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Abstract

A path integral method is developed to investigate statistical property of an electron
transport described as a Langevin equation in a statically disturbed magnetic field
line structure; especially a transition probability of electrons strongly tied to field
lines is considered. The path integral method has advantages that 1) it does not
include intrinsically a growing numerical error of an orbit, which is caused by evo-
fution of the Langevin equation under a finite calculation accuracy in a chaotic field
line structure, and 2) it gives a method of understanding the qualitative content
of the Langevin equation and assists to expect statistical property of the trans-
port. Monte Carlo calculations of the electron distributions under both effects of
chaotic field lines and collisions are demonstrated to comprehend above advantages
through some examples. The mathematical techniques are useful to study statisti-
cal properties of various phenomena described as Langevin equations in general. By
using parallel generators of random numbers, the Monte Carlo scheme to calculate
a transition probability can be suitable for a parallel computation.

Key words: plasma trapsport, Langevin equation, path integral, Monte Carlo
calculation
PACS: 52.25.F1

1 Introduction

From the viewpoint of development of stochastic methods, we will consider a
statistical analysis of an electron transport in a statically disturbed magnetic
field line structure, as was discussed in Refs. [1,2]. The transport analysis
is useful to understand the plasma confinement in the destroyed magnetic
surfaces by MHD activities or in the peripheral region of toroidal plasmas.
A collisionless transport of particles, especially electrons strongly tied to field
lines, is dominated by the transport of magnetic field lines. As is well known.
the equations of a field line are expressed as Hamilton’s equations with an



interpretation that x is identified with the ‘Hamiltonian’, ¢ the ‘time’, ¢ the
‘momentum’, and & the ‘coordinate’;

daf 3]
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where a magnetic field is expressed as B = Vi x V0 — Vy x V( with
Vi - V8 x V(¢ # 0 [3]. Consider a situation that a magnetic field as an
integrable Hamiltonian is perturbed statically by fluctuating magnetic fields:
X = xo{¥) +0x(¥, 6, ¢). By increasing the strength of the static perturbations,
magnetic islands appear and overlap each other, and finally the field lines be-
come chaotic in the - cross section [4]. As is assumed in Refs. [1,2], if statis-
tical property of perturbed field lines is interpreted as the Brownian diffusion,
then Eq. (1) is described as dip/d¢ = —06x /06 ~ W((), where W(¢) is the
Gaussian white noise and it satisfies W{() = 0 and W () W({') = 2D6(¢—(’ ).
A notation -~ means an ensemble average. A diffusion coefficient D is given as
the coeflicient of field lines D = Dy by using the quasi-linear approximation
[2]. The hypothesis of Brownian diffusion in Refs. [1,2] seems to be justified
by numerical works of Refs. [5,6]. The hypothesis may be valid, if there ex-
ists a homogeneous and completely stochastic magnetic field line structure in
infinite space. However, when a transport problem in a weakly chaotic field
line structure, e.g. in the structure illustrated in Fig. 1(b), is examined, the
hypothesis is not trivial [7,8], and numerical methods solving the transport are
needed. For the mumerical estimation of statistical property of the transport,
in general it is difficult to solve directly nonlinear differential equations (1)
and (2) under an appropriate calculation accuracy, because numerical errors
in evolution of ¢ and @ grow rapidly with the ‘time’ ¢, owing to the chaotic
field lines {9]. On the other hand, effects of collisions on the electron transport
in chaotic field lines were not so sufficiently clear in previous works. Therefore,
mathematical tools resolving above problems are required, and are developed
in this article. In the remainder of this section and the following sections,
we will introduce the mathematical tools and demonstrate the first numerical
calculations by using a Monte Carlo technique based on the tools.

If statistical property of perturbed field lines is not clear and effects of collision
can be rather represented as the Gaussian white noise, a motion of electron
strongly tied to a field line is expressed as the following stochastic differential
equations, i.e. Langevin equations, in the Cartesian coordinates (z,y,t) [10];

dr _ B.(z,y.t)

& By O ®



dy  By(x,y,1)
= B_f(__) W, (t), (4)

where B = (B,, B,, B;) is a magnetic field with B, > 0, W, and W, are the
Gaussian white noises and they satisfy the following conditions; for 4,7 = z.y

2D,6(t —1') forv =

Wi(t) Wj(t’) = ) ) (6)
0 for i # 3.

A diffusion coefficient D, is assumed to be constant and be determined by the
Coulomb collisions. Note that the diffusion coeflicients D, can be extended
to be functions of space (z,y), as is shown in the following sections. For the
collisionless limit, the coefficient D, — 0. We assume that effects of collisions
parallel to a field line are negligibly small as compared with the parallel com-
ponent of an electron velocity. The Langevin equations (3) and (4) are simple
as compared with the exact equations of motion; but effects of perturbed field
lines can be easily investigated and the simple equation is a good candidate
for fulfilment of our aim to develop basic techniques, so that we consider these
equations in this article. Of course, the methods developed here are appli-
cable to the exact equations, if the assumption of the Gaussian white noise
describing effects of collision is appropriate.

It is meaningful that the transport described by the Langevin equations (3)
and (4) is considered from another point of view, by following discussions in
Ref. [2]. The equations of a field line are given as dz/dt = h,{(x,y,?) and
dy/dt = h,(z,y,t), where h = (hy, hy) = (Bg/B, By/B;). According to Ref.
[2], the confinement of electrons strongly tied to field lines can be expressed

= —V-T(r1), (7)

where T'(r,t) a probability flux, p(r,t) a probability density, » = (z,y), and
= (8/0x,8/8y). For the collisionless limit I'(r,¢) = p(r,t)h(r, ), the con-
finement is given as

0D _ - [ptr, e, 1) ®)

Let field lines be chaotic. If p and h are split into two components: slowly
varying terms pp and hy, and fluctuating terms $ and h, ie. p = py + p and



h = hg + h, then the ensemble average yields

O -
S =-V-bh~ DyVip, (9)

where hg =0, § =0, h = 0, and the hypothesis of Brownian diffusion is
used [2]. On the other hand, when effects of collision are considered and are
supposed to cause a diffusion in space (z,y), the confinement is expressed as
follows. If the term —V - T" in Eq. (7) is split into two components —V - T’ =
—(V-To+V-T'): a drift term given by field lines —V-Ty = —V-[p(r, t)h(r, )]
and a diffusion term given by collisions —V - T' ~ D V2p, then we have the
following Fokker-Planck equation:

dp(r, t)
ot

= V- [p(r,t)h(r, )] + Do V?p, (10)

where Doy = const. is a diffusion coefficient of collision. Langevin equations
corresponding to the above equation are Egs. (3) and (4). The path integral
method gives a solution of the Fokker-Planck equation.

The organization of the following sections is as follows. In section 2 the path
integral approach is introduced to derive a transition probability, and it is
applied to the electron transport in statically disturbed field lines in section
3. Section 4 presents the conclusions.

2 Path integral approach

In order to understand statistical property of random electron motions ex-
pressed by the Langevin equations, a transition probability density is derived
as follows. For simplicity, we consider the Langevin equation in one dimension:
dz/dt = h{z,t) + W{t), where a function h(z,t) is an arbitrary function of
z and £, and a noise W(?) is described by the Brownian process w(t) with
a diffusion coefficient D: W (t) = dw(t)/dt. Note that most techniques devel-
oped in one dimension can be casily generalized into n dimensional space. A
path integral corresponding to a stochastic differential equation is originated in
Ref. [11], and in this earliest work the differential equation was limited under a
condition that a noise W and a path x are linearly related. In this article, a re-
lation between W and z is generalized to be nonlinear. By following discussion
in Ref. [11}, the probability density functional for the noise W (t) = dw(t)/dt
is given as K,[w(?)] = exp{—(1/4D) fdt [@(t)]°’}. The probability density
functional for the path z(t), K,[z(t)], is related with K, [w(t)] as follows;
K. [z(t)] Dz(t) = K, [w(t)] Dw(t), because there is a path z(t) for each noise



W (t). where an integral [ Dz(t)--- is a path integral carried out in the space
of the = functions. By using a notation of difference, the nonlinear relation
between W = dw/dt and z, W (t) = w(t) = £(t) - h[z{t), t], can be represented
as W, = (w, —w,_1}/e = (LEJ —z,-1)/e—h{z,.t 1), thus a ‘jacobian’ J be-
tween the ‘volume’ elementis of z(t) and w(t) is constant, where W, = W(t,),
dw = (w, —w;_1), dz = (z; — z; 1) and dt = (i, — t,—1) = £. Note that we
have to choose the prepoint position in k[z(t),t}, i.e. h{z;,—1,t,_1), in order to
avoid the ‘jacobian’ being a functional of z(t). Hence the probability density
functional K.[z(#)] is given by K,[w(f)] with a ‘jacobian’ J[z(t)] = const.;
K|z(t)] = const. K, [d(t) — h(z,t)]. Therefore we obtain the transition prob-
ability density:

F(b,a) = F(xp, tp; Ta- ta /CQ:E z(t)}

:f@x(t) exp{ /dt ( [z(t ),t])z}, (11)

where (z,,%,) is a start point and {z;,fs) an end point. The more accurate
and convenient expression of the path integral F(b,a) in actual calculation is
given as F(b,a) = limy.,o0 Fn(b,a), where

1 1
Fy(b,a) = E"Rf/[/dml dzs---dx, ---da:N_lexp{—ESN[b,a]} ,(12)

(13)

and C is a normalizing factor. Note that £ = K — V' in the ‘action’ integral
(13) can be interpreted as the ‘Lagrangian’ £ with the ‘kinetic energy’ K and
the ‘potential’ V. The time interval (t, — 1,) is divided by N steps of width
£ = (ty — to)/N, L.e. t; = je + t,, where {o = {, and iy = 1. A point z, which
is a position at a time £; is given as z, = z(t,), where To = Z, and zy = Tp.
Each path is constructed to connect the points z, with straight lines.

Using the transition probability density F' (b,a), we can define a probability
density function:

oQ
plTe.te) = jf dzq
00

as ta)- (14)



For an infinitesimal time interval ¢, the probability density function p(z, t+¢)
is given as

p(z,t+e) = / dz —exp{ ir) [(:1: =) _ h(z,t)rlp(z,t). (15)

e ( L ° I

We make the substitution z = = + 5 with the expectation that appreciable
contributions to the integral in Eq. (15) will occur only for small 7. Expanding
the Lh.s. in ¢ and the r.h.s. in £ and #, and integrating with respect to 7, we
have

p(m,t)+s?$+0(€2)+-“
:p(mjt)+g{_8h($,;f)(x,t) D azagcz )}+0(52)+,,_’ (16)

if h(z,t) is a function of class C>*. This will be true to order ¢ if p(x, ¢) satisfies
the differential equation:
Op(z,t) _ Oh{z,t)p(z,1) + D82p(x,t)
ot oz oxz 7

(17)

and we obtain the Fokker-Planck equation corresponding to the Langevin
equation in one dimension [10,12].

We remark that the probability can be expressed as

/dxb p(zp, tp) = [ dwz Glz(t), 1], (18)

S[db,'u.b)

where an integral [, ..\ dw* and a functional G[z(t),¢] are defined respec-
tively as

dye = I@wﬁ/dxhr / dry ;- /dzg f da;

X exp {m% Nz_zl (miHE_ 371')2} , (19)

=0

S(db 7ub)

Glz(t),t| =Glxo, 21, 22, ..., TN; to, E, b2,y - - -, ]



— exp {_255 ;‘; [(&;—J) h(zete) — %{h(mk.tk)}z}}, (20)

and the initial distribution is the delta function p(zg,tp) = 8(z¢ — z4). As a
result, the probability [;* dxy p(xe,fy) can be interpreted as the integral of
functlonal Glz(t),t] over the Wiener measure [13]. Then a start point z is
defined by the initial condition p(zg,ty) = 8(zg — z,) and an end point zy
is given as zy = x, + £o/Ty — o = Ty, where £ is a Gaussianly distributed
random variable with mean 0 and variance 1, and ¢ is a deviation ¢ = V2D,
The elements of an Wiener path, z1,s,...,Zx_1, Can be given by repeated
application of the so-called ‘interpolation formula’ [14]: for 7 =1,2,...,N~1

(N ~j)zy + 2N
N-j+1

(N —J)e
N—-j3+1

z; = (t;) = +&0 (21)

where £, = £(t,) means the random variable £ at ¢t ={,. Therefore, the prob-
ability density p(zs,ts) is allowed to be written as the sum of the weights
Gjz®(t),t] on the Wiener paths z'¥)(t):

p(Ts, tp) = é exp {#4(;;(_;@_2_)}

£
bt },]E}}o j;c[xﬂazgg)sxgg)a" x.gc)a"‘:xN;tﬁatla---:tN]:(22)
Np—roo =

where N, is the number of paths {z®(¢)} starting from zo = z, and arriv-
ing at Ty = Tp, Ty the k-th element of the ¢~th Wiener path z{9(t), and
C a normalizing factor. For example, the Ornstein-Uhlenbeck process [10,15],
dz/dt = —yz +dw(t)/dt, is considered and its distribution is calculated by the
path integral (22), then the distribution converges to the stationary Gaussian
distribution: p(z;) = [v/(2rD)]? exp{—vz,*/(2D)}, and numerical estima-
tions of cumulants characterizing the distribution are shown in Table 1, where
~ is a positive constant.

If a more generalized noise, W = W(z,t) = u(z)dw(t)/dt, is considered and a
Langevin equation is described as dz/dt = h(z,t) + u(z)dw(t)/dt, then a tran-
sition probability density is given as F'(z;, t; Zo, o) = F(Zy, ty; To» ta)/[Coulzs)]
with Z, = 5 dz/u(z) and 7, = f5* dz/u(z):

F(b,a) = F(Zv. ty; Za» ta)
f




pnge [

T;

[ a(f,,t,.)]“’}, (23)

where dw(t)/dt is the Gaussian white noise with the diffusion coefficient D =
const., a function u(z) is an arbitrary continuous function satisfying 0 <
u(r) < oc, a new path Z(t) is a function of z(¢), = z(z), satisfying dz =
Tiv1 — Ty = (T4 — z5)/ulz;) for § = 0,1,2,...,N — 1: ie. 741 = z; +
w(2;)(Z;41 — Z;), a function A is defined as h(Z,t) = h(z,t)/u(x)— Ddu(z)/dz,
the transition probability density F(Zs, ts; Za,ta) = u(zs)F (s, ts; Tasta)/Co
satisfies [dZ, F = 1, and Cy and C, are normalizing constants. Note that
the Langevin equation for a new path Z(t) is expressed as dZ/dt = h(z,t) +
dw(t)/dt, and the same mathematical techniques (18)-(22) can be used to
calculate the probability density p(xs,fs). See also Refs. [10,16].

3 Electron transport in statically disturbed field lines

To investigate effects of disturbed magnetic field lines and collisions on the
electron transport, we return to the Langevin equations (3) and (4). By using
results in Eqs. (11) and (14), the probability density p(zxs, ys,15) is given as

Pl v, ts) = [ D(t) [ Dy(®)
< I eXp{ o [dt [% :cy,t)r}, (24)

=r.y

where r(t) = (rz,r,) = (2, y) means a path in two dimensional space, a func-
tion A is defined as h(z,y,t) = (hg, hy) = (B./B;, By/B;) and means effects
of field lines, the initial condition is given as p(zo, Yo, %) = §{zo —T4)d(v0—¥a),
and D, and D, are diffusion coefficients for the z and y directions, respec-
tively. It is easy to show that the probability density of Eq. (24) satisfies the
Fokker-Planck equation in two dimensional space. Note that for the collision-
less limit D; — 0, the equations of a field line (1) and (2) are obtained. From
Eq. (22), the probability density is rewritten as

Np 2
T’Aa
p(xb’y”’t")_ﬁ o, _Z 11 eXp{ 415 (tb—t))}

Np—oo P E=li=xy
N 1 %) &
@OTig+1 —Tij L1, )2
Xexp{ b & [h g 2(hm.) ” (25)



where h = ha(z'9,50,£,), Y = k(0,50 1,), 70 = £, 7l = o,

J 70 Ty
A0 _ e g
o =Tz = Tas Ty0 = Tya = Yas IN—Tmb*—rb andr N—?‘be% When

more generalized noises, W, = W (rz, t) = u,(r,)dw;(t) /dt are considered and
Langevin equations are described as dr,/dt = h,(z,y,1) + u,(r.)dw,(t)/dt, a
transition probability density is given as

F (%5, Yo b; Tas Yas ta) = F(Z0. To» th; Fas Jar ta)/[Cotiz(6)uy(yn)}, (26)

F(-"Ubu yb: tba Ty, yav /’Dx [gy

< I exp{ ) /dt Fﬁ—h( )]2} (27)

1=I,y

with 7, = fo° drs/ui(r,) and 7, p = Tt dr; Jui(r,) for i = z, y; where dw;(t)/dt
is the Gau551an white noise with the dlffusmn coefficient D; = const., a func-
tion u;(r;) is an arbitrary continuous function satisfying 0 < u;(r;) < oo, a
new path 7,(¢) is a function of r,(t), i = 7i(r:), satisfying dF, = 7ij41 — Toj =
(rije1—Tig)/ui(riy) for j=0,1,2,... . N—-l:ie rijpa = T+ Ui (TigH(Fige1—
fi,), a function h; is defined as h; (:1: 7,t) = h(z,y, t)/ui(r;) — D.Ous(r;)/0rs,
the transition probability density F(Zy, Js, tp; £, Ja: o) satisties [ [ dTydfs F=
1, and Cj is a normalizing constant.

Hereafter, we demonstrate a Monte Carlo calculation of the electron distri-
bution under both effects of chaotic field lines and collisions. When evolution
of Eqs. (3) and (4) is directly solved under the finite calculation accuracy or
the coarse graining of space-time (z,y,t), the calculated final distribution is
affected by growing numerical errors of orbits, which are caused by property
of chaotic field lines [17]. On the other hand, the path integral method intro-
duced in this article has an advantage that it does not include intrinsically
the growing numerical errors, as is shown obviously in Eq. (25). According to
methods of Egs. (21) and (25), the Wiener paths (z“(t), y?(t)) are generated
randomly and the weights on the paths are integrated. In actual calculation of
an electron distribution in a disturbed magnetic field, we choose a magnetic
field modeled as the Arnold-Beltrami-Childress (ABC) field [18]:

N A
B, 0 asinwt + ccoswy
B=|B,|=]| 0 |+]|bsinwz+acoswt {. (28)
B; By esinwy + beoswz
where e, b and ¢ are parameters of the ABC field, and By is constant satisfying



The path integral method assists to understand qualitatively complex behavior
of the final distribution. An extent of contribution of the weight G[x(®(t), ¥ (¢), ¢]
on the Wiener path (z(9(¢), y'9(t)) is determined by a value of its exponent:

N-1 () P8y

T, g) 2
In G[z@(1), {E}(t) =y € 2) g+l — Ty 1 hi, . (29)
ey 2D £ 2 ( d )

=0

For simplicity, the Gaussian white noise W; = duw;(t)/dt with D, = D, =
const. is assumed hereafter. The first term of the exponent gives a drift of the
distribution. The second term of the exponent, i.e. —(1/2) ¥,, ,[h:(z, v, 1)]?,
plays an important role, as is shown below. For a case of the ABC field with
a=15b=1,¢=05, w=m/2 and By = 3 in Fig. 1(b), the second term
has deep hollows at z,y =~ +24+4n: n = 0,1,2,.. ., as is shown in Fig. 2.
Since a larger exponent gives more important contribution to the integral, the
distribution is expected to be hollow around z,y = +2+4n and to be affected
seriously by the hollows in —(1/2) X,_, , [h.(z, y,)]? for the = direction rather
than the y direction. This qualitative understanding agrees with an actual
calculation of the distribution in Figs. 3 and 4; the distribution for the z (or
y) direction in Fig. 4 is given as the integral of p(z;, ys, t;) with respect to
(or z). Estimation of the cumulants is shown in Table 2

In order to investigate effects of collisions, distributions of electrons with suf-
ficiently large diffusion coefficients, D, = D, = 10, are calculated as solid or
dash-dot lines in Fig. 5 and the camulants are estimated in Tables 3 and 4. We
find that the distributions drift to the positive or negative side with much the
same absolute value of (r;; —7; ,). and its shape for the z direction is distorted
but is close to the Gaussian distribution, where (- --), means a cumulant. Dis-
tributions for the y direction seems to be Gaussian without a hollow profile,
as is shown in Fig. 5(b), because Wiener paths for the y direction are not se-
riously affected by the hollows in —(1/2) ¥;_, ,[hi(z, y, £)°. If the parameter
a decreases to zero and the other parameters &, ¢, w and By are fixed (see
Fig. 1(a)), then the distribution approaches to Gaussian shown by dot lines in
Fig. 5, becanse the hollows of the second term of the exponent are negligible
in this case. Evolution of distribution is shown as solid lines in Fig. 6 and
the cumulants are estimated in Table 5. The distribution for the z direction
has the hollow profile with the period of —(1/2) ¥,;_, ,[hi(z, y,1)]?, but is still
close to Gaussian. The drift of the developing distribution is much the same
as at the previous time. Therefore, when the collisionality is large enough, the
distribution for the z direciion has a tendency to be the Gaussian-like distri-
bution with the hollow profile and the diffusion coefficients of collisions, and
the one for the y direction is not seriously affected by effects of field lines.



4 Conclusions

We have developed basic techniques of the path integral approach for the elec-
tron transport in a disturbed magnetic filed line structure. The path integral
method does not include intrinsically the growing numerical errors of orbits,
which are caused by evolution of a nonlinear differential equation under the fi-
nite accuracy. A method of understanding the qualitative content of Langevin
equations including chaotic orbits is given by this approach. The path integral
method assists to give one’s intuition in bringing together physical insight and
mathematical analysis. Monte Carlo calculations are demonstrated to show
these advantages and the electron distributions for the ABC magnetic field
are estimated. When the collisionality is sufficiently large, the distribution for
the z direction has a tendency to be the Gaussian-like distribution with the
hollow profile and the diffusion coefficients of collisions, and the one for the
y direction is not seriously affected by effects of field lines. The Monte Carlo
calculation was carried out by using 4 x 10° paths with 10° elements per path,
i.e. 8 x 10'? random numbers were used; they were generated by the Taus-
worthe sequence [19]. As is suggested by Eq. (25), the Monte Carlo scheme to
calculate a transition probability can be suitable for a parallel computation
by using parallel generators of random numbers. The effects of chaotic field
lines on the transport in various collisionality regimes after a long time will
be investigated minutely by using the path integral approach in near future.
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Table 1

Numerical estimations of cumnulants after a sufficient time. We assume that v = 10,
D =1, and z, = 1. Note that skewness is ({14~ 750N/ Uzy — :a:a}Q)rS/‘2 and kurtosis
. 2

is (x5 — Ta) e/ {(zp — T6)?)., where {---), means a cumulant.

numerical analytical
{Tp — ZTa)e —-1.001 -1 ({zp)e = 0)
({zp — 2a)%)e 0.1031 0.1 (D/v)
skewness 2.434 x 1073 0
kurtosis 3.983 x 1073 0

Table 2

Numerical estimations of curnulants for the ABC magnetic field withe = 15,6 =1,
¢ =05, w=n/2 and By = 3. We assume that D, = Dy = 2, (Zay Yas ta) = (0,0,0),
and t, = 1. Note that skewness is {(r,5 — Tua)®)e/ (T2 — rm)2)c3
((Tz,b - T1,a)4)c/<('rz,b - Ti,a)2>c2-

/2 and kurtosis is

z direction (¢ = z) y direction (i = y)
{Fop — Tale 3.232 3.011
{rip — T0)Pe 4.332 4.175
skewness —3.588 x 1072 1.552 x 1072
kurtosis —-1.773 x 107+ -1.506 x 10~

Table 3

Numerical estimations of cumulants for the ABC magnetic field with a = 15,6 =1,
e =05, w = 7/2, and By = 3. We assume that D, = D, = 10, (za, Yo, ta) =
(0,0,0), and t; = 1.

z direction (i = x) y direction (i = y)
{rib— Tiade 3.410 3.343
((rop — Tia) e 19.95 19.97
skewness —1.582 x 1073 —~1.895 x 10™3

kurtosis ~1.659 x 1072 —1.472 x 1072




Table 4

Numerical estimations of cumulants for the ABC magnetic field with ¢ = —15,
b=1,c=05,w=mn/2, and By = 3. We assume that D, = Dy =10, (z4,Ya,ts) =
{(0,0,0), and ¢, = 1.

z direction {£ = z) y direction (i = )
{Tip — Tiade —3.402 —3.361
{(rsp — 'r,-,a)2)c 19.95 20.09
skewness 1.632 x 1073 7.362 x 1073
kurtosis —1.643 x 1072 —1.743 x 1072

Table 5

Numerical estimations of cumulants for the ABC magnetic field with ¢ = 15, b == 1,
¢ =05, w = 7/2, and By = 3. We assume that D, = y = 10, (Ta, Yo, ta) =
(0,0,0), and t;, = 5.

z direction (i = z) y direction (i = y)
{rop — Tiade 3.400 3.363
{(rip — Ti0)®e 99.74 100.0
skewness —4.897 x 1073 —9.915 x 1073
kurtosis ~2.049 x 102 —2.043 x 1072
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Fig. 1. Field line structures of the Arnold-Beltrami-Childress (ABC) magnetic fields
with (a) e=0,b=1,c=05,w=n/2and By = 3,and (b) a =15, b= 1, ¢ = 0.5,
= /2 and By = 3. See Eq. (28).



Fig. 2. A function —(1/2)3,_, [u(2,y,1)]* witha = 15, b=1, ¢ = 0.5, w = 7/2,
By =3, and t = (.

distribution
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Fig. 3. A distribution p(z,y,t) of random electrons at ¢ = #, = 1 for the ABC
magnetic field with @ = 15, b =1, ¢ = 0.5, w = /2, and By = 3. We assume that
the start point (24,%a,%.) = (0,0,0) and diffusion coefficients Dy = Dy = 2, where
an isotropic diffusion is assumed and the diffusion coefficients are set to satisfy a
condition that random electrons can be spread sufficiently over one period of the
function -{(1/2)3°;_ . th(z, y,t)]? on the z-y cross section, v2D,t = 2.
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Fig. 4. Distributions at ¢ = #, = 1 for (a) the = direction and (b) the y direction.
The distribution for the z {or y) direction is given as the integral of p(z,y, t) in Fig.
3 with respect to y (or z}. A dot line is the Gaussian distribution with mean 0 and

variance 4.
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Fig. 5. Distributions of random electrons at £, = 1 for (a) the = direction and (b)
the y direction. A solid line is calculated by applying the path integral method to
the ABC field with @ = 15, 6 = 1, ¢ = 0.5, w = 7/2, and By = 3. We assume
that the start point (%4, Ya: €a) = (0,0,0) and diffusion coefficients D, = D,, = 10.
If @ = —15 and the other parameters are fixed, then a dash-dot line is obtained. A
dot line is the Gaussian distribution with mean 0 and variance 20.
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Fig. 6. Evolution of distributions for (a) the z direction and (b) the y direction. A
dash-dot line is the distribution at #, = 1 and a solid line is one at ty = 5, where
D; = Dy, = 10. A dot line is the Gaussian distribution with mean 0 and variance
100.
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