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Abstract

The statistical theory of strong turbulence in inhomogeneous plasmas is developed
for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear
interactions between semi-micro and micro modes are first kept in the analysis as the
drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and
the cross field turbulent transport for the fixed global parameters. A quenching or
suppressing effect is induced by their nonlinear interplay, even if both modes are unstable
when analyzed independently. Influence of the inhomogeneous global radial electric field
is discussed. A new insight is given for the physics of internal transport barrier. The
thermal fluctuation of the scale length of Ap is assumed to be statistically independent.
The hierarchical structure is constructed according to the scale lengths. Transitions in
turbulence are found and phase diagrams with cusp type catastrophe are obtained.
Dynamics is followed. Statistical properties of the subcritical excitation are discussed.
The probability density function (PDF) and transition probability are obtained. Power-
laws are obtained in the PDF as well as in the transition probability. Generalization for
the case where turbulence is composed of three-classes of modes 1s also developed. A

new catastrophe of turbulent states is obtained.
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I. INTRODUCTION

Recently, noticeable progress has been made in the field of theory and modelling
of plasma turbulence. The development of a statistical theory for the strongly turbulent
plasma has been one of the main subjects of plasma physics theory. Methodologies of

turbulence theories has been advanced, and the theory for turbulence sunnression and
transition is a successful example for it. (See, for a review, e.g. refs.1-4.)

Fluctuations with different scale lengths coexist in plasmas. In a conventional
approach, the scale separation is used, and one class of mode is analyzed where
fluctuations of the other scale lengths are often neglected. This simplification is not
always relevant. The importance of interactions between the modes with different scale
lengths has recently been recognized. For instance, the dynamics of the meso-scale
structure of the radial electric field> is known to cause varieties in the dynamics of
microscopic fluctuations. Examples include the electric field domain interface,%7 zonal
flow8 and streamer,? and an effort to develop a statistical theory for zonal flow is
reported.10 It is shown that the mutual interactions between fluctuations with different
scale lengths substantially influence the turbulence level.

In this paper, we analyze the turbulence composed of collective modes with
different scale lengths. The nonlinear interplay and transition among them, phase
diagram and statistical properties are analyzed. A new insight is given for the physics of
internal transport barrier. The probability density function (PDF) of fluctuations, and the
transition probability are presented. The fluctuation with two typical scale lengths is
discussed first. The case with three scale lengths is also discussed and a new phase
diagram is shown.

Hereafter we call the collective drift-type fluctuations the ‘semi-micro mode’
(—P; ) and distinguish it from the ‘micro mode’ of the scale of the skin depth (- c/®,, ).

Namely, p; > ¢/, holds in the system of our concern. The micro-turbulence is

considered to cause the anomalous electron transport. The statistical nonlinear interplay
(nonlinear dynamics) determines both the fluctuation levels and the cross-field turbulent

transport. The term ‘global” is used for the gradient scale lengths of the order of plasma
radius @ and the global parameters (averaged on magnetic surfaces) are given and fixed

here. Thermal fluctuations of the order of the Debye length, Ap , are assumed to be
statistically independent of the modes of our concern.

The constitution of this paper is the following. In section II, the model and basic
equations are given. Using a reduced set of equations for fluctuating fields, the self and
mutual nonlinear interactions are formally divided into drags, drives and noises.!1-13
Then the Langevin equations are reformulated for each collective mode by introducing the
scale separation. Statistical approach and the correlation functions (fluctuation level,
transport quantities) in ref.14 1s surveyed. An analysis based on the coarse grained

quantity 1s given in section III, and explicit formulae are given for the interplay between
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the current—diffusive interchange mode (CDIM)! of micro-turbulence and the ITG mode?
of drift wave type semi-micro-turbulence. Possible nonlinear interactions and an insight
for ITB are discussed. In section IV, the statistical properties are investigated by
considering the nonlinear noise of turbulence and thermodynamical noise. The PDF and
transition probability are analyzed. The case where fluctuations of three different scale
lengths are interacting each other s analyzed in section V. The summary and discussion

are given in section VL.

II. MODEL
A. Model equations and approximations
The derivation of statistical equation, which has been developed in previous

articles, is briefly surveyed. The dynamical equations of fluctuation fields are given as

f+L9f = (1. 1)+8, (1)

where f T= (¢, S Vi Pes p,-) is the fluctuating component of electrostatic potential,
parallel current, parallel velocity, electron pressure and ion pressure, and %{f S ) stands

for the nonlinear terms
s £)=-|v2[0.V30} (1-8v2%) o. ] [o. il [o. P.J. 0. p1]| . The bracket

[f.g] denotes the Poisson bracket, [ f, g] = (VfxVg)b, b = B,/B, denotes the unit vector
in the direction of the magnetic field and E= p?ﬁfz . Physics variables (e.g.,

{ 0, A I V”, Do pi} , magnetic field B | electric field, length and time) are normalized

according to a standard convention. Various choices of normalization are described in
detail in ref.15. Transport coefficients by the collisional process are expressed by H 3.,
He s Mes Xees Xei for the shear viscosity, electron viscosity, parallel viscosity of

ions, electron thermal diffusivity and ion thermal diffusivity, respectively.
In calculating the nonlinear drag term, fluctuations which have shorter wave-
lengths are rencrmalized. The nonlinear terms are expressed as a sum of the drag, drive

and the noise and are separated into semi-micro and micro modes, as

M(f: f) =- (r‘fz] + F{h])fl +§EI} +S~(rh) (2a)
and
= 3 h A h ~lh\
<L {fw f}__r?n [+ '@l#!}*’f +Sin} » (2'-'}



The superscripts / and £ denote the semi-micro and micro modes, respectively, and the
subscripts ( { ) and (k] denote the contributions from semi-micro and micro modes,
respectively.

By use of Eqgs.(2a) and (2b), Langevin equations are derived as

%f Ly (L(O) + r{g) + I‘f )) ! f) th) +8,,, (semi-micro mode) (3)

_(% e ( A9 rr pfil ) =§ +S @ - (micro mode) )

The renormalized drag (coherent part) is given in a form of the eddy-viscosity type
nonlinear transfer rate y 2 A random-noise part is regarded to have a shorter decorrelation

time than ¥; ! according to rapid change model.!!- 16 The nonlinear drag term is written

i an apparent linear term as

(CF)=- (Vo Yoo Yoo VoS 155 )
The driving part in the nonlinear interactions is deduced, giving @f'; == Og())
U=1,j=3-5), 2, ,=-i& ‘og wf‘: ) (=3~ S)and

@ﬁ Ja1 =—i&’ Oy(;) » where Og(;) = J’B?P —k XB?P is the Doppler shift owing to the
E X B velocity associated with the semi-micro mode, and ®;() = -k J”c)%ffl +k xa%fj;l

( =2 -3 ) represents the modification of plasma parameter by the semi-micro mode.

B. Analysis of nonlinear statistical equations
1. Nonlinear Dispersion

Equations (3) and (4) might give a large amplitude solution where the operator in
the left hand side vanishes. This provides a nonlinear dispersion relation, in which the

effects of renormalized drag terms are included. The nonlinear dispersioa relations are

given as
det(lll + L[O) + FEI] + F%h]) =) . (6&)
and
h 0) _
det(l 1+ 49+ Ff‘h)— 0&)) =0, (6b)



. ! } : : " .
where A' and A" are nonlinear eigenvalues for the semi-micro mode and micro mode,

respectively.

2. Statistical approach

In the turbulent state the contribution of the nonlinear noise is considerably large,
and 1s not always negligibly small. From the solution of the Langevin equations (3) and
(4), a statistical average of fluctuation amplitude is derived. The Fluctuation Dissipation
(FD) relation, that the average of fluctuation amplitude and noise satisfy, has been
derived. After a statistical average, the decorrelation rate agrees with the eigenvalue A .

With the help of diagonalization approximation, by which the correlation function
of noise terms are represented by the autocorrelation of fluctuations, !2- 13 one has an
explicit form of the FD relation. The eddy-damping rate ¥, is related to the fluctuation
amplitude through renormalization relation. Equation (6), the FD relation and the
renormalization relation for eddy damping rate form a closed set of equations that
determines the fluctuation level /*# , the decorrelation rate AN and the eddy-damping

rate Y;# simultaneously in the presence of global inhomogeneities.

3. PDF and transition probability

Form the Langevin equations (3) and (4), the Fokker-Planck equations are
deduced, and the probability density functions (PDF) can be obtained. If multiple
solutions are allowed for a given set of parameters, it is called Aysteresis. In the presence
of statistical noise, a probabilistic transition between different branches of hysteresis takes
place. The transition probability can be obtained by use of the PDF.

III. NONLINEAR INTERPILAY AND TRANSITION IN MULTIPLE-
SCALE-LENGTHS TURBULENCE
A. Nonlinear interactions

The effect of the semi-micro mode to the micro mode is taken as follows: the local
pressure steepening and the stretching the micro vortex. The former has the destabilizing
influence and the latter has suppressing effect. The change of local magnetic shear by the

emi-micro mode might be influential. However, this effect is not kept here, and is left

for future study.

Combining Eq. (6), the FD relation and renormalization relation for eddy damping

rate, we have a set of nonlinear equations for the spectral intensities of the semi-micro
mode I' = ; <fll, i k> and micro mode 1" = ; <fl’,liéf1}.tk> as!4

VIt + ~2/1h+4ll —D[} fee (Ih)yz

(semi-micro mode) (7a)



and

i =(ph)? 1 Vil

1+ . (micro mode) (7b)
(1+1§ 1’)2 VI* + T + 4l

~ ~1 2
In these equations, € = C, 3(2 - C(I)) (kf)/k '8) implies the noise source (pumping) from
the micro mode to the semi-micro mode,

D= 2 1 76

= 3 7
2-Co kh? 1+ (O)EIIG)‘IE‘C)

(8a)

and

2 1 ¥4
D" =
2 R2 >
ki

T2-Chi+ (mEllmgc)

(8b)

denote the driving source from inhomogeneities for the semi-micro mode and micro
~h . . .

mode, C 6 , C 3 and C are numerical coefficients of the order of unity that show the

contribution of nonlinear noise, and & f) and k ’5 are typical wavenumbers of the semi-

micro and micro modes, respectively. The parameters D' and D" denote the magnitudes

of the drives due to global inhomogeneity and are turbulent transport coefficient in the
absence of mutual noniinear interactions. in Eqgs.(8a) and {8b), Yo stands for the each

nonlinear growth rate without coupling and nonlinear noise, ®Wg; is the £ X B shearing

rate by the global radial electric field,

1 d
Op =5 g7 Er s )]

®% . and ©f . are the critical values for the suppressicn of the modes. The parameter
2 2, -4
zeﬁa(1 + (op/of) )(mgc} (k)7* (10)

represents the amplitude of semi-micro mode above which the £ X B shear stabilization is

effective.
In the absence of the mutual nonlinear interactions, one has

1'=(D")’ amar"=(D")". (11)

which implies both the modes can be unstable and excited independently.



Combining equations (7a) and (7b), the self-consistent solution is obtained. This
system is characterized by parameters D! , D* . Lo and € . This system of equations
has three types of solutions; micro-mode dominant solution, semi-micro-mode dominant
solution and bistable solutions. For the case of micro-mode dominant solution, the semi-
micro mode is quenched

1" =(D")" and1'=el" (12)

For the case of semi-micro-mode dominant solution, the level of micro mode is

suppressed as
- 2
1"=D¥ 1%, D™ and I'= (D) . (13)

Figure 1 illustrates the phase diagram on the plane of global driving parameters, being
represented by D' and D" . Symbols 'micro’ and 'semi-micro’ stand for the regions
where solutions of Egs.(12) and (13) are obtained, respectively. In the region denoted by
'both’, bistable solutions are given: both solutions of Eqgs.(12) and (13) are allowed
simultaneously. A cusp type catastrophe is obtained, and transition between different
branch of fluctuations occurs.

It should be noted that the excited amplitudes of fluctuations are strongly modified

by the presence of other fluctuations. In Fig.1, both semi-micro and micro modes are

o 5 D!
Fig.1 Phase diagram on the plane of global parameters, being represented by normalized
driving parameters D% = Dh/\/@ and D =DV @ (£=0). A cusp type
catastrophe is obtained. In the region of "micro”, the semi-micro mode level is quenched
and is very low. In the region of "semi-micro", the micro mode coexists but is suppressed.
Trajectory of the driving parameters Dl(wfgl) and Dh(ﬁgl) is shown by A-A’ and B-B', as
the global electric field shear increases. ®g; changes from ©g /0L, =0 to wg /oL =2 .
On A-A', a hard transition takes place at C and the back-transition at C'. DI(O) =22/1,5 ,
D'0)=2/I; and o =04 0}, for (A-A"); D(0}=/T; ,D*0)=0.6/T; and
op, =v0.3 ©}. for(B-B").



unstable everywhere. Nevertheless, the mutual interaction regulates the excited
fluctuation Jevels. In aregion of small D! , the semi-micro mode is almost completely
quenched. In the region of 'semi-micro, the semi-micro mode is dominantly excited; the
micro mode is also excited but is suppressed by the nonlinear interplay.

The region 'semi-micro’ and 'both’ are given by the relations

D!'>D* (14a)
and
2
DI<D”<—1—(D12+I ) (14b)
{ eff| -
4D'1 4
respectively.

B. Example of ITG and CDIM

The formalism is applied to a coupling between the ITG mode and the current-
diffusive interchange mode (CDIM). We consider a system with the magnetic hill in the
absence of the radial eleciric field shear. The ITG mode is chosen as a semi-micro mode,

and the drive is given as3

P TI_)3/2 R(l—n;cLT”Ln) csp2
D= 14(? I a (15)

€

kS

where the critical value T} ;. is approximated here as M;. = 1 + 2.5L,/R . In this
expression, Ly and L, are the gradient scale lengths of the temperature and density,

respectively, R is the majour radius, ¢ is the ion sound speed and other notation is

standard. The CDIM is chosen as a micro mode, and the drive is given as?

phocG” &
S2 TAP

(16

where G, is the normalized pressure gradient muitiplied by the magnetic hill height, s is
the magnetic shear, 8 is the collisionless skin depth, T Ap isthe poloidal-Alfven transit
time gR /v, , and C is a numerical coefficient of the order of unity. Both of driving
parameters D' and D" bave the dimensional dependence T 1B~2R™! . The competition
between P! and D* takes place through the gradient scale lengths and a geometrical

parameter. They are symbolically written as

32
R R k R R
D'=Apg L—TWL—nwz.s and D =ACDIM(L—n+L—T) 17
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with Ayrg = 14 (T/T,)c,p2 /R and Acp = C (hill - B)s28%131 . This system is
controlled by the gradient parameters, R/L, and R/L 1 | together with the ratios

o =AcpmdA g = A7 '(hill)**s-2 and I./A% . Figure 2 illustrates the phasc diagram
on the (R/Ly . R/L, ) plane. The ITG mode is dominantly excited if the temperature

gradient exceeds the threshold value where the density gradient is weak. When the
gradients become strong, the fluctuation is dominated by the CDIM. The L-mode
plasmas in large toroidal confinement devices are considered to be in the regime of the

"semi-micro’”,

6=008 1,=25

\
R/LL L Micro ﬂ

Fig. 2 Phase diagram on the plane of (R/Ly  R/L, ).

Figure 3 illustrates the fluctuation amplitude as a function of the temperature
gradient with fixed density gradient . When the ion temperature gradient is low, the
fluctnation is dominated by the CDIM. Once the ITG mode is excited, the CDIM is
suppressed. By the presence of the CDIM, the threshold gradient of ITG mode is
increased in comparison with the linear threshold. In the large gradient limit, the branch
of CDIM (denoted by dotted line) appears again. With this branch, the ITG mode is a

0 5 10 R/L 15 2 T:‘/L 3
T n
Fig.3 Fluctuation level. If the semi-micro mode is excited, the micro mode amplitude is
shown by the solid line. Parameters are: (a) KL, =05 and (b) R’Ly=5 . In (b), the arrow
on the horizontal axis denotes the linear stability boundary. Other parameters are
lgi /1 Appg=2.,06=008 £¢=0.




J(ih) 12
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Fig.4 Fluctuation amplitudes VI and VI% as a function of the shear of global Ex B
velocity @g/®f, . Og changes from wg;/0f =0 to Wz /0f. =2 along the line A-A' in
Fig.1. (\/F and VI" are normalized to \[Ijﬁr .} Parameters are: DI(O) =22/l 5 ,

Dh(O) = 2@ and wh, =v0.4 ®f . Hysteresis: solid curve for increasing I(‘)El | (Ao A

in Fig.1) and dashed curve for decreasing I(')El | (A" —A).

quenched solution. In the regime of the high temperature gradient, both the modes are
possible to exist. Influence on the semi-micro mode is more explicitly seen in Fig.3(b).
By the increment of the density gradient, a transition to the CDIM fluctuation occurs and
the ITG mode is quenched. This transition takes place at much lower density gradient
than the prediction of the linear stability of the ITG mode.

C. Implication to ITB formation
The nonlinear interplay introduces a new transition of fluctuations which gives an
insight into an establishment of ITB. In usual circumstance, the effect of the electric field

shearing rate for turbulence suppression is stronger for the semi-micro mode,

ol <op, . (18)

If one considers the situation where the L-mode is in the region of "semi-micro” in the
phase diagram (as is in Fig.2), then the trajectory of DI((DE) and Dk(OJE) on the phase
diagram behaves like A-A'in Fig.1. Along this path, a transition is induced. On the path
of A to C, the semi-micro mode is dominant. As the drive DI(CDE) is reduced by the

electric field gradient, the semi-micro mode amplitude is decreased. In contrast, the
amplitude of the micro mode increases. At the onset of transition to the micro mode
solution, the semi-micro mode is quenched. Along the path C-A’, the amplitude of the
micro mode is suppressed by the increment of the electric field shear. When the electric
field shear is reduced, as from A'to A in Fig.1, the transition to the semi-micro mode

branch occurs at C'. Figure 4 shows the suppression and transition of turbulence by the



radial electric field shear. (The occurrence of transitions at C and C' is based on the
deterministic picture of transition.)

Figure 5 iliustrates a phase diagram for the case of Eq.(17). When the radial
electric field shear increases, the transition to the micro mode takes place. The critical
value of the electric field shear for quenching the semi-micro mode is strongly influenced
by the coupling.

The induced transition of the semi-micro fluctuations sheds a light on the internal
transport barrier (ITB) formation. A key problem in the ITB formation is the imbalance
between the formations of ITBs for the ions and electrons.!? In many cases, the electron
thermal transport remains in the level of L.-mode when the ITB for the ion energy is
established. The ITB for electron thermal transport can also appear as the ITB for ion
energy becomes prominent. This problem can be resolved by considering the mutual
interactions between the semi-micro mode like ITG and the micro mode like ETG or
CDBM turbulence. The response (solid curves) in Fig.4 illustrates that the semi-micro
mode, which dominantly influences the ion transport, is reduced first; the micro mode
that influences electron transport remains to be strong. The interchange between the
semi-micro mode and micro mode takes place at the critical condition. These analysis
might be compared to the experimental observations. In large tokamaks, both the
fluctuations in the ranges of k < p;' and & ~ c/OJp have been observed (e.g., in ref.18
and 19, respectively). When the ITB is formed the longer wavelength fluctuations are
strongly quenched,?C but shorter one remains at the moderate amplitude and relation with
residual electron anomalous transport has been discussed.!8- 21 The current diffusive

turbulence with correction of finite-ion-gyroradius-effect is analyzed in ref.22.

Semi

iy
i Vidboi i '%
H

\ L
0 [}

5 10 R/LT liS

Both

Fig.5 Example of turbulence transition for the case of ©f, =+v0.4 ®f, .

IV. STATISTICAL PROPERTIES AND TRANSITION DYNAMICS
The background turbulence causes on a test mode the nonlinear noise which gives

rise to the statistical variation and the probabilistic transition. The statistical properties



and probabilistic trapsitions are discussed taking an example of the CDIM turbulence and
thermodynamical fluctuations.

A. Statistical approaches

An average in a small volume of fluctuation energy £= :1.— Z Kiof is
“k<L!
introduced. (L denotes the size of region where the volume average is taken.) The

Langevin equation for this single coarse-grained quantity is obtained from Eq.(2) as

g—t £+ 2AZ= g W(t) (19)

where the drag and noise terms are given as A= Z° 1; Ak ki(b;? and g = ; ki§k¢k \

respectively. The coefficient A is the averaged decorrelation rate. A magnitude of the

noise term is estimated as
2
g2= ; 2n, T kiof + ; (J_il Ag; k) kiof (20)

where the first term in the RHS of Eq.(20) is the contribution from the thermal
fluctuations and the second is the one from turbulent fluctuations. In Eq.(20), T isa

normalized temperature, T= 2u0B, 2k gT , and A stands for the coefficient to
eXp (— MT) in the spectral decomposition of exp(— L’C) where £ is the renormalized

operator. 12
The Fokker-Planck equation for the probability distribution function £ ( f) 18

given as

%P(z) = aifg (2A£+ 38 58_;3 )P{Z) @1)

The probability density function (PDF) is strongly influenced by the asymptotic
behaviours of the damping rate A and the noise source g2 . From the renormalization

relation, asymptotic estimates are given as

= 1/2 ~ _ 542
A=A ( £ ) and g2 =4y Z+ gé(fi) , 22)
eq) . €q

where Z,, represents the statistical average of the fluctuation level. The coefficients A

- B ) 2
and§(2) aregivenasizz_li_rgtm/&(fz ) H2andg'%:;(zlA1jgj,k) ki@% at
€4 }=

E=Z,,.
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Fig.6 Schematic illustration of the statistical average of fluctuation level (1 ) as a function
of the global gradient and temperature.

B. Thermodynamical and turbulent fluctuations

The subcritical excitation of the CDIM turbulence from thermal fluctuation has
been analyzed in e.g., refA.S. The fluctuation level is described by the pressure gradient
Gy and the temperature 7' . The former is the driving source of instability and the latter is
the thermodynamical noise source. The cusp-type catastrophe has been obtained as is
shown in Fig.6.

Parameter dependencies has been obtained as!?

_1eof 3 V(LY
z,=1G(&) (&) . (230)
A =GP (23b)
and

_ C 6 2

B= e & (L) . (23¢)

The Langevin equation (19) is solved and the PDF is given in Fig.7. In the case
el T Py
(au)| ] auy| ]

mean
] mean j 1
3 4 g i o T R R £ 50

Fig. 7 PDF for the CDIM turbulence obtained from Langevin equation in the presence of
the thermodynamical noise source. The case of hysteresis region is given in (a). The case
of large pressure gradient is shown in (b).



of hysteresis region of Fig.6, in which two states (turbulent state and thermodynamical
noise state) are possible, the fluctuation amplitude is either in the turbulent level or in the
level of thermodynamical fluctuations.?3 Transition between the two states occurs very
frequently, and the PDF of the long-time data shows a two peaks in P(E ) . The tails of
two peaks. i.e.. the one for thermodynamical fluctuation and the one for turbulent
fluctuation, overlap in Fig.7(a), allowing the transitions between them. The transition

occurs in a probabilistic manner which is discussed later.

1. Probability density function (PDF)
The steady state PDF for the average energy P., is obtained by setting 0P/dt =0

in Eq.(21). Itis expressed as

P [Z)=P }exp(-5(2)) (24a)
where
S(z)= j ig% HE (24b)

is the potential function of the normalized dissipations and P is a normalization constant.
This potential S{ IE) dictates the statistical properties of the thermodynamical and turbulent

fluctuations. Equation (24a) shows that the most probable state is controlled by the
condition § ( f) +1n g takes the minimum. This minimum principle is shown to reduce to
the Prigogine’s minimum-entropy-production-rate principle* or to the Boltzmann's
maximum-entropy principle if one takes the limit of the thermnoedynamical equilibrium.
Substituting Eq.(22) into Eq.(24), one has an explicit formula of PDF for the
system of CDIM turbulence and thermodynamical fluctuations. The analysis in the large

amplitude limit has shown the existence of a tail component. One finds an asymptotic
form in the large Z limit as

Pdz)=(£]" (25)

eq

withn = 5/4 +4 A §,” £%, . By use of Eq.(23), we have the relation for the power

index as

5.3 (LVg-1
T]:Z-FTCES(g) GO . (26)



This result shows that the power index depends on the gradient scale length as well as the
size of volume average. As the pressure gradient becomes larger, the tail becomes

prominent. 12

2. Transition probability

The transition probability between two fluctuation states can be calculated by use
of the potential S{Z) . In the hysteresis region, S(Z) has two minima (at £= Z, and
Z= Zpg), separated by the maxima of S( Z') at Z= Z~ . (The state A stands for the
thermodynamical fluctuations and B for turbulent fluctuations for the case of Fig.6.) The

probabilities for the A-to-B and B-to-A transitions are given as!3

% exp{ - S( ZC)}

Faog= (27a)
VA
o a= Yo exp{S(25) - ()} 27b)

where A« =—2 ZJA/OF # 1s estimated at the saddle point, V,,, is the average

C

decorrelation rate of thermodynamical fluctuations and Y is the turbulent decorrelation

rate at the state B. In the case of subcritical excitation from the thermodynamical
fluctuations, A« is estimated as A« = Y,, . In the thermodynamical limit of Eq.(27), one

hasry ,p=1 vy, Cxp{ - Zd T} . The dominant dependence is given as
ln(rA 43) o< — /T | which is the Arrhenius law.25
By use of the estimate of potential S(Z) in Eq.(25), transition probabilitics are
calculated. One has an estimate Z. for the typical wave number &, as
= (u,%c/4) (k OL)2 [1 - Goch) in the vicinity of stability criterion G, . The transition
probability is evaluated as

Ve (e 21 nf 3\ -g_g—bl
Tasn }%(?) kﬂ (TYm16C0) _(;r (28)

. | a1 {r. \2/3A— 1/37 2 .. .
with the power-index as &y = 3° t / I6C0 koY, } I ""(Lfa} . Explicit calculation

will be given in ref.23.

V. THREE CLASSES OF FLUCTUATIONS AND THEIR
INTERACTIONS
The analysis of transitions between two classes of turbulence can be extended to

more general cases. The case of three classes of fluctuations are discussed here. We



assume that the scale length separation and time scale separation hold among them.
Hereafter we treat the case without noises, $ =0 .

A set of equations which include the nonlinear interplay between three classes of
flactuations are expressed for fluctuation amplitudes I™ , 1 "and I as

2
I x/I_h+\/I"+4I’+\/(~/I_h+\/Ih+4II) +16I™ [=D™ (29a)

1+ /1" 2D"
%(JTM,/[”MJ’):D’ JIr (29b)

[1+1m1§§‘1)

and

im—1)
Im ‘ﬂ (1 + Im Ie‘%lr )
m2 +
I 4D D* (1 +VI"12D™)
(Dk)2 B 1+ I8 1#15;‘%’”

(29¢)

where the index m , [ and /2 stands for the macro, semi-micro and micro mode

fluctuations. In this set of equations

f , y—1

D™= (1 + [G}E/(D_’;,}‘C)zj il (30a)

D= (1 + ((:)Elu)éc)z)_ vh k2 (30b)
and

D" = (1 + (mglfwéc)z) vhih (30¢)

represent driving sources for the macro, semi-micro and micro mode fluctuations, and

=1+ (ogok ) ok) k) G1a)

1= (1 + (wE/ch)z)(ch) Ae)~* (31b)

and

— 16—
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e _(1 + (mk-/wg } (k™) (31c)
stand for the characteristic fluctuation level at which the semi-micro mode is suppressed
by the macro mode, the micro mode by the semi-micro mode and the micro mode by the
macro mode, respectively. In the absence of the nonlinear interaction, three classes of
fluctuations can be independently unstable and the levels are given by the solution

2 2
]m:(Dm)z , [!:(Dl] and Ih :(Dh) . (32)
Equation (29) is derived for the condition that all the three classes of fluctuations are
excited. When one of them vanishes, the governing equation reduces to Eq.(7).
Solutions of Eq.(29) give a new catastrophe structure with multiple solutions.

The driving parameters D" . D' and D™ are normalized to 1/ fﬁ:(_! which is the

characteristic level of fluctuations for the semi-micro mode to suppress the micro mode.
A phase diagram is drawn on the plane of normalized driving parameters

Dk =DMy lfﬁv(_[ and Dyy=D'\/ 1% for the fixed value of D™ =(1/5)y/ 151
The variation of the magnitude of drives changes the number of possible solutions. In the
phase diagram of Fig.8, the regions for the number of possible solutions, where all three

modes are simultaneously excited, are shown. In the region of strong drive for the semi-
micro mode D’ , two, three and four branches of turbulent states are predicted to exist.

When the drive for the micro mode D" becomes strong, the micro mode dominates and
the macro and the semi-micro modes are quenched. In the region denoted by "0", the
simultaneous excitation of fluctuations with different scale lengths is not allowed.
Fluctuation is given by the micro mode in this graph. Further detailed analysis will be

presented in a forthcoming article.26
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Fig.8 Phase diagram of turbulent state on the plane of normalized parameters

DY =DI/IiT and Diy=D'/1i" . D™ is fixed as D™= (1/5),/ I~ . Numbers in
the diagram denote the possible numbers of branches in which all the three components are
simultancously excited.



Transitions between different branches take place at the boundaries of the diagram

if the excitation by the noise is neglected.

V1. SUMMARY

In this article, the statistical theory of nlasma furbulence is applied to analyzing the
state where fluctuations with different scale lengths coexist. The nonlinear interactions
between the micro mode and the semi-micre mode are taken into account. The nonlinear
dynamics determines both the fluctuation levels and the cross field turbulent transport for
the fixed global parameters . A quenching or suppressing effect is induced by their
nonlinear interplay, even if both modes are unstable when analyzed independently. The
thermal fluctuation of the scale length of Ap is assumed to be statistically independent.
The hierarchical structure is constructed according to the scale lengths. Transitions in
turbulence are found and phase diagrams with cusp type catastrophe are obtained.
Dynamics is followed. Statistical properties of the subcritical excitation are discussed.
The probability density function (PDF) and transition probability are obtained. Power-
laws are obtained in the PDF as well as in the transition probability. Generalization for
the case where turbulence is composed of three-classes of modes is also developed. A
new catastrophe of turbulent states is obtained.

The result clearly shows that the nonlinear interplay among turbulence modes is
essential. An independent analysis of the mode and their suppression are not sufficient
for the solution of the problem.

The formulation in this article is easily extended to various cases. One ﬁpplication
is the analysis of the nonlocal transport problem, which has been analyzed in conjunction
with the transient response problems. The contribution of the long-wave-length mode,
which is excited by the statistical noise process of micro-turbulence is discussed in
ref.14.
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