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Abstract

A novel method to obtain the full neoclassical transport matrix for gen-
cral toroidal plasmas by using the solution of the linearized drift kinetic
equation with the pitch-angle-scattering collision operator is shown. In this
method, the neoclassical coefficients for both poloidal and toroidal viscosities
in toroidal helical systems can be obtained, and the neoclassical transport
coeflicients for the radial particle and heat fluxes and the bootstrap current
with the non-diagonal coupling between unlike-species particles are derived
from combining the viscosity-flow relations, the friction-flow relations, and the
parallel momentum balance equations. Since the collisional momentum con-
gervation is properly retained, the well-known intrinsic ambipolar condition
of the neoclassical particle fluxes in symmetric systems is recovered. Thus,
these resultant neoclassical diffusion and viscosity coefficients are applicable
to evaluating accurately how the neoclassical transport in quasi-symmetric
toroidal systems deviates from that in exactly-symmetric systems.
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I. INTRODUCTION

Neoclassical transport theory! ™ describes diffusion processes caused by binary Coulomb
collisions between charged particles in magnetically confined plasmas. In most fusion plasma
experiments, observed particle and heat fluxes across magnetic surfaces are dominated not
by neoclassical transport but by turbulent or anomalous transport,’ althcugh the neoclas-
sical transport theory is still useful for predicting transport fluxes tangential to magnetic
surfaces such as poloidal and toroidal flows and bootstrap currents. Especially for nonax-
isymmetric systems, neoclassical analyses are important because neoclassical transport fluxes
due to particles trapped in helical ripples® ® are expected to be significantly large for high
temperature and play a key role in determining the radial electric field under the ambipolar-
diffusion condition.® Recently, quasi-symmetric toroidal systems such as quasi-axisymmetric
systems are attracting much attention as an advanced concept of helical devices, in which
the neoclassical ripple transport and the neoclassical viscosity against flows in the direction
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of symmetry are nearly suppressed by optimizing the helical configuration so as to make the
magnetic field strength independent of a certain symmetry coordinate.'® 2 Thus, there are
many demands for accurate and fast calculation of neoclassical quantities including the par-
ticle and heat diffusivities, the bootstrap-current coefficients, and the viscosity coefficients

for the poloidal and toreidal fows,

The neoclassical transport coeflicients are obtained from solution of the drift kinetic
equation.!31* Because of complexity of the magnetic geometry, calculation of the neoclas-
sical transport in helical systems often employs numerical methods.!* 2 The Drift Kinetic
Equation Solver (DKES)!*% is one of powerful numerical codes to directly solve the drift
kinetic equation. However, we should note that, even in such numerical calculations, ap-
proximated collision operators such as the pitch-angle-scattering (or Lorentz) collision model
are generally used instead of the full Landau collision term.?* By using this collision model,
perturbed distribution functions of unlike species and of different kinetic energies can be
solved independently, and therefore the neoclassical transport coefficients can quickly be
calculated. However, since such simple collision models neglect the field particle collision
part and break the collisional momentum conservation, the resultant transport coefficients
neither contain the non-diagonal part connecting fluxes and forces of unlike species, nor
recover the well-known intrinsic ambipolarity of the radial particle fluxes in the symmetric
limit."™® These errors seem to be a serious problem especially when using the numerical
results to show how the neoclassical transport in designed quasi-symmetric configurations
differ from that in exactly-symmetric systems. In the present work, it is shown how to ob-
tain the neoclassical transport coeflicients in general toroidal systems including the coupling
effects between unlike-species particles as well as the collisional momentum conservation.

Here, we follow the basic idea of the moment method by Hirshman and Sigmar? that, in
order to derive the neoclassical transport coefficients, the fluid momentum balance equations
and the friction-flow relations, in which the collisional momentum conservation is already
taken into account, are used together with the viscosity-flow relations obtained from the
solution of the drift kinetic equation. Since the test particle portion of the collision operator
dominates over the field particle portion for the I = 2 spherical harmonic perturbations
of the distribution functions,? it is more accurate to use the solution of the drift kinetic
equation with the pitch-angle-scattering collision model for derivation of the neoclassical
viscosity coeflicients than for direct calculation of the neoclassical particle and thermal
diffusivities, which are significantly influenced by neglect of the field particle portion. In
tokamaks, the neoclassical toroidal viscosity vanishes due to the axisymmetry, and analytical
expressions of the viscosity-flow relations are obtained for any collisionality in the Pfirsch-
Schliiter, plateau, and banana regimes.?? Analytical calculations of the the parallel viscosity
coefficient in finite-aspect-ratio tokamaks are shown to be in good agreement with numerical
results.?>2% In general toroidal systems with no symmetry, we need to calculate viscosities in
both poloidal and toroidal directions, and these viscosity coefficients are analytically derived
for the Pfirsch-Schliiter and plateau regimes.*”-*® However, for the banana regime, analytical
formulas are given only for the parallel viscosities.>?% 3! In order to accurately calculate both
poloidal and toroidal viscosity coefficients in toroidal helical systems for low-collisionality
regimes, we need to make use of numerical solution of the drift kinetic solution as effectively
as possible, and the present paper shows how to do that.

Taguchi also showed another method to calculate the neoclassical transport coefficients



in nonaxisymmetric multispecies plasmas.*” He ingeniously used a momentum conserving
collision operator and its self-adjoint property to derive the particle and heat diffusivities
and the bootstrap current coeflicient. In addition to these transport coefficients, our method
gives a useful recipe to obtain the neoclassical viscosity coefficients, which play an important
role in determining plasma rotation profiles. Furthermore, in the present study, the validity
of our procedures is satisfactorily verified by numerical examples, in which our results are
compared with analytical formulas on the parallel viscosity, the ripple transport coefficient,
and the geometrical factor of the bootstrap current in limiting collision frequency regimes.

The rest of this work is organized as follows. In Sec. II, we derive the linearized drift ki-
netic equation for the distribution functions with ! = 1 spherical harmonic part subtracted,
based on which two types of conjugate pairs of neoclassical fluxes and forces are specified.
When we take the parallel lows and the radial gradients as thermnodynamic forces, the par-
allel viscosities and the radial transport are regarded as fluxes conjugate to those forces. We
can also consider the poloidal and toroidal viscosities to be fluxes conjugate to the poloidal
and toroidal flows as forces. The inner product of these fluxes and forces represents the
entropy production rate associated with the neoclassical transport processes.**34 In Sec. I1I,
it is shown that the conjugate pairs of fluxes and forces defined in Sec. II are related to each
other by the Onsager-symmetric matrices.>® The poloidal and toroidal viscosity coefficients
are included as elements in one of the matrices. We find how to calculate these matri-
ces by using their relations to the monoenergetic diffusion tensor obtained as an output of
commonly-used numerical codes such as the DKES. Once these Onsager-symmetric matrices
are derived, all neoclassical transport coefficients for the radial particle and heat fluxes and
the bootstrap current are immediately obtained. In Sec. IV, numerical examples of these
procedures are shown and compared with several analytical predictions. Conclusions are
given in Sec. V. For readers’ convenience, useful formulas and relations for the Boozer®® and
Hamada®? coordinates, the poloidal and toroidal viscosity coefficients, and other neoclassical
transport coefficients are written in Appendices A, B, and C, respectively. Also, the case of
symmetric systems is described in Appendix D.

II. CONJUGATE PAIRS OF NEOCLASSICAL FLUXES AND FORCES

In general toroidal configurations, the magnetic field is written in terms of the flux
coordinates (s, 0,() as

B=9¢'VsxV8+x'V({xVs
— B,Vs + BV + BV, (1)

where # and ( represent the poloidal and toroidal angles, respectively, s is an arbitrary label
of a flux surface. The poloidal and toroidal fluxes are given by 27x(s) = (27)~' f,,, d°z B -
V6 and 2n¢(s) = (27) ' fy,) d°z B-V(, respectively, where V(s) is the volume enclosed by
the flux surface with the label s. The derivative with respect to s is denoted by ' = d/ds so
that ¢ = diy/ds and x' = dx/ds. The covariant radial, poloidal, and toroidal components
of the magnetic field B are written as B, = B - 9x/0s = \/gB - (V8 x V(), Bs = B -
dx/00 = \/gB - (V({ x Vs), and B, = B - 0x/0¢ = ,/gB - (Vs x V§), respectively, where
V9 =[Vs- (V8 x V()] * represents the Jacobian for the coordinates (s, 6,(). Here, we may



regard (s, 6, {) as either Boozer,*® Hamada3" coordinates, or arbitrary other flux coordinates.
Useful formulas for the Boozer and Hamada coordinates are written in Appendix A, where
it is also shown that the symmetry condition for the magnetic field strength in the Boozer
coordinates is equivalent to that in the Hamada coordinates.

The distribution function for the particie species a with the mass m, and the charge e,
is written as

o= foa [14 52 [ 5 (B8~ ges(BE0) | + fs ®

where the local Maxwellian distribution function is represented by fioy =
713 n,vr] exp(—=2) with the equilibrium density n,, the temperature 7,, the thermal veloc-
ity vre = (2T, /m.)'/?, and the normalized velocity z, = v/vy,. Here, E,=E-b(b=B/B:
the unit vector tangential to the magnetic field) is the parallel electric field, f'dl denotes
the integral along the magnetic field line, and (-) = §d6 §d(,/g- /V' with V' = §df § d(./g
represents the flux surface average. The neoclassical transport is caused by the deviation
fz1 from the local Maxwellian. We should note that the drifi kinetic theory is concerned
with the gyrophase-averaged part of the distribution function and that f,; is regarded as a
gyrophase-averaged function in the present work.
The linearized drift kinetic equation is given by

Vifar = CH{fu) = ~Vao -V fust + 20y B%‘“ﬁg)fm, 3)

where the operator ¥} = v;b - V and the guiding center drift velocity vi, = (¢/e.B)b x
(mavﬁb - Vb + pVB + ¢,V®) are used, and f,; and f,,r are regarded as functions of the
phase-space variables {x, B, u} {x: the particle’s position, E = im,v* + e,®: the particie’s
energy; g = m,v,2/2B: the magnetic moment). Here, the linearized collision operator C}
is defined by®

c:f(fﬂl) = Z[Cab(falsfbM) +Cab(faM; fbl)]: (4)

b

where C,; represents the Landau collision operator for collisions between the species a and

b.
Hereafter, we use (x,v,{} {{ = v/v) as the phase-space variables instead of (x, E, u).
Then, the collisionless orbit propagator V| is represented by

'3

5
5% (5)
where the second term in the right-hand side is related to the magnetic mirror force. The
E x B and magnetic drifts are not included in Vj,. Let us consider the expansion of an ar-
bitrary function F(x,v,£) by the Legendre polynomials P(§) [Py(€) =1, Ai(§) = &, B(¢) =
322 _ 1
1A TR ] as

Vi=véb-V - —v(l — &} b-VInB)—

F{x,v,§) = i FO(x,v,¢)

=0

FO(x,0,6) = B2 [ dnPi(m)F(x,v,m). ©)



of the distribution function f,; is associated with
the parallel flows and is expanded by the Laguerre polynomials LJ(°’ D2y (L (z2) =

143
(3/2) ;23 2 .
1, L7 (z;) =5 —z5,---] as

The | = 1 Legendre component Fusn

al

= o [ deo) @afef

2 2 9\ 24| (1=1522)
UTa €$u I:u”a + (SL'G 2) 5 Do fG-M + fai ? (7)

where the coefficients of the first and second Laguerre polynomial components are given
in terms of the parallel velocity . = n;! fd® f,v) and the parallel heat flow g, =
T, fd favy(z? ~ 3), respectively, and fI=1122) denotes the sum of the jth Laguerre
polynomial components with j > 2. Integrating Eq.(3) multiplied by 1 and imqv? over the

velocity space, we obtain the incompressihility conditions :
V.u,=V-.-q,=0 (8)

where u, = b +u., and g, = g|.b + q., with the diamagnetic perpendicular flows

Xa
u,, = ¢ 1y x b,
L
qia 9¢Xg
= - b.
. 5B Vs x (9)

Here, the thermodynamic forces X,; and X, are defined by

1 Op, 0P a1,
n, 0s ~ fagg X“Q:-.'Bs’

Xal = — (10)
respectively, where the pressure p, = n.T,, the temperature T;, and the electrostatic poten-
tial ® are flux surface functions independent of 6 and {. (Exactly speaking, V-q, = 0 is valid
to the lowest order of the small mass ratio m./m; < 1.} Integrating the incompressibility
conditions in Eq. (8) gives the local parallel flows as

_ {upB) o cXa s
Ul = (32) B+ e U,
2 2 (q”aB) CX(LQ -
L =2 B
7. T B, (B) e v ()
where U is given as a solution of

B.v(Z)—Bxvs v(—l—) (BUY =0 12
B) B2)’ - (12)

As shown later in Eq. {20), U is associated with the Pfirsch-Schliiter fluxes and its specific
expressions are written in Eqs. (A4) and (A8).
Now, let us define g, by



go = fur — £57. (13)

The neoclassical viscosities which we are concerned with are derived from the [ = 2 compo-
nent included in g,. Substituting Eq. (13) into Eq. (3), we obtain

__.fi nL ==
TR,

V-Hga (4' (ga} = Sy (14)

where the ] = 1 and ! = 2 Legendre component terms in the right-hand side are written as

(i=1) _ (BEI)
H, v B (Bz)

+CHAT), (15)

and

[ava{“w%? (=D rofreenala-9)
T VLl s i (- )+ 2 fdr+ ) (22 5) )] o

respectively. In deriving Egs. (14)-(16), Eq. (11) is used and fffl’j 2 in Eq. (7} is neglected
by employing the thirteen-moment {13M) approximation.® By including the high-order paral-
lel flow variables corresponding to the 7 = 2, 3, - - - Laguerre polynomial components of f (= 1},
the formulation presented in this work can be extended straightforwardly to the cases with
the higher-order (21M, 29M, - - .) approximations.® In Eq. (16), u® = u, - V8 (u§ = u, - V()
and ¢ = q, - V8 (¢ = q. - V() are contravariant poloidal (toroidal) components of the
flows, and oy, 0x4, OpPa, and o, are defined by

Ove = MU  B(6)B - VIn B = —Vj(m,véB),
B (- Vs xb
=P —{Ub
Oxa v z(é)ﬂa (U +—3
ope = —m v’ Py(§)Bp - VIn B,
O01e = —m v P(€)Br - Vin B, (17)

b- V(BU)

)-VlnB— 2 Py(€) oot

respectively, where Bp = Y'V{y x Vs and By = 9'Vs x V8 are the poloidal and toroidal
magnetic fields, respectively, represented by the Hamada coordinates (s,8y,(y) (the sub-
script H is added to the angle variables whenever the Hamada coordinates should be used)
and Q, = e,B/(m,c) is the gyrofrequency. Then, we find that the parallel, poloidal, and
toroidal neoclassical viscosities are written in terms of oy, op,, and o7, as

B-(vV-w)=([Foao.), B (V-0.))={[dvgoun(-3)),
(Bp (V- m,)) = < f d’v gaapa>, Br-(V-8,)) = < f P gu5pa (3,3 _ g»
(Br-(V-m.)) = <fd v gaaﬂ,> (Br-(V-8,)) = <jd3v o0 (:ﬁ - g)) (18)
where 7, = [ dvm, (v — 102) fu1 (bb—11) and @, = [ dum, (v - 102 )(22 ~ 3) fus (bb—L1).

We also note that the neoclassical radial particle and heat fluxes are written in terms of ox,
as



Pa = </ dsv gavda ; V5> - <f dsv gaUXa> + F(I:S’
a 5
q </d3v JuVda - VS (a: - —\> <fd3v a0 Xa (232 - §)> + Qf.'; 5 (19)

where I‘SS and ¢S /T, are the Pfirsch-Schliiter radial particle and heat fluxes defined by

_ Ps -
I‘ES = _é (UFHL:I> 3 ?-—;a = _Ec: <U‘F]i¢12> 3 (20)

respectively, with the parallel friction forces,
5
Flla1 = fd3v ma v CL{(fu), Fle = fd3v M| (:1:3 - 5) CL{f.1). (21)

Asshown in Refs 29 and 32, {f d*v g,0x,) = [.—T05 =TP" and T, ([ d®v g.ox.(22—5/2)) =
g. — @5 = ¢P" can be written as the sum of banana-platean and nonaxisymmetric parts.
Multiplying Eq. (14) by g./f.ar, integrating it in the velocity space, taking its flux surface
average, and using Egs. (16), (18), and (19), we can express the flux-surface-averaged entropy
production rate?®3* §, associated with g, per unit volume by the inner product of conjugate

pairs of fluxes and forces as

<fd3 v Gl )>

- (B . (v ‘ ﬂ-a)) ((Eg) M (B ‘ (V . @a» 5.?3(1 (%‘-“Baf;) anXﬂl + qf-::X
- ), 2 (df)
=12 [( (Voma)) S5m (B (V- 00)) g =7
+(Br-(V-m)) = < ) +(Br-(V-0.) 5129(1(;;5_1) , (22)

We find from Eq. (22) that the parallel viscosities (B - (V- x,)) and (B-(V -8,)) are
transport fluxes conjugate to the parallel flows (u;,B}/(B*) and (2/5p.){g)..B)/{B?) as
forces, respectively, and that the radial neoclassical fluxes I'™® and ¢*/T, are con-
jugate to the radial gradient forces X.; and X, respectively.  Also, as another
choice, the poloidal viscosities [(Bp - (V -7,)),{(Bp - (V- ,))] and the toroidal viscosi-
ties [(Br - (V - 7,)), (B7 - (V- 8,)}] can be regarded as transport fluxes conjugate to the
poloidal flows [(u?) /', (2/5p.)(¢’}/x’] and the toroidal flows [(uS)/4, (2/5p.){g5)/ ], Te-
spectively. Now, our main concern is how to obtain the transport matrices which connect
these conjugate pairs of fluxes and forces. This is explained in the next section.

Here, we consider the | = 1 Legendre component term H{'=!), which also makes a signif-
icant contribution to the solution g, of Eq. (14) especially in the weakly collisional regime
in order to insure ['] g,d€ = 0. Substituting Eq. (7) into Eq. (15) and using Eq. (11) and
the rotational symmetry of the collision operator C7, we can write H{=! in the following
form,

maD

fa‘»fl v{(Baa + Uﬂfa) (23)




where o, and 4, are functions of {s,v) and are independent of (#,(,£). We find in the next
section that ¢, is written in terms of the parallel flows and the radial gradient forces and
that 7, is unnecessary for calculation of neoclassical transport coefficients.

III. RESPONSE FUNCTIONS AND TRANSPORT COEFFICIENTS

Hereafter, as an approximation of the linearized collision operator in Eq. (14), we use
the pitch-angle-scattering operator defined by

PAS — g2
with the energy-dependent collision frequency 7%, given by’
3
=3 Mt (), 25)

b

where (3/7/4)7;' = 4mme’efln A/(m2v3,) (InA: the Coulomb logarithm) and H(z) =
[(2z? — 1)®(z) + a:(I)’(z)]/(Za:?) [®(z) = 27~Y/2 [§ exp(—#?)d¢: the error function]. The use
of CF% in Eq. (14) is considered to be a better approximation than that in Eq. (3) from the
viewpoint of the momentum conservation because generally we have [ d*v m,vCL(fa) #
[ v mayCEA3(far) but [ d*v mayCH{fa ~ (1= 1)) =0 = [d% vy CI%(fa1 — fl:l)).
Then, the formal solution of Eq. (14) with the source terms given by Eqgs. (16) and (23) is
written as

e o (R R 2 D ron ()

I
+ ao(Guq + mauEB) + MoV Ye f Udl} , (26)
where Gy, and Gx, are defined as solutions of
Gya OUa
i-cr) | goe | = 2ee . (1)

In deriving Eq. (26), we have also used the relation,
(Vi — C¥5)(Gy, + mav€EB) = mviuB. (28)

We can easily find that the last term including -y, in the right-hand side of Eq. (26), which
is independent of £, makes no contribution to flows, viscosities, and radial transport fluxes.

Here, we define the inner product (F, G) for arbitrary functions F(8,(, ) and G(8,¢,¢)
by

(F.G)=3 [ de(Fe), (29)

where (-} denotes the flux surface average. With respect to this inner product, the operators
Vj and CF*S are found to be antisymmetric and symmetric, respectively:

— 8§ —



WF,G) = (R VG), (CS¥F,G) = (F,C;VG). (30)

Then, substituting Eq. (26) into the relation (v€B,CI*%g,) = 0, which is derived from the
definition of g, in Eq. (13), we can represent a, by a linear combination of the parallel flows
and the radial gradient forces as

o %maTay}‘)mg(Bi) — (0va, Gua) I:(TUMGUQ) { (?gé?) + "5}2“,: (((Igf;’) (Ii - ‘g)}
Hove Gxa) {Xus + Xz (a2 - )} 1)

Substituting again Eq. (31) into Eq. (26), g, is rewritten as

gt (2 2O Yoo -]

i _
+ el Y f Udl], (32)

where G-, and Gx, represent the responses of the distribution function g, to the parallel
flow {uy,B)/(B*) and the radial gradient force X,,, respectively, which are defined by

-1
gya — [1 3(0'Uaa GUa) ] |:GUa < 3(0UaaGUa) mavgB] ,

" 2m,T,v%z2(B?) 2m,T,v}22(B?)
g(aUaaGXa) 3(JUaaGUa) -
a = a 1 - ja a .
Gy Gy, + 2 aTaV%$g<B2) l 5 aTaV?):Eg(Bz) (G(, +m UfB) (33)

Using Eq. (30) and the definitions of o’s, G’s, and G’s, we can prove the following relations:

(o-Uaa GXa) = (UXa: GUa): (O-L'TCH gXa) = (UXaa gUu): (34)

which are associated with the Onsager symmetry33™3> of the transport coefficients.

Substituting Eq. (32) into Egs. (18) and (19), we obtain the linear rela-
tions between the conjugate pairs of [(B-(V-#.)),(B-(V-8,)),I>™ ¢>™/T.] and
[(ul|aB)/<Bz>’ %(qHaB)/(BQ%Xah X,2] as

(B . (V . “a)) Mal Ma2 Nal Na2 (UHaB)/(Bz)
(B . (V . @a)) — Mu2 Ma3 Na2 Na3 %(QH‘IB)/(B2) (35)
1’\2[1 Nal Na2 Lal La2 Xal '
q};)n /Ta Na2 Na3 La2 La3 Xa2

Here, the coefficients M,;, N,;, and L,; (f = 1,2,3) in the Onséger—spmnetric matrix are
written in the form of the energy integral:

2 oo . 5 i—1
[Mos, Nojs L) = na—re [ dKVEe ™ (K= 2} [Mo(K), Nu(K), LK), (36)
vV Jo 2
where M,(K), N,(K), and L,(K) represent contributions of monoenergetic particles with
K = 22 = mv?/2T, to M,, N,i, and L., respectively, which are given by the inner
products of the source terms ¢’s and the response functions G’s as

Mg_



. 1 . 1 3 Ub’aaGLa
Ma(K) = E(U{;a:gb’a) - E(O-UmGUa) [1 2m, T UD(K)K BQ):]
1 1 O'Ua) GUa ] -
Nu(K) = —(0xa)Gva) = 7 (0xa; Gua) |1 { 2m, T, (K K/ B%
La ‘a L TAETAT A
1 1 3(0 e Gua)’ 3(ovesGra) |7
L,(K)= E(Uxmg)(a) = i(UXmGXG) + I, T2ve (K)K (B?) [1 2m, T, vp(K)K{B?)

In the same way, we obtain the Ilinear relations between the
conjugate pairs of [(Bp-(V-m.)),(Bp-(V-0.)),Br (V- 7)), (Br-(V-6.))] and
Hul) /X s 5o @)X s ()W 5o i) ] s

(Bp - (V- m,)) Mapp Mupp Mupr Mapr (“6)/ X

(Bp-(V-0.)) | _ | Maapp Mozpp Muapr Muzpr | | 5o ={af) /X’ (38)
(Br-(V-m,)) | | Mupr Mapr Marr Maorr WSy |
(Br-(V-0,)) Mopr Maapr Moorr Masrr a,%(qﬁ)/ L

Here, the Onsager-symmetric poloidal and toroidal viscosity coeflicients M,;pp, M,;pr, and
M.,rp (7 =1,2,3) are also written in the form of the energy integral:

2 p> . 5371
[(Myipp, Mujpr, Majrr) = naﬁfo dKVEKe X (K — 5) [M,pp(K), Mypr(K), Morr(K)],

(39)

where M_pp(K), M.pr(K), and Myr(K) represent contributions of monoenergetic particles
to M,ipp, Maipr, a.nd M, j1, respectively, which are given in terms of M,(K), N,(K), and
L.(K) as shown by Eq. (B5) in Appendix B.

Now, we need the solutions Gy, and Gx, of Eq. (27) in order to obtain the monoenergetic
coefficients [M,(K), N,(K), L,(K)] in Eq. (37). Since, in the DKES!*2® and other numerical
codes for the neoclassical transport coefficients, the drift kinetic equation to be solved is not
Eq. (14) but Eq. (3) with the pitch-angle-scattering operator, they appear at first to be
irrelevant to calculation of the (Gy.,Gx,) and [M,(K), N,(K), L,(K)]. However, in fact,
these codes can be made use of to obtain them as shown in the following.

When solving Eq. (3) by the DKES the right-hand side of Eq. (3) are written as a linear
combinations of the source terms ¢ and o] defined by®

po 20 [1+1P(§)]bxv1n3 v

T TEe, L T2 >
2

0;53; P(¢)B-VInB =V (—v§) (40)
Vp

which are associated with the radial particle flux and the bootstrap current, respectively.
Here, it is noted that, since we have neglected vg - Vf,1 (vg = ¢E x B/B?) in Eq. (3), o7
defined in Eq. (40) corresponds to o3 (£, = 0) in Rij and Hirshman.?® Effects of vg - V£,
such as nonlinear E.-dependences of the neoclassical transport are included in the DKES
although the E,-dependences of the coefficients (M,;, N4;, L,;) are not considered here but



remain as a future task. It is useful to find that oy , and G, are directly related to g7 and
(F;" + Fy ), respectively, by

Ope = —M V53,
Gro = —mup(F; + F5), (41)

and that ¢ x, and Gx, are written in terms of ¢, and (F\" + Fy ), respectively, as
B .
TFxg = —O'1+ - Wl (ﬁ-’b‘{U) y

Gxa = —(F1+ + Ff) -

V?)B I
dl.
5 f dl (42)

Here, (Fi' + F, ) and (F; + F; ) represent the response functions associated with the source
terms o7 and of for the case of E, = 0 in Rij and Hirshman,?® where the superscripts +
and - denote the even and odd parts with respect to ¢, respectively. Then, substituting
Egs. (41) and (42) into Eq. (37), we have

M(K) = T (O Dui) [1 - B PO
NJ(K)= ?a v (K)D13(K) [ 3ma;§f§gg§§u{)]_ ;

2T, K (B?) 2T, K (B?)

a

LG(K) — Tl (DH(K) Bg;:l) (U2> 3may%(K)[DIS(K)] |:1 _ 3mayf)(K)D33(K)]— ) , (43)

where
Du(K) =3 [ delo/ ) Gik=19) (44)

represent the transport coefficients for monoenergetic particles which can be obtained as an
output of the DKES?® (for the case of E, = 0). For collision frequencies in the banana and
plateau regimes, the term (B?v?v4/302)(U?) of L,(K) in Eq. (43), which corresponds to
the Pfirsch-Schliitter-flux part, is negligibly small.

Now, we have found that numerical solvers such as the DKES can be uti-
lized to calculate the coefficients [M,(K), N,(K),L,(K)] by using Eq. (43). Once
[M.(K), N.(K), L,(K)}] are given, the monoenergetic poloidal and toroidal viscosity co-
efficients [M_pp(K), M pr(K), M.77(K)] are immediately derived from Eq. (B5) in Ap-
pendix B, and the energy-integrated coefficients (M,;, Nu;, Lo;) and (My;pp, My;pr, Mojrr)
are obtained by Egs. (36) and (39), respectively. Then, all the neoclassical transport co-
efficients for radial fluxes and parallel currents can be calculated from (A,;, Ny;, L,;) as
shown in Appendix C. It should be noted that the parallel momentum balance equations
and the friction-flow relations with collisional momentum conservation are used to derive
the neoclassical transport coefficients in Appendix C. Therefore, these coefficients include
the coupling effects between uniike-species particles as well as they recover the mtrinsic
ambipolarity of the radial particle fluxes in the symmetric limit. These properties are not



obtained by only solving the drift kinetic equation (3) without the field particle collision
term C,p(fars, for). For the symmetric case, M,(K), N,(K), and L,(K) are proportionally
related to each other as shown by Eq. (D4) in Appendix D.

In the Pfirsch-Schliiter regime, [v3(K) > vroVK /L., (L.: the characteristic length of

PN —lon mlacee Llhia £211 1N Llpn dhs o lada Arpievan To_ BT \ -0 TTY N
lulisl.u;luu J.I_l.ll.ll\.») GRURLE  Liiy 1aGiy IJ.J.I.U)[I, [ e i) Fxﬁvuacu LPLRiiiiiy LVICEV 3 f dip YO\ ) 2

(6B/B)*?vr,vK/L,, (§B: the field strength variation in the magnetic npples)] and the
banana regime [v5(K) < (6 B/B)**vr,v/ K /L], the monoenergetic coeficients M, (K) and
N,(K) associated with the parallel viscosities can analytically be given by*?

2mav3,Tea{(B - VIn BYYK 2|1, .v3(K)]™! (Pfirsch-Schliiter)
My(K) = { i“ma”Ta(BQ)]/Q(“hfz/V N )2 00) |Brre P lmx — ! K2 (plateau)
§MaToq (fi/ f)(BY)K [1aavp(K)] (banana)

?((B Vin B [pg(K)/v]™! (Pfirsch-Schliiter)

= maur K x { Fm{(BY)? (42 VN imm#0.0) 1B P mx — ndff]) (plateau) (45)
Uil f)B)wB(K) 0] (banana)
and
CG{BS)

No(K) = =T ML(K), (46)

respectively. Here, G\®¥ is a flux-surface function, which represents the geometrical factor

associated with the bootstrap current®?* 313338 [gee the paragraph after Eq. (49)], and is
determined by the magnetic configuration ag®*3®

(472/V'){(B - VIn By~ [BP**((81n B/864)(B - V1n B))

QBS) —B>*((8in B/8(x)(B - Vin B))] (Pfirsch-Schliiter)
* (Zmm£0,0) 1Brn P lmx’ — B’Z’ﬁ'!)_l .
% E(m,n);é(u 0 wmn |2(mBé ozer) ‘IIBg oozer})(mxl _ nl(”)/lmx' _ nd)f’ (plateau)
(47)

and the analytical expression of G{®® for the banana regime is given in Refs. 5 and 29—
31. When we evaluate G{® for the Pfirsch-Schliiter regime given by Eq (47), Eq. (A11)
is useful. In Eq. (45), fi = 1 — f. and f. = (B%) 2 2 dA A/{(1 — AB)Y/2)) represent the
fractions of trapped and circulating particles, respectwely, and v4{ K) for the Pfirsch-Schliiter
Lesuue is gureu uj‘2 u’% = 3"D + VE = /3\1 n,'x} zb ‘ab L{é\zb, - 3G\wb)}/..b T':\T /IT;,)\.L +
my [ mg)G(zs)/z,] with G(z) = [®(z) — 2®'(x)]/(22?). Thus, in order to correctly reproduce
the viscosity coefficients for the Pfirsch-Schliiter regime, we should replace v§ with 4/3
when using the pitch-angle-scattering operator in Eq. (24) for that collisional region. In
Eqs. (45) and (47), B, for the plateau regime are the coefficients in the Fourier expansion
of B:

B =B (1 4 Y B expli(mb - ncn) (48)

(m,n)#(0.0)

where we should note that the existence of the plateau regime requires |3,,.| < 1 and that it
does not make a significant difference which of the flux-coordinate systems (s, 8, ) is used to



calculate 3,,,, for the plateau regime. If all the particles in the velocity space are dominantly
contained in either of the Pfirsch-Schliiter, plateau, and banana regimes, we obtain from
Egs. (35), (36) and {46},

(B ) (V . ﬂa)) _ 2y -1 Mal Ma? (uHaB> _ (BS)_C; Xal )
[ (B-(V-@,)) } = (&) [ My M ] ({ 5= (@12 B) ] N [Xaz ] - @
As shown by substituting Eq. (49) into the parallel momentum balance equations [see Eq.
(C1) in Appendix C], G{PS) represents the geometrical factor which enters the coefficients re-
lating the parallel flows to the thermodynamic forces. Also, it is directly confirmed from Eqgs.
(46), (C5), (C8) and (C10)—(C12) that the geometrical factor G{®°) appears in the necclassi-
cal transport coefficients for the bootstrap current as well as in the non-diagonal coeflicients
connecting the electrons’ fluxes (forces) with the ions’ forces (fluxes). For symmetric systems
described in Appendix D, the geometrical factor G{FS) defined by Eq. (46) is independent of
the collision frequency [see Eq. (D5)] and therefore Eq. (49) is always satisfied. For example,
GBS = BC(B""“” /X' in the axisymmetric case. However, for non-axisymmetric systems, Eq.
(49) is not generally valid (except for the limiting collision frequency regimes), and therefore
the two independent 2 x 2 matrices [M,;] and [N,;]| obtained from the energy integral in Eq.
(36) should be used instead for relating the parallel viscosities to the parallel flows and to
the radial gradient forces.
We can analytically express the monoenergetic coefficient L,(K') for the Pfirsch-Schliiter
and plateau regimes as®

M, (K)
LK) = By
(4x?/V')2((B - V1n By~ ([ BE***(91n B/86y)
y - B(SB;"’M) (8In B /aglﬂ)?) (Pfirsch-Schliiter)
(X () 20.0) 1Bmn|*Imx’ — m,b'II;” .
% Z(m.n)#(ﬂ.ﬂ) |18mn|2(mBé oozer) nBé uozer))zllmx; _ nwf! (plateau)
m,c’ 3/2
= eg UTGK
2(4m?/V")}(B?)~*([B{**"(91n B/86x)
y — B{®*(81n B/OCu )| VA (K) [v] (Pfirsch-Sehliiter) <,
im(BHY 3 (4n? V")
% E{m.n)#{ﬂ.ﬂ) |ﬁmn |‘2(mBéBoozer) N ntBoozer])fl/lle _ m,b’| (plateau)

which shews that, for these regimes, L (K} has the same dependence on the collision fre-
quency and the energy as M,(K).

It is well-known that, for non-symmetric systems, the centers of trapped-particle orbits
move across magnetic surfaces and cause the neoclassical ripple transport in the weakly
collisional sub-regime (so-called 1/v regime).> ® The bounce-averaged part of the distribution
function (f..)s = (§ fadl/v;)/(§ dl/v;) makes no contribution to the parallel viscosities®**
and consequently to M,(K) and N,{K), while it contributes dominantly to the radial particle
and heat fluxes and to L,(K) in the 1/v regime. Using the analytical solution of the bounce-
averaged drift kinetic equation by Shaing and Hokin,” we obtain L,(K)[x 1/v3(K)] as



2
1 m.c K?
LK) = ) b GO/
(&)= /ot (ea«pf) UraTaa e gy e

2 (1/v)
= 1 mazc vr K7 ; 2G‘;
2v/2n% €2 (P2 (K) /Y]

where G{1/*) represents the geometrical factor for the neoclassical ripple transport defined

by’
s/ der\’ der\ [ Oen\’ den )

1 v)
with G, = 16/9, G» = 16/15, and G; = 0.684 for the magnetic field strength B = By[1 +
er(s,6) + €u(s,8) cos(l0 — n¢)] (ler] € 1, len| <« 1). Here, the safety factor g(s) = ¢'/x' is
assumed to satisfy ng(s) > [. For this case, the 1/v regime is defined by (8); < v%(K)/en <
e}fwa /(R/n), where R denotes the major radius of the torus and (6); represents the bounce-
averaged poloidal angular velocity of helically trapped particles. [Note that, in the present
study using Eq. (3) as the basic equation, we do not treat the case of c¢E,/ (ng) 8 >
v%(K)/eg (r : the minor radius of the torus).| In the 1/ regime, M,(x v}) and N,{x
%) make little contribution to the radial transport fluxes so that Eq. (35) gives I'>® ~
LoiXa + LewX,e and g™ /T, ~ L,;3X,1 + L,3Xa9, in which dependence on X;; and X,
with b # a are negligible. This fact justifies conventional calculations of the neoclassical
ripple transport using the pitch-angle-scattering collision model,”® in which the collisional
momentum conservation and the non-diagonal coupling between unlike-species particles are
not taken into account. However, in general, we should use all elements M,;, N,;, and L,; in
Eq. (35) to calculaie the total neoclassical transport fluxes, especially when the magnitude
of the banana-plateau transport induced by the parallel viscosity is comparable to or larger
than that of the ripple transport as is the case in quasi-symmetric systems.!® !?

(for the 1/v regime) (51)

IV. NUMERICAL EXAMPLES

Here, in order to illustrate the validity of the procedures described in the previous sec-
tions, we present numerical results for the simple non-symmetric system, in which the mag-
netic field strength is given by

B = By(s)[1 — €,(s) cos 8z — €x(s) cos(lfz — n(3)]. (53)

The mean minor radius of the flux surface is used for the radial coordinate s. For simplicity,
we consider a single flux surface of a large-aspect-ratio torus with the minor radius s = 0.4 m
and the major radius R = 4 m. Then, parameters used for numerical calculations are
determined as By =17,6,=0.1,0<¢6 <0, ¢/ =04T-m, X' =015T - m (g=¢'/ =
2.6667), B(B°°‘er) =4T-m, BéB‘m” =0T - m (no net toroidal current), [ =2, and n = 10
(correspondmg to the La.rge Helical Device®®). Using these parameters and Eq. (53), we can
calculate (B?) = 4n%/(J2" dfp [2™d(sB~2) and V' = 4x2(¢/ B 4 ¥ BP™)/(B2).
Hereafter, subscripts representing particle species are omitted.



The monoenergetic diffusion coefficients [Dy(K), D ;(K), Dy3;(K)] are obtained by
using the DKES. Figure 1 shows D}, = Dy (K)/[ v;(Bor/Q)?K%?], D}, =
Dy(K)/[vr(Bur/Q)K], and Dj; = N(K /(3vr K'/?) as a function of vp/v for €, =0,
0.005, 0. 01 0.02, 0.05, and 0.1. Substituting these monoenergetic diffusion coefficients into
Eq. (43) and using Eq. (B5) give other monoenergetic coeflicients [M(K), N(K), L(K)] and
(Mpp(K), Mpr{K), M77(K)], which are illustrated in Figs. 2-5.

Figure 2 shows M* = M(K)/(mvrK3/?) as a function of vy, /v. Here, M* is written in
terms of D3, as

2 yx
M* = 3(VD/U) 13‘33 . (54)
1 = 5(vp/v)D33/(B?)
In Fig. 2, dotted curves with open circles and solid lines represent M* obtained from nu-
merical results of D}, in Fig. 1 and from the analytical formulas in Eq. (45), respectively.
When the formula for the Pfirsch-Schliiter regime given by Eq. (45) is used in Fig. 2, vy
is replaced with 3vp. However, as mentioned after Eq. (47), the correct functional form
of vr(K) should be taken into account when we calculate the energy-integrated viscosity
coefficients. We can see an excellent agreement between the numerical and analytical results
except for transition regions between the banana, plateau, and Pfirsch-Schliiter regimes. A
simple rational approximation,” which smoothly connects the three analytical expressions,
would be useful for this case.
Figure 3 shows L' = L(K)/[1(vr/T)(Buvr/Q)*K3/?] as a function of vp/v. Here, L* is
given in terms of D}, and Dj; by

vp/v){(Di) /(B?)
— 3(vp/v)Di3/(B?)

In the same way as in Fig. 2, dotted curves with open circles and solid lines in Fig. 3
represent L* obtained from numencal results of D}, Dj; and D}, in Fig. 1 and from the
analytical formulas in Egs. {50) and (51), respectively. We see that, in the 1/v regime with
e, = 0.005 and 0.01, numerically obtained L, are significantly smaller than the analytical
predictions. This is because, for such small ¢,,’s, the fraction of helically trapped particles are
overestimated by the analytical formula in Eq. {51), where the lowest-order guiding-center
motion is regarded as a toroidal one instead of a parallel one under the condition of ng > I.
Recently, an improved formulation of the neoclassical ripple transport has been given by
Beidler and Maafberg.®

We plot the geometrical factor for the
bootstrap current GBS = —(e(B?}/c)N(K)/M(K) [see Eq. (46)] instead of N(K) as a
function of vp /v in Fig. 4. Here, G®Y is written in terms of D}; and Dj, as

37,
2\

L' = D}y — 2 /0) () + £ (55)

(B*)Diy

cms = _ \P s
(vp/v)Di;

(56)

In Fig. 4, dotted curves with open circles represent G'®>) obtained from numerical results
of D}, and Dj; in Fig. i. The axisymmetric case with ¢, = 0 is given by the constant,
GBS) = BiBeozer) /47 — 96 667. Analytical results given by Eq. (47) for the Pfirsch-Schliiter
and plateau regimes are represented by thick line segments, which are in good agreement



with the numerical results, although the latter do not show clear constancy in the plateau
regime.

Figure 5 shows [M}p, —Mpr, Mir] = [Mpp(K), —Mpr(K), Myr(K)/[(47* [V ymur (/X Y K3/

as a function of vp/v. For ¢, < 0.02, Mrr takes small negative values around the plateau
regime, which are not piotted in Fig. 5. As ¢, increases in the Pfirsch-Schiiiter and piateau
regimes, the magnitude of the viscosity coefficients Mpr and Myr increases more rapidly
than Mpp. It is also seen that, in the 1/v regime, Mpp > —Mpr =~ My « 1/vp, which re-
flects from the fact that the parallel viscosity (B-(V-7,)) = (Bp(V-7,)) +(Br-(V-&,) )} (x
vp) is much smaller than the viscosities in other directions (o 1/vp).

From the results shown above, it is confirmed that all neoclassical coefficients for the
viscosities, the banana-plateau and non-symmetric radial transport fluxes, and the geomet-
rical factor associated with the bootstrap current are obtained straightforwardly by using
our method.

V. CONCLUSIONS

In the present paper, we have presented two types of Onsager-symmetric matrices: one of
them, with the elements (M,;, Ny;, L4;}, relates the parallel viscosities and the radial fluxes
to the parallel flows and the radial-gradient forces as in Eq. (35), and the other, represented
by (Ma;pp, Majpr, Lajrr), connects the poloidal and toroidal viscosities to the poloidal and
toroidal flows as in Eq. (38). We have shown that the matrix elements (M,;, Nuj, Lg;)
can be obtained readily from the output of commonly-used numerical codes such as the
DKES and that the poloidal and toroidal viscosity coefficients (M, ;pp, My;pr, Loj7r) can
be derived directly from (M,;, N,;, L,;). Using the matrix elements (M,;, N,;, L,;) in the
parallel momentum balance equations combined with the friction-flow relations yields the
neoclassical transport coefficients for the radia!l particle and heat fluxes and the bootstrap
current, which include the coupling effects between unlike-species particles as well as the
intrinsic ambipolarity of the radial particle fluxes in the symmetric case. These procedures
for accurate calculation of neoclassical viscosity and transport coefficients, the validity of
which has been verified by numerical examples, are considered to be useful especiaily when
evaluating how these neoclassical coefficients in quasi-symmetric toreidal systems such as
quasi-axisymmetric systems deviate from those in exactly-symmetric systems. Extension of
the present work will be reported elsewhere to include nonlinear effects of the radial electric
field on the reduction of the neoclassical transport.
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APPENDIX A: BOOZER AND HAMADA COORDINATES
We consider general toroidal configurations, in which the magnetic field B is written

as in Eq. (1) of Sec. II. In the Boozer®® coordinates (s,85,(g), the covariant poloidal and
toroidal components of the magnetic field B are flux-surface functions given by

Oozer 2
B{® B. X _21),

663 c
QOZEer 6x 2
BEe=r) = B = Ef;f,(s). (A1)

Here, the poloidal and toroidal currents are defined by I¢(s) = Js2(syB - dS and I(s) =
fsz(y B - dS, tespectively, where S 4(s) represents the part of a 6 = constant surface that
lies outside the flux surface with the label s and Sy(s) is the part of a { = constant surface
that lies inside the flux surface. The Jacobian for the Boozer coordinates is given by

VI8 =[Vs- (Vg x V()] ' = —‘%% (A2)

Next, in the Hamada® coordinates (s,85,(y), the contravariant poloidal and toroidal
components of the magnetic field B and the Jacobian ,/gy are flux-surface functions written
as

47?

B(BHamada) =B Vg = mX’(S)a
B CB.V(n — 47? .
(Hamada) — — ° CH - Vl(s)dj (S)’
VI
VIH = [Vs - (VOy x V(g)] ! = 47(;), (A3)

respectively. Here, the poloidal and toroidal fluxes are given by 2xx(s) = (27)! f;,(,, &’z B-
V6 and 2m1(s) = (2m)7" fi(,) d*x B - V(, respectively, V(s) represents the volume enclosed
by the flux surface with the label s, and the derivative with respect to s is denoted by
" = d/ds. Then, we find that, using the Hamada coordinates, Eq. (12) is easily solved to
yield

U=

(A4)

E Bgﬂamada) ~ (BéHamada)> _ _E BE(?Hamada) <B{Har!mda )
X\ B (B?) ¥\ B (B )’

where B{#*™d) = B. (8x/80y) and B{"™™** = B - (8x/8¢x). We should also note that
(BéHama.da)) — B;Boozer) and (B(Hamada ) _ B((Boozer)'

The transformation from the Boozer to Hamada coordinates?® are written in terms of
the generating function G as

e
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(AS5)
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Here, the generating function G(s, g, {g) is periodic in 85 and (g and satisfies the magnetic
differential equation,

B-VG= — - —, A6
/gH \/.g’_B ( )
which is rewritten as
_ (8%
= - 1.
( s +){69B) B? (AT)
Comparing Eq. (12) with (A7), we find that U is related to G by
- V!
U = 1 35B X Vs VG
B Boozer) aG (Boozer) 6G
= (B0 35, - B,
_ l (Hamada) &% 6G (Hamada) oG

From Eq. (A5), we obtain

x  dx  8C
56, ~ 08, T 86,V D
ox  0x G

_ , A9
3¢y 3Gy T ag, V9P (49)
and
8G (B 6G
06s  B? 88y’
oG _ (B?) 0G
B¢, =5 3y’ (A10)

where the partial derivatives 0/06y and 8/8(y are taken with the Hamada coordinates
(8,0u,Cu) used as the independent variables. Using Egs. (A9) and (A10), we have

OlnB 8lnB
B {Boozer) B(Boozer)
06y ' 8Cu

— {(Hamada) v’ 2 0G\lnB _ (Hamada) Vv’ 9 JG\ dlnB

- (B‘: + 3B )agﬂ) 36y \D =2 B3, ) oc,
Vs xVInB)-. ( )

— B2 (Boozer) 2 dlnB (Boozer) V{ 2 aG 31113

(B [(BC % = >BCB o, \Z Tip® )395) &g } (ALD)

which is useful when evaluating G{®® and L, for the Pfirsch-Schliiter regime [see Eqgs. (47)
and (50)]. We also find from Eq. (A7) that

!

=4




3G 2 dinB

BV = — ,
393 v GH 863 )
oG 2 8InkB

B-V = — , Al2
9(p Van s (A12)

Here, let us assume that ¢;0B/00g + ¢,0B/3(p = 0, where ¢, and ¢, are constants
and (e1,¢2) # (0,0). This condition implies that the magnetic field strength is written as
B = B(s,cfp — c1{g), and it is satisfied approximately in quasi-symmetric systems, where
the neoclassical ripple transport is suppressed. The axisymmetric, poloidally-symmetric, and
helically-symmetric cases correspond to ¢; = 0, ¢» = 0, and ¢; - ¢; # 0, respectively. Under
this symmetry condition ¢,0B/00g+c,0B /8 = 0, we find from Eq. (A12) that ¢,8G /96 +
€20G/8(p is a flux surface function and therefore ¢,0G/80p + c,0G /0y = {€:0G /g +
€20G/0(g) = 0. Then, we also obtain ¢;0x/80g + c20x/8(p = ¢,0%x /80y + ;0% /5y and
€10G 86y + ¢:0G /8¢y = 0 from Eqgs. (A9) and (A10), respectively. Consequently, we have
€10B/08y+c20B /0y = ¢,0B/08p+c20B/0(p = 0. Inversely, if c:0B /86y +¢,0B /8y = 0
is assumed, ¢;0B/00p + c28B/8(s = 0 is concluded. The equivalent conditions described
above are summarized as

B oB dB OB
61%+62@ =0 < ClE-{-CQE =0
<:>c16—G+cga—G =0 < ¢y —— oG +(,‘23G =0 <=0 Ox + 9 Ox = ¢ ox + ¢ (?x. (A13)
89 | 8(s 80y " P8y 805 ‘8(p 00y @ ‘3lm
Thus, either Boozer or Hamada coordinates can be used to describe the symmetry condition
for the magnetic field strength to suppress the neoclassical ripple transport.

APPENDIX B: POLOIDAL AND TOROIDAL VISCOSITY COEFFICIENTS

The poloidal and toroidal flows can be linearly related to the parallel flows and the radial
gradient forces as

{w )/x'] :4_172[1 cBgB""‘“/( e.X'(B%)
WY | V1 B f(e,9'(B2)) Xa1
2l e e ] | Rl

where the flux-surface-averaged poloidal and toroidal flows in the left-hand side do not
depend on what flux coordinates (s, 8, ) are chosen. From Eq. (17}, we obtain

Ora| 47(' % B(Boozer)/(BQ) %“WX’ Ola - (Bz)
OTa ﬂb’B (Boozer) /(.32) gf_¢lxi Fxa

Then, we find from Egs. (18), (19), and (B2) that the poloidal and toroidal viscosities are

moamalla] oo il el Elin e A8l Do nn An

AL LA Fa
written in terimns of the Paranics viscosities and the radial fuzxes as

] [ Yo )/(BZ)]




[(BP‘(V"“’a)) (Bp-(V-0,))
(Br-(V-m.)) Br-(V-0,))

| X B /(BY) —2y'X | [(B-(V-ma) (B-(V-6u))] B3
T vy | plBoozer) 1yp2y eanitat | Tbn abn /T . (B3)
¥ L l.,[/ UC , \J-' I e + /L | [41 ‘iu L u d

Using Egs. (35), (38), (B1), and (B3), we obtain the relations between the poloidal and
toroidal viscosity coefficients (M,;pp, M,;pr, Myjrr) and the coefficients (M;, Ny;, Lo;) for
the parallel viscosities and the radial fluxes,

MaJPP MajPT
MaJPT M rr
Boozer g ‘ oozer Qozer
™ lX'B(B '/(B*) —?WX’] [Ma,- Naj] [xBéB '/(B?) ¥/BP }/(32)] (B4)
Y B [(BY) sy’ || Noj Lo —=yY “P'x ’
and correspondingly those between the monoenergetic coefficients {M,(K), N,(K), L,(K)]
and [MaPP(K)y MaPT(K)7 MaTT(K)]:

M.pr(K) Mapr(K)
S0 )

_ 472 [X;BéBoozer)/(BQ> _e?ad)rxr] [MG(K) NG(K)] I:X;BgBoozer)/(Bg> llpréBoozer)/(Bg)jl ‘ (B5)
d)fBéBoozer)/(BQ) e?a,lp.rxl NG(K) LG(K) _g:,l/)lxl gg_,lprxi

APPENDIX C: NEOCLASSICAL TRANSPORT COEFFICIENTS FOR RADIAL
FLUXES AND PARALLEL CURRENTS

Integrating Eq. (3) multiplied by m,v and mav)(m,v* /2T, — 5/2) and taking the flux
surface average give the parallel momentum balance equations,

(B (V7)) — naea( BE) = (BFja1),
(B-(V:8y)) = (BFja)- (C1)
The parallel friction forces Fiy.1 = [ d*v movyCL(f.1) and Fi.e = f d*v mavy(mav?/2T, —
5/2)CE(f.1) in the left-hand side of Eq. (C1) are related to the parallel flows u, and g, by
th friction-flow relations (in the 13M approximation},

(BFtial)] [ it ] [ (Buys) ]

= a ; C2
[(BFnaz) Zb: -1 1 || (B (©2)
where the coeﬁiments l“" are defined by Eq. (4.4) in Hirshman and Sigmar,” and satisfy
the conditions 1% ¢ and 3, Iff = 0, which are derived from the self-adjointness and

the momentum conservatlon property of the linearized collision operator, respectively. The
parallel viscosities (B -(V - w,)) and (B - (V - @,)) in the right-hand side of Eq. {(C1} are
written by Eq. (35) in terms of the parallel flows (Buy,) and (Bgqy,). Then, combining Egs.
(35), (C1), and (C2), we obtain
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sl -5 D[4
2 \(BY) | Maz May | | =157 155 |) | & (Bap)
_ [ Na Na | [Xa ] [nee(BE)| [ B ~U5]] (Buy)
Nay Na3 X(IQ 0 _l; l 5pe (Bq”e)
o {Na Naz | | Xaa - .
~ — [Nag Nﬁ] {Xﬂ] for ion species a(+# e), (C3)
and
( 1 [M Mezl _ [ 5 —TED { {Bue) l
(B?) | M.y M. =57 155 5or (Baye)
N Nes | | Xa nee(BEH [ if'11 12] { (Buja)
S — 4
[NeQ NeS] I:Xe2} |: +§ 15 Spa (BQHa) (C )

Here, general cases of multispecies of ions are considered. We should note that m./m, < 1
for ion species @ and that the parallel electric field term and the ion-electron friction term
in Eq. (C3), are smaller than the other terms by a factor of O[(m./m,)'/?]. Then, ne-
glecting these O[(m,/m,)"/?] terms in Eq. (C3), the lowest-order paralle! flows (Buy,) and
(Byg,) for ion species a{# e) can be expressed as a linear combination of the thermody-
namic forces X3 and Xy (b # e), and these expressions are substituted into Eq. (C4)
in order to write the electron parallel flows {(Buy.) and (Bg.) in terms of the thermody-
namic forces X,;, X.9, Xy, Xio (b # €), and (BE)). Substituting these expressions of
(Buj.) and (Bgy.) in turn into Eq. (C3), the parallel ion flows (Bu.) and (Bgy.) (a # €)
of the next order can be given in terms of the ion and eleciron thermodynamic forces,
Once the relations of the parallel flows to the thermodynamic forces are obtained for all
species a, substituting them into Eqs. (35) and (B1) and using Eq. (B3) yield the expres-
sions of the radial neoclassical fluxes [T®", g*%], the parallel, poloidal, and toroidal viscosities
(B-(V-7)),(B-(V-0.)),(Br-(V-m,)),(Br-(V-8,),(Br-(V-,)),(Br-(V-60,)),
and the poloidal and toroidal flows [(uf), {¢®), (u$), (¢5)], in terms of the thermodynamic
forces [X.1, Xeo, Xo1, Xoo(b # €), (BEy)].

Applying the procedures described above to the case of a toroidal plasma consisting of
electrons and a single species of ions, we can derive the following transport equations for the
neoclassical radial fluxes of particles and heat and the neoclassical parallel electric current
{(bootstrap current),

rbe 6 L L§ L Lip | [ Xa]
”/T o L Loy Ly, Lse || Xe
T =L L L LY Lip || Xa |, (Cs)
b"g Ly Ly Ly Ly Lig | | Xa )
Jg w1 Lpy Ly Lgy Lep | | XE |
where the force Xz associated with the parallel electric field is denoted by
Xy = (BE)/(BY)V?, (C6)

and the bootstrap current JE° is defined by the difference between the total parallel electric
current Jg and the classical parallel electric current Jg,



I =Jp - I3

= n.e{Bluy; ~ u).)}/(B*)? — 05Xk, (CT)
with the classical Spitzer conductivity o5 = (n.€’Te/ mo)ss /[65,55, “A(ffg)z]- Here, the di-
mensionless friction coefficients ’g = —{TaefBamalif s given by &5, = &, I, = 37,

is, = V2 + 137, and §, = /2 with the jon charge number Z;, and high-order terms with
respect to ( m,/m;)"? are neglected. Defining the 2 x 2 matrices for electrons and ions

(a =e,i) by

— Lal LGQ-I — _ﬂm Mal Ma?
Lo = [Laz Loz |’ M. = n.m,(B?) {Mfﬂ MaS:’
— Taa Nal Na2- g — 10
7 negmy | Naz Na |’ {00
Ae;{ b —l| oy, E[O 0] (C8)
—lfy 15 ] 0 &

the transport coefficients in Eq. {C5) are explicitly given by

L3 ‘;;] nam,

U, - N (M AL) TN,
{Lm L33 Taa{ B?) ( ’
NeM,

oy N M+ ) L (M +ATY) 6 (M +A) TG, (C9)

+4

[Lii it } _ [ L Laa]

L§ L% [ Ly L
- _T"?’;;)Ne (M. +A) T AE (M + AN, (C10)
[L%fl LeE2] = [LIE LQE] (32)1/2[1 0](M +A ) M’ (Cll)
. . . . n.e _ _
[ Loy Ly | =~ [ Lip Lig] = _W[l 0] (M. +A)" M (M + A;)™
(C12)
Lop— 1€ "“[ 10]{A; - (M. +A)7'} m . (C13)

In the right-hand side of Eq. {C9), the term with 4,; ( = 1 for @ = ¢, 0 for ¢ = e), which
is of O[(m,./m;)/?], is kept in order to reproduce the intrinsic ambipolar particle fluxes
I'; = Z7'T, in the symmetric case (see Appendix D). It should be noted that the transport
coefficients given in Egs. (C9)-(C13) satisfy the Onsager relations,

Ly = L, tp=—Ly  (a,b=e,i;j,k=1,2). (C14)



APPENDIX D: SYMMETRIC CASE

Here, we consider the symmetric case, in which ¢,0B/08g + ¢;dB/8(g = 0 holds. It
should be recalled that the axisymmetric, poloidally-symmetric, and helically-symmetric
cases correspond to ¢; = 0, ¢2 = 0, and ¢; - ¢2 # 0, respectively. As shown in Eq. (A13), this
case is also described by ¢;80B/08y + ¢,0B/0(y = 0. Then, Egs. (17) and (B2) yield

UPG OTa
+ ¢ 0 =0,

(Bouzer (Boozer)

ClBg +c Q.BC , €,
Ja —C [ —_— o = O,
(B?) ova +( 1¢+2X’)cax

(Boozer} (Boozer)
B + coB e,

# (Bz) < G[;a + (—C1¢' + C2X')?GXa =1{. (Dl)

Thus, we find from Eq. (18) that the viscosities and the viscosity coefficients associated with
the symmetry direction vanish,

ABp-(V-7)) + ,(BT (V7)) = %(Bp'(v L@,)) + %(BT'(V-@a)) — 0,

(8] C2 1

¢
—Mipp + Z[;,-MGJPT = ?MajPT + _QMajTT =0. (D2)

¢f
The expressions for the banana-plateau particle and heat fluxes for the symmetric case
in terms of the parallel viscosities are derived from Egs. (18), (19), and (D1) as

i

C(C1 BéBoozer] + C2BéBoozer))
{1y’ — eax’' }(B?)
q;)p _ C(C1 BéBoozer] + C2BéBoozer))

T, e.{e1y — X' )(B?)

Using Eq. (D3) and the parallel momentum balance in Eq. (C1) with the charge neutrality
condition ¥, n.e, = 0, we obtain the well-known intrinsic ambipolarity condition that, in
the symmetric case, 3° e, I'P" = 0 is satisfied for arbitrary values of the thermodynamic
forces.

Equations (36), (37), (4
and [M,(K), N,(K), Lo(K)

I‘Ep: (B°(V'7ra))a

(B-(V-0.)). (D3)

6), and (D1) give the relations of the coeflicients [M,;, N,;, L]
I

Ny Ly No(K) LK) _ claBY™" + B

o Las _ , D4
Mo~ Ny~ MJ(K) " NB) - edendr — ax)(B (B4
and the geometric factor GBS,
{Boozer (Bouzer)
c1B; + ¢ B
G{BS) ! 227 , (D5)

—e1' + ey

for the symmetric case.
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FIGURES

FIG. 1. D}; = Du(K)/[or(Bor/Q)?K¥?] (a), D}y = Dis(K)/{§vr(Bor/Q)K] (b), and
D33 = Dy3(K)/(AurK'/?) (c) as a function of vp/v for ¢, = 0, 0.005, 0.01, 0.02, 0.05, and 0.1
obtained by using the DKES.

FIG. 2. M* = M(K)/{mvrK??) as a function of vp/v for €, = 0, 0.005, 0.01, 0.02, 0.05, and
0.1. Dotted curves with open circles and solid lines represent M* obtained fromn numerical results
of D§; in Fig. 1 and from the analytical formulas in Eq. {45), respectively.

FIG. 3. L* = L(K)/[%(UT/T)(BUT/Q)QK'?’/?] as a function of vpfv for ¢ = 0, 0.005, 0.01,
0.02, 0.05, and 0.1. Dotted curves with circles and solid lines represent L* obtained from numerical
results of D}, D3, and Dj3 in Fig. 1 and from the analytical formulas in Egs. (50) and (51),
respectively.

FIG. 4. The geometrical factor for the bootstrap current GBS as a function of vp/uv for
er, = 0, 0.005, 0.01, 0.02, 0.05. and 0.1. Dotted curves with open circles represent G55} obtained
from numerical results of Dis and D35 in Fig. 1. The axisymmetric case with ¢, = 0 is given
by the constant, GBS) = p(Boozer) /y/ = 96667. Analytical results given by Eq. (47) for the
Pfirsch-Schliter and plateau regimes are represented by thick line segments.

FIG. 5. Poloidal and toroidal viscosity coefficients as a function of vp /v for € = 0, 0.005, 0.01,
0.02, 0.05, and 0.1. Curves with circles, crosses, and triangles represent Mpp =. —Mpy, and Mpp,
respectively.
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