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Preliminary Experiment on the Negative Magneto-Resistance
Effect in a Weakly lonized Discharge Plasma

*M. Nagata
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322-6 Oroshi-cho. Toki, Gifu, 5095292 Japan

Abstract : Compared with the interest in the magneto-resistance effect
in solid conductors, the effect in a gas plasma has hardly been addressed.

In this work, a theoretical result that a magneto-resistance in an
infinite plasma decreases is examined experimentally in an actual
discharge plasma. Furthermore, a modified expression for the
ambipolar diffusion coefficient in the case where electrons are scattered
by heavy neutral atoms is presented.
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1. Introduction

When a Hall current in an infinite plasma 1s inhibited due to some
physical condition, a Hall electric field is generated in the opposite
direction to the Hall current. This Hall electric field increases the original
discharge current by about 10 percent (M. Nagata : J. Plasma Phys. 44
(1990) 47). In an actual discharge tube, electron density is not uniform,
and therefore the theory in the infinite plasma must be modified by
taking the mechanism of the ambipolar diffusion into consideration.
The purpose of this work 1s to examine the magnetic field-dependence of
a discharge current 1in an actual discharge tube, from both theoretical
and experimental points of view.

Let us consider a plasma having a rectangular cross section rather
than a cylindrical one, since the former is easier to handle theoretically.

Then we set an x-y-z coordinate system with the origin 0 located at the
center of the cross section, as shown in Fig.1. A discharge current flows
1n the direction of —z axis. A magnetic flux density Bis applied in the
direction of +y axis. An electric field Eina plasma 18 assumed to be
small in magnitude. Let us consider the case where E has x and z
components. We deal with the v component of E as Zero, since it does
not interact with B. The drift velocity of electrons is derived in section
2, and then in section 3, a modified ambipolar diffusion coefficient is
given. In section 4, an electron density distribution under the Hall
effect and an ambipolar diffusion mechanism is calculated. In section 5,

we examine what effect B has on the discharge current in the —=z

BA Yy

A

E:\'—E OTXC
z E z

r=—RK x=10 r=R

Fig.1 The coordinate system and the force fields.
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direction. With respect to collisions, only the collisions between electrons
and neutral atoms are considered. Neutral atoms are regarded as heavy
rigid spheres. Finally in section 6, the result of a simple preliminary
experiment 1s reported.

2. A drift velocity

The electric field E and the magnetic field B are set as

(D

—

E = #E,—ZE, }
B = 4B,

1t should be noted that E, is a function of . An equation for the drift
velocity (denoted by #(= fu,+2u,)) in a steady state (du,dt = 0) is
given by

£ g z
0= —neq[i‘EI%—é(—Ez)]—neq u, 0 wu,
0 B, 0
—nym,{(Tu,+3u,)
T i 2 T i P4
—n,B8, —qE, 0 gE,|+n,8, 0 10 (2)
0 1 0 —qgE, 0 —qE,

from (37) .. of ref. (Nagata, M. : J. Plasma)
hys. 44(1990) 47), where ¢ is the light speed

where n, 1s a local average electron density which 1s a function of x,
—g the electron charge, m, the rest mass of an electron, v(= 1 ') the
mean collision frequency of electrons in the electron-neutral collisions
(Electron temperature ig assumed to be uniform in a discharge tube),
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3. A modified ambipolar diffusion coefficient
Let us consider the case where an ion charge 1s +¢q. If diffusion
currents are taken into account, an electron current density i,, and an

ion current density 7., in the x direction are written as

dn,

ier = neq#elEI—neq;lﬁEz—i_qDe d:C (5)
. dan;
Iy = ngUE,.—aqD, d;ro (6)

where, 15, #; and D are the ion mobility, the local average ion density
and the ion diffusion coefficient, respectively, in the case where B, = 0.
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Since this work deals with such a weak magnetic field as 0 = w < 1,
the effects of the magnetic {icld on the ion mobility and the ion diffusion
coefficient are neglected. From the following conditions :

n, = n; = Ny
. : (D
Zex+itr =0

one obtains
| dno e
nogd (ﬂe1+ﬂzo)Ex“’q(De*Dio)E}* — Rl E, = 0 (8
and from (8)
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Substituting (9) into (5) gives
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From (10), a modified ambipolar diffusion coefficient D,,,; 1s obtained as
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Here, the following quantity and relationships have been employed :
__ 4 — _ DeO
Feo my D 1+wz’
, (12)
Dy ~ k1, > Dy ~ kpT; J
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where, k5 1s the Boltzmann constant, 7, electron temperature and 7, ion
temperature. It is noted that the ion cyclotron frequency has been
treated as zero in (11). D,,; changes from (3,2)(u;D,0 tt0) to
(38/4) (Do ) as w1 increases. The quantity w0, 1, i1s the
approximate expression for the classical ambipolar diffusion coefficient.

4. An electron density distribution

In order to derive an electron density distribution #(xz) in the zx
direction, let us consider the increment, d(n(z)(1Xdx)],~dt, per unit
time of the number of electrons in the small volume shadowed by oblique

lines in Fig.2. Since the increment 1s zero in steady state, one has

din(x)dx] ( dn(z) | uouE )
= — + i} Z
dt Do dx oy n{z)

(Dammdn(erdx) L HalloE, n(x+dx))
d.I' He

+n(x) v,, dr =10 (13

where v,,, = (a mean ionization frequency)
— (a mean recombination frequency).

From (13), the following differential equation is obtained :

dn(z) A( ﬂegﬂloEz> dn(zx) Yo B
dxz uelDambi d‘r + D nC:r) B 0 (14)

ambi

A solution satisfying n{x) = 0 at the tube wall is given by

n(x) = e**(A,cos7'z+Bysin7'z)
(15)

= n,e** cos[y (x—Ax)]

where, A, and B, are arbitrary constants,
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n,=n"+An {(where, n'” is the maximum value of n{(x) at B, = 0)

Based on (15), the form of n{x) is supposed to be such as shown in
Fig.3.

a unit area
NN
glass tube wall

a
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Fig.2 A diagram to derive an equation for an electron density
distribution in the z direction.

r=2R r= —R —R+2Ax =0 x=Ar r=R

Fig.3 The presumption of variation of the electron density distribution
by virtue of the magnetic field B,.
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5. A discharge current I, in the z direction
(A)B,=0

Lig -0 =1

R
= KJ n'” cos Bz X (~ @) Xt p, o E, dx
—R
2 2
N PSRN S
Kn ( Q) 3 Aue() BEJ’ Ez (16)

where, 8; = B 5,0 = Ve Dompica, - )% and K is a quantity resulting
from the integration with respect to y.

(B) B, =0

R
L= KJ n,e%% cosly (z—Azx)] X (—q) (u,E, t+u E dxr (17

—R+2Az

From (9) and (15), one has

E, :%Ez# fe n(lx) d?;ix>
el Dei D , (18)
= &EZ% Lo o' +Z tanly'(z—Az)]
uel luel :uel
where the second term is, from (11),
Loy~ _tap (19)
My 2,1

Substituting (19) into (18) and then substituting the resultant E, into
(17, one has
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Using a”*+7* = 8”7, (19) is simpiified into

2
'[z - Kz(#elEz+ 7@“ Ez) (20)
ﬂel
where
K, = Kn®+Aan)(—g) éL (@K 4 g @R Wazy @1

The quantity I, reduces to I, given in (16) at the limit B,—~0. As
B, increases to a very strong level, 7'(= (8% —a™)) tends to zero and

then the discharge approaches a vanishing state.

6. An experiment

The purpose of the experiment in this work is to examine the variation
of (20) by the magnetic field B,. If the coefficient K, in (20) changes
Jittle by application of B,, I, of (20) shows variation in the same manner
as derived in the case of an infinite plasma (M. Nagata : J. Plasma Phys.

44 (1990) 47, 0,,, in figure 1). In this work, we report a preliminary
experiment using only a piece of sealed Neon discharge tube at 5 [Torr].
A cylindrical tube has been adopted rather than a rectangular tube, since
the former is stronger than the latter against atmospheric pressure.
The magnetic field has been generated by flowing a current in a coil
wound around an iron core. An output is 25 [Gauss] per 0.1 [A]. A
constant voltage suppiv has been connected between the anode and the



cathode. Both of the anode and the cathode are made of Aluminum.
The configuration of the discharge tube and the magnet 1s shown in
Fig.4.

< 5 10em >
Heater — ]
o - 3 the 01211;%1" dlameter Neon 5 Tore lem ’_ —
Cathode ' Hoae
! the iron core 5
€ 14.3¢cm >

!Fig.él. The discharge tube and the magnet

The basic physical quantities of a discharge plasma in this experiment
are as follows, under the condition of (Neon gas pressure P =5 Torr,
Neon gas temperature T, =300K, B, =100 Gauss) :
*In a normal glow discharge, a mean thermal velocity 7 is supposed to
be

7= 10% m, sec
* The collision cross section gy,_, 1s

Opoo = 2.54X10 7" m" at o =10° m, sec
* The Neon atom density ny, is

5% 10°

P 760 B __—
e = B T T 1.38X10 %X 300 = 1.6x10%m




* The mean free path 4 of electrons 1s

h= = — —0.24 mm
n.’\»'oo.\'(’ -e

* The mean collision time 7 of electrons 1s
A _
r=— = 2.4x107"  sec
* The cyclotron angular frequency w, of an electron with
= 10° m, sec is

=2

1.6X10 ¥ x100x 10" 10
— 4Py - X 2.4 X =
w,T i T 0110 " 2.4X10 0.44.

For a small magnetic field, the two factors in K, given in (21) beomes

approximately

7= L=l (3 1 )m (21)
8% B By\3 1-B,Bwr

ea’R_*_efa’R-.Za’Ax ~ 2+a’2R2 (22)

Equation (21) is a slowly decreasing function, while (22) is a slowly
increasing function. Accordingly, if the variations of (21) and (22)
balance each other, the discharge current is to show a negative resistance
(the increase of the discharge current for the increase of the magnetic
field).

Now, an experimental result which shows the basic characteristics
with respect to the variation of the total discharge current for the
magnetic field i1s shown 1n Fig.5. However, we came across iwo
following obstructions which throw doubt on the confidence of this
experimental result :

(i) The magnitude of the discharge current varied ceaselessly at
random within =5 percent.



Though we met with such obstructions, we could confirm that, in the
beginning stage of the magnetic field, the phenomenon in which the
discharge current slightly increases certainly exists.

We are planning to make a more detailed experiment.

The author expresses sincere thanks to Professor M. Sato for his
precious advices and kind Instruction. Also the author is grateful to
Professor T. Watari, Professor S. Sudo and Professor K. Yamazaki for
precious discussions about our experimental study.
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Fig.h The discharge current characteristics
for the magnetic field (250 Gauss,” Ampere).
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