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Collective Plasma Corrections to Thermonuclear
Reactions Rates in Dense Plasmas

V.N.Tsytovich *

Abstract

General kinetic equations for nuclear reaction in dense plasmas are ob-
tained. They take into account the first order collective plasma effects. To-
gether with previously known corrections proportional to £, Z,, the product
of the charges Z, and Z; of two interacting nuclei, it is shown that there exist
corrections proportional to the squares Z? and Z} of the charges. It is shown
that the Salpeter’s [1] correction due to the plasma screening of the interaction
potential is at least r/d smaller(r is the nuclei size and d is Debye screening
length) than previously thought and is zero in the approximation when the
terms of the order v/d are neglected. But the correlation effects in the first
approximation in the parameter 1/N; (where Ny is the number of particle in
the Debye sphere) give corrections which often coincide with the first order
Salpeter’s corrections (found by expansion in another small parameter, the
ratio of thermal energy to Gamov’s energy}. The correlation corrections are
x Z,Z;, have a different physical meaning than the corrections [1], can have
a different sign and are present for reactions where the Salpeter’s corrections
are zero. Previously in astrophysical applications it was widely used the inter-
polation formulas between weak and strong Salpeter’s screening corrections.
Since the correlation correction take place the previously known Salpeter’s
corrections and the strong correlation corrections is difficult to describe ana-
Iytically, the interpolation formulas between the weak and strong correlations
cannot be yet found. A new type of corrections are found here which are
proportional to the square of the charges. They are due to collective change
in electrostatic self-energy of the plasma system during the nuclear reactions.
The latter corrections are found by taking into account the changes of plasma
particle fluctuations by the nuclear reactions. Numerical evalnation of the
plasma corrections for the nuclear reactions of the hydrogen cycle, using the
parameters of the present temperature, density and abundance in the solar
interior, are performed.
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1 Introduction

In the well known paper of Salpeter 1954 ,[1] it was shown that for Debye screening
Coulomb potential the probability of nuclear reaction is substantially larger in a
dense plasmas than for non-screened Coulomb potential. This effect was then called
as plasma screening of nuclear reaction rates. [t is widely used in most models of
stellar evolution [2] and for the nuclear reactions in the centre of the Sun 3] ( see
the last reviews [4,5]). For reaction in the solar interior it ranges from 5% to 20% for
different reactions in the hydrogen cycle, which is appreciable amount both for solar
neutrino problem and for the value of the solar sound speed detected with a good
precision by means of the present solar seismology methods. Only 35 years later in
1988 it was pointed out in [6] that the static screening of thermonuclear reaction (as
considered in [1]) is meaningless from physical point of view. The point of [6] was
that the nuclear reactions usually occur at the energies (so called Gamov energies)
which substantially exceed the thermal energy where the static screening is absent
(see textbooks,for example,[7]). More exacily, for energies at which the nuclear
reaction occurs the screening start to be a dynamic screening, vanishing in the limits
of very large energies (velocities}. After the publication [6], although it contains
physical reasonable arguments for screening to be considered as dynamical screening.
there appear many serious investigations [8,9], using sophisticated diagram technic
in quantum statistic showing that nevertheless the screening of nuclear reaction
should be static. We will show here that, although in [8,9] no calculation mistake
where made, but from physical point of view the effect calculated in [8,9] is different
from that of [1] and therefore the interpretation of the results [8,9] is not correct.
The coincidence of the result [8,9] with the result [1] is occasional and not always
occurs. It happen only in the first approximation using small parameters which
are different in [1] and [8,9]. Apart of that, the present consideration shows that
there exist additional plasma corrections to the rate of nuclear reactions which are
proportional to the squares of the interacting nuclei charges .

The discussion whether the screening of nuclear reactions is dynamic or static
was continued up to the present time. To resolve this problem it was necessary no
remove the starting assumption of both [1] and [6] that the interaction of two muclei
is determined by the average potential. First in {10-12] a new approach was used
without this assumption deriving the equations for nuclear kinetic of interacting
nuclei from first principles by averaging the micro-equations with respect to plasma
fluctuations. From previous usage of such technic with nuclear reactions not taken
into account it was found that only such approach is appropriate for systems of
large number of particles and is able to prove directly that in Coulomb collisions the
plasma particle screening is a dynamic one. The approach of [1,6] deals only with
two interacting nuclei considering them as two probe particle for which without any
direct prove a screened potential is used (with static screening in [1] and dynamic
_screening in {6]). Here we will make one further step, as compared to [10-12], by
taking into account the change of particle fluctuations due to the presence of nuclear
reactions. In [10-12] a possible resolution of dilemma of static and dynamic screening
was obtained by showing the exact cancellation of all static corrections. Here we give
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a simple consideration showing that that this cancellation should be absent proving
an absence of the one component in this cancellation. namely we show that the effect
of Salpeter’s screening is absent in first order in parameter r/d where r is the inter-
nuclear distance in nuclear reaction and d is Debve screening length. This is the case
if one does not in first place assume that the average potential is determined the
nuclei interactions but considers the influence of all other plasma particles on nuclei
reaction rates as caused by their potential. The latter in the big system of many
plasma particles should be treated as a fluctuating potential. We also generalize
the fluctuating approach of [10-12] by taking into account the change in plasma
particle fluctuations caused by nuclear reactions and will show that the dilemma
of dynamic an static screening is resolved by absence of screening effects while the
effect of plasma correlation in first approximation in the small parameter 1/N; lead
to a result which often (but not always) coincides with the first approximation of
the weak static screening result. The existing paradox is resolved since the physical
interpretation of the effect is fundamentally changed-the correlation effects can be
in principle determined by the static dielectric plasma permittivity (which is well
known in plasma for example for electromagnetic wave scattering [7|} while the
screening effects cannot be determined by the static dielectric permittivity. For the
case where the coincidence between the weak Salpeter screening corrections and the
weak correlation corrections corrections occurs, such coincidence exist only in the
first approximation and only for effects o Z,Z,. In next approximations the results
of two effects are completely different. In the present paper only the weak correlation
approximation is considered which will correspond to weak screening in Salpeter’s
approach.

A qualitatively new result obtained in the present investigation is a self-consistent
consideration of the the corrections proportional to the squares of the nuclei charges
Z% and Z?. This type of corrections were first found in [10-12]. Such corrections are
specific for systems in which the inverse nuclear reaction are not developing. Such
systems are open systems. Nuclear reactions in star interiors with neutrino emission
are of such kind, since neutrino freely leave the region of nuclear reactions. By taking
into account this effect in the collision integral (which was obviously previously
neglected) we found that it leads to a corrections which will be proportional to
the time derivatives of nuclear distributions and therefore will be depending on the
nuclear reaction rates. This leads to the renormalization of distribution functions
of interacting nuclei and to the corrections proportional to squares of the nuclei
charges. Similarly to the corrections caused by correlations these effects are related
with changes in nuclei digtributions but they are not related with the nuclet reactions
themselves and can be regarded only as some effective change of nuclear reaction
probabilities. It is well known that the renormalization of particle distribution is a
standard procedure in any kinetic theory [13-14] and it seems to be obvious that
such procedure should be used for kinetic description of nuclear reactions in plasmas.

The processes of time evolution of nuclear reactions are treated in the present
paper by the procedure natural for anyv temporal problem, namely, it is assumed that
nuclear reaction did not operate at ¢ < U, that at initial moment £ = 0 the nuclear
reactions start to operate and the asymptotic behaviour at large ¢ is investigated.



This procedure lead to the explicit expressions for the corrections which are square
in nuclei charges. Additional to the effects already taken into account in [10-12] in
the present investigation it is taken into account that the plasma fluctuations are
modified by nuclear reactions.The final result for these corrections depends on the
whole cycle of nuclear reactions and is different than that found in [10-12].

Thus the present work is aimed to give the best available result for weak plasma
corrections both proportional to the product of nuclei charges and proportional to
the squares of nuclear charges.

The general expressions are used for explicit numerical calculations of plasma
corrections of nuclear reaction rates for the hvdrogen cvcle for parameters that are
presently accepted for the solar interior.

2 Absence of Salpeter’s screening corrections

It is desirable to remind the arguments first given in [1]. It is assumed that the
potential of interaction of nuclei is a Debye screened Coulomb potential:

o7 d (1)

where r is the relative distance between two nuclei, which is assumed to be much less
than the distance of Debye screening d. Notice that the correction to the Coulomb
potential is described as a constant in the interaction energy and is in [1] included in
the energy of relative motion E,, the only value on which the probability of nuclear
reaction depends.
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The screening potential is just assumed. We will show later that without this
assumption some constant in energy indeed appears but it should be attributed
to the center of mass motion but not to the relative motion of nuclei. In [1] the
corrections to the thermonuclear reaction rates are obtained by integration of the
probability times thermal Maxwellian distribution where the derivative with respect
to the relative energy (using the integration by parts in relative energy) is converted
to the factor 1/T for zero approximation in the parameter T/E, ~ T/Egs << 1,
where E¢ is the Gamov energy. The derivative of the phase volume factor has
the smallness T/FE as compared to the derivative of the Maxwell distribution and
are neglected. By this procedure in [1] for the rate of nuclear reaction R;, it was
obtained

s
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where Rf?) is the rate of muclear reaction without plasma corrections and e is the
static dielectric permittivity. s was previously noticed the presence of the latter in
the final result is physically not reasonabie.

There should be an error in this derivation which seems to be not quite simple
to recognize. It is hidden in assumption that the screening potential is due to a
fixed polarization charge around the nuclei. while in fact it is formed by plasma
particle fluctuations created by the fields of all other plasma particles except ones
taking part in the nuclear reactions. In presence of plasma the nuclear reactions
between the two pare of nuclei are occurring in an external fluctuating potential ¢
created by all other plasma particles and therefore the average value of this potential
does not determine the nuclear reaction rate, since the time of averaging is much
larger than the rate of nuclear tunneling. One can take into account the fluctuating
potential ¢ as a constant in the expression for the nuclear reaction probability. But
the subsequent procedure of expansion in this potential up to quadratic terms and
averaging on fluctuations, although it recovers (4), is also not correct. We will
nevertheless present such calculations. For terms x Z,Z, the change of the average
probability & < w,; > is

- 5 2 0?
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From this expression it can be seen that the fluctuating potential ¢ is determined
by the dvnamically screened particles but using the fluctuation dissipation theorem
in integrating with respect to frequencies and particle velocities one again finds
expression {4) containing the static dielectric constant. There are two points in this
derivation which are correct. First is the presence of a small parameter. the ratio of
nuclei size to the Debye length which allows to consider the fluctuation potential to
be approximately constant during the nuclear tunneling. The second is the presence
of another small parameter, the ratio of tunneling time to the characteristic time of
fluctuations. Therefore the averaging on all possible configurations of other plasma
particles occurs on time-scale much larger than the tunneling time and the averaged
potential of other particles is zero. Opposite case will correspond to polarization
to be established during the tunneling which will give the screening interaction
potential and than the consideration [1] could be applied. The real conditions are
opposite. Still the mistake of the previous calculation exist and it appears at the
point where one assumes that the additional fluctuating potential, which is constant
during nclear reaction, influences the relative nuclei motion. In fact only the space
derivative of it is entering in equation of the relative motion, or, in other word the
nuclear reaction rate can be influenced only by the fluctuating field strengths.

Using the mentioned two small parameters one can obtain the correct answer,
By introducing the coordinate of the center of mass of two interacting nuclei R and
the relative coordinate r as well as the coordinates of each of interacting nuclei r,
and r, one can notice that in nuclear reaction the coordinates of two nuclei almost
coincide with each other and that r €« R. Then for additional energy related with
the fluctuating potential one can use two terms of expansion
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The first term in the last expansion indeed is constant for nuclear reactions. but it
depends only on the coordinate of the center of mass and in the case the second
term of (6) can be neglected we can see that it will determine only the center of
mass motion but not the relative motion and thus does not change the probability
of the nuclear reaction. The second term which depends on the relative coordinate
can be estimated and can be found to be small at least of the order of the ratio of
the tunneling size to the fluctuation size. Thus the constant which was appearing in
[1] should be in fact included in translational motion but not in the relative motion
which means that Salpeter’s screening is absent. The Salpeter’s result is valid only
if the time of tunneling is larger that the time of averaging which in turn is larger
than the time of fluctuations. The central point in this consideration is the fact
established in modern plasma physics that the screening is produced in fluctuations
which was not taken into account both in the approach [1] and in the approach [6].

eZ;0(r;) + eZ;0(r;) = e(Z, + Z;)o(R) + e(r - E) T
i 7

3 Correlation effects

The correlation effects describe the correlation of the states of two reacting nuclei
and in the case where these nuclei appear to be more often in the states where the
reaction rate is higher the average rate of reactions increase. This effect is different
from {1,6], where the rate itself is increasing independent on the states in which are
the reacting nuclei. The correlations are determined by the kinetics of fluctuations
in the system of reacting nuclei. To investigate this effect we will use, as in [10-12],
the micro-equations but in the form somewhat more exact than that used in [10-
12]. Final result of this improvement appears to be necessary only for detailed and
general theory of correlations, which was developed by the author but will be not
presented here. The reason for the latter is that the exact theory of correlations
in first approximation used below give the result coinciding with that obtained in
'10-12]. Thus the more exact treatment of correlations is needed only for a precise
foundation of the corrections already found in [10-12]. Only perturbations approach
was used in exact correlation equation and thus the exact equation can give in
this case only the criterion of validity of the first approximation, namely, the small
parameter of expansion, which appears to be 1/N; << 1. where NN, is the number of
particles in the Debye sphere. We will give here the basic equations used for exact
theory of correlations,namely

9 0 9 _ oD
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where f; is the one-particle distribution function, and f;; is the two-particle distri-
bution function. The first is obtained by integrations of many particle distribution
with respect to the phase volume of all particle except one particle ¢ and the second
is obtained by integration of the many particle distribution on the phase volume of



all particles except two particles 7 and 7. In [10.12] there was used an approximation
fi; = f.f;. The equation (7) is more exact than that used in [10.12]. The analysis
of the equation (7) should be performed by deriving and solving the equation for
fi;+ the latter is obtained by integration of basic equation on all variables except ¢
and ), but not, as in deriving of the equation (7). by integration with respect to all
variables except 7. Such analysis is exact but cumbersome and only the perturbation
approach is effective for that. The correlation effects already exist in the approach
used in [10.12] since average value of the product of one-particle distributions is not
equal to the product of the average distributions. Ve will give onlv the result of
the more sophisticated treatment of the correlation problem by the equation {7): in
the first approximation in parameter 1/N; the correlation corrections coincide with
that obtained in [10,12] by assuming that f,, = f,f,. For the further approximations
which we do not use here this coincidence is absent. We remind here that to ob-
tain the correlation corrections, as performed in [10-12]. one need to introduce the
distributions averaged on fluctuations and the fluctuating part of the distributions

fz:(p1+6fz<fz):¢’z (8)

Than by averaging the starting equation and subtracting the average equation from
the starting equation and taking into account that the probability of nuclear reaction
does not depend on fluctuating potential (as shown here earlier but this effect was
taken into account in {10-12]) we find in the right hand side of the equation (7) the
following expression

(flfj) = q)iq>3 + <6f26f3> (9)

The second term in the right hand of equation (9} (as the detailed investigation
described earlier shows) correctly describes the correlation effects in the first non-
zero approximation. For explicit evaluation of the correlation contribution one uses
another small parameter the ratio of the nuclear reaction rate to the characteristic
time-scale of fluctuations (notice that the latter has opposite relation with tunnel-
ing time which is much less than the characteristic time of fluctuations) and uses
then in the first approximation the known expressions for fluctuations of particle
distributions in absence of nuclear reactions. This procedure leads to correction for
arbitrary particle distributions. Assuming then that the distributions are thermal
and using in the fluctuation dissipation theorem one expresses finally the correlation
corrections through the static dielectric permittivity:

(6£.51,) = ZZfe 2,3, sz (1 - ——) (10)

€k.0

In the last expression it is assumed that the Coulombb field of two interacting
nuclei should not be taken into account in the fluctuating potential created by
all other plasma particles. In [10,12] not only the correlations were taken into
account but also the change in the probability of nuclear reaction which was in [10,12]
interfering with correlation effects. Since here we proved that the change of the
probability is absent. the only effect left {later we describe additional effects) is the
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correlation effect. Since the correlation corrections are proportional to the product
of the average distributions it is possible to introduce some effective probabilities
which lead to the same result in the equations for the nuclear reactions as the effects
of correlations.

zZ.Z:e* rdk 1
eff ] ()
off gy |14 228 [EE = w; (1 + Al 11
w ’UJJ |: 0m 2T k2 ( 55)’]4:,0)] j( 17 ) ( )

Formal coincidence of the expression {11} for correlation corrections, Agf) with

expression {4) for the Salpeter’s corrections, Agf} should not lead to any miss-
understandings since the corrections (11} and the corrections (4) have not only
a different physical meaning but also differ from each other quantitatively. An
example of such difference is the reaction of nuclei " Be with electrons where the nu-
clear barrier is absent and the Salpeter’s corrections are zero while the correlation
corrections are not zero and are even negative describing the suppression but not
enhancement of the nuclear reaction rate.

Mention that the approach applied in [8,9] was using the statistical averaging of
the undisturbed probability on the electron and ion and electron disturbances which
corresponds to the correlation approach and therefore the presently obtained result
is in agreement with the result of [8,9].

4 Fluctuations in a system evolving in time

Due to absence of inverse processes with neutrino absorption, the system is an open
system evolving in time. The plasma fluctuations are then non-stationary (as usual
in absence of nuclear reactions) and the rate of the change of fluctuation in fime
is determined by the nuclear reaction rates. Although the rate of change of the
fluctuations is small as compared to the fluctuation time but in calculating of all
effects linear in the nuclear reaction rate one should take into account the effects
related with the time evolution of the fluctuations. These effects were previously
neglected (also in [10-12]). The fluctuations consist of two parts, first one which is
not related with collective fluctuating field and the second one which is proportional
to the fluctuating electric field. The second one leads to collective plasma corrections,
but one need to know the first one through which the second one is expressed. The
effects related with electric fields will be treated by perturbation which is sufficient
for weak corrections in which we are here interested. Therefore we consider first
the changes of fluctuations by nuclear reactions in the part independent on the
fluctuating electric field. We denote this zero approximation by superscript (0.
Then the starting equation for linear fluctuations will have the form

65 _,_.( )(p) aé‘ £( )( _ ~ ' (0) (0 dpf
at +v- 81' ——/wij(pri})(éfi (p)®;(p') + 377" (P (p))(fz?r()m)

Similar equation should be written for f](o) (p'):
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By writing these equations for Fourier components
0fiy = /5fz,;,k.w exp(tk - r — wt)dkdw,

it is possible to obtain an equation containing the fluctuation function of only one
of the interacting nuclei

(Lu‘ -k-v+ in(V)gf(O) (V) — *@1(\«') Wiy (p, pf)wzj (p”: p’) (I)J (V’) f(o) (V”) dp’dp”

ko w—k-v' 4w, (v') vkw (27)8
(14)

where
w{p) = /u'u(p.p’)@;(p') (Sf)e, v,(p’) =fwzj(p-,p’)®z(p)(2d—ﬁp)g {15)

describes the damping due to presence of nuclear reactions. The right hand side of
(14} describes another (than that described above) correlations of fluctuations due
to the presence of nuclear reactions. These correlations can be simply estimated by
taking into account that the characteristic frequency of fluctuations is of the order
of kvp; /2 wy, for k of the order of inverse Debye length 1/d, and wy;is the ion plasma
frequency. The right hand side of (14) is v;/w,; times less than the damping entering
in the left hand side of (14) and can be therefore neglected. We will write down the
correspondent equation for spatial Furier components of the distribution function
Sf%v )= (5fl(‘?{)(v. t)exp(ik - r)dk:

(% +ik-v+ vz(v)) 6f2(’(1)2(v. t) =20 (16)

We will consider the time evolution problem with initial conditions at time £ = 0.
Such treatment is necessary in an open system which cannot reach an equilibrium
state due to absence of inverse processes which includes neutrino absorption. As-
sume that the nuclear reactions are switched on at ¢ = 0 an then find their rate
asvmptotically at large £. Thus it is assumed that at { < 0. v, = (. By the way, such
formulation of the problem is close to the real situations in stars where the nuclear
burning starts on certain stage of contraction of the proto-star cloud. For ¢ < 0 the
solution of {16) will be

5]02(’(1]{) (p.1) = §f£?2 (p) exp{—ik - vi), (17)
while for ¢ > O:

3fN(p,t) = 61 (p) exp(~ik - v — wy(v)t). (18)



Then we consider only the spatially homogeneous problem where average values
of & f;x(p) should be the same as for the stationary (in average) system:

EFRUPILL D) = €:(p)d:;0(p — POk A+ K) (19)

This leads to the following law for averaging of the fluctuations in presence of
nuclear reactions which we will use in what follows

' ! ’
(B3PI (0) = =5 ®:(0)0:50(p — P)O (ke + K) X
1 _ 1 1 1
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(20)
In the limit #,; — 0 the result (20) coincides with the well known law for
averaging in a stationary system (we denote the correspondent distributions for the

latter case by superscript (*9))

(AR (P)) = @u(P)dis8(p — POk + K)d(w + w)o(w — k-v).  (21)
Using (20) it is necessary to find the change in time of the nuclei distributions
averaged on fluctuations which gives the change of the rates of nuclear reactions due
to collective plasma effects. Apart from the change of fluctuations one should take
into account also the time evolution effects in the averaged distribution function.

5 Influence of the evolving in time fluctuations on
the nuclear reaction rates

The starting equation for calculation of collective corrections to the nuclear reaction
rates is the equations obtained by averaging of (7) with respect to plasma fluctua-

tions
%, dp
ot (2m)3

we have here assumed, as in calculation of fluctuations, that the average distri-
bution is homogeneous but time-dependent. The latter is due to nuclear reactions.
The first term in the right hand side of (22) in absence of the time dependence leads
to the known collision integral which is approaching zero on the binary collision
time-scale converting the particle distributions to the thermal distributions. But up
to the present time it was not recognized that in presence of time variations (which
in the present consideration are due to the nuclear reactions) this term gives an
additional non-zero contribution proportional either to the change of fluctuations
in time or to the change in time of the average distribution of nuclei. We will take
into account only the effects of the first order in the nuclear reaction rates, i.e. only
effects linear in time-derivatives of the averaged distribution and linear in w,;. The
last term of (22) contains the correlation effects and both the correlation effects and

!
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the effects of temporal evolution will be considered in linear in w,, when these two
effects should be simply added in the final result and therefore in the present part we
can neglect the correlation effects. In the case we also neglect the effect of temporal
evolution of fluctuations, the equation (22) is converted to the following one

d ) (0) , dp’

‘é—gq)z = _(I): wzj,@i —(27‘_)3
In this equation the frequency v, should be considered as constant since by taking
into account its time -dependence one takes into account the corrections of higher
order in w;;. For fluctuations we have instead of (16)

S (23)
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where ¢ is the potential of the fluctuating electric field. The solution of this equation
will be

—E(W -k-v -+ iyz)(sfz,k,w - Zze (V5® ) iq’)z) 3 (24)
k,w

5f1,k,w = 6fz(,(1)c)u W *k V+EI/ fcbku —w’ ( TN z,w’) dw’s (25)

where § fz(i)’u is the solution of a homogeneous equation (24), describing the fluctu-
ations of the system evolving in time which was discusses in the previous section.
Since the average distribution function evolves in time much slower than the plasma
fluctuations w’ < w one uses an expansion with respect to «’and also expands in 4

0 , , .0
¢k,w—w’ ~ st,w — W %@k,wu [w ®i,u"dw ~ za(bz (26)
Using (23)we obtain
_op@ (120 e, (k.2 o7
0 i = 0 (1 %Bt&u) w-k- v-ri,Od) ( (9p(I)1 (27)

We use the Poisson equation to find the fluctuating potential in which the terms
with a time-derivatives we consider by perturbation approach

oo An 0y dp
w80 + o + 0 g0 = o Zajzae f S oy (28)
@ _ 9 (w0 o
_ 9 29
k,w 6;{{)} Sw ( kwa €x w) ( )
O =1+ g 2 [ kDo, ) P 30
G =115 2% | o\ ) e (30)

where the sum in « is performed on all types of plasma particles,namely on electrons
and all ions including that which have nuclear reactions.
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The effects related with temporal evolution of the system are described by an equa-
tion averaged on fluctuations. By neglecting the correlation corrections we have
from (22)

0 d . ; i MYer—i(wtw’ dp’
5% = Tiegs [ K48 s YO e o’ — f iy @2 5
dp’
0 ¢
where I?) is determined by the fluctuations evolving in time & fi{i},w while
7, Ze a9,
- g [k FO i . 0% (o)w )
' eap (0 f o w—k-v+i0 op | Dicar )
e dled dwdu’ (34)

and Iz-(t) is determined by the variation in time of the average distributions of the
reacting nuclei

& _ 5 0 JJ08 |1 (80 ), 1 (00w
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(35)
We have taken into account that due to (20) {(homogeniety of fluctuations in
average) k' = —k. In the case the time evolution of fluctuations is taken into

account in the expression(34) then in the expression (35), already containing a time-
derivative of the averaged distribution, it is sufficient to use an approximate relations
(21). We denote in the latter case the correlation functions by superscript 0 as for
the distribution function in (21). We find then from (21)
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By obtaining the last expression it was assumed that in all terms of (33) the par-
ticle distribution is thermal (satisfied with necessary accuracy). A small deviation
from the thermal distribution is necessary to take into account only in terms not
containing the time-derivatives on average distributions. By using the approximate
expressions (36) (37) for correlation functions we find that the first term of, (35),
which contains a full frequency derivative, is equal to zero and that
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To calculate the change of the reaction rate due to the temporal evolution of
the fluctuations, described by the expression (30) it is necessary to have in mind
that we are interested only in effects of the first order in the nuclear reaction rates.

In this limit we can obtain from expression (20} an approximate relation (compare
with (27),(28)):
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The first term of the right hand side of (39) is zero since it leads to an conven-
tional expression for Coulomb collision integral which makes all distributions to be
a thermal distributions. For the thermal distribution the first term of (39) is exactly
zero, and for non-thermal distributions the first term of (39) has a relative smallness
of the order 1/N; < 1 and also can be neglected. In the corrections proportional to
the derivative of the average distribution with respect of time one can assume that
the distribution is thermal in the first place. We find
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(40)
One can perform the following simplification in the last expression: one can take
the integration with respect to frequency by parts in the first term of (40) and not
take into account ( for a time) the time-derivative of the factor 1/{w — k - v +10).
Then the term obtained in this way together with the second term of (40) contains
the combinations
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which does not change a sign for w & —w,k — —k, while the other factors k(k -
v)/(w(8/0t) Imnex ) are also not changing their sign and the only left is the part of
the expression 1/(w—k-v+10) that also does not change in sign, i.e. —imd{w—k-v).
This means that only the imaginary part of (41) is left. In the expression left with
the derivative with respect to the frequency of the factor 1/{w — k- v +i0) it is
possible again to perform an integration by parts with respect to frequency. As a
result of these calculations we get
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Similar simplification is possible to use in the first term in the square brackets of
(38). Integrating with respect to the frequency we get
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The sum of (42) and (43) allows to perform other simplifications. Collecting the
terms which contain §{w — k - v) we use the definition I; = 19 4+ 19 and have
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In deriving these relations we used
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The expression in the first square brackets of (44) can be transformed to
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from which it becomes evident that after frequency integration the first term of
(47}is zero. To find this result it is necessary to transfer the imaginary sign out of
sign of time derivative and integration with respect to the frequency and to take into
account that the derivative with respect to frequency of the factor 1/ (w k- v 410}

has no poles in the upper part of the complex w as well as the factor 1 / €1 ) (the latter

St
due to analytical properties of dielectric permittivity). The second term also can be

transferred to an expression not containing poles in the upper plane of the complex
w by adding and subtracting the correspondent expression with I'm(1/w + i0) =
—76(w). That procedure shows that the first square bracket of (44) gives
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The last expression in (48) is used for obtaining an compact expression for the
final result containing only é(w — k -v). Thus
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6 Renormalization of the particle distributions

As the correlation corrections the corrections due to time evolution of the system
can be written as some effective change of the probability of nuclear reaction rate.
Notice that the correspondent equation (33) which takes into account the effects of
the time evolution has a form different from that which is usually used when the
plasma corrections are neglected. Namely, in the case the plasma corrections are
taken into account the equation has a form
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while in the case where the plasma corrections are not taken into account this
equation has a form
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1t is necessary to remind that here we restrict ourselves only to first order plasma
corrections. With this accuracy the equation (50) can be converted to the standard
form (51) by renormalization of the particle distribution and by introducing effective
probability. Let us introduce the renormalized distribution @ER) as a solution of the
equation

(51)
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and assume that the solution of it has a form
_ R\ 5(R)
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Than by taking into account that the corrections are small and also the both of the
distribution functions should be renormalized we find finally (by putting back the
correlation corrections) a final equation in a usually used standard form
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where
wiff = w1+ A5 + A + ATD) (55)

In solving the equation for ®F one should take into account that the redistribution
of particles in momenta is occurring much faster than the inverse rate of nuclear
reactions and therefore on time is depending only the particle density. The distri-
bution function of the reacting nuclei is then a product of thermal distribution in
momenta and the time-dependent density. The time derivative of dielectric permit-
tivity entering in I* is determined by all reacting nuclei and by the rate of change
in time of their distribution function, i.e. by the time-derivatives of their concentra-
tion. This point is important in momenta integrations with respect to the particle
distributions in the time derivatives of dielectric permittivities.

Further step can be made in the case we consider the nuclear cycle (in applica-
tions to the solar interior it could be the hydrogen cycle) and in the case we consider
the asymptotic (for large times) state where the rate of all reactions become equal
and are determined by the most slowest reaction. At the moment where the rates of
all reaction started to be be equalized the renormalized distribution will describe an
energy shift in the distribution of each sort of nuclei caused by all reacting species
of the cycle. In this sense this shift is a collective energy shift. Since the rates of
all reactions coincide asymptotically the relative derivatives on time in all terms of
(50) are equal. That fact allows easily find the coefficient of renormalization for



each nuclei species of the cvcle. In this derivation it is necessarv to take into ac-
count that the corrections are considered to be small and in the renormalization
terms one should not distinguish between the renormalized and non-renotmalized
distributions. The expression for AER) obtained by this procedure is
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and the summation on j is performed here only with respect to reacting nuclei of
the cycle and also on electrons if they are taking part in nuclear reactions (as it is
the case for hydrogen cycle).

It should be emphasized that the probability w,, depends on the relative nuclear
energy E. only and in the limit £, > T has a sharp maximum close to the Gamov’s
energy E¢ but the effective probability (55) depends also on the momentum of each
reacting nuclel, i.e it depends on velocities of nuclei relative to the medium (plasma)
which is natural for collective effects.

7 Change in collective electrostatic energy of nu-
clei and the energy shift

Each nuclei 7 in plasma is surrounded by a polarization screening charge and has an
additional self-energy E(S which, strictly speaking, has a meaning and can be cal-
culated only in non-dissipation media (plasmas). The calculations can be performed
only if one can neglect the imaginary part of dielectric plasma permittivity. This
does not correspond to the problem we are dealing since the dissipation processes
related with nuclear reactions play an important role. But asymptotically at large
time intervals where the rates of all reactions become equalized it is possible to find
the rate of change of the total electrostatic energy per single nuclei which plays a
role of effective collective self-energy proportional to the square of the charge of the
nuclei. In a large system the polarization charges of interacting nuclei are created
by fluctuations of all remained plasma particles and their nature is collective. In
presence of interacting and reacting nuclei the dissipation processes related with
their reactions do not allow to introduce and define the self-energy. But the rate of
change of the total electrostatic energy can be found and in the conditions where the
rate of all reactions become equalized these changes can be attributed to each nuclei
and describe sowne energy shift in their distribution. This energy shift can be con-
sidered as self-energy produced collectively by all reacting nuclei and, as we show,



is directly related with nuclei distribution renormalization. Before the equalization
of the rates such physical interpretation is not possible and it cannot be performed
mathematically and some effective energy shift cannot be found.

The effective self-energy found in the way described above should be different,
and is indeed different, from the sum of self-energies of particles in a non-dissipative
system. Although the collective self-energy per particle is similar to the self-energy
of single particles, its value and sign are different, although both of them are pro-
portional to the square of the nuclei charges. The main difference of the collective
energy shift from the self-energy is that the total integral with respect to all particle
momenta of a certain nuclei type is zero for the collective energy shift while it is
not zero for the self-energy shift. Therefore the sign and the value of the corre-
spondent corrections for nuclear reactions are determined by the values of nuclei
momenta which contribute the most for corrections calculated with the weight of
the probability of the nuclear reaction.

We will show that the rate of the change of the total electrostatic energy of the
system is indeed related with the correction due to particle distribution renormal-
ization. For the rate of the change of the total electrostatic energy of the system we
have
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This relation should be compared with the first term of the right hand side of
(33). By taking into account that the change of the particle energy can be calculated
by multiplying of the left hand side of {33) on the energy of a single particle with
subsequent integration with respect on particie distributions, that after integration
by parts the derivative with respect to momenta is substituted by the factor k- v
and that due to (40(41) k - v this factor can be substituted by w it is easy to find
that (42) (43) correspond to such changes in particle distributions which describe
the changes of total electrostatic energy of the system. This is the reason why the
collective corrections to each particular nuclear reaction depend on the rates of the
reaction of the whole cycle.

We can then show that the renormalization terms found in the previous section
is possible to interpret as appearance of energy shift de;, or, in other words, as
appearance of additional energy, which should be added to the nuclear kinetic energy
e&p = D?/2m, O®F(p) ox exp(—€;p/T — b€;5/T) ~ exp(—€;p/T)(1 — de;p/T), where
¢;p is the particle energy 7,and de,pis the collective energy shift of particle i energy.
By taking into account that ) = @,(1 - Agf,))we find
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where 56?} is appearing due to renormalization. The reiation (59) assumes oniy
that the distribution of the reacting nuclei is still thermal and this does not allow to
have any flexibility for other physical interpretation of the renormalization correction
but the one related with appearance of energy shift.

(59)



The expression (56) has special property that the integral of {56) with thermal
distribution is zero. But this does mean that

derp
T
The expression (60) is different from that used in [10,12] where the time evolution
of the average distribution was taken into account but the time evolution of Auctu-
ations was not taken into account. The latter lead to the final expression for the
corrections (49),(56) which are more general than that of [10,12]. In non-dissipative
system we have [10-12]
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Contrary to (57) the integral of (61) with respect to the momenta with a thermal
distribution is not zero. The collective energy shift (60) depends obviously only on
the absolute value of the particle velocity, i.e. on particle energy. Therefore it
should change the sign at certain energy due to zeros of the integral with respect
to all momenta. The integration with a weight w,, will depend both on the peak
in relative energy at the Gamov energy and on the translational distribution which
is thermal. For determination of the sign of the correction it is also important the
angular averaging.

Due to assumption that the particle distribution is thermal the interpretation of
the corrections as an energy shift is the only possible. The described energy shift
is & collective one and in a certain sense is an analog of the Lamb shift. The shift
itsclf is manifested as effective renormalized nuclei self-energy.

8 Simplification of corrections

The ratio of the nuclear reactions rate which takes into account the collective plasma
corrections, R,;, to its value in absence of plasma, Rg-]} is given by
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where A©) describes the correlation corrections and A@) describes the correc-
tions due to the time evolution (superscript T is used from the word “time"). The
value Al®) being independent on particle momenta coincides with the earlier ob-
tained expression and for AT} we have
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expression (63) as an averaging with respect to the relative motion and to the center
of mass motion
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The expression under the integral as a function of the relative energy E, =
11:;02/2 has a sharp maximum at the Gamov’s energy Ef = u;;(v)?/2 where pj;
is the reduced massy,, = m;m;/(m; + m;). Therefore the integration with respect
to the relative energy results in a substitution of Gamov’s energy for the relative
energy in all factors in front of the probability of the nuclear reaction. Then the
integrals with respect of the relative energy is the same as in absence of plasma
corrections. Of importance is that A{ + A(f, depend on the momenta of nuclei
relative to plasma and therefore on the absoiute values of nuclear momenta. Apart
of relative and translational energy they depend also on the angles. The expression
(64) contains the correspondent angular averaging. After one extracts the angular
dependence from the expression under the integral (64) it is possible to perform
analytically the integration with respect to the absolute value of & by taking into
account that the ratio w/kvr,(where vr, is the thermal velocity of particles @) is
independent on the absolute value of k£ due to w = k-v. We will give later the
explicit result of these calculations.

For real application to nuclear reaction rates in plasmas apart of such integration
it is necessary to take into account that in the case the plasma contains a mixture
of different reacting nuclei (as it is for hydrogen cycle) it is necessary to transfer the
corrections to the form containing the relative mass abundances of different types
of nuclei. We assume here that the ions are completely ionized, i.e. they are bared
nuclei the charge of which is compensated in volume by free plasma electrons
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and we use the following known analytic expression for the dielectric permittivity

(0) — 2
€rp = 1+ k2d2+zk2d2 (si) =1+ k2d2(1+Ze_ff (1+Zan W{s,)/ Zan)
(65)
where the summation is performed only on nuclei. It is also assumed in (65) that
the nuclei velocities are much less that the thermal electron velocity and therefore
for the electrons the Debye screening approximation is used (the second term in
the first equality (65)), d is the total Debye radius and W(s) is the known plasma
dispersion function

% = % Z% Wi(s)=1 + sexp(—s?) (i\/’f_l:— 2]; exp(tz)dt) ; (66)
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Mention that according to the consideration given above both s, and W (s,) de-
pend only on angular variables. In the case we use the notation X, = m;n;/ 2, Tyn,
for relative mass density of nuclei, we can rewrite the dielectric permittivity in the
form
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Notice that the expression AE? contains a sum with respect to the types of ions
j' of the expressions, depending on k% and the angular variables though the S0y
where
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Here z is the cosine of the vector k and the vector of the relative velocity v, and z
is the cosine of the vector k and the translational velocity V, y is the normalized
velocity of translational motion and A;;is the normalized velocity corresponding to
the Gamov’s energy
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Using the identity
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and
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it is useful to write the relation (56) in the form containing only the operators
wd/Ow
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The integration with respect to & in (76) can be performed analytically and the
problem of explicit calculation of the corrections is reduced to an averaging with
respect to 1) y with an form-factor (4/v/7) f5° ...4* exp(—y?)dy 2) averaging on x
with (1/2) 1, ...dz and 3) averaging on z with (1/2) [%, ...dz. By using (66} we find
the final expression which can be used in numerical calculations
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where the A( )(y,a: z) is determined by averaging of(75) and the f\T (y,x,2) is
determined by averaging of (76),while the explicit expressions for A (a; y,z) and
A( 'y, z, z) are given in the Appendix . For i ¢+ 7 expressions(A1)(A2)will contain
(70) instead of (69) and correspondingly s;;; instead of s;;; and Z? instead of Z7.
The mass of the nuclei can be calculated in the units of the proton mass since the
masses enter in the same power in the numerators and denominators of (A1)(A2),
i.e. m in (69),(70) and (A1)(A2) is the atom number of the correspondent nuclei.

The expressions(A1)(A2) aliow to calculate the rates of nuclear reactions between
the nuclei ¢ and j for arbitrary mixture of nuclei in plasma. The summation with
respect of 7' includes both reacting and non-reacting nuclei , while the summation
with respect to j’ includes only the reacting nuclei.

9 Numerical results

Let us give some numerical results of calculations of corrections inn the center part of
the Sun using the presently accepted values [3]: Xy = 0.3411, Xy, = 0.6387, X =
0.00003, Xy = 0.0063, Xpo = 0.0085. Then Z;; = 2.551,%; Z;X;/m, = 0.661.
The parameter e’dT depending on the temperature and density and abundance
is a known parameter which we will exclude by nurmalizaing all corrections with
respect to it. For temperature T = 1.5KeV and density n = 5 x 10%¢m ™2 accepted
in the present solar models we find e?/Td = 0.05 which gives for the Salpeter’s
corrections for p, p reactions( the beginning of the hydrogen cycle) 5% and gives for
the reactions with “Be (the end of the hydrogen cycle)de? /Td = 20%. To exclude
the trivial dependence on the temperature and density through the parameter e?/T'd
we will present the relative value of the corrections in units of ¢?/T'd, namely for
Ay~ = A;;Td/e?. The Table 1 presents the results of numerical computation for the
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collective plasma corrections obtained by using the expressions (77)(A1)(A2). The
table contains the accepted value for the relative Gamov's velocities Ay, contains

the value of for correlation corrections ‘\ff,)\ and the value of the corrections due to

the collective energy shift /\EJT}V, as well as the Salpeter’e corrections AEJS),\ and the

expression for the total corrections Agf)- + '\g?\f found in the present investigation.
Table 1

N. Reaction Ay \S’A AEJCR\ ‘\.EJT%V /\Efj)\, + '\.g}v

1. p+p 4.280 1 1 +0.357 1.357

2. p+*H 4.757 1 1 +0.313 1.313

3. SHe+®*He  8.150 4 4 +0.98 4.98

4. SHe+'He 8420 4 4 +0.943 4.943

5. "Li+p 10.234 3 3 +0.676 3.676

6. "Be+p 11.264 4 4 +1.056 4.707

7. "Be+te 0 0 —4 +0.788 —-3.212

10 Discussion of the results

Previously it was assumed that all collective corrections are the Salpeter’s corrections
and they lead to an enhancement of the reaction rates. As can be seen from the
Table 1 not all of the collective corrections give an enhancement of the reaction rate
but some of them, for example the reactions with 7 Be capturing electrons, describe
a decrease of the reaction rate. The latter effect is important since the reaction
with "Be has two branches and the effect found here affects the branching, the
value of which which was for long time a hot point in discussions in solar nuclear
physics. The decrease of the reaction of electron capture by "Be nuclei decreases
the number of Boron nuclei which are creating neutrinos detected in first Homestake
experiment and also in Super-Kamiokande experiment. For all other reactions of the
hydrogen cycle the calculated corrections are larger than that previously accepted
and give a larger enhancement of the reaction rates. The total correction due to
the time evolution Ag) are positive and are the sum of the corrections found in [10-
12] (describing a decrease of the reaction rates) and the correction due to temporal
evolution of fluctuation caused by reactions which create neutrinos freely leaving
the system and increasing the nuclear reaction rate. The latter effect appears to
be larger than that of {10-12] leading to total enhancement of the nuclear reaction
rate. On the other hand, the proved absence of the Salpeter’s screening removes the
interference effects between the changes in probabilities and correlation effects. Left
are only the correlation effects which lead to an enhancement of the reaction rates.
The proved statement that the Salpeter’s correction are in first approximation zero
has an indirect confirmation from observations. Indeed, if the Salpeter’s corrections
will be not zero their interference with the correlation effect will lead to a result
which contradicts the observations. By taking into account the correction of the
sign of the interference term (mentioned in the end of [10-12]) we find that (without



the temporal evolution effects) the corrections will be 4 times larger than Salpeter’s
corrections, i.e. totally (with temporal corrections) will be about 84% for reactions
3 4 of the Table 1. The latter contradicts the recent data on solar seismology. The
correlation effects except the last line of the Table 1 "recover” the result often used
in the present standard solar models. but the total correction given in Table 1 are
larger than that usually used. The existing experience of numerical calculations of
the solar models shows that even a small corrections in the probabilities of nuclear
reactions can affect the final result of the parameters of an evolving in time nuclear
system. Thus the difference of the final expressions of the Table 1 from the Salpeter’s
corrections could be of importance. The last line of the Table 1 clearly illustrates the
quantitative difference of the correlation corrections from the Salpeter’s corrections.
The correlation corrections have even an opposite sign. Different is also the physical
meaning of the correlation corrections and the Salpeter’s corrections.

We should discuss validity for neglecting the terms which leads to the resuli
of zero value of the Salpeter’s corrections. It is determined by the possibility of
neglecting of the second term in the Eg.(6). The latter describes the influence of
the fluctuating electric field on the rates of nuclear reactions. The present theory
of weak plasma fluctuations provides for this effect an expression which is divergent
at large k. If for an estimate one uses ko, =~ 1/r where r as a characteristic size
of nuclear tunneling one finds that the effect related with fluctuating electric fields
is 7/ R times smaller than that taken into account here (R is the characteristic size
of fluctuations). If, on other hand, one uses kmq.. & Ng/d (large angle scattering in
collisions), then the relative contribution of the second term of (6)is even smaller
~ Tsz/ R2.

The dense plasmas can be found in laboratory laser fusion experiments where
the temperature are of the same order as in the solar interior but the density could
be two orders of magnitude higher. Then the factor e?/dT will be one order of
magnitude larger and the correlation corrections to ID + T reaction will be 50%
instead of 5% in solar interior. The total corrections calculated numerically by
using the present theory will be larger than the correlation corrections by the factor
1.194 which corresponds to 51% increase of the reaction rate.

According to the present investigation the physical meaning of the collective
corrections is related with a change of nuclear distribution (of correlation type and
of temporal type) but not with change of the probabilities of nuclear reactions as was
assumed earlier. In this sense the corrections found here are not specific for nuclear
reactions and will appear for any other processes, for example, for the chemical
reactions or for the reactions in the colloids or in the biclogical macro-molecules.
One should always have in mind that the explicit expressions were obtained here
assuming that the rate of the reactions should be less than the characteristic time
of fluctuations. This emphasizes once more the physical difference of the corrections
found in the present research from that related with screening of nuclear reactions.
The present results also resolve the old paradox between the dynamic and static
screening of nuclear reactions since the corrections are nothing to do with effects
of influencing the reaction rates. The correlation corrections in the plasmas can be
determined by and are determined by the static dielectric permittivity.



It was wsually accepted in astrophyvsical applications that the approximation of
weak Salpeter’s sereening can be applied only as first approximation and it is not
sufficient for more precise description of the nuclear processes in Solar interior. It is
much more insufficient for description of nuclear reactions in stars on other stages
of their evolution. which are different than that of the present Sun. Usuallyv the
interpolation formulas between the weak and strong screening were used for this
purpose. From the results of the present work it is clear that the interpolation for-
mulas cannot be used. not speaking on the Salpeter’s screening itself. To obtain the
desired interpolation formulas it is necessary to describe the correlation corrections
more precisely, In the present paper there was obtained only the result for weak
correlations by expansion in a small parameter, the number of particle in the Debye
sphere. In solar interior this parameter is 1/5—1/7 and the better accuracy is desired
to be available Also the small parameter used is different from that in Salpeter’s
corrections. namely the ratio of the thermal energy T to the Gamov’s energy Eg.
The correct interpolation formulas can be obtained in the case if strong correlations
can he treated analvtically. Contrary to the Salpeter’s corrections, where the strong
screening effect can be treated, the strong correlation effect was not yet properly
considered in any plasma theory and in general it depends on many unsolved prob-
lems. Up to present only the problem of weak correlation has an explicit analytical
solution. Although different approaches were used to find some strong correlation
effects. the approaches used are based on several assumptions not proved yet. Con-
cerning the correlation effects for nuclear reactions one can on basis of the present
consideration propose a method and a procedure to find the correlation effects in the
next order in small parameter 1/N; {although a cumbersome calculations needed to
be performed to find these corrections). But the effects of strong correlations in a
general form cannot be found in nearest future. This means that there appears a
doubt about the accuracy of the existing models for description of nuclear reactions
during the stellar evolution where the Salpeter’s interpolation results where used.
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APPENDIX

The calculations give the following expression for .'\g‘)(y. xr,z)
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Here, as previously, the subscript j corresponds the summation with respect

to that nuclei which take part in nuclear reaction cycle and we used the following

notation
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