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From Dressed Particle to Dressed Mode in Plasmas
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A theoretical method to analyze the strong turbulence in far-nonequilibrium
plasmas is discussed. In this approach, a test mode is treated being dressed with
interactions with other modes. Nonlinear dispersion relation of the dressed mode and
statistical treatment of turbulence is briefly explained. Analogue to the method of dressed
particle, which has given Balescu-Lenard collision operator for inter-particle collisions, 18
mentioned.
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I. Introduction

Plasmas have been one of the main subjects of modern physics. This is because
that almost all the matter, the presence of which is known to mankind, is in the plasma
state and the understanding of the physics of plasmas constitutes foundations for our
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important issue is that the charged particles in plasmas interact with others through the
long-range interaction of electromagnetic fields which are at the same time governed by
the motion of plasma particles. This feature is known as the collective interactions. The
other stimulating issue is that the plasmas are often far-away from the thermodynamical
equilibrium.” Fluctuating electromagnetic fields or fluctuating component of plasma
parameters are far from those predicted for the thermodynamical fluctuations and do not at
all satisfy the equi-partition law. The strong non-equilibrium nature of fluctuations comes
from instabilities and turbulence, and influences the nature of plasmas.

The collective nature of plasmas influences the collisions of charged particles.
The analysis of collisional process in plasmas is essential: this is because the inter-particle
collisions are the origin of irreversibility and dissipations. The rate of dissipation has a
basic importance for the analysis of the transport processes. This collective nature was
successfully formulated by Balescu {1] and Lenard [2], which is now known as Balescu-
Lenard collision operator. It has been clearly demonstrated that charged particles are "not
alone” in plasmas. When one particle encounters with the other, it is not a collision of
"bare” particles. In stead, each particle is dressed with interactions between many other
particles through electromagnetic fields. The interaction between two "bare" particles are
screened by many other particles, and the coilision is formuiated as those between
"dressed"” particles. The inter-particle collision is an origin of the transport processes and
this formula has been a foundation of the analysis of transport coefficients. For instance,
the collistonal transport s basic to the cross-field transport in strongly-magnetized
plasmas, which have been intensively investigated for the motivation to realize controlled
thermonuclear fusion. The cross-field transport owing to the binary collision of charged
particle is called "classical transport” (or "neoclassical transport” in toroidal
configurations) and has been subject to long and intensive investigations. For this
transport coefficient, the monograph by Balescu {3} provides a systematic deduction, and
forms a firm basis of plasma transport processes, together with other literature [4].

*) In a standard terminology, one may use the words "thermal equilibrium” and "thermal
fluctuations” to describe the state which is equilibrated at a given temperature. The
fluctuation of thermal energy (or temperature) is an important element for plasma
turbulence in nonequilibrium state. In order to avoid the confusion of the fluctuation of
thermal energy and fluctuations at thermal equilibrium, the words "thermodynamical
equilibrium” and "fluctuations at thermodynarnical equilibrinm” are employed here.



Far-nonequilibrium property of plasmas has required a breakthrough in
understanding the fluctuations. Instabilities, which are caused by inhomogeneiues,
boundaries, or anisotropy of distribution function, drive fluctuations into the level which
is much higher than the thermodynamical equilibrium fluctuations. The subject of strong
turbulence has been a main issue in the plasma theory. In strong turbulence, the growth
of a mode that is labelled among a large number of excited modes is different from what
has been predicted by linear stability. Proper theoretical treatment of the interaction of
excited mode with other fluctuations has been (and will be) a central theme. (See [5] for
an illustrative description of the problem.) A method of dressed test mode in a strongly-
turbulent magnetized plasmas is reported briefly.

II. Model
2.1 Example for the case of reduced set of equations

The method of dressed mode is illustrated by use of an example of a reduced set
of equations. The reduced set of equations has the form

2f+ 4% = . 5)+ S, (1)

where f denotes the set of fluctuating field variables. (See [6] for a survey.) For
instance, f =(¢, n] for Hasegawa-Wakatani model [7], f T =(¢, J, p] for three-field

model [8], or f' = (n, ¢, D, vy, P, Py A") for Yagi-Horton model [9]. (9 : electrostatic
potential, J : current along the strong magnetic field, p : pressure, 7 : density, etc.) These

have been used for the study of nonlinear dynamics of resistive drift mode turbulence,
current-diffusive mode turbulence, and for a comprehensive study of many instabilities,
respectively. The linear operator £ isan Nx N matrix for the N- field model and

controls the linear modes. 9K(f . f ] is the nonlinear terms, e.g_,

T
Mfs f) =- (Vlz[‘b, Vi‘i’], [¢, J], [(D, p]) , for the case of f' =(¢, J, p] . The term

S stands for the thermodynamical excitations induced by the interaction with a heat
bath.

Theoretical models have been developed to separate the nonlinear interaction term

into two terms:
A F)=Heonerend £ F)+ S @)

where ﬂfcoherem(f . f ) is the coherent part, which changes with the phase of the test

mode, f; , and 8 is the incoherent part (noise part). Explicit forms of %Coherem(f . }



and S are given by modelling. Various models for the coherent and incoherent parts

have been analyzed. For detailed discussion, see e.g. [6, 10]. In the method of dressed
test mode, a test mode f; is chosen, and a following modelling is taken: The term

Mcoherm(f  f ) is modelled as an effectively-linear term of f, renormalizing nonlinear
interactions with back-ground turbulent fluctuations, and S « 18 a random noise.

In an actual application to plasma turbulence, a diagonalization approximation of
Mcoherem(f , f ) is often used for analytic insight. The diagonal terms in Mcohmm(f f )

are approximated by the diffusion terms with the turbulent viscosity (1Ly for ion

viscosity, My, for electron viscosity, and X for thermal diffusivity), or by the eddy-
damping coefficients (¥, for ion momentum, ¥, for parallel electron momentum, and ¥,

T
for thermal energy), as %oherem(f f ) P (HNV_ztfv WyeV i XNVif?,) or
T
Mcoherent{ nLr ) == (’vai, Yofos ’Ypf},)k . Within this diagonal approximation, the

renormalized operator £ is given by

and one has a renormalized reduced set of equations (with a thermodynamical noise

source) as

Lfit+ L=Si+ Sk, @

where Xk denotes the test mode [11].

2.2 Dressed modes
Equation (4) shows that the amplitude of the fluctuation If % t becomes large in the

vicinity of the pole of the renormalized operator £. Thus the nonlinear dispersion

relation
det (M +£) =0 %)

describes the characteristic feature of the turbulence, where I is a unit tensor, and — A is
the eigenvalue of the operator £. The sign of A is defined so that ReA is positive when
the test mode perturbation does not increase. The decorrelation rate is given by Rek |
This dispersion relation includes the (coherent part of) nonlinear interactions with back
ground fluctuations, and the eigenmode corresponding to the nonlinear eigenvalue is
called dressed mode.



In order to solve the Langevin equation (4), an ansatz for a large number of
degrees of freedom in the random modes, N, 1s introduced. The renormalized term vy ¥ n

£ arises from the statistical sum from N components, so that its vanation in time
becomes O{ N~ 2) less than that of /. Therefore, in solving f,. £ is approximated to be
constant in time in the limit of N — %. The generatl solution is formally given as

ft)= ;“ exp (_ lmt) f(ml(o) + f ), exp [- A1~ T)]S(’t) dt (6)

where ~ A, (m=1,2,3 - and Reh; <Reh, <Rehsy<--- ) represent the
eigenvalues of the renormalized matrix £. (f (m)(O) represents the initial value which is

transformed into a diagonal basis.)

2.3 Statistical theory
The incoherent part S acts as a nonlinear noise. Taking an example of three-field

model, the statistical analysis is explained [11, 12]. The matrix exp [~ £(t — 1)} in
equation (6) are decomposed as

{exp[ 4i- )]} (e~ (1 - )] +4Zlxp] - At - 1)] 4 Pexp|- st 1)]

i

where explicit forms of A(m) are given in [12]. By introducing a projected noise source,
stm)(z) = (1, ik e )= kg (T, ) 1) : {S(r) + S,,,(r)} , where K is
the magnetic field gradient and the superscript (m) denotes m-th eigenmode, one can

estimate the noise source as <J{1) *.5{1)> = CoY, A1 '2< fl(fk) * fl(l,(]> + thermal excitations |
where C, is a numerical factor of the order of unity [11]. With this estimate, the long

time average of the fluctuation amplitude is given as

< ﬁ(g *f, 12\ 2%’1’” < ﬁ(lg *ﬂ[lg> + thermal excitations (7)

This is one form of extended fluctuation dissipation relation for the non-equilibrium
plasmas. In this formula, the effects of turbulence are renormalized in Y, andA . The

formula R A, = Cyy,/2 describes the stationary state of strong turbulence.

IIl Applications
3.1 Noniinear instability and subcritical excitation



The method of dressed mode has been applied to interchange mode turbulence [8].
When there is a dissipation that impedes the free electron motion along the magnetic field
line, the interchange mode becomes unstable. This mechanism aliows the nonlinear
instability. When the electrons respond to the test mode (interchange mode) in the
presence of the backoronnd torbulent fnctmations, electrons are dressed with raactions
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from back-ground fluctuations. Electrons are 'heavy’ owing to the presence of
turbulence, and electrons do no longer freely cancel the charge separation associated with
the mode. There arises a nonlinear link of mechanisms that excites fluctuations: (1)
fluctuations impede the free motion of electrons through cross-field diffusion, (2) this
electron diffusion increases the growth rate (3) the increased growth rate further enhances
the fluctuation level. An explosive growth of fluctuations takes place until the fluctuation
level becomes high enough so that the ion viscosity stabilizes the mode. Plasma
turbulence is self-sustained, not necessarily being driven by linear instability [13].

By use of this method, a subcritical excitation and anomalous transport in plasma
can be analyzed. A nonlinear marginal stability condition has been derived for current
diffusive interchange mode (CDIM) as [14]

GO (f‘leN + pec}m((:/amp}qﬂ

=3 (8)
N N (T ST R

where G, is a normalized pressure gradient Go=a?Vin py-VIn B ands isa magnetic
shear parameter, and the length, time, and the scalar and vector potentials are normalized
to the plasma radius @ , poloidal Alfven transit time T,, = a/v,, = Rfv, , Ba’/R and
Bv,a’/R , respectively. A critical Itoh number 3 _ , is of the order of unity. (Suffix c for
K, B, and X indicates the collisional transport process.) This formula shows that the
turbulence is self-sustained even in a linearly stabile region Gy < G, . At the critical
pressure gradient G, the turbulent transport coefficient is subject to a subcritical
excitation. Figure 1 illustrates a theoretical prediction of fluctuation level as a function of
pressure gradient, G,,. Explicit multifold form of electrostatic potential perturbation ¢(G,)
is seen. A subcritical excitation of turbulence is predicted to oceur if G, exceeds the
critical value G». The subcritical excitation and self-sustaining of turbulence are
confirmed by direct numerical simulations [15].

3.2 Turbulence transition and tramsition probability

The result of the current-diffusive turbulence shows that the fluctuations have
cusp catastrophe owing to the two excitation mechanisms (i.e., ithomogeneity that
induces instability and thermodynarnical excitations). The statistical transition can take
place among the mrbulent states and the transition probability can be calculated.
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Fig.1 Fluctuation level as a function of the pressure gradient. Strong turbulence exists

below the critical pressure gradient against the linear instability, G,< G.. Transition to
the turbulent state takes place at G, = G.. On horizontal axis, G, G« and G, are

divided by s¥3a238~ 323 3= c/w, [14].

‘The renormalized Langevin equation is reduced to the one for a course-grained
quantity [11]. The total fluctuating energy, which is the quantity integrated over some
finite-size volume of size L , # = 4 2 k2 ¢7 is taken as an examples. By introducing an

k

average dissipation rate, A = ZkZ Ak k202 /1 | the Langevin equation for the total

fluctuating energy is given as
d -
a—tf+2AZ'—g u{t), C))

where z{t) denotes the white noise and g° = 47, £+ ; (;‘1 Ag ,_k) K0 . (g j& ithe

amplitude of $, , Siv=8ix ﬂ{f) ,and T =2y, B, 2 kgT : the normalized temperature,
¥Ym : the mean decorrelation rate at thermodynamical equilibrium.) The associated
effective potential S( .’E)

S(f):f é—é\TEdf, (10)

i1s introduced. This renormalized potential plays a central role in the statistical property of
fluctuations. First, the probability density function (PDF) of fluctuation energy in a
stationary state is given by Py{ Z} =P g~ ! exp {— S Z)} . The minima of S{Z) denote
the probable states. In the case that a hysteresis exists, S( f} has multiple minima,

separated by local maximum. Thermodynamical fluctuation state (horizontal axis of

Fig.1) and turbulent state (upper branch of Fig.1) are denoted by A and B; the lower

7



branch of Fig.1 that is an unstable marginal state is denoted by C. Second, the transition
probability between different turbulent state can be given by S ( Z') [16].

The transition probability from the thermodynamical branch to the turbulent state

is given as

A
TAsB™= f?m eKP{—S(fC)} (11)

Ac=ZdAAE at £=Z, . This is an extension of the Arrhenius law to the system far

from thermodynamical equilibrium. For the case of CDIM turbulence, the probability of

transition from thermodynamical fluctuation to the turbulent fluctuation is given, near the
critical gradient Go = G, as

¥ ~2, 25,13 G\~
A8 (pT) "O%’B(f"fmmg’co) -5, (12)
2B a-113 2 . v
where b = (ko'ym/ﬁ 16C, ) T (L/a} . Important feature is that the probability is

—b
expressed in terms of the power law 74 _, g =< (1 - Gyf GC) h.

The phase boundary for the ensemble average is given by the formula
S(£,)=5(%5). (13)
This is an extension of the Maxwell's construction.

IV Summary

In this article, a brief description is made for a recent development of the theory of
plasma turbulence. Property of turbulent plasma is formulated by a method of dressed
modes. The coherent part of nonlinear interactions is included in a nonlinear dispersion
relation, which allows analyses of subcritical turbulence or nonlinear saturation states.
The incoherent part contributes to the stochastic noise term, and a statistical theory is
constituted. Two fundamental issues of plasmas, i.e., the collective phenomena and non-
equilibrium property, are investigated by this method.

This method can be applied to various problems. Extensions to the cases with
many kinds of instabilities are presented in [17, 18]. Statistical excitation of stable and
long-wavelength fluctuations has also been discussed, in conjunction with the nonlocal
transport processes [17]. In this article, the plasma inhomogeneity is treated as a given
control parameter. In reality, it evolves with turbulence. The structural formation and
turbulent transport are discussed in literature and monograph [6, 8].



Starting from the dressed particle, research of far-nonequilibrium plasmas now
includes the method of dressed modes. This direction will provide a prosperous path to
explore the further progress of modern physics.
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