq. (6.22) is primary, resulting in

E, =-5. (8.86)
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We combine Eq. (8.86) with By, and have
By = BJ,9,. (8.87)

In obtaining Eq. (8.87), we retained only the Q-dependent part of Eq. (6.41) since our
interest lies in the generation process of . The contribution of Eq. (8.87) to the
generation rate of W, dW / &%, is

W K?

E‘_‘ﬁJzQz'{'RW =C‘5 "E_JZQZ"-RW" (8.88)

in correspondence to Eq. (8.85), where Eq. (6.31) was used.

We eliminate W from Eqgs. (8.85) and (8.88), and connect L2, directly with oJ .

Here we focus attention on the temporal growth of W, and neglect the temporal change
of J,, K, and £. Then we have

2°Q, _[_ 5C5C, K*

at2 7 62 szsz)Qz = R.QZ! (889)

where Ry, expresses all the remaining contributions and is not discussed here. Equation
(8.89) indicates that {2, may grow under the condition
2 5CC, K3

X' =-— _N‘Ez—szsz>0, (8.90)

where Y, represents its temporal growth rate.

We examine Eq. (8.90) in the light of the concave profile of «J,. The latter profile is
shown in Fig. 17 [80], and corresponding «/,V2J, is shown in Fig. 18. There large
negative f,V2J_ occurs near the location of minimum qg or at p =0.6. Equations
(8.89) and (8.90) suggest that the poloidal rotation starts to be driven there. This finding

is consistent with the factthat a poloidal flow in RS modes is observed near the
minimum- gg point or the transport barrier.

9. Summary

In this review, we investigated into the mean-field theory of dynamo with special
emphasis on the following three points. The first point is understanding of effects of
fluctuations on mean or global field. The second is the construction of a self-consistent
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dynamo model that is applicable to real-world phenomena. The third is the clarification of
fundamental aspects of some planetary magnetic fields.

In relation to the first point, we showed that the dynamo effect generating the global
magnetic field aligned with the global rotational motion occurs as long as the correction
between velocity and magnetic-field fluctuations is taken into account. In the second
point, we showed that the use of conservation properties is important for the construction
of turbulence equations with firm mathematical and physical bases. In the third, the
combination of the traditional helicity (alpha) effect with the cross-helicity effect make
possible the determination of the saturation level of generated magnetic field, without a
nonlinear effect on the alpha effect.

The representative unresolved problem in the mean-field theory is the construction of
a model equation for the turbulent residual helicity that is necessary for the determination
of the alpha effect. The residual helicity is connected to no conservation property, unlike
the energy and the cross helicity. As a result, the study of the equation of the turbulent
residual helicity remains in a very premature stage. In the past study of dynamo, little
attention was paid to this point. Its construction is indispensable for the further
development of the mean-field theory.
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Appendix: Statistical Theory and Modeling of Electrically Nonconducting
Turbulence

In the study of statistical theories of homogeneous isotropic turbulence, attention has
been focused on smaller-scale properties of turbulence associated with inertial and
-dissipation ranges [A1-A3]. In turbulence modeling, a characteristic time scale of energy-
containing eddies is one of the important factors, as is seen from Eq. (6.9). The behavior
of those eddies are linked with the turbulent-energy production mechanism, and its
examination is beyond the scope of isotropic turbulence theories. Then there is a wide gap
between them and the turbulence modeling whose MHD version is the main theme of

mean-field theory.

Here we explain a theoretical framework of inhomogeneous turbulence, specifically,
a two-scale direct-interaction approximation (TSDIA) [12, 24] and give a theoretical
method for deriving turbulence models necessary for the analysis of real-world flows.
This explanation is helpful to understanding of the relationship between mean-field
dynamo theory and turbulence theories. |

Al. Perturbational method
Al.1l. Introduction of two-scale variables

In the decomposition of a flow quantity f by Eq. (4.1), the spatial or temporal
variations of the mean F and the fluctuation f* are depicted schematically in Fig. Al. In
general, the variation of F' is much slower, compared with f'. A method useful for

describing such different properties is the introduction of multiple scales.

We use a positive small parameter dg [Eq. (5.1)] and intreduce two spatial and
tempora) variables (E,7) and (X, 7T) [Eq. (5.2)]. For the change of the original

coordinate
X X+7r, (A1)

we have

E—E+r, X > X +4,r, (A2)
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which indicates that the change of X is small under Eq. (5.1). We write f as Eq. (5.3).
From Eq. (A2), we have

F(X,T)
e

i

F(X,T)— F(X,T)+8gr, o((6sr)’). (A3a)

FEGXT)> FEnXT)+r %f' (& 7; X, T)+O(8g7), (A3b)

which guarantee that the variation of F is much slower than that of f'. Hereafter (X, T)
and (& 7) are called slow and fast variables, respectively. We should note the
dependence of f* on (X, 7). By adopting u' as f', we may understand it since u' is
connected with U through Eq. (4.17) with magnetic parts dropped.

Fig. Al. Variations of mean and fluctuation.

We apply Egs. (5.2) and (5.3) to the solenoidal condition V-u'=0 and Eq. (4.17)
for the electrically nonconducting case. We have

au_l &LI
— +4 L =0, A4
9, * S X, A4
;' ' 9 ' .
Kl S § e SRV PILI SR, VALV
a‘[ j aéj + agj uj ul aél Vv £ ut

,oU;, Du' dpo' . ou;'

j
+632(VVX2u,- '), (AS)

where Vé, Vx,and D/ DT are defined by Eqs. (5.5) and (5.6).
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A1.2. Fourier representation of fast-varying modes

In the investigation into homogeneous turbulence with no mean flow, we write u' in
the Fourier representation with the amplitude u'(k). The second term on the left-hand

side of Eq. (AS5) shows that u' is swept away by the slowly-varying mean flow U. In
order to properly express this situation, we introduce the Fourier representation in the
frame moving with the velocity U, Eq. (5.7).

We apply Eq. (5.7) to Eqs. (A4) and (AS), and have
k-u'(k; 7) = 85(-iVy -u' (k; r)), (A6)

ou;' (k; 7)
ot

—ik;[[w;' (p; 7)u;'(q; 7)8(k - p- q)dpdq

+viky;' (k; 1) - ik p' (K; 1)

dU; D' (k1) o' (k;7)

= Ss[v—uj' (k; 7)

aX DT” ax;
f o (' (s T)u;' r))ﬁ(l; )dpd +6(k)—aR"f (A7)
- A{p;Tu; ' (q; -p- ,
X u,' (P 1)y ' (q; p-q)dpdq X,

where D"/ DT" and VY are defined by Eq. (5.10). Here and hereafter, the dependency
of f' on slow variables X and T is not written explicitly, except when necessary. The

new differential operators giveﬁ by Eq. (5.10) arise from the use of the Fourier
representation in the moving frame. On the right-hand side of Eq. (A7), the Ry- and v-

related terms are neglected, owing to their minor importance in later analyses.

In Eq. (A6), we should note that u'(k;t) does not obey the usual solencidal
condition concerning k, thatis, k-u' (k; 1) = 0. This situation originates from that the
Fourier representation of u' was made for the fast-varying components of motion only.
In order to properly deal with Eq. (A6), we introduce the transformation [A4]

u'(k7)=v'(k;7)+ 53(—.'2 k;kz Vi -u'(k; r)) : (A8)

As aresult, v' (k; ‘r) is subject to the solenoidal condition concerning k, that is,

k v'(k;7)=0, (A9)
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and various mathematical tools developed in the study of homogeneous turbulence are

available for inhomogeneous turbulence.

Al.3. Scale-parameter expansion

Once the dg-related terms in Eqs. (A6) and (A7) are dropped, we have the same

system of equations as for homogeneous turbulence, except the implicit influence of
slowly-varying properties of U through X and T'. This mathematical situation suggests
that inhomogeneous turbulence may be investigated by the perturbational method based
on .

We expand
u'(k;7)= ¥ 6", (k; 1), v'(k;7) = 385, (k; 7), (A10)
n=0 n=0
p (k1) = 2053” p,' (k7). (A1)
We substitute Egs. (A10} and (A11) into Egs. (A7)-(A9), and have
0, (1) = v, (5 7) - iy Vi ' (ki) A1)

aumi' (k! 1’-)

P vk?u,;' (k; 1) —ikp,' (k; )

—ik; [ (' (95 T)uto ;' (5 7) + " (B3 Ty (@5 7))5(K - p— @ )dpdg

an _ D*un,—li' (k, T) _ a*pn-l. (k’ T)

=— Kk .
“ess' 6T g =~ br X,
ST .
= 3 Il (i’ (05 2 )ttnmi' (9 7))3(k ~ P~ @), (A13)

I

where v,'(K; ) obeys the usual solenoidal condition
kv, (k;)=0. (Al4)

Lowest-order equations

As has already been noted, the lowest-order equations are of the same form as for
homogeneous turbulence. Then we have

— 108 —



duy,' (k; 7)

prah vy, (k; 7)

~iM, (k) uy;'(P; T)uo, ' (q; 7)5(k - p~ q)dpdq = 0, (A15)
e 7Y — kikf 1o, V(g
p'(k7)=- —z uo;' (P 7)o, (9 7)8(k - p - a)dpdaq, (A16)
where we should note
u,' (k1) =vy' (k; 7). (AI7)

First-order equations

Explicit effects of mean flow occur in the first-order equations. From Eqgs. (A12)-
(A14), these equations are written as

ul'(k;r)=vl'(k;f)—ik%V}-uo'(k;r), (A18)
duy;' (K; T , ) ,
% +vk'uy,' (I 7) - ikpy' (I 7)
, U, D'uy'(k;t) 9 p,'(k;7t
= _u{)j (k, T) e - gqg* ) - ?K(.* )
J t
a .
ol x (U'Oi (P; T)up;' (@ 1:))6(1; -Pp-q)dpdq, (A19)
; :
with
kv, (k;7)=0. | (A20)

We substitute Eq. (A18) into Eq. (A19), and apply Eq. (A20). Then we have

kU,

1

k.
- % [T (03 7y (@; 1)6(k - p - q)dpdq

*

.1 d
2oy My (k)] — s (10 (3 T)g;' (@ 1))8(k —p-q)dpdq.  (A2D)
14
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We use Eqs. (A16), (A18) and (A21), and eliminate p;' from Eq. (A19), obtaining
—-—8UH (k; 7) + szvh.' (k; 7)
~2iM (k)] 1o ;' (; 7)1 (a3 7)6(k — p— q)dpdg

D'uoj" (k;7)

, aUu
=I;(l1)= 'Dit(k)uoj (k; T)Kz - Dij(k) DT

J

+2M;, (k)| % ;' (D T)Vy -uo'(q;7)5(k - p - q)dpdq

*

—D, (k)M . ()] % (0 (9: 7)o (@5 7))5(k - P-q)dpdq,  (A22)

where

1 1 kk;
M, (k) = P 0140 jm + 9 Gim0 e — —kg‘L Om- (A23)

A2. Introduction of Green's function

The lowest-order equation (A15) is not dependent explicitly on U, but it is a
nonlinear equation. The first-order equation (A22) depends on both U and u,' in a

complicated manner, but it is a linear equation. The latter equation may be integrated
formally with the aid of a Green's function.

A.2.1. Green's function in inhomogeneous turbulence
We rewrite Eq. (A22) as
oy’ (k%) + vy, (k; 1)
—ZiMijg(k)IJ iy, (P T)vy,' (@ 7)6(k - p—q)dpdq
= [ 8(k -k, )dk, " I,;(ky;7,)0(7 - 7,)d7;. (A24)

In correspondence to the left-hand side of Eq. (A24), we introduce the Green's function
G;'(k, k'; 7,7') obeying
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oG;' (k, k';7,7')

+ VG, (I, K'; 7, T')

ot
~2iM; 4, (KD o, (P, 7)G,' (. k' 5 7, 7')8(k - p - q)dpdq
= D;(k")o(k - Kk")d(7 - 7'). (A25)

We use G;' and integrate Eq. (A24) as
vy' (I 7) = [dk, [ G, (kg T, 7)1 (ks 7y )d Ty (A26)

Here we chose — oo as the lower limit of integral. This is due to the premise that our

interest lies in a stationary state of turbulence independent of initial conditions.
Considering the dependence of the right-hand side of Eq. (A25) on 6(k — k'), we put

G;' (& k';7,7) =G, ' (K'; 1, 7')6(k - K'). (A27)
We substitute Eq. (A27) into Eq. (A25), and perform the integration with respect to
k'. Then we have

m"l k’ ) I
bt I sk (k7 T)+vk2Gl-j'(k; 1,7')

ar
~2iM (K )ff o' (95 7)Grry' (@5 7, 7)6(k ~ P~ q)dpdq
= D;(k)é(r—1'). (A28)
In this context, Eq. (A26) is ;educed to
v, (k1) = LGy (I 7, 7y )1 (k; 7y )d T, (A29)

From Eqgs. (A18) and (A19), the first-order solution u,' is given by
uy' (k1) = [, G;' (k; 7, )]k 7y)dT, - -};%2- Vy-u,' (k; 7). (A30)

The second-order solution u,' may be calculated in an entirely similar manner [12,
2 y y

24, A5]. The manipulation, however, is very complicated owing to the occurrence of

many terms. For alleviating the complexity, we focus attention on the effects linear in
u,'. After this simplification, we have

1 1 k a
w'(k;7)=v,' (k; 1)~ zk—VX v, (k;7)- l::' x Vi uy' (K1) (A31)
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Here v,' is given by
vy (I 7) = |1, Gy' (I 7, 7)1, (ks 7y )y (A32)
with I, defined by

. R, P*U,, au.
I (k; T)=L?Dij(k)ax X ttgn' (K 7) — D, (k) X Uy (k;7)

J

k BU Uy
‘; D, (k) 9 up, (s 7)
3

JX x k (k)—ivx u,' (k;7)

D'y (k1) lD o a3

\4 A33
o 32 (k)arax ¥ ug' (k; 7). (A33)

A2.2. Green's function in homogeneous turbulence and isotropic turbulence theory

In § A2.1, the Green's function GU' was introduced in relation to the perturbational

~ solution of a system of equations for inhomogeneous turbulence. There the lowest-order
solution u,' was treated as known. For calculating various statistical quantities with the

aid of the perturbational solution, it is indispensable to know statistical properties of u,".
No explicit effects of U enter Eq. (A15) for u,', and such effects arise through the
implicit dependence on slow variables X and T'. Then the statistical properties of w,'

may be examined by homogeneous turbulence theories.
A2.2.1. Direct-interaction approximation

The prototypé of homogeneous turbulence theories is the direct-interaction
approximation (DIA) by Kraichnan [Al, A2, A6, A7]. Its understanding is helpful to
understanding not only other homogeneous turbulence theories, but also the mathematical

procedures for evaluating the Reynolds stress etc. in inhomogeneous turbulence.

In order to solve Eq. (A15) in a perturbational manner, we regard the third term on
the left-hand side as a perturbation, and formally integrate |

uy;' (K, 7) = wi(k, 7) +iM,,;, (k)| 6(k - p- q)dpdq

X|” G (15 7, Ty )i (05 71, (G 71)d Ty (A34)
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Here the first term w, which is assumed to be a random flow obeying a Gaussian
distribution, denotes u,' at £ = —eo. The second term expresses the effect arising from

the nonlinear interaction thereafter. Moreover Gj; obeys

A~

dG..(k; 1,1 -

—"(—af—” +VEGy(k; 7, 7') = D (k)5(r - 7'), (A35)
and is given by

Gy (k;7,7) = Dy(k)S(z ~ ') exp(-vk*(z - 7)), (A36)

where S(7) is the unit step function defined by S{(r)=0(r <0)and 1(r > 0).

Equation (A35) is reduced from Eq. (A25) with the nonlinear term dropped, and
corresponds to the Green's or response equation in the low-Reynolds-number limit. We
should note that Gj; is a deterministic quantity.

Similar tb Eq.(A34), we réwrite Eq. (A25) as
Gij ' (k? T, T') = ét:j (k’ T, T') + ZiMnlm(k)H 5(k —-P- q)dpdq
X[, éin(k; T, T )it (15 71)Gryy ' (5 T, T')d T4 (A37)

Here the lower limit of integral, 7', means that a disturbance is added at 7', as in Eq.
(A2S5), and its effect occurs for 7 > 7'.

We solve Eqs. (A35) and (A37) in an iterative manner with each first term as the
leading part. As a result, we have ‘

uy;' (k& 7) = w;(k; ) + M., (k)/fo(k-p- q)dpdq

X[* Gk T, Tw(p; T )w,(q; 7, )d T+, (A38)

~

Gy'(k; 7,7') = G (I; 7, 7') + 2M,,,, (k)] 5(k ~ p ~ q)dpdq

X/ éin(k; 7,71 )Jw,(p; rl)émj (q; 7y, 7)dT +-. (A39)

In the DIA, the two-time covariance

(uo' (15 Ty (' 7))
5(k+ k')

Q,(k 7,7 = (A40)
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and the mean of the Green's function
Gy(k;7,7) = (G;' (k; 7, 7)) (Ad1)

are chosen as the fundamental statistical quantities of turbulence. We construct the

equations governing these two quantities.

From Eq. (A15), Eq. (A40) obeys
LQ (k1,7 = (gr— + vk2]Qij(k; 17,7"),

(um' (P; T)ugn' (@ T)up ;' (K5 T'))
S(k+Kk)

= iM,y, (k)] 6(k~p-q)dpdq. (A42)
We substitute the perturbational solution (A38) and (A39) into the right-hand side of Eq.
(A42), and make use of the Gaussianity of w. Then the right-hand side is expressed in
terms of the second-order correlation concerning w, that is,

8,7, ) - (wfﬂ‘;(f&tfg)' )

(A43)

Here we retain the contributions of the lowest order in Q, and have
LQ,;(k;7,7') = 2] Mo (K)M, (k)5(k - p - q)dpdq
X[, G (k'3 T, 1) Qe (15 7 71 )@@ 7, 71)d T,
- 4ff M, (k)M . (q)8(k — p— q)dpdg
xf* ébd (q;7, rl)Qm (p; 7, rl)éej(—k; 7, 7)1y (A44)

We apply the renormalization

~ . ~

Q;(k;7,7) - @;(k; 7,7), Gy(k;, 7') - Gy(k; 7,7) (A45)
to Eq. (A44), and have
LQy (k’ T, T') = 2.” Miab (k)Mecd(k)‘s(k -p- q)dpdq

xj_rm Gje(kI 3 T’ ) Tl)Qac(p; 7, Tl)de(q; T Tl)dTl
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-4jf M, (k)M .. (q)5(k - p-q)dpdq
X[ Goa(Q; 7, 71)@ue (D3 7, 7, )@, (- k; 7y, T')d 7. (A46)

If the latter half is not made in Eq. (A45), the resulting equation for T = 7' is coincident
with the so-called quasi-normal approximation [A8]. In the formalism, the past events are
overestimated, resulting in the occurrence of the negative energy spectrum.

We apply entirely the same procedure to G;, and have
LGy(k;7,7') = Dyy(k)b( - 7') - 4f] Mo (k)M 1, (q)0(k - p - q)dpdq
X[} Gy (@37, 7,)Gpi (-K; Ty, T')Q, (5 T, 7, )d 7, - (A47)

This is combined with Eq. (A46) to constitute the DIA system of equations. The
derivation of the DIA system may be more systematically with the aid of a diagrammatic
representation [12, A2, A9].

A2.2.2 Difficulty about Green's function

In order to see the relationship of the foregoing DIA system with the Kolmogorov
-5/3 power spectrum, we assume the isotropy of turbulence and write

Q,(k;7,1') = D, (K)Q(k; 7, 7"), (A48)
G;(k;7,7") = D;(k)G(k; 7, 7'), (A49)
from Eq. (5.18) with the helicity part dropped.
We substifute Eqgs. (A48) and (A49) into Egs. {A46) and (A47), and have

LQ(k;7,7') = B[] (No:(k, p,q)", G(k; 7', 7,)Q(p5 7, T1)Q(q5 7, 7, )d 7,

~Naa(k, p,9)f. dt,G{g; 7, 7,)Q(p; 7,7,)Q(k; 7, 7'))6(k - p - q)dpda,
(A50)

LG(k;7,7') = 8(r - 1")- k*([ Ng(k, p,q)5(k - p- q)dpdq
x[5. G(q; 7, 7, )G(k; 71, T)Q(p; T, T )d 74 (A51)

For geometrical factors, we have the relations
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NQl(k! b; q) - Meab(k)Mecd(k)Dac(p)Dbd(q)
= N(k,p,q) E%(xﬁy?’), (A52)

NQZ(k! D, Q) = NG(k) D, q)
= 2M 4 (K)Mics (@) Do (P) = Nk, P, q), (AS3)

where x, y, and z are the cosines of the angles opposite to sides &, p, and g that
constitute a triangle. Specifically, the one-time covariance @Q(%; 7, 7) obeys

(% + 2vk2)Q(k; 1,7) = 2k*[| N(k, p, q)(jfw dt,G(k;1,7,)Q(p; 7,7,)Q(q; 7, 7;)

~[1. d7,G{g; 7, 1,)Q(p; 7, 71)Q(k; 7, 7))8(k - p - q)dpdq. (A54)
For Q{k;1,7") and G(k; 7,7'), we assume the simplest stationary expressions
Q(k; 7,7") = o(k) exp(-w (k)T - 7). (AS5)
Glk; 7,7') = S(r - ") exp(-0(k)(t - 7')), (AS6)
where (k) is related to the energy spectrum E(k) as
E(k) = dnk’o (k). (AST)
The Kolmogorov -5/3 power law corresponds to

o.(k) = % 82/3k—11/3’ (A58)

with the inverse of the characteristic time,

w(k)=Ci81/3k2/3’ (A59)

T

where the energy dissipation rate £ is given by Eq. (4.22) with the magnetic part
dropped, and K, and C, are numerical coefficient (specifically, the former is called the

Kolmogorov constant).

We substitute Eqs. (AS55) and (A56) into Eq. (A54), and have
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o(p)(a(q)- a(k))

w(k)+ o(p)+ w(q)

2vk*o(k) = 2k* (| N(k, p,q) 5(k-p-q)dpdq. (A60)

We choose the wavevector r obeying
ky << r << kyp, (A61)

where kz and kp are the wavenumbers characterizing the energy-containing and

-dissipation ranges, respectively. We integrate Eq. (A60) with respect to the wavevector
k, as

2v.[k>r r20-(k):ik = 2-[k>r kzdk

a(p)(o(q) - o(k))

w(k)+w(p)+ w(g)

x|[ N(k, p,q) o(k-p-q)dpdq. (A62)

We use
£=2v[ RPE(k)dE = 2v|, K o(k)dk, (A63)

where we should note. that little energy is dissipated in the inertial range. We combined
Eqgs. (A58) and (A59) with Eqs. (A62) and (A63), obtaining

K,’C, =52. (A64)

The simple expressions such as Eqs. (AS55) and (A56) cannot satisfy the response
equation (A51) exactly. Then we seek its weak solution; namely, we integrate Eq. (A51)
as

70 (LG(R; 7, 7') + k2 [| N (%, p, q)5(k - p— q)dpdq
x| Glg; 7,7,)G(k; 71, 7)Q(p; 7, fl)drl)dr =0. (A65)

Then we have

o(k) = vk* + &*[[ N(k, p,q) -m—(% S(k-p-q)dpdq,  (A66)

from Egs. (AS55) and (A56).

On substituting Egs. (A58) and (A59) into Eq. (A66), we encounter the difficulty
that the resulting integral does not converge in the lower limit of p — 0. Such divergence
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of integral is called the infrared divergence {A10-A12]. Its cause is quite similar to the
effect of U on u' in Eq. (5.7) with u' adopted as f'. As may be seen from the second

term on the left-hand side of Eq. (AS5), the small eddies expressed by u' are swept away
by the large-scale motion U. The time scale due to this sweeping-away effect, Tg, is

Tg o (k-U)™ (A67)

It is entirely different from the lifetime of eddies whose size is 27/ &, that is, (k)
given by Eq. (A59).

In the context of inhomogeneous turbulence, the explicit sweeping-away effect may
be removed through the moving-frame Fourier representation, Eq. (5.7). In the
investigation of homogeneous turbulence, however, the sweeping-away effect still
survives in the two-time equations (A50) and (A51), resulting in the above difficulty. The
construction of a formalism free from the difficulty has long been a central theme in the
study of homogeneous turbulence. At present, the infrared divergence was successfully
removed with the aid of the Lagrangian description of turbulence field [A7, Al3].

In the following explanation of inhomogeneous-turbulence theory, we make use of
Eqs. (A55) and (A56). This is solely for the estimate of anisotropy induced by mean-
velocity gradients. We should stress that the Lagrangian formalism is necessary for the
analysis of homogeneous-turbulence statistics themselves. With this point in mind, we
adopt

Ky,=15 (A68)
as a typical observational value, which leads to
C,=23, (A69)
from Eq. (A64).
A3. Statistical evaluation of Reynolds stress
A3.1. Wavenumber-space representation
Under the two-scale description based on Egs. (5.2) and (5.3), the Reynolds stress
R; = (' (x);' (%) - (AT0)

is expressed in the form
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Ry =(w'(§X;7,T)u; (£ X;7,T)). (A71)
We assume the homogeneity concerning &, and define

(u,-' (kX;7,T)u; (', X; 7, T))

(KX 7,T) = AT2
By X7, 1) 5(k + k') (A72)
Using Eq. (A72), we may write

R;=|R;(k,X;7,T)dk. (A73)

We substitute the scale-parameter expansion (A10) into Eq. (A72), and retain the
terms up to O(8g). Then we have

(uo;" (k; Thug; ' (k' T))
S(k+k')

R (k1) =

(A74)

5 [(uu' (b T)ug ;' (' r)) .\ (uol-' (ks t)uy" (k' 1:))]
U e+x) Sk+k) |

The O(1) term has already been given by Eqgs. (A40) and (A48), and are written as

(um:' (k; Thuy, ' (K'; T))
ok +k')

= D;(k)Q(k; 7,7). (A75)

In relation to the first part of the O(84) term, we define

U, - (G (57,7 g (I 7y g (K5 7))
Ry =-—t[ : dr,,  (AT6
A 5(k+ k) o1 (AT6)

D'u,,' (k;

(6 s, )
RP =-I' dr,. AT7
2 J—w 6(k+k|) Tl ( )

Then we may write
KTy (KT

(Uu ( )uo; ( )) _ Rl:(,'l) +Rl:(]2), (A78)

S(k+K)
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from Eq. (A30) for u,' [we may confirm that the third and fourth terms of I, in Eq.
(A22) give no contribution since it is an odd function of k]. We substitute the
perturbational solution (A38) and (A39), and retain the lowest-order contribution in .

As aresult, we have

U, . A A
RY =- y‘ |7 Gi(k; 7, 7, )@ (k3 7, 71 )d 7. (A79)

The application of the renormalization {(A45) to Eq. (A79) leads to

R =- M(k)ij(k)(jfm G(k;1,7,)Q(k; 7, rl)drl) ;[(I‘ . (A80)

m

under the isotropic assumption (A48) and (A49). We combine Eq. (A80) with its
counterpart of the second part of the O{8g) term in Eq. (A74), and obtain

au,

R +R{ = —(Di,(k)ij(k) + D, (k)D,m-(k)) X

X (j; G(k;1,7)Q(k; 7, tl)drl). (A81)

Equation (A77) may be evaluated in entirely the same manner. In correspondence to
Eq. (A79), we have

<D*wz(k; Tl) w (k';f)>
RP =" Gy(k;1,7,)

DT’ : d (A82)
1.
8(k + k') !
After Eq. (A49), we write the lowest-order part of G, é,-j, as
éij(k; 7,7') = D; (k)é(k; 1,7'), (A83)
and note
D, (k)w;(k; 7) = w;(k; 7). (AB4)
Then we have
D wr,(li: Tl) wj(ku . T)
@ . A DT
R =-' Gk 1,1y) dz,, (A85)
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which gives

D" (w(k;7)w;(K'; 7))

R(2) +R(2) — G k
LGk ) 5 S(k+1k)

dt,

R D'Q..(k; 1,
=-[L. Gk 1, T,) ngT*T 2) drt,. (A86)

Under the renormalization (A45), Eq. (A86) results in

DQ(k,1,1,)

R? + R? = -D, (k) G(k,1,1,) DT dt,, (A87)

where use has been made of the replacement

*

D D
e ey
DT - DT

(A88)

since the neglected part is odd in k and gives no contribution to the final result.

We substitute Egs. (A75), (A78), (ASI) and (A87) into Eq. (A74), and make the

replacement

Then we have [12, A4d]
T | D k; )
Rk, x;7,t)= Dg(k)(Q(k; 1,7)~[*_Gk;7,1,) &thﬁ)— drl)

_(Dig(k)ij (k) + D, (k) D, (0)(I7,, Glk; 7, T)QUR; 7, 7)d7,) %xu—f. (A90)

m

Here we should note that the scale parameter §g has disappeared automatically.
We rewrite Eq. (A73) as |
R; = [[dk[y,, R;(k, x;7,1)dS, (A91)
where (k) denotes the surface with & as the radius. From Eq. (5.28) and

kk ik,
jk'——dk = (aijafm + 808 + 8,8, )] K, - (A92)
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Eq. (A91) with Eq. (A90) is reduced to

B,=R;- % K3, = -vS;. (A93)

ij if

Here the turbulent energy K and the turbulent viscosity vy are given by

k.
K = [7Q(k; 7, 7)dk - [Jdk[" G(k;T, rl)l_)—Q(btf’—“)drl, (A94)
vr = = [ydk|Z Gl 7, 1)Q(E T, ), (A95)

and the mean velocity-strain tensor Sl-j is defined by Eq. (4.28). From Eq. (A94), the
energy spectrum E(k) is

E(k)= 47:#2[Q(k; 1,7)- [ G(k; T, 1)) 29(’;—:’@ d rl). (A96)

Under Eqs. (ASS5) and (58), Eq. (A96) expresses the nonequilibrium effect on the
Kolmogorov spectrum [A14]. Equation (A93) is the so-called turbulent-viscosity
representation for the Reynolds stress.

A3.2. Physical-space representation

Equations (A94) and (A95) are written in terms of the velocity correlation Q(k;7,7')
and the Green's function G(k;7,7') of the O(1) part in the 85 expansion. The
correlation Q(k;7,7') is related to the energy spectrum E(k) as Egs. (ASS5) and (AS7),
and its low-wavenumber components play the role of reserving the energy supplied from
the mean flow. On the other hand, the high-wavenumber components are connected with
the energy dissipation process through Eq. (A63). It is generally difficult to express
Q(k; 7,7') possessing such a broad role in a compact mathematical form. The inertial
range occurring at high Reynolds numbers, however, partially shares some properties
with the energy-containing and -dissipation ranges, through the Kolmogorov spectrum,
Eq. (A57) with Eq. (A58). We shall make full use of this fortunate situation and reduce
Eqgs. (A94) and (A95) to one-point expressions in physical space.

We approximate Q{k; 7,7') with the aid of the Kolmogorov spectrum. The simplest
expressions for @(k;7,1") and G(k; 7,7'} leading to the spectrum are Egs. (A55) and
(AS6) with Egs. (A58) and (AS59). As the numerical constants in them, we adopt Egs.

(A68) and (A69). We denote the wavenumber characterizing the energy-containing range
by kg. We approximate the integral in wavenumber space by
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fodk — [ dk, (A97)

as in Fig. A2. In correspondence to kg, we introduce the characteristic length in the
energy-containing region, £, through

Lg(x,t)=

’ A
ka(x,1) A%

Here the important point is that these characteristic quantities depend on location and time.
In this context, the energy dissipation rate occurring in Eqs. (A58) and (A59), ¢, also
changes spatially and temporally and may be written as

£ =¢g(x,t). (A99)

log E(k)

RN
i

k -5/3

loé ke log &

Fig. A2. Inertial-range approximation to the energy spectrum.

We substitute Eqs. (A55) and (A56) into Eq. (A94), and have

K = Kpe(x,t)""° [, &™'%dk

- K(;Cf sy kz[ze(x, tj_llsk”2’3 % (s(x, t)2"3k‘1”3)dk
g5 D (g(x, t)" 3k 3))dk. (A100)
Dt
We make the transformation
5=kl kg, | (AIO1)
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and note the dependence of k5 on (x,¢). We substitute Eq. (A98) into the resulting
expression, and adopt Eqs. (A58) and (A59) as K, and C_ in Eq. (A100). As a result,

we have
K=K{tge}= CxlezlaeEzla _CK2€-2/3€E4/3 _D_E_CK3£1/3€E1/3 Dig ,
Dt Dt
(A102)
where coefficients Cy,, (n = 1— 3) are evaluated as

From the viewpoint of the scale-parameter expansion (A10), the first term of Eq.
(A102) is of O(1), whereas the remaining two are of O(8g). Then we solve Eq. (A102)

in the perturbational manner based on the first term, and have

Ly = p{K, €} = C, K3 % + C, K% %™ %%’- C,, K%' %3 %, (A104)
with
Cfl = 1.8, ng = 44, CES = 2.6 (AlOS)

In the stage of Eq. (A97), kg was introduced as the unknown lower limit of integral, but
it has been related to the cbservable physical quantities K and £ though Eqgs. (A98) and
(A104).

We evaluate Eq. (A95) similarly and combine it with the result from the 0(532)
analysis [12, AS, A15]. Then we have

4z De c . Dis

vp =vp{le, e} = Ce' 05" "* - Cyp S ~Cuele 7 (AL06)
where
C,=0.054, C, =001,C,, =0.11. (A107)
The substitution of Eq. (A104) into Eq. (A106) leads to
1 DK K De\K?
Vvp=C,4|1-C,,——+C 3 5 — |—, Al08
T vl( V2E Dt v3 82 Dt) P ( )

with
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C,,=0.12 C,, =12, C,,=0.76. (A109)

Here only the first term in Eq. (A104) should be used as long as the D/ Df-related terms
in Eq. (A106) are dropped. These D / Dt-related terms that are combined with the mean
velocity-strain rate .S;; are of O(84%) in the TSDIA analysis. Equation (6.28) with Eq.

(6.31) corresponds to Eq. (A108) with the D/ Dt -related terms dropped.

As an instance of the theoretical suggestions to turbulence modeling, we mention the
modeling of the hydrodynamic version of Eq. (6.13). We perform its O(8g) TSDIA

calculation, and have [A16, A17]

2 3
T = 0.15£—VK - 0.047K—2V£. (A110)
£ £

This finding supports the modeling such as Eq. (6.13).
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