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Proof of non-invariance of magnetic helicity in ideal plasmas and

a general theory of self organization for open and dissipative dynamical systems
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Abstract

Ttis proved that the magnetic helicity is not invariant, even in an ideal plasma. A novel general theory s presented m
which a variety of selforganized states in open and dissipative dynamical systems with various fluctuations canbefound.
This theory is based on the principle that the self-organized states must be those states for which the rate of change of
globalautocomelations formultiple dynarmical field quantities, which depend on multidmensional mutually independent
variables, is minimized. One of the important points of this theoty & that the onginal generalized dynamic equations are
embedded in the final equivalent definition for the self-organized states, and therefore the equations deduced from the
final equivalent definition mclude all the time evolution characteristics ofthe dynamical system of interest Since states

autocomelations, they are most stable and unchangeable compared with other states.

Keywords: self-organization, global autocosrelations, open or closed dynamic systems, continuous fluctuations,

relaxation phenomena



1. Introduction

Afier J. B. Taylor published his famous theory [1] to explain the appearance of the reversed field pich
configuration {2], magnetic helicity has been believed to play an important role as a global mvarant in the self-
organization process and relaxation phenomena of magnetized plasmas. However, ancthermodel—the partially relaxed
state model—has been proposedtoexplam the reversed field pmch expenmental data [3, 4], this mode] was theoretically
derived by allowmng partial losses of the magnetic flux and the helicity [5, 6]. The partially relaxed statemodeland the
mode transition pomt of the self-organized state were deduced from the energy integral, without the assumption that
magnetic helicity is invaniant. A subsequent version ofthis theory of self-organization was developed, based on

autocomelations of physical quantities, which includes the Taylor state as a imiting case [8, 91

In the present paper, we prove that the global magnetichelicity is notan mvanant even mideally conducting
MHD plasmas and that therefore the Taylorreleation process never ocaurs physically n real expenmental plasmas and
smulations. Furthermore, we presentanovel general theory for how to find selforganized states in open and dissipative
dynarmical systems. This theory s applicable tovanous nonlinear dynamical systems and reproduces the Taylorstate asa
fimiting case [5-12]. Wealsoshowsome applications ofthe presenttheoryto dissipative Korteweg-deVries solitons and
dissipative MHD plasmas.

2. Proof of the non-invariance of global magnetic helicity even in ideal MHD plasmas
1. B. Taylor’s theory 1s based on Maxwell’s equations for the electric and magnetic fields:
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Using the vector and scalar potentials 4 and ¢ , one may rewrite Egs. (1) and (4) equivalently as

E=—V¢—6—A (5)
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With the use of Egs. (5)and (6), the global magnetic helicity K 2], defined m a volume V bounded by an ideally
conducting surface, and its time dertvative are given as follows;

K=[ABW, U

K
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Taylor’s theory involves the following two comjectures:

(1) Smcemagnetic fieldsare fiozen man ideal MHD plasma during its local flow, the global magnetic helicity Kis
considered to be conserved. (This s because X 1s considered to bea topological quantity of the magnetic field lines.)
The argument 1s as follows: By using the simplified Ohm’ slawof nj =E + v xBand putting ressstivity =0,
one finds that the volurne integral of E- B forevery flux tube is zero. Then the volume integral term in Eq. (8)
vansshes. Since E-dS 15 zero at an ideally conducting surface, thetime denvative of X is zero in anideal MHD
plasma Thus, by this argument, X 1s considered o be conserved as an invariant in ideal MHD plasmas.

(2) When the resistivity 1] is small but finite, reconnection of magnetic field lines can take place. However, itis
conjectured that the globel helicity X can be treated as an mvarnant during the relaxation process manon-ideal MHD
plasma, because the resistive decay of the total magnetic energy msidean ideally conducting wall 1s Sxsterthan the
decay of K. Using vanational calculus with the global constrantK =const,J. B. Taylor denved the relaxed state of

V xB =), B fromthe Euler-Lagrange equation [1] This result had been previously obtained by S. Chandrasekhar

(8]



and L. Woltjer for states with minimum dissipation of magnefic energies, also with theuse of vanational calculus

[131

Taylor’s logic, describedinthe preceding pamgraph, is, however, not based on eithera variational principle oran
energy principle. Ftis commonly known thatthe use of eithera variational principle [1 4] oran energy principle {1 5}leads
1o dynammical equations that give the time evoltion ofthe dynamicalsysiem of ntezest, s shown in dlassical mechanics
theory [14] and the well-known dynamical equations for perturbed elementts in an ideal MHD plasma [15].

Wenow prove that the first conjecture of Taylor, (1) above, is not physically accessible, even foranideal MHD
plasma Tn oxder to find the time change of K inan ideal MHD plasma, we mustretum to Eq, (8)and check the volume
integral term more carefillly. Fromthe scalar product of the genesalized Ohm’s lawfora fully ionized plasimes in the limit

of zevo resistivity , we can derive the volume mtegral term of Eq. (8) as follows,

¢’ 1 mZ
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where theusnal notations for plasma physics quantities suchasthenumberdensity ofelectrons #.and electronand ion
pressures p.and p, are used. Also, the boundary conditions B-dS'=0 and V - B=0 atanideally conductmg wall were
used in cbtzining Eq. (9). Sinceall the volume integral tems on the right-hand side of Eq, (9), determimed by local
time rate of change of K can be either positive or negative (the possibility of being zero is statistically neghgible)
Therefore one cannot definitely conclude that K isa physical invariant, even within an ideat MHD plasma. On theother
hand, we canapply the following Poynting law deduced directly from the Maxwell equations, Egs. (1)—(4), forany
MHD plasmas:

§ (ExB)-dS =, [ [ §-E+Z( 5’
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Smce the left-hand side of this law 15 zeroatan ideal conducting wall, any changes m the electric and magnetic field

energies are converted to charged particle energy by the j « E termsoasto conserve thetotal energy, m estheran ideal

ora non-ideal MHD plasma.

Wenext clanfy the meaning ofthe second conjecture, (2) above. Simee K'1s nevermvanant durng local plasima
flows or relaxation even inan ideal MHD plasma, the global constramnt that uses X~ has nopowerto limit the relaxation
process itself within an MHD plasma The mathematical procedure in comecture{2) 1s smmple calcutus tofind 2 group of
solutions having minimum magnetic energy withm awiderset of sohations having thesame valueof K. There cestamly
do existrelaxation processes in plasmas, but the self-orgamzation process tselfhas no conmection with the comecture that
Kisa global mvariant Topological quantities are defined clearly m sucha way thatvarious configurations of ines have
their own umque number of nards, being ndependent with respect to any deformation of the lines that does notchange
the number of connection points. In ctherwords, afierthe configuration of the lines (forexample, the magnetic field ines
in a plasma} 1s determined, the value of a topological quantity can be calculated, but the value itself has no power

mnversely to determine the configuration of the lines (e.g, field lines).

Without using topological quantities such as X, weare able to derive the Taylorstate of V xB == A B, starting
from the fimdamental definttion of the seff~organized states. Thetheory for howto denve the condition for realization of
self-organized states, with the Taylor state of V xB = A Bincluded as the lirmiting case of uniform resistrve MHD

plasmas, will be presented in the next section.

3. General theory to find self-organized states in nonlinear dissipative dynamic systems
Wedevelop hereanovel basicformuiation of a general theory to find selforganized states that 1s an extension of

the theory in Ref [9]. It should be emphasized that the present theory, which uses auto-correlations for dynarmcal



quantities, is not based on either a vanational principle oran energy principle, and also that the auto-comelattons arenot

We consider a set of N dynamical variables ¢ = ¢[£°]= { ¢:[E*]....,q~[E*] } , with Mdimensional
independentvariables [£“](k =1,2, ...M ), which may include time, space, and velocity in distribution fimctions, or
prices, amount of matenials, budgets for production systems, and other such vanous vanables. Using generalized
symbolic dynanmcal operators, we may write the general nonlinear N—set simultaneous equations foran open ora
closed dynamical system as

9¢.[£"1/08 =D/Iq], (10)
whereD,’[q](j=1,2,...N represents dissipative ornon-dissipative, linearornonlinear opesators forthe change ofa
dynamical variable ¢, along an independent variable &’. After multiplying ¢ ,[ £*] on both sides of Eq. (10)and
integrating over the independent variables £ (k # ) weobtain“conservation laws™ forall the dynamical varables ¢ ;
as follows:

621 szjdgk =J.q1D,.j[q] IJﬁJl Hk=} dgk (11)

Here, the dynamical system of interest always has fluctuations of the dynamical variables g , [£*] along the axis ofthe

I%qzzl']}'c:;

vaniable &’ The fluctuationsmay have several characteristic lengths in different ordess along &/, one of which is expressed
ast ... The chamactenisticlengtht . may givethe ordening of the relaation time scale. Fromthe sandpoimt of observations,
the self-organized relaxed states are 1dentified by the following definition with the use of autocomelations between the

dynamical variables g [&'] and q . [&/+(AE /r )], where the increase of & is nomalized as

falet1 { gl &* +";i1 } VeI 1,8
[@& ., I, d¢* )
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Using Taylor expansion for Eq. (12), we obtam the followmg equivalent defimition of the self-organized states from the



firstorder of A&/t
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Substituting the onginal dynamical equations (10) mto Eq, (13), we cbtam the final definition of the self-organized states

as follows:
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Tt should be emphasized that all ofthe dynamical laws, characterized by thenonlinear smulianeous system of equations,
Eg. (10), are embedded in the equivalent definition, Eq. (14).
The mathematical expressions of Egs. (13) and (14) are obtamed by variational calculus with the use of funchionals

with Lagrange multiphiers 4, as follows:
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where the fimctional given in g, (16) isused; 8, and 8°F; are, respectively, the firstand thesecond varations of F;;
and the variational calculus is performed with respect to the dynamical vanables g ; that depend on the vanables i

except k& —j. Bymeans of repeated partial integration and application of the boundary conditions, we eventually obtain



the simplest expression for the terms of the opesator D7 [ ], which wedenoteby D, ** [ ¢ thisreduction had been
previously reported in [7, 8], Intemms of this notation, the condition for the margimal mmimum for arbitrary vanation

84 [&* ¢, ] is given, from Eq. (18), by

T

5D qh+— s [£¥ki] =0 (19)
Substituting Eq. (19) mto Eq. (17), we obtain the Eulerl agrange equation for arbitrary vanation dg ,as follows:
DJ“[@HZ”’S;—J 4,[£51=0 20)

Equation(19) can be witten as an eigenvalue equation with boundary condifions fr 8¢, [ L viz, D/ §{ jum[EX]]
+ @ A2 i 1 i [EX] =0, Whese 1, [E/) and A, , are the normalized eigenvalue solutions and their eigenvalues,
respectively, with the appropriate nommalization written as b ., * # -} i |11+, dE* = 8., as wasalsoreportedin[7,
8]. Substituting one of these eigensolutions mto Eq (18)and using the eigenvalue equation, weobtam fiom Eq. (18)the

following:
z
§°F = Afcj (A —ﬂz)_[(umffk])zfufhj]l_{,,ﬂ dfk =0. 1)
Since Eq. (21)is required for all eigenvalues, we obtain the following condition forthe self-organized state with the
minimum rate of change:
Eh @2)

where A; s the smallest positive eigenvalueand 4 ; 15 taken to be positive.
On the other hand, when we use Eq. {17), we obtam another fimctional # and its first variation 6 F, which are

equivalent to Egs. (22) and (23), and also Euler-d_agrange equations for arbitrary variations 8¢, [, 7L as follows,

5F = [(6 41", 1(6‘-“;";”"} # A g2 A s D T, d* =0 @)
Gile il T o4 gigtes1 =0 e
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We can easily obtain the followmg solutions of Eq. (24):



q,[E5 1= exp(-24,£7) q,1&70.8% %+, 1, (25)
where £ is the initial value of &
The newtheory presented above is a natural logical extension of the theones reported in [ 7-9] to the general

nonlinear set of N simuttaneous equations expressed by Eq. (10), for any open or closed dynamical system.

4. Application of general theory for sel~organization

In this section we present two typical applications of the present theory: first, to solitons descnbed by the
Korteweg-deVries equation with a dissipative term and, second, to dissipatrve MHD plasmas.
4-1. K~dV solitons with dissipation

Here, we present analytical sef-organized soliton solutions of the following Korteweg-deVries equation witha

dissipation term,
- 3 ~2
ou sug’i+a‘f:vof, (26)
ot ox  Ox° ox

where vis the viscosity. Fluctuations may be neglected in the soliton solutions, and therefore we obtam thefollowmng

finctonal Ffrom Eq. (16) to first onder of Ar, mtegrated over the periodic length {a, 5]:
F= j{u[v “2“-6 @__aj_] Au }d @7

Using partial mtegration and the applying the periodic conditions atx=a and b, we obtam thefollowmg first vanation

OF:
(28)
The Euler-{agrange equation for arbitrary vasiations of Gii 1s
2;‘2‘ + %u =0 . 9)

TFwe denote the solution of Eq. (29)as u (7, x), we obtain the following;



u*(t,x):exp{ﬂ(é)%x] W (1x,) . (30)

On the otherhand, ifwe use Eq. (15} we obtain ancther vanation 4F, an EulerI agmnge enmtion and its sohifion

corresponding to Egs. (23), (24)and (25), as follows:

o sz{ o u (%+2/% u) ydx. (31)
@+ 2Au=0. (32
i

u'(t,x) = exp(=241) u'(1,,%) . (33)

Combming Egs. (30) and (33), we derive the final analytical self-orgamized solution as follows:
u'(2,x) = exp[—241 i(é)% x] u'(t,.x,). 34)

The meaning of this analytical solution is thatafier nonlinear dissipative relaxation that is assoaated with the dominant
operator changing from the nonlinearterm to the dissipative termn, the final self-organized state comes tohave a sinusoidal
profile without propagation, with only theamplitude of the profile decreasmg in time, Theanalytical sohstion Eq. (34)
coincides verywell with the simulations reported in [12} and therefore we have demonstrated that the present newtheory
of self-organtzation 1s very usefil for various dynamical systems.
4-2. Compressible resistive and viscid MHD fusion plasmas

Here, we present self-organized states in compressible, resistive, and viscid MHD plasmas described by the

following generahzed Navier-Stokes equation, Faraday’s law, and the energy conservation law:

pm%—pm(u-V)u+p E+jxB-Vp+v V2u+§V(\7-u) (35)
6BAX u‘,i'x_ m g
o = VxluxBesi ——(xB-Vp)-== 1] (36)
2
L L y= (- V)p+ (V- w]+ [ (B +uxB)+ V- (5T)] 67

ay-1  (r-1
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where pm, s mass density of the plasma , and the generalized Ohm’s lawis used in Eq. (1 ytoobtam Eq. (36). Smee T ./Ar
=1 can be used under the assumption that self-organized states have negligibly small fluctuabions and displacement
current compared to the other terms for fusion plasmas, the three first varniations & for Eq. (35), &F s forEq. (36)and

&F , for Eq. (37) are written as follows, using Eq. (17):

SF. :L {a.-[_%mwu-u)qv-(pmu)]wpr;;i +(1+£;)[L(V><B)XB—VP]

Ho

—2{Vx(viu)+(V-u)Vv}+m;—pg+2}iuu]+éﬂ3-{L[ux(VxB)]mLVx(uxB)
en

Hy Hy
V(o) —Vx(LuxB)+ (Lux i+ [V-(Lu)+ (V-u)]}dV. (38)
cn €n cn
&, = | L 5 B [Vx(uxB)-2Vx (L VxB)-Vx(— [(VxB)xB])—Vx";"gj—
T H Hy Hen e'n ot
+(VxB)x u+Vx[(VxB)x(——B)]+24,B]-Su-[(VxB)x B}dV. (39)
&N
&, [ 12— {@-VIp+27 p (V-wl+ 7By 49 (x Y1)+ V-(p w
y=1 (-1 g
(VB Py, M o Py sy P v P
AL e e s BN O e A i)
+ B gL X8y 2P up (2B P YT, gy
Ho ¥ Hy y-1 Hy  (y—Den T
OB g (P Mgy o (40)
Ot Hy (r-De'n

Note that Eq. (40) was divided by Lo to make Egs. (38)-(40) have the same dimensionofenergy mMK S A unit~ All
of Eqs {38)- (40)are denved by using vectorformulae, Gauss” theorem, the conservation equation for mass, and alsothe
boundary conditions of $u =0, 8j =0and & B =0attheconfinementwall Wenotehere that (3B Y 61 = 0 because

of 6 B= 5 B(r) Addmg from Eq. (39) to Eq. (40), we obtain the followmg :

11



o, +dp + I,
—I {ou- [—— V(u n)+[V-(p W+ +Vx{pom)— Vx(—uxB)+(—ux_|)

+——(V><B)><B—(1+—-)Vp—2{Vx(viu)+(V-u)VV}+(27f-—l)LV(L)
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e’n o Ly Hy e’not

VxB

20 Lyx(D)+ 2p qu( By vxBx u——2 Y vp1424B])
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4

. (_1)( Vip+ 20V A = VATV () + (DT )

+=DIV-(Zw)+(7 -w)]- (VXB) V(en @’a

VxB

%y—f_’-l—]}dh 0, (41)

FromEq. (41), we obtain three necessary conditions for self-organized states given by Euler-1agrange equations for
arbitrary vanations of du, &8 and dp asfollows:

2V x (¥ xu) = (V-0V} 2=V w - [V- (o, + pri. Y x (o)

+Vx(ﬁuxB)—( 2 ux(VxB))-—2—(VxB)xB
iy Hen
+(1+—)Vp @r-D- 14 Fv( p) Y By (42)
e’n Ot
2Vx(leB)—Vx(uxB)+vx%@—2qV( Py (Y By_ 2P g, VxBy
o e‘n ot y—1 He y-1 Ho
_ovsBxu+—L ¥ yp1-24.B (43)
(—Den T ©

[(u-V)p+ 25V - w)] - p(C2 By V- ((9T) = V- (pu) — (7 ~1)(V -u)

1
r-n Ky

—(y—l)[V-(ﬁu)ﬂvu)mv"“ m g

P
v(&)- Yy 44
) (en) 2e’n ot a1 (“4)

We can easily deduce the Taylorstate V X B = A B as the imiting case in which the self-organized state is

assumed to have no fluid flow; no pressure and no charge, 1.e. , =0, p=0, p=0 and to be spatially vniform and

12



constant v and 7, Inthis special case, Egs. (42)and (43)becomesimply V x V xB = #°B, which includes the Taylor
siate V xB = A B, 1e,, the Beltrami flow field, as a partial sohition in a wider set of solutions. In other words, we can
denvethe Taylorstate V xB = A B without using the concept of the magnetichelicity orthe heticity of the generalized
vortcity [16, 1 7], but rather as a imiting case from the present general theory, which inchudes the original dynarmcal
equations charactenizing the time evolution of the dynarmical system. In general cases, wesee flom Eqs (42)— (44) that
self-orpanized states are balanced profiles among pressure, fluid flow, charge separation, temperature gradient
depending on the profiles of vand 7. It is importantto note here thatthe present theory leads to reasonable self-organized
states with time change terms as seen in fiom Eqgs.(42)— (44}, Le,, the present dissipative dynamical system should
definitely repeat relaxation process leading to self-orgamized configurations which would slowly change, becauseof
disstpative terms, and therefore reach unstable profiles. We can find the self-organized configurations of all physical
quantities of interest by solving the three Fuler-L_agrange equations of Fgs (42)—(44) under given shape of confinement
walland boundary conditions. When we assume spatially uniform and constant v and 1}, we can obtain simpler setf-
organized states from Eqgs (42)and {43) which are charactenzed by two Beltrami equations of V< su=acs and V< B
=+ B, asreported in[17] We emphasizeagain that theones thatuse the concept ofhelicity invartance, such as reported
n[1, 16, 17], are netther a vanational principle[ 14 ] noran energy pinciple 1 5], which would usually lead to dynamical
equations forthe ime evolition of the dynamical system ofinterest Those theories aremathematical formulations based
onvanational cakculus. They use the corjecturethat topological quantities refated to the helicity are constant and mvarant
nideal plasmas, even though this expectation 1s not guaranteed, as was proved in Sec. 2. Ako, they conjecturethat these
topological quantihes decrease more slowly than energies in shightly non-ideat plasmas and, postulating the global
constramts to bethetopological quantities, find a group of sohutions with minimum energy compared with other solutions
thathave the same topological quantities. Wehave shown, however, that the topological quantities themselves canbe

determined affer the solutions are selected in reality.

8. Conchuding remarls

13



We have proved in Sec. 2 that the value of the magnetic helicity may merease or decrease, eveninan ideal MHD
plasma, and that therefore the global constraint using helicity has no power to limit the relaxation process m plasmas.
In Sec. 3, we have established a novel general theory to find self-organized states, which includes all dynamical laws
given by the nonlinear simultaneous general dynamic equations, Eq. (1), because those equations areembedded n the
present formulation. Self-orpanized states are stable, because other states will have higher rates of change m their
configurations.
We have preserted a typical application of the presenttheory to dissipative KdV soliton propagation and shown that
our theory agrees very well with comresponding computer simulations.

Wehave applied ourtheoryfo compressible, resistive, and viscid MHD plasmas descnibed by the generahized Navier-
Stokes’ equation, Faraday’s law, and the energy conservation law. It has been clarified generally that the dissipative
dynamical systern should definitely repeat theselaxation process leading to self-orgamzed configurations which would
slowly change, because of dissipative terms, and therefore reach unstable profiles.

We have shown that the Taylor state can be derived asa linmting casefrom the present theory without azry concept of
topological quantities. A similar conclusion had been reported earlier, albeit in amore simple form [9]. Ewould be
worthwhile to mention that this general theory may beapplicablenotonly toa plasmamodeled asammiii-fluid, butalso

to the Boltzmann equation for distnbution functions.
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