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Abstract

Cases where three kinds of fluctuations having the different typical scale-lengths
coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous
plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in
the analysis as the renormalized drag, statistical noise and the averaged drive. The
nonlinear interplay through them induces a quenching or suppressing effect, even if all
the modes are unstable when they are analyzed independently. Variety in mode
appearance takes place: one mode quenches the other two modes, or one mode is
quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a
phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type
catastrophe are obtained. The subcritical bifurcation is possible to occur through the
nonlinear interplay, even though each one is supercritical turbulence when analyzed
independently. Analysis reveals that the nonlinear stability boundary {marginal point) and
the amplitude of each mode may substantially shift from the conventional results of

independent analyses.

Keywords: multiple scale-lengths, turbulence transition, strong turbulence,

statistical theory, renormalization, subcritical bifurcation, phase diagram



1. INTRODUCTION

Recently, progress has been made in the field of theory and modelling of plasma
turbulence. Methodologies of turbulence theories have been advanced, and the theory for
turbulence suppression and transition is a successful example for it. (See, for a review,
e.g. refs.[1-4].) In particular, emphasis has been made on the importance of the
nonlinear interplay between separated fluctuations having the different typical scale
lengths. The scale separation is often used in a conventional approach: one class of mode
is analyzed independently where fluctuations of the other scale lengths are often neglected
or given. It has been shown that this simplification is not always relevant, and the
interactions between the modes with different scale lengths have a large impact on the
evolution of the turbulence [5]. Other examples that show the importance of nonlinear
interactions between different lengths include the dynamics of the meso-scale structure of
the radial electric field and microscopic fluctuations [6], the electric field domain interface
[7, 8], zonal flow [9, 10] and streamer [11].

Fluctuations in plasmas consist of different fluctuations with typical scale lengths
being separated. For instance, fluctuations in the range of ion gororadius (~ p; ) {12, 13]
and those in the range of collisionless skin depth (~ c/mp ) [14, 15] have been subject 1o

an intensive experimental study. The longer wavelength mode has an important role for
transport, even though the growth rate is small or negative [5]. As an opposite example,
an importance of much-shorter wave-length fluctuations (e.g., the electron temperature
gradient (ETG) mode with the scaie iength of electron gyroradius ~ P, } is theoretically
recognized [16]. These observations and studies clearly demonstrate the necessity of the
study of the nonlinear interplay between fluctuations of different scale lengths.

In this paper, we analyze the turbulence composed of three different kinds of
collective modes with different scale lengths. The nonlinear interplay is analyzed, and the
transitions among them are investigated. A phase diagram is summarized. A new insight
is given for the transition of turbulence. A butterfly type catastrophe as well as a cusp
type catastrophe is revealed. A transition between different state of turbulence can be a
subcritical excitation, even if each one might be excited through supercritical excitation
when analyzed independently.

The constitution of this paper is the following. In section 2, the mode] and basic
equations are given. Using a reduced set of equations for fluctuating fields, the self and
mutual nonlinear interactions are formally divided into drags, drives and noises [5, 17-
22]. A statistical average is made and a closed set of equations is given. An analysis on
the turbulence bifurcation is given in section 3. The summary and discussion are given in
section 4.

In order to discriminate three kinds of different scale lengths, we use the symbol

m, 1, h



for the mode of the longest scale length, the intermediate scale length, and the shortest
scale length, respectively. Names of 'macro’, 'semi-micro’, and 'micro’ are also used in
conjunction with this distinction of lengths. This choice of names only implies the order
of lengths. When one analyzes the case of {ion temperature gradient (ITG) mode [3],

current-diffusive interchange mode (CDIM) [23-25] and ETG mode}, the relevant
lengths are p; , /@, and p, . Then the name of 'macro mode' means the scale length of

p, , although this 'macro’ mode has short wave length in comparison with the global

scale lengths.

2. MODEL
2.1 Model equations and approximations
The derivation of statistical equation has been developed in previous articles [5,

18-22]. The dynamical equations of fluctuation fields are given in a form as

2f+ A0 = 2(f.f)+5, (1)

where fT = (¢, I Yy Per Pg) is the fluctuating component of electrostatic potential,
parallel current, parallel velocity, electron pressure and ion pressure, and ﬂf(f i ] stands

for the nonlinear terms
A f. ) =-{v2[o.V20]. (1-£912) "[6. 9. [0, V]. [6. P.]. [0. ] | . The bracket

[f.g] denotes the Poisson bracket, | f, g] = (VfxVg)b, b = By/B,, denotes the unit vector
in the direction of the magnetic field and & = p73™~ z. Physics variables (e.g.,

{¢, Sy Vi P pl} , magnetic field B , electric field, length and time) are normalized

according io a standard convention. Various choices of normalization are described in
detail in ref.[26]. The linear operator 49 represents the linear property of fluctuations.
40) contains the influences of the plasma gradients (those of pressure, ion and electron

temperatures), the transport coefficients by the collisional process (being expressed as
Wic, Mecs Bes Xe e Xc,i for the shear viscosity, electron viscosity, paraliei viscosity
of ions, electron thermal diffusivity and ion thermal diffusivity, respectively) the
properties of the magnetic field (inhomogeneity, magnetic shear, etc.) or that of the radial
electric field inhomogeneity.

The nonlinear terms are expressed as a sum of the drag, drive and the noise as

%(f° f) :”*Ff+$f+gse!f+gshorter ) 2)



where — I’ f is the drag term, 2f is the drive term, S is the self nonlinear noise

term and S ¢ ore; 1S the nonlinear noise term owing to the fluctuations that belong to the

class of much shorter scale lengths. The drag term is originated from the self drag and
those by the fluctuations that belong to the class of shorter scale lengths. The drive term
is owing to the fluctuations that belong to the class of much longer scale length. By use

of Eq.(2), Langevin equations are derived from Eq.(1) as

%f +Lf= gself + Ssboﬁer s 3)

for macro, semi-micro and micro modes, respectively, where
2=-49+r-» (4)
is the renormalized operator. A statistical modelling of the nonlinear term has been

discussed in ref.{5]. In Appendix A, a brief summary is made.

The nonlinear dispersion relations are given as

det{ A71 + £% + Ty + Ty + r{h)) =0 (52)

ded A + 4%+ T+ T - m(m)) -0, (5b)

det(?thl + 494 I‘f’h] - ﬂf'm) - ﬂf})) =0, (5¢)

I h . . ..
where A™ | A" and A" are nonlinear eigenvalues for the macro mode, semi-micro mode

and micro mode, respectively. In the following, the index # , [ and 2 stand for the

macro, semi-micro and micro mode fluctuations, respectively.

2.2 Nonlinear equations for reduced variables

From the solution of the Langevin equations (3), a statistical average of fluctuation
amplitude is derived. The Fluctuation Dissipation (FD) relation, that the average of
fluctuation amplitude and noise satisfy, has been derived. With the belp of
diagonalization approximation, by which the correlation functions of noise terms are

represented by the autocorrelation of fluctuations [18-22], one has an explicit form of the
FD relation. The eddy-damping rate ¥; is related to the fluctuation amplitude through



renormalization relation. Equation (5), the FD relation and the renormalization relation
for eddy damping rate [17] form a closed set of equations that determines the fluctuation
levels (1™ , I, I* ), the decorrelation rates (A", &', & ) and the eddy-damping rates
Ye, Yf, . ij )y simultaneously in the presence of global inhomogeneities. A derivation
has been discussed in [5] and is not repeated here. (See Appendices A and B.) A case of
the combinations of {resistive-g mode, ion temperature gradient (ITG) mode and current-
diffusive interchange mode (CDIM)} is explicitly explained also in the Appendix B. A

set of equations which includes the nonlinear interplay between three classes of
fluctuations is expressed for fluctuation amplitudes /™ , / ! and I* [5]. Equations (B21)-

(B23) form a closed set of reduced variables.
As is explained in the appendix, this set of equations for the fluctuation levels is
characterized by several parameters. The controlling parameters are the driving source

terms, (Dm, D, Dh) , and the critical levels of fluctuations for suppressing turbulence,

(Ii}_m, ol jon m) . They are defined as follows.

-1
2 _
D""=(1 +{opog) ) e kp (62)

1
D'= (1 + (fvsfwfec]z) Thio (6b)

and

1
2 -2
D= (l + (mEllwgc) ) vhkk (6¢)

represent driving sources for the macro, semi-micro and micro mode fluctuations, Yo
stands for the each nonlinear growth rate without coupling and nonlinear noise, kg , & !0
and kﬁ are typical wavenumbers, and ®g; is the £ X B shearing rate by the global radiai

electric field,
op =5 LE,, %

OF,. , oL, and ®f . are the critical values for the suppression of the modes. The

parameters

Jm= (1 + {mgwgc}z)(mgc)z(km)_4 (8a)



1= (l + (mgmgc)z)(mgc)z(kl]_d (8b)
and
= (1 + (mE/mgc)z)(mﬁc)z(k"’)"4 (8c)

stand for the characteristic fluctuation level at which the semi-micro mode is suppressed
by the macro mode, the micro mode by the semi-micro mode and the micro mode by the
macro mode, respectively.

The coupled equations, which are shown as Egs.(B21)-(B23) in Appendix B, are

given in a normalized form for the macro, semi-micro and micro modes as

5V 1+%
1—x22= ?mﬁ) 2 (9)
( ) D (1+ﬁm2x2)2 ’

Dm 2 ﬁh Dm
yzz(cﬁl) (l—xz}z—ﬁ G-Dl (1 —xz)z (9b)
and
12
2 ) D ~ b

ol o2 (B a2 -

Ec

AR
sz2+; oD . (9¢)

474D (1-x7)

In Eq.(9), a normalization is introduced for a convenience of the analysis. Levels of

fluctuations are normalized as

m I h
x= Y17 y=% =YL (10)

As a unit of fluctuation level, one may use



wh wh. L
Iy =(kf]%,, W= (k,fijz and /155" =—~—(;°,:’;33 (1)

We use normalized driving parameters as

~ R D" Al D! ~ D™
D =———— D=— 4nd D" = ——— (12)
T P

The driving parameters D" and D' are normalized to 3/ 125~ ﬁ which 1s the characteristic

level of fluctuations for the semi-micro mode to suppress the micro mode. Additional

parameter is introduced as

VBT _oblirf

VIE™  opr)

G = (13)

related to the normalization of D™ |

Equation (9) is derived for the condition that all the three classes of fluctuations
are excited. If one amplitude out of them vanishes, the governing equations are reduced
those for the two kinds of fluctuations and are given in [5].

3. Analysis of Bifurcation and Phase Diagram
A simplified analysis, in which nonlinear interactions between different

fluctuations are neglected, gives an independent solutions

x=1, y=1,andz=1 (14)

In the absence of the nonlinear interaction, three classes of fluctuations can be

independently unstable and the levels are given by the solution

7

lrn:(Dm) I~ Dl\ dlh th) ) (15)
Solutions of Eq.(9) give a new catastrophe structure with multiple solutions.
3.1 Overview of coupled equations

Before showing the detailed solutions of Eq.(9), a few remarks on an overview is

made.



Equations (92)-(9¢) are nonlinear coupled equations of (x, ¥s z) for parameters

D™ D' D" 6 and /oL, . This set of equations has the following characteristics.
Variables ¥ and z are eliminated form the equation for the macro mode, and Eq.(9a) is a
closed equation for x . Tt is decoupled from Eqgs.(9b) and (9c). The variable y is
eliminated from the equation of the micro mode, and Eq.(9¢c) contains only x and 2 .
From these properties, X is first solved from Eq.(9a). Once x is obtained, Eq (9¢) is
then solved, giving a solution of z . Substitution of solutions of x and z into Eq.(9b), ¥

is solved immediately. The solution (x, ¥, Z) is derived.

This set of equations (9) is deduced with the assumption that all the three modes
have finite amplitude. In order that all the three kinds of fluctuations are excited,

xy.z>0, (16)
several constraints in the following are imposed. From Eq. (B21), x is bounded as

x<l. (17

This shows that the nonlinear coupling between semi-micro and micro modes always

reduce the amplitude of the global mode. In the absence of the coupling, the solution
x=1 is given. From Eq.(9b), one finds a constraint

i~

i< 5 (1-x2). (18a)

In addition, Eq.(9b) provides additional constraint that

i~ 11

——(1-x?) (18b)

y<—07/
oD

must be satisfied.

In the following subsections, the solutions (x, bA z) are shown for various ranges
of driving parameters o™, D' and D" . Number of solutions that satisfy Eq.(16) is
investigated, and the phase diagram is drawn in the parameter space of b™, D' ana H" .

A care is necessary when one studies the relation between the set of equations (9)

and the equations for the two kinds of modes which have been discussed in ref.[5].
When one studies the behaviour of the solution X , the analysis is given along a line

similar to the one in ref.[5]. However, when one considers the solutions (y, Z) , the



situation is different. In the case that the macro mode is absent, Eq.(9a) is not required to
be satisfied. One must use the simple result in ref.[5] for (y, z) , and need not to proceed
to Eq.(9). Equations (9a)-(9¢) are deduced with the condition 0 <x, y,z . The deduction
of Eqs.(92)-(9c) uses the relation x > 0 | so that Eqs.(9b) and (9¢) with x =0 do not
agree with the result in ref.[5]. In other words, the solution (x, v, z) does not always

converge in the limit of x = 0 to the solution ( ¥, z) which is given in the theory of two

kinds of fluctuations in ref.[5].

Keeping these characteristics in mind, the analysis of Eq.(9) is given in the
following. First, the solution of the global mode is discussed in the subsection 3.2.
Then the fluctuation amplitude of the semi-micro and micro modes are investigated in the

subsection 3.3.

3.2 Excitation of the global mode
Equation (9a} is a closed equation for X , and studying it gives a perspective for

the excitation of the global mode. Equation (9a) is rewritten as
2 [ P :
212 Am2 2\ M X
(1-x2)(1+D"%2) —(ﬁmo) (1+3]). (19)

The solution is controlled by two parameters, D™ and cD'1D™ , i.e., the magnitude of

the drive of the macro mode and that of the semi-micro mode.

Equation (19) is solved for various values of controlling parameters. In the case
that

D" <D =129, (20)

c. 1=

equation (19) can have one solution if the condition

Dl
ﬁ6< 1 (21)

1

is satisfied. Even for a fixed value of the self-driving parameter D™ the amplitude x is

influenced by the coupling with the semi-micro mode. As is shown in Fig.1, x isa

decreasing function of the drive of semi-micro mode oD'ID™ . At the critical value of

=
Q
If

(22)
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Fig.1. Amplitude of the macro mode x as a function of the drive of semi-micro mode ob'/B™ . The

driving parameter D™ is fixed constant. An expanded view is given near the critical value of

D™~ D7 =129 . Solid lines show the case of monotonous dependence on GD/D” _and dashed one
indicates a cusp type bifurcation.

the macro mode is subject to the supercritical excitation.
When the driving parameter for the macro mode increases,

D" > D" (23)

¢l

multiple solutions can exist. As is illustrated in Fig.2, a cusp type catastrophe occurs.
The branch of strong excitation of the macro mode (shown by the solid line) takes place

in the parameter range
Dl

0<smo<ey (24)

The lower branch of x appears near oD'D" =1 and disappears at oDYD™ =1 , shown

in an expanded view of Fig.1(b). In the parameter range of

¢} 1 2 3 GD]/ Dm5

Fig.2. Amplitude of the macro mode X as a function of the drive of semi-micro mode oD'D™ . The

driving parameter D™ is fixed constant. Solid curve shows the branch of strongly excited macro
turbulence. Dashed curve indicates ar unstable branch.
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C<A—m6<1, 2
2<5 (25)

three branches exist. Two are stable, and the intermediate one is unstable and is not
realized as a stationary state. ¢; and ¢, denote the critical values and are functions of

b™. C;(ﬁm) and CQ(D'H) are estimated later. In the range of

Dl
I('[j—m0<cl, (26)

the lower branch disappears (i.e., only being sustained by noise). It should be noted that

the subcritical excitation takes place at the critical condition
cDP" =, . 27)

This subcriticality is owing to the nonlinear interaction with semi-micro and micro
fluctuations. Even though the drive of the macro mode D™ is positive, the macro mode
can be quenched.

The boundaries Cl(fjm) and Cz(ﬁm) are analytically estimated. In the limit of

large D™ | the left hand side of Eq.(19) takes maximum value

(I +f)m2)4

16D™*

“m—2
T at X=Xy = %m%D (28)

A critical condition of the ridge point of Fig.2 is estimated by the condition that the right
hand side is equal to fi, atx=x,, ie.,

G=C1=

~ 2 ~ —
" 4D™ \2~/§+\/1ﬁpm 2

(29)

Th

D’ (1 +ﬁm2)2( 53 )1/2

Expanding the left hand side of Eq.(19) up to the quadratic term, the lower boundary ¢;

for the critical condition is estimated as

0% i | 12
Iij:sz(l-ﬁW\ . (30)

/
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Fig.3 Phase diagram for the macro fluctuations in the parameter space of (D", 0D ). (a) Numbers in

the segmented regions denote the number of solutions of X . A sclid curve is an analytic estimate and

circles show numerical solutions. An expanded view is given in (b) on (Dm, oDYD"™ ) plane.

The phase diagram is shown in Fig.3(a) in the parameter space of (ﬁm, Gﬁl) . Numbers
in the segmented regions denote the number of solutions of X . A solid curve in Fig.3(a)

is an analytic estimate Eq.(29) and circles show numerical solutions. An expanded view

is given in Fig.3(b) on the (ﬁm, Gﬁ[/ﬁm) plane.

3.3 Excitation of the semi-micro and micro modes
3.3.1 Case of weak drive for macro mode

When the drive for the macro mode is weak and the parameter D™ is small,
D™<<1, x has only one solution in the range of Eq.(21). Amplitudes ¥y and z are
given as a function of b and p* . {When Eq.(21) is not satisfied, the macro mode is
quenched. The problem reduces to the one for nonlinear interaction between two kinds of

fluctuations, and has been analyzed in [5], and is not reproduced in this article.)
Figure 4 illustrates the amplitudes y and z as a function of the driving parameter

D for a fixed value of p" . (Examples of the parameters are chosen as ol/oL =2,
2
(km/k[) =1/10 and 6 =1/5 )} When the driving source of the semi-micro mode is

weak, D'<<1 , the fluctuation is dominated by the global mode, x . The other scale
fluctuations are suppressed by the global mode. As the drive of the semi-micro mode b’
increases, one branch of fluctuations (yl, Z}) (weak semi-micro mode and strong micro
mode) appears. The behavior near the critical point is the supercritical excitation for the
semi-micro mode. (The critical condition for excitation of the semi-micro mode is shifted
from B' = 0 to a finite value of D' , owing to the presence of the macro mode
fluctuations.) There are two states of fluctuations in which all the three modes are excited

simultaneously. With the increase of the drive for semi-micro mode, the second state of
the fluctuations (yz, zz) is allowed to appear. The amplitude of Z; exceeds unity, that is,



0 o1 DI 0.8

Fig.4 Amplitudes of the macro mode, semi-micro and micro mode fluctuations as a function of the
drive of the semi-micro mode D' . Other parameters are fixed as D" =110 p"=0.15 and 0 =1/5 |
{Thick sohd curve shows x . Dotted curves for one solution (X, ¥;. 2; ), and dashed-dotted curves for the

other solution (X, ¥2. 23 ). Thick curves for ¥ and thin ones for z .}

the micro mode (Z; ) is more strongly excited than the case where this mode is
independently excited. When D' further increases, the macro mode is quenched by the
semi-micro and micro mode. The state, in which all three fluctuations are strongly
excited, disappears.

Based on the study of solutions, a phase diagram is drawn. The phase diagram is

llustrated in Fig.5 on the (ﬁl, ljh) plane. Number in the phase diagram indicates the

numbers of states in which all of macro, semi-micro and micro fluctuations are strongly

excited. (Figure 4 illustrates the solutions one the disection at p"=015 .} In the upper-

left region of Fig.5, the semi-micro and micro modes are suppressed. In the right-end
region, the macro mode is quenched. In an intermediate region, all the macro, semi-
micro and micro mode fluctuations are excited strongly. The boundary between "1" and
"2" in Fig.5 1s estimated in the small D™ . This boundary is given by the condition

y=0_ This yields z=D"{1 - x2)/cD" . Subsitution of this into Eq.(9c) provides the

03

Fig.5 Phase diagram on the (DI, ok ) plane. Other parameters are fixed as D™ =1/20 ando=1/5 .
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relation (1 —x2)2/ {1 + (D mé’c/mg'c) xz} = (GDh/Dm) (1 * %) . Elimination of x from
this equation and Eq.(9a) provides the boundaries, giving

P -p". (31)

3.3.2 Case of intermediate drive for macro mode

When the drive for the macro mode is moderate and the parameter D™ takes an
intermediate value, D™ = 1 , more complicated behaviour appears although x has only

one sclution in the range of Eq.(21). Amplitudes ¥ and z are given by selving Eq.(9).
Figure 6 illustrates the amplitudes x, ¥ and z as a function of the driving

parameter D' for a fixed value of b". (Examples of the parameters are chosen as
. 2
P"=1, ofJok, =2, (k') =1/10 and 6=1/5 ) In this figure, the thick solid

curve indicates x. The semi-micro mode is denoted by thick dashed curve and thick

dotted-dashed curve. The micro mode is expressed by thin dashed curve and thin dotted-
dashed curve. (The dotted curves indicate a solution (x, Vi Z ,), and dotted-dashed curves

show another solution (x, Va 2 2], respectively.) When the driving source of the semi-
micro mode is weak, the global mode suppresses other modes. When D! increases, one
branch of fluctuations, in which both the semi-micro and micro mode fluctuations are
subcritically excited near the critical point together with macrc mode, appears. At this
critical point, two branches of fluctuation states appear. The nonlinear interplay induces
the subcritical excitation of semi-micro and micro mode fluctuations. As the drive for

semi-micro mode increases, the second bifurcation takes place, and the third and fourth of
the fluctuation states are allowed. (The solutions (x, ¥ 2 1) and (x, ¥a Zg) are multiple

valued. In one solution of (x, yinZ 1) or (x, Vo Zz), the pair of a larger value of y and a

. N . Al .
smaller one of z (or vice versa) represents the solution.) When D" further increases, the

macro mode is quenched by the other two modes.

Fig.6 Amplitudes of the macro mode, semi-micro and micro mode fluctuations as a function of the
drive of the semi-micro mode D' . Other parameters are fixed as D" =1, D"=48 ando=1/5 .
(Dotted curves for one solution (X, ¥;, 7; ), and dashed-dotted curves for another solution (X, ¥, 2 }.

Thick curves for ¥ and thin ones forz .)
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Fig.7 Phase diagram of turbulent state on the plane of normalized parameters Dy = D'/ I::ﬁ‘(_l and

Dly=D"nfIi7T D" isfixed as D" = (1/5)\/T;"" . Numbers in the diagram denote the possible
numbers of branches in which all the three components are simultaneously excited.

Figure 7 illustrates the phase diagram on the (ljl, ﬁh) plane. It contains a

butterfly catastrophe that governs the state of fluctuations. There appear three critical
points which are shown in Fig.7. Figure 6 shows the solutions on the disection of figure

A~ h . . . ) )
7 at D" =4.8 | This new catastrophe is induced by the nonlinear interactions among three

different classes of fluctuations.

3.3.3 Case of strong drive of macro mode
When the drive for the macro mode is so strong that Eq.(23) is satisfied, the
amplitude of the global mode 1s subject to the cusp catastrophe. There are two branches

of the macro-mode fluctuations: the branches of Eq.(24) and (26). (‘upper’ and 'lower'
branches, respectively.) For each solution x , solutions of ¥ and z are obtained, which

are subject to a multiple bifurcation. Complex type of bifurcation is obtained.
Figure 8 illustrates the amplitudes x, ¥ and z as a function of the driving

parameter D' for an intermediate value of D" | (Parameters are chosen as D™ = 3,
2 .
wi/of.=2 (km/kl] =1/10, 6=1/5 and D" = 5.) Figure 8(a) shows the solution

associated with the upper branch of x, and figure 8(b) is for the lower branch of x. (As
in Fig.6, dotted curves are for one solution (x, ¥, 2 1), and the dashed-dotted curves are

for another solution (x, ¥y Z 2). Thick curves denote y and thin curves indicate z.)

First, the solution associated with the upper-branch of x is investigated. (Figure

8(a)) When D s small, the other scale fluctuations are suppressed by the global mode.
As D' increases, one branch of fluctuations with three modes appears as the supercritical
excitation. With the increase of ﬁl , the second bifurcation takes place, which can be also
the subcriticat excitation. The amplitudes of semi-micro and micro modes can have

comparable magnitudes in this region (for both (yl, Zl) and [yz, zz] ). When p' further

increases, the macro mode is quenched by the other two.
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Fig.8 Amplitudes of the macro, semi-micro and micro mode fluctuations as a function of D . b,

D" and o, are fixedas D" =3 , D" =5 ando=1/5 . The upper branch of X (a), and the lower branch
of x (b). (Dotted curves for one solution (X. ¥. Z; }, and dashed-dotted curve for another solution

(%, ¥2, Zp ). Thick curves for y and thin curves for z .}

Next, the lower-branch of x is investigated. (Figure 8(b).) This branch does not
exist except in an intermediate range of P in which Eq.(26) is satisfied. There are two

solutions of (y, z] for this lower branch of x. In this case, the semi-micro mode is most
strongly excited than others, whose amplitude can exceeds unity.

Figure 9 illustrates the amplitudes x, ¥ and Z as a function of b’ for a large value
of D™ . (Parameters are chosen as D™ = 3, @k/og. =2, (i’c"‘“;’]’<:'!)2 =1/10,6=1/5 and
D=1 2.) Figure 9(a) and (b) show the solutions associated with the upper and lower

branches of x, respectively. Correspondence of curves is the same as in Fig.8. For the
upper-branch of x, the features of sclutions (x, ¥ Z ;) and (x, Va2, 2) are similar tc the

case in Fig.8(a), except that the solution (x, ¥n 2 1) appears via subcritical excitation.

Features of solutions of the lower branch of x in Fig.9(b) are similar to those in Fig.8(b).

0 L e

o 10 20 38

0 0

Fig.9 Amplitudes of the macro, semi-micro and micro mode fluctuations as a function of b, p" ,
D" mdo , are fixedas D" =3, DP"=12 ando=1/5 . The upper branch of x (a), and the lower branch
of x (b). (Dotted curves for one solution {X, ¥, Z; ), and dashed-dotied carve for ancther solution

(X% ¥3, Z5 ). Thick curves for ¥ and thin curves for z .}
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Fig.10 Phase diagram on the (51, b ) plane. Other parameters are fixed as D" =3 and o= 1/5 .
Expanded view in given in (b).

Summarizing these studies of solutions, the phase diagram is given in Fig.10.
Where the number ‘0’ is written, one or two kinds of modes are quenched. In Fig.10,
'+ means that there are number of i solutions belong to the upper branch of x and |

solutions to the lower branch of x.

4. Summary and Discussion

In this paper, we have analyzed the turbulence composed of three kinds of
collective modes with different scale lengths. A new insight was given for the transition
of turbulence. The nonlinear interplay between them was analyzed, and various kinds of
turbulent states were found. The transitions among turbulent states were investigated. A
phase diagram was summarized. A butterfly type catastrophe as well as a cusp type
catastrophe were revealed. It is stressed that the condition for the appearance of one kind
of fluctuations with one characteristic scale length is strongly influenced by the presence
of other kinds of fluctuations. One is quenched by the others, or one suppresses the
others. The level of macro mode is always reduced by the nonlinear coupling, i.e. x <1,

for the simultaneous existence of the three modes. However, the semi-micro or the
micro mode can extra-excited by the others over its own level, i.e., ¥ > l orz>1. Due
to this, a prediction of the critical condition for the onset of fluctuations deviates
considerably from the one which is derived by linear stability analysis. A transition
between different state of turbulence could be a subcritical excitation, even if each one
might be excited through supercritical excitation when analyzed independently.

Other important issue is the presence of the intermediate states. As is shown by

the phase diagrams, there are many states, for a given set of driving parameters

Am N AR .
D ', D, D ), with different amplitudes of meso-scale and micro scale fluctuations.

These are called intermediate states. A statistical average of turbulence level and
accessibility to a particular state of turbulence from other states are strongly influenced by

the appearance of the intermediate states. A statistical analysis that describes the



dynamics between different states of turbulence must be investigated, and is left for future
study.

We have analyses the nonlinear interplay between three kinds of modes in
turbulent plasmas. The basic mechanisms of these nonlinear interactions are generic.
The subcritical excitation owing to the presence of fluctuations of other scale fength can
be applied to the sudden appearance of the "events" or "collapse phenomena", such as
sawtooth activities etc [27]. Furthermore, the basic concept can be used for the systems

of complexity, which requires the further study.
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Appendix A: Statistical modelling

A statistical modelling of the nonlinear term has been discussed in ref.[5]. In this
appendix A, a brief summary is made.

The renormalized drag (coherent part) is given in a form of the eddy-viscosity type
nonlinear transfer rate y Iz A random-noise part is regarded to have a shorter decorrelation

time than Y; I' according to rapid change model [17]. The nonlinear drag term is written

in an apparent linear term as
(rf)= (vlfl, Yofor Vafor Yafio 'sts) . (A1)

We employ the expression that the superscripts 2 , { and # denote the macro,

semi-micro and micro modes, respectively, and the subscripts (m) , (l ) and (h) denote the

contributions from the macro, semi-micro and micro modes, respectively. The driving

part in the nonlinear interactions is deduced, giving
25.0= Py, Py, = O ()~ 0 (A22)

2= Pm); ;== 1 Op(m) (A2b)

22.2= Dy 5+ Py, =18 g =187 gy (A20)

D)y, 2 =187 Op(m (A2d)

D= P+ 2, =i 0w i 0 (A2e)

D) = =1 Oyfm) (A20)
(j=3-5)and

Do =D, + Py, ==18 0gf =187 (A2h)

D)y, == 18 O (A2)



where
Op(m) =k, 58" - kxa%$"' and 0g() =k, 26" - kx;;%ﬂil (A32)

are the Doppler shifts owing to the £ X B velocity associated with the macro mode and

semi-micro mode, and

d gm, . O zm 0z ., 0
Ojfm ==yl kST andcoj(l)=—kyg§fjl+kx37fj (A3b)

(j =2 -5 ) represent the modification of plasma parameter by the macro mode and semi-

micro mode, respectively.



Appendix B: An example of coupled equations

In this appendix, a case study for the combinations of {resistive-g mode, ITG

mode and CDIM} is explicitly shown.

B1l. Nonlinear eigenvalue
B1.1 Macro mode

Nonlinear growth rate of the mode is given as

m 1/3 -
Ym:(GOYx ) s Ty
0 T 2 Gonk%* |’

(B1)

where N is the resistivity, Gy is the normalized pressure gradient coupled with the

gradient of the magnetic field

L, is the ion viscosity, Ty =M, k'(’fz is the eddy damping rate, and ¥y =X kg‘z . If the

thermal conductivity has the similar value to that of the ion shear viscosity, W, = X , the

renormalized growth rate is approximated as

173 s Yy
e | Gay™] Texp |- / ——5 |. B3

The nonlinear eigenvalue is given as
-1
ReAr = — (1 + (/o) ) 5+ Y5 . (B4)

B1.2 Semi-micre mode
The growth rate has been calculated as [3]

__r
76*—R5(1+n1)]0)*i i (B5)
and the critical value of the £ X B shearing rate was given as
o= A xa vl
ok = (2/T+7,)7h . (B6)



The shearing rate by the macro mode on the semi-micro mode has been given as 5]

' @) | = (k")'VT™ . (B7)

The nonlinear eigenvalue is expressed as

Yo/ 1+ |2y VT

I__
Reh= 1+ (a)m/mfgc)z + (k’")4(a)gc)_2l "

+v5 . (B8)

B1.3 Micro mode

The nonlinear growth rate has been calculated as [23]

Y6=4 Gova/aR (B9)
and the critical value of the £ x B shearing rate was given as [28]

ok =sv,WaR . (B10)

The shearing rates by the macro mode and the semi-micro are given as [5]

| 0w | = (&) VT, B1D

and

| Oppy| = (&7 VT . (B12)

The nonlinear eigenvalue is expressed as

vﬁ\/l + \/(kiazf?%)zl’ + (k3’2/27;;')21m
9{ kk - v o-
o owot) + (o) T B

B2. Equation for stationary states
Condittons for stationary state are given for macro, semi-micro and micro mode as

(1 ¥ (mm/(og;)z)_l Y-y =0, (macro)  (B14)



L1y T
YO\/ ]2 - YMJV = -v.=0, {(semi-micro) {BI135)
1 +(a)£1/(o,§() + (k") (mg{) "

and
yg\/u k 12y, s (k) o |
L+ (o fop) + (k) (o) i () (0n) "1 (micro) (B16)
respectively.

Eddy damping rate is expressed in terms of the fluctuation amplitude.

The eddy damping rate for the macro mode is given as

e e @i
or

(]Z)f)z =1 (22)2 8;))1 ar (B17b)
For semi-micro mode onc has

V2= (k) + (k) (kD) (vt (B18)
that is

;’%Oizlu%s/l_" (B19a)
or

13 %(J_+m) (B19b)

The eddy damping rate for the micro mode is given as



o (B20)

B3. Coupled nonlinear equations

Eaunations (B14). (B15). (B16). (B17b), (B19b) and (B20) form a set of coupled
equations for the eddy damping rates ¥, Y. ¥ and the spectral functions I”, I', I" for
given set of plasma parameters. Elimination of the eddy damping rates ¥, , ¥, and Y,

from Eqs.(B14), (B15), (B16), (B17b), (B19b), (B20), gives a final set of closed
equations for I , I' and I" as

2
L \/—F+\/I"+4I’+\/(~/I_"+\/Ih+4ﬂ) +16I™ |=D™ B21)

%(4/1_"+\/I"+4Il)=D’ V1+JI"2D" (B22)

(1 + 1" Iggm”)

and
tem—1}?
gm L (1 +I7 L™ )
L+ 4 ma + Fd
" \/ 4D 4D (l +~./I_m/2Dm)
= , 23
(p%)* 1+ I Ty fhem T B2
where
2 -1 2
D"‘=(1 +(oop) ) YR kG, (B24a)
! L2 w2
D =(1 +{ogok) | Yhiky T, (B24b)
and
h B 12 a2
D" = 1+(G)E]/(DEC} 'Yoko (B24C)

represent driving sources for the macro, semi-micro and micro mode fluctuations,

respectively. The parameters



157 = (1 + (mﬁ./mg‘.}z)(m;_‘)z[k'“) ) (8a)

I'i= (1 + (mgfmgc)z)(mgf)z(k')“ (8b)
and

Il = (1 + (wgfmg)z)(wg )Ry (8¢)

represents the critical level for suppression.
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