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Neaclassical transpaort theory around the magnetic axs of a tokamak 15 studied. in
which relatively wide “potate” orbits play an important rele in transport. Lagrangian for-
mulation of transport theery. which has been investigated to reflect finiteness of guiding-
center orbit widths to transport eyuations. is developed in order to analyze neoclassical
transport near the axis for a low-collisionality plasma. The treatment of self-collision
term in Lagrangian forrmulation is revised to retain momentum conservation property
of it. With dircetly reflecting the orbital properties of all the types of orbits in cal-
(ulation. the ion thermal conductivity around the axis is found te decrease than from
that predicted by conventional neot lassical theory. This result supports recent numerical
simulations which show the reduction of thermal conductmity near the magnetic axis.

Keywords : neoclassical transport. potato orbit. finite-width effect

1. INTRODUCTION

Recently. neoclassical transport in the core region of tokamaks again attracts much attention. It is
well-known that there appear non-standard guiding-center orbits near the magnetic axis called “potato”
orbits | Typical orbit width of potato particles is as large as (22 Ry)'/?. where g is the safety factor.
p 15 the Larmor radius. and Rp is the major radius. respectively. In recent tokamak experiments in
reversed-shear confizuration accompanied by the internal fransport harrier (TTR). the measured ion ther-
mal conductivities in the core region sometimes become lower than those predicted by a conventional
neoclassical transport theory? ? In fact. the standard ncoclassical transport theorvt? constructed in the
small-orbit-width (SOW) approximation is not applicable to the near-axis region. and the orbital proper-
ties of potato particles should be considered in analyzing transporf in this region. Then. several transport
theories have been presented to include the effect of potato particies® ® and Monte Carlo simulations
(s0 called the & f-method)!® ¥ have also been carried out fo calculate the jon thermal conductivity x. in
the near-axis region However. there exist differences in the resultant x,'s depending on the model used
m analytical caleulations, and neoclassical transport theory w the near-axis region is not completed yet.

Neoclassical transport theory has usually been discussed in Eulerian representation. Then. the exten-
sion of the theory to the near-axis region has also been discussed in an Eulerian manner. However. to
nelude orbital properties in the transport theory. Lagrangian forimulation'* 1 was found to be suitable
for a collisionless {banana-regime) plasma. In this approach. transport phenomena are deseribed by a re-
duced drift-kinetic equation in the space of three constants-of-motion (COM} along a collisionless particle
orbit in a tokamak. The previous works proved that Lagrangian formulation can reproduce the results
obtained from the standard Eulerian formulation built in the SOW lumit

The present article is the first application of Lagrangian formulation to fhe near-axis region in which
the fnitc-orbit-width (FOW) effect becomes really important To utibze Lagrangian transport theory.
we improve the treatment of like-particle collision term m the formulation to retain the momentum
couservation property. In contrast to the other calculations using some analytical approximations. our
calenlation reflects quantitatively the properties of all types of particles appearing near the magnetic
axis. It is found that the ion thermal conductivity y, obtained by Lagrangian transport theory becomes
significantly lower than that predicted by conventional Fulerian theory. Our result supports the recent
resalts of both Monte Carlo stmulations and experiments in the core region

In Sec. I1. analysis of guiding-center orbit is reviewed. and the classification of orbit types in the COM
space is presented. The reduced kinetic equation and collision operator in the COM space are derived
in Sec. 111 and the transport equation is obtained by solving the kinetic equation in Sec. IV. We also
discuss how to compare the neoclassical flux between Lagrangian and Eulerian representations. Transport
coefficient=. especially the ion thermal corductivity in the near-axis region is caleulated in Sec V.



II. PARTICLE ORBIT NEAR THE MAGNETIC AXIS

As pointed out in recent works.''® the guiding-center orbit near the magnetic axis is not so simple
as in conventional analysis. in which particle orbit has been classified as “passing” or “banana”. Let us
explain key points in analyzing orbit here.

Consider a guiding-center motion projected on the poloidal cross-section (r,#) of a tokamak. The
magnetic field strength is given as B = By{l — (r/Rp) cos #] and g-value is assumed to be constant. The
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guiding-conter veloctty of 2 particle s exprossed as v = iyb + v, whete b = B/ B and vy is the drift

velocity in the direction across the magnetic field lines. To investigate orbit topology. the poloidal angular
velocity # is considered. In the low-J approximation. it is given by

9 = (l’.'Hb +V,1) -V
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where €y = By /Ry. One can see that the contribution of the second termn. which arises from v, V.
is proportional to r~! and then it becomes significant when a particle is approaching the magnetic axis.
This fact means that orbit topology cannot be classified as in a usual way by counting only the turning,
points of ¢y. We have shown'? that the proper way of classifying orbit is to count both the turning points
of oy = /|1 and &g = /6] along a particle orbit.

The eriterion of classifying orbit types is shown in Table I and examples of orbits are shown in Figs.
I and 2. Here. we use sowe new names of orbit types which are characteristic of the near-axis Tegion.
Outer-. and inner-cireulating particles are localized on either side of the magnetic axis. though they do
not change 7 like passmg particies. Kidney orbits™ encircle the axis. though they are trapped in the
magnetic mirror Like bananas. We distmguish coneave-kidney orbit from kidney orbit. according to the
turning points of ay.

Such a detailed classification as above 15 needed to identify particle orbit in the (£, p. {r}) space. in
which we will discuss Lagrangian formulation from the next section. Here. £ is the energy. p is the
magnetic momeat. and {r) is the radial position averaged over one poloidal period. The region of each
orbit type in the ({r). Ao} plane for & = 10keV hydrogen ions is shown in Figs. 3 and 4. Here. Ao = uBy/&
is the normalized magnetic moment. The circle in Fig. 3 corresponds to the fattest banana orbit B in
Fig. 1, of which width is 2(2¢%p”Ry))"/? where p = v/Qq. Potato orbits. of which typical width becomes
A, ~ {(§?p? Ro)'/3. correspond to those appearing around

((r)- A0y ~ (257 Bo) V.1 £ (ap/ o) ) (2)
in Figs. 3 and 4. For the convenience of notation. we introduce a typical small radius
ro = 2(2¢* o Ro)*/®, (3)

where p.o = 1y, /Q0 is the Larmor radius of thermal ions. In this article. we use “potato particles”™ to
describe those which appear 0 < r < r, with their orbit width being A, ~ rp.

One of the important features in Figs. 3 and 4 is that there are some overlaps in regions of orbit types
around the solid-line part of the boundary /2. In overlapped regions, particle orbit cannot be identified
only by the value (€. . {r}:7) Therefore the criterion in Table I should be adopted to identity orbits.

As approaching /2. a banana (concave-kiduey) orbit bifurcates into a kidmey and a counter-passing
(inner-circulating) orbit as shown in Fig. 5. Such barely-transit particles are almost stagnated at (r. f)=
{({r}.m). We call the solid-lne part of [2 ~the transition boundary” hereafter. There is the other type
of stagnated particles appear on the boundary {I. They are outer-circulating particles stagnated at
(r.8) = ({r}.0) and move only in the toroidal direction. Conventionally. such particles have been regarded
as banana particles in the limit ry = 0. but in fact stagnation occurs when # becomes zero on Z = 0
plane, and stagnated particles have finite rj- Note that on the dashed-line part of [2 ( the left side from
the triangle mark in Fig. 3). bifurcation of orbit types does not occur. This boundary corresponds to
inner-circulating orbits with zero-width like outer-circulating particles at [1.

One advantage m using (€. g {ry (or {¢))) as a set of COAI variables is that. in the collisionless limit.
the position-like variable (r) changes continuously when crossing the transition boundary. On the other
hand, ~o used in Ref. 15. which is the minor-radius of one of two crossing points of orbit with Z = 0 plane.
changes discontinuousty at the transition boundary. It is also practical to choose (r) as the position like
variable in that {r) is the most suitable value to represent the lowest-order approximation of the particle
position.

Finiteness of orbit width appears on the region of each orbit type. In the zéro-width limit. banana
particles exist in the range 1 — {¢) < Ay <1+ {¢). where (¢} = (r)/Ry. In reality, however. this simple
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analvsts is not vald for the region 0 < (r < 1, in which potato orbits appear  Moreover, beecanse
of the finteness of orbit widtin, there are no particle exist at () < gp. The exstence of outer- and
mner-circulating particles can be found only if the fimreness of orbt width i consuicered. and they have
not been treated m the conventional neoclassical transport theory. nor in the recent studies treating the
near-axis region. However, it will affect transport around the axis because some of thein have large orbat
wulth &, ~ 1,

In the fortheoming sections we will derive Lagrangian formulation of neoclassical transport theory
which can melude the orbit properties near the magnetic axis discussed here

II1I. KINETIC EQUATION IN LAGRANGIAN FORMULATION
A. Reduction of the kinetic equation

Consider an axisymmetric configuration. We use the magnetic coordinate system (4.6, ¢). where w. 8.
¢ is the poloidal flux. the poloidal angle. and the toroidal angle. respectively, The electromangnetic field
is represented as B = IV( + V{ x Vw and E = -V®(0). where I = RB, and we assume that the field
is time-independent. Three constants of motion in an axisymmetric configuration are

2 Myt
£ = m{: + e, b= — ‘ + puB3 —e,d (4a)
™
n=—g (4b)
1o B2
Pe=vu - Li—(;————v -V (4e)

where ¢ = v b.eg = [v-r bl and the subseript a denotes particle species. The start point of Lagrangian
formmlation of neoclassical transport theory is the drift kinetic equation in an Eulerian representation in
the (x. £. j1) space.

d . df.
E_fa(x.f.u.f)-rx'ﬁx— = Cs. (5)
where " = d/dt. x is the guiding-center position and C'y; is a collision operator Note that eq. (3) is

mdependent of the gvrophase ¢. We change the independent variables in eq. (5) into three constants of
motion in the collisionless limit {21.z2. 23). and the other three variables (3. 25. %), One can choose an
arbitrary set of mdependent variables (z.z). In this paper. we choose (4. 35. 36) = (8. 0). while z; = £.
v = . and 23 = {¢) mstead of Fr (¢} represents the averaged radial position of a particle orbit The
orbit average operator for any function a{z. z) is defined as

1

]
AT, |

is the poloidal period of an particle orbit. Note that the mtegral 1s carried out along one poloidal cireuit
of the particie orbit. Note akso that we can use z3 = () mstead of (¢} when 1t is couvenient By using
the set of variables (z.Z). eq. (5) 1s transformed mto

" df
{0y = # %d(do alz.z). {6)

where

d af.,
—fu(2.8. 1) + 08— b 3
grle @00 055 = Co ®)
where the property 8/80 = /8¢ = 0 is used.
We introduce bere an ordering parameter &, as
§o=vlin, « 1, (9}

where 17/ 15 a typical collision frequency. This assumption corresponds to the condition that the plasma
is in the colhsionless Tegime. or the banana regime In eq. (). df/0f and Oy are assumied to be O(4,)
so that the varables (€. g {e)) can really be the constants of motion through the lowest order w 4.
Expanding §, with 4,. the lowest part becomes
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=0, 1
o9 0 (10)
where we omit the subscript a. On the other hand, from the conservation of volume in the phase space,
one has
10 dz 14 dz
7. 62 (-sz)'f'za_—-'(Jz%) =0, (11)
where J.(z.8) is the Jacobian of the transform (x,v) — (2, %). Since dz/dt = 0 to O(3Y), one obtains
T10) = Jo(&, 1. (), (12)
fo :fO(g?P't (1&)) (13)
Next. by using eq. (11). O(4}) part of eq. (8} can be written as
a 19 da 18 z
afo(z- t) + 7. 96 (']z Efl) A (Jza—v -I‘(fo)) . (14)

where the right hand side is derived from the fact that the collision term can be written in the divergence
form in the velocity space C(f) = Vv -T{f). The last procedure is to take the orbit average of eq. (14).

It yields

af 19 Oz N

il a (Jc<5;-I‘(f)>)MC. (15)
where f = fy is used to emphasize that f is a function of (€, . {0}, t). and

JAE p{uy) = An? Jyr, {16)

is the Jacobian i the (£. . (¢)) space. The collision term is also averaged over a particle orbit. Thus
we obtain a reduced drift-kinetic equation in the (£. . (¢)) space.

B. Jacobian

Here. we derive the explicit form of the Jacobian J, defined in eq. (16). First. consider the transform

from Cartesian coordinate system (x.v) to the guiding-center variables {¢.6.(. €. . @). The Jacobian of

the transform is®”

1 B,

J= . .
(B-V#) m?y

a7}

where B, = B[l + (1 /)}b-V x b]. By changing ¢* to its orbit averaged value (). we obtain the set of
variables (z.2) = (€. p. (). 0. . ¢). Therefore. the Jacobian .J, can be written as J. = J [Bw/3{)]. To
determine .J.. we use the conservation of F; {of its gvro-averaged form)

Pr=v- év” = ronst. (18)

Taking orbit average of both sides. it becomes

| I
v g =) - <§l'u>- (19)
Differentiating both sides by (/). we have
o /I \] oy o /I '
=55 () ot =2t (o) )

Note that all partial derivatives in eq. (20) are taken with &, . and # being kept constant. Next, by
using the equation of guiding-center motion.?° one obtains

- ﬁ'v”B-VF) a I‘
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Then. combining eqs (17). (20) and {21} yields

1
J, = — i1 — 4.l 22
: m2|8l’ | (22)

Thus onc can confirm that .J.|#| = Jo in eq. (12) is mdependent of 4. Fmally. combining egs. (16) and
(22). we obtain the Jacobian in the (€. u. {(¢)) space

where

42
Jc: Trszll l (24)
In a numernical caleulation. the poloidal period 7, can easilv be determined. As concerns d,. it should
be noted that. from eq (19).
I I{‘H
Q)" o

where (y.#) = ({i¥).6") is the position at which a particle crosses its averaged flux surface ¥ = () We
call it “the averaging point™ of an orbit. Then. eq. (23) is interpreted as

. a 69* (') i

where 88*/9(«) tepresents the displacement of the averaging point Fortunately. however. we can be
estimate that 1 — &, ~ 1 for almost all particles as shown in Appendix A. Though we retain the term
1 — 4, in the derivation of transport equation hereafter. it is approximated to be unity in the numerical
caleulations.

An important property of J. arises from the factor 7, for particles which are stagnated on 2 = 0
plane. Remember that there are two types of the stagnated orbit. One tyvpe is the outer-circulating
orbit stagnated at (¢.8) = ({¢%).0) {on the /1 boundary in Fig. 3). and the other is stagnated orbit
at (1.8) = ({&).7) (on the transition boundary /2). Approaching the [1 boundary. orbits resemble a
pendulum motion in the Z direction with a infinitesimal oscillation. Therefore. 7, remains finite on /1.
Ou the other hand. 7, — > when approaching the [2 boundary Then. we have

(25}

({w) .8}

lim J, = finite. {27a)
pu—11
m J, = x. (27b)
p—I2

We have shown that. in the {£. g (1)) space. there are somne overlaps m regions of orbit tvpes. Then.
J.(z) and f(z) arc generally multi-valued functious of z depending on the orbit types. We introduce the
sign oy to indicate the orbit type of each particle. The notation ./, () and f(2z) implicitly mean that they
also depend on y: J. = J (2. 7y). etc.

C. Collision operator

To obtain transport equations in the (£. . (¢)) space. we need to evaluate the change rate of COM by
collisions. First. consider the collision term in Eulerian representation?!

_ 30 | Ofalv) M Ofuv')
Cab - ab(‘?v / i U ) [ ff)( ) me f’z (V) ' . (28)
where
[ vV
VSN
e2efln A
Kab = :I })nz .
BTESS
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Substituting eq. (28) into the averaging operator eq. (6). we obtain the exact description of the
orbit-averaged collision term'®

- 1 a - a -
Cmb - T{E : [r]r (A.fa(z) +D- Efa(z))jl - (29)
where
A=K, (22 [ ey A Ay 30
- ((EJE;Q(‘)V"/ a°v (V—V) . ,fh(z))- (' d)
I z SRt E ’ iz_ .
D_Ix,[;,<5-./ V' fi (2 ) U(v — v PR {30b)

Note that 2" w cq. {30) is a functional depeunding on 8
= (& V) = (o ey (2 E 8,

where « ariscs from the finitencss of particle orbit width. In this sense. the averaged collision tern eq.
{29) has a non-locality. Moreover. sinee eq. (29) is a integro-differential funetion. it is not suitable to
solve analytically. Therefore. we need some approximation to handle collision operator in Lagrangian
formulation.

From here on. we consider only the ion transport because the FOW cffect near the magnetic axis is
important for ivns. We negleet the ion-eleetron term C,,. since it is sialler than the jon-ion term C,, by a
factor \/m./m,. An casy approximation for collision term is the Lorentz operator. which had been used
in the fundamental study of Lagrangian formulation by Bernstein and Molvig. ' but it does not conserve
mowzentum. It s well-known that the momentun conservation property of like-species collisions plavs
an important role in transport theory. Therefore. we use here a model collision operator which conserves
the paraliel mowentum locally o that the transport equation may reproduce the result obtamed from
Eulerian formulation in the SOW lunit.

The model collision operator 13 given w the following form 22

e, Uty

a
— L+ T VAT

v

where ¢, = v/ 14y, and

4 nZletin A

_ _nzie A 33
7 3 355)11!1&31';‘;” (332)
(¢) = 1,L T(c) + l\p'(a} {33b
gre) = 22 ¢ e cj- - )
2 "
Ble)= —= / dire™". (33¢)
Vb

Here. u,n is deterined to conserve the parallel momentum

/ @y C(f) = 0. (34)

Then. substituting eq. (31) into this equation yields

T, 3 i
= — [ dhev ey . {35)
ol 2n,K / 2 s
where
= 2
K, = / dee=" e y(e). (36)
Jo
It is convenient to rewrite eq. (31} in the divergence form. by noting 8 fir/0v = —(mv/T)fa;.
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where Vivy = Al -vwandw — b - ¢ v Sinee V-v = Oand w v = (1 the model collision operator
e (37} also conserves particle mimber and energy
Finally. by taking the orbit average of eq  (37). we obtam the orbit-averaged model collision operator

= 1 é vl L) [ /o= AN o, o
= —_—— J e —_—V — ) = = R . 38
L) J. Oz . 2 Kﬁv u‘v> Az T, v Wi (3%)

We neglect here the variation of #, along an ion orbit because. though typieal ion orbit width becomes
as large as A, ~ ry, there, experiments show that density and temperature profiles near the axis are flat
Note also that we neglect the variation of ¢ along a particle orbat m averaged collision terms. To ensure
this approximation. it it assumed that

ddP
£ A e, — 39
Sl Ty (39)
am] ¢ Is evaluated as
/2. .
;oo —_— \5 . f’,(I]('ilL'))j (4‘0)
i,

In eq. (3%). we need to evaluate dz/ov. It s mnmediately shown that

&

— =V
v
v
v B

We also need the expression of oy /ov. This factor s mmportant in Lagrangian formulation. becanse it
nieasures the rate of excursion in average radial position of a particle by seattering in the velocity space.
A{L) /év can be obtained by taking partial dervative on both sides of eq. (19) Tt gives

Hey _ Ly 2 /1y

v T avQ

I BE @ Au o owy o \/In

—=b — — 3. 41
0 +(E}VHE+HV(),U T t)(u))( 0 Hh

In a previous work.!® this factor 1s treated approximately as a step-funetion
I 3

500

t’gi} — 7£_I)b (IBanana).

: - .
Ilu) -

= 9 {Passing).

v B
1 the SOW limut. However. the estimation above needs some explanations Note that d{¢) /v can be
decomposed as v + axb. Stee Vov = w-v = 0. we need to retam only the b component of the
derivative. Noting eqs  (23) and (29). we obtain

{0 I
giAn,)% —ﬁki—A{)D (43)

where

ey

ov

Later. 11 18 shown that we do not need the exphert form of A, ro caleulate transport coefficients as
pomted out in Ref. 14. and the estimation in eq. (42) works well wx the SOW it



IV. NEOCLASSICAL FLUXES
A. Derivation of transport equation
We now expand the reduced kinetic equation (15) by a small ordering parameter

b

il

o | B

< 1, (46)

where A, is a typical orbit width and L is a typical gradient scale length of plasma pressure. Though A,
for ions becomes large in the near-axis region, the condition (46) can be satisfied since L also becomes
large there.

The orderings we put ineq. (15) is as follows. 8f/8# is assumed to be O(?) as is often called “transport-
ordering”. For the parallel flow, we put a plausible ordering that u,|/ver; ~ O(8;). Concerning partial
derivatives 3/0z. 8/0€ and /0y are treated as O(8)). while 8/8(y) ~ O(4}). Collision operator is then
expanded in & as ¢ = C9 4+ §,CN + 52C™ ... With the expansion f = fo+8f, + 82fz- - -, the O(3?)
part of eq. (15) for ion becomes

A0 (7o) = L DI [[Ou \ OuN Bfa] _

Because (8€/0v) -V = 0. only p-derivative appears in eq. {47). Then. any distribution function fig
independent of £ is the solution of this equation. However. we adopt here the averaged collision operator
of its exact form shown in eq. (29} for C*”'. Then the solution of fy becomes the local Maxwellian 16

3/2
- _ i, E—e®
fuoo=n, (‘27:1"1) exp {*T] . (4)

where 7i,. 1, and @ are defined as functions of ().
The definition of 7, is not equal to the Aux-surface averaged density n,(3). First. consider the particle
number per unit {¥) as follows

NA) =X [ deaud fote.n ()i (49)
Then. 7;({7)) is defined as
__ dve ,
n, = W M((UM’\H((@U)): (50)
e )

where 17 is the volume enclosed by a ¢ = const surface. The numerical factor ), is given by

o —1
AV (2T N2 £ —ed _
An({w)) = g( m ) (Z / dEdpJ.exp [— = D : (51)

If () is away from the magnetic axis and the orbit width is narrow. X, — 1 and 7,({¢)) ~ n,(¥). When
approaching (v) — 0. however. A, becomes large because the integral region in the (£.p) plane is small
there. Note that AV, is nearly proportional to A" near the axis. assuming that the density profile in the
real space is flat in the range r < r,. This assumption is valid when considering the core region with
[TB. Then. it is a simple and plausible assumption that 7, ({¢)) ~ n.(¢ = (). even in the near-axis
region.

Before proceeding to the O(d; } equation. let us consider the order expansion of the momentum-restoring
term in eq. {38) Since u,; and f,y; vary along a particle orbit. we expand it as

u‘l,“fi‘\-[ i i BU—z“
T, ey BILLTUY)

fo(z) + Ay(z,0) folz). (52)

Here. ) ({¢)) is the lowest-order approximation of u,) chosen properly so that Ay becomes O(%). The
reason why we expand it in this way is an analogy with the fact that the neoclassical flux in the radial
direction, in Euleriar representation. is proportional not to (). but to {{u,;/B),.> where (- -}, means
the flux-surface average. Then, substituting eq. (52) into eq. (38) yields
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iy L2 (e a\OL mO (1 )

Jo iz 2 av ov/ oz I T, B ov
dz =
— T, <E ~WA!!> fm} - (53)
Now consider the O(4}) equation of kinetic equation _EG)( F) = —C(fo). or written it down explic-
itly.
5 _ _
v, 0 ML\ af v, 0 Iy o
POy (BN C % 9y 1,
7. o { '”< B > EM ] Joop M\ B
’mzﬂlomn IUH _

e < o ) fol - (54)

To solve eq. (54) for f,1. 1t is rewritten in terms of driving forces Fy as

O(f,) = L i gl (55)
J. k I
ko1
where
dlnfn, e, d®
= I el
P =gy * ndley (862)
dlnT,
Fy= 21 56b
2T (56b)
oo m Qo 56
3= I[)I; : ( C)
and
I~
ay = —J (K’U“B . (57a)
\sfh
3 -
y = — ((: 2) Jevp <§21 > (57b)
I ”
ay = —Jp q /- (57¢)
Introducing the perturbed distribution function gi{&. g {¢}) which satisfies
13} _ fﬂa“k
Ca (Qa'ﬂ) 'ﬁ J( (),U N (58)
f.1 can be expressed as
3
fa = Z.(}RFk~ (59)
ko1

Thus the drst order equatwon is found to have a shmilar forin to that by Bernstein et al. ' though we
successfully include the momentum-restoring term by introducing an additional driving force Fj
Next. consider (3{(47) part of the reduced kinetic equation

%%=é@@w+@w D +C0 ()

A0 1 Ofe T IP~\ -

@ﬁ“*_cm) - Ko > er - DT : <Qz>f"0

Bf,f’ 1 () [ i i

' < | B (9_ < >r)(a,
22

+ (5 agu mz@uﬁw)fw} =0. (60)

I-\
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Ty o
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By taking a moment with £ and p. we obtain the particle transport equation in the {¢) direction

a a
EJ\J‘: + ém'ji =0, {61)
where the particle flux .f} is given as
3
- Y RN P T 3
JU= ) WO T 3 ) ke (62)
P

An important point is that the transport coefficients are separated into the explicit and implicit parts.
¢ and S'77. respectively.!! They are given as follows

r _
Sii=— {VPE <9—”.12> -ftO} , (63a)
7. 3N - _
== {Vf <§~~r’> . (c? - 5) fto} . (63b)
e L 1—2"’ 3 P,
bl:i —_{Vzé_<?;>~f10}- (638)

2
Sy = {”J‘T‘((;;'j} (6:3d)

where the inner-produet is defined as {a.b} =3 [ d€dul. ab.

To obtain the energy transport equation. the moment to be taken s [d€dpJ.W. where W = & —
& ®({¢})). Define here

0, = Z [ dEdp . W fao. (64)

which is the sum of the kinetic energy of particles with the same {f). The use of partial integrals yields
the energy transport equation

0 a 3 d®
e vy {Jé + —.F:r;] =~ J{ 7. 65
7% oy |t e L) (62)
where J} represents the conductive ion heat flux
. 3
T D (S5 + S Fe. (66)

where |
2) Zo}. (67a)

%)2 on} . (67b)
5 ——{mfﬁ(ij)(c?— g) Zg}. (67¢)
g -{zml (67d)

The right hand side of eq. (65} describes work done by the radial ion current.

B. Properties of transport coefficients

An important property of the transport coeflicients S is the symmetry of the implicit part S;"” = ST
This can be shown by as follows. First. integrating both sides of eq. (58) by p yields

10



Jv, [N g, o
¥, = —— { ——— —
! (0 B H (’;I () )

where the wtegral constant is zero from the boundary coudition Then, one obtains

s = Z/ dé'd,uu, d
= Z / dEdp.t .~ mei\ |0, B (69)
BTN B [P ouau i

This equation is symmetric in J and k. therefore implicit coefficients are symmetric.
One can also find that the explicit part has a symmetry 873 = S5{. Then. 1t 15 natural to seck the
third Qux which satisfies the symmetry S5 = 577,

3

I = Z( — S E (70}

k1

Now we show that the proper definition of the third flux is

2, K [ Tuyy dV
Ji= —y
3 T, < Q j,do (71)

Noting that {- -}, means the flux-surface average. we have
27 . i
dd I B |
. 2 1+ I ® AN
Ty =An /O B-V()B]d‘c" dp mf\y'i”‘(" )’%If'i .
\u4

2.4-
-om] / B- veB /dgd“d‘“ d({e) = o/)oy'B. fa ()
Il S N SN e 3
; TT!? -/D BVHB_/ "u((i' ‘)( | B, z.u' f

Next. distribution function is expanded as

af. ()ﬁo N N Afo  Af. .
dﬂ' |:f10 6(1,.‘} +f71:| = 611‘” ()(L) + ap, . (72)
where
I Ir
Ae=v-)= Q*<é® (73)

represents the deviation from an instantancous particle position to its averaged fux-surface. and we use
the relation 8{¢)/dv = —0A,/Ov. Using egs. (20) and (21). and changing the order of integrals. we
have

4m? v fdi Iy @
E d&d plf 8. | :
] Gt | 7B o

o v [ 25\ 8fo Iy \ 8f
= ;/dgdu](_ [ . < Q. >()<U/‘> + i, < Q, 1) 5!1 ’ (74)

Note here that the implicit coefficients Si7* are written as follows. by its definttion.

T 23"‘”&_7 [dfdy]y( > aq“ (75)

Then. comparing eqs. {74) and {75). one finds that the explicit coefficients for .J are given as follows

1



- {nl (5 7Y fa} = 55, (762)
355——{v < >(02 g)ﬁo} <, (76b)
5 —o. (76c)

Thus we obtain the 3 x 3 symmetric coefficients for both explicit and implicit parts.
o ciose fransport equations, we must eliminate the additional driving force F introduced to include
the parallel momentum balance. For this purpose, we choose T, as follows

— Q0 IU’:H
== e (), o

The factor (h?),,. where A = By/B. is needed to retain the ambipolarity in the SOW limit, as shown in
Appendix C. By using this definition. eq (70) can be solved for Fy It yields -

Fy = —3(S13F1 + S Fo). (78)
K1 o o dV A
d= ( 11'0 120 d‘;b (h2>d’ - 33) : (79)

where S = ST + 57} is the total transport coefficients. Finally, neoclassical fluxes are rewritten in the
following form

Ji [ An A Fy
['E/E]_[Azi Azz][FzJ" (80)
where
Au - 311 - BS?& (Sla)
Az = Az = S12 — 351353. (81b}
Agz = Sy — 353 (81c)

Thus the resulting transpozt matrix 4); in Lagrangian formulation is shown to be Cnsagai-syminetry as
same as in BEulerian formulation.

Next. let us calculate the total coefficients S,;. The perturbed distribution functions gr are needed to
calculate the implicit part. From eq. (68). we obtain

g1 Iy /) -

o {mf/B)

yo 5 3N ey Q)

= = — -_ 20 [y 2b
o ((1 2) (mw[zi_/B) Fo (32b)
% _ (IL‘I]/QQ) —_

op (mlz‘ﬁ/B) o

(32a)

(82¢)

From here on. we use the approximation I{¢') = Iy = RyBy. which corresponds to the low-i3 plasma. For
J k=1 or 2 using eq. (44) yields.

= g | T—ap | (0800 (hs3) ’(C ) fo

3\ k=2 (hl‘n)Q
( - 5) y((z)/\ﬂ <h> - [‘hl‘ﬁ}
3nIEn,p2qR =

= _;;Tsjk . (83}

37TI0 .0 OqRD /
= drdA
31, By O

where © = exp(—€/T,), Ao = pBo/E, and 7, = Tpuh./qRo, tespectively. We call 5, the normalized
transport coefficients. In the equation above. the terms which are proportional to A, and AZ? are exactly
canceled. In a similar way, one has
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3\/ ! TN
53 = —Z /d:rd)\ofpa ((f - %) yle Ao ((h} - <(}he:2>) ) . (84)

oLirL i (f!L’ll)Q il
sy :Z [dr(,\grp( Yl ) Ao =50 T ) (83)

Note that eq. {R3) duffers from eq. (34) only by the facter (1 - 8,371 =~ 1 Therefore. this difference
15 neglected in the fizal calculations. and the approximation Si; = Sy and Sy = Syp are used As a
complement. we define

- [BBKdV L, =\
g = (37qu0 FRALE S‘”) (86)

so that eq (78) can be rewritten as F3 = —3(S13F = 523F).

In the SOW limit. (hv|)? = O for banana particles. while (heyh? ~ {hz'ﬁ) for passing ones, Therefore
transport coefficients other than S;3 are determined mainly by the banana part Because of this separation
of the contribution to transport between banana and passing. the approximation of 8{y}/dv as in eq.
(12} used in Ref. 16 ends up in the same result as the SOW limit of egs (83) to (85). However. by using
the exact solution for S,x. we can include the contribution for neoclassical transport not qualitatively.
but quantitatively. from all the orbit-types of particles appearmg in the near-axis region. The magnitude
of contribution of each particle is evaluated by the factor (h) — (hey)? /(hr )

In the present analysis. we improved the treatment of collision term to retain the momentum conser-
vation low. Since we consider only the ion-ion self collisions here. .J{ must vanish in the SOW limit. It is
shown m Appendix C that A;; and A;» become zero m this limit. and therefore Ji vanishes intrinsically
Thus Lagrangian travsport theory applied to the region away from the axis. where potato particles do
not appear and the SOW limt 15 valid. reproduces conventional Eulerian transport theory.

C. Comparison with Eulerian transport theory

The representation of fluxes in eqs. (61) and (65) from Lagrangian formulation are different from those
in the standard nooe classianl tra}1c}1\nr} anru-v hacad an 'pn]nr'a an rnnraqnnfahnn The former deseribes the
change 1n A, and Q. which are functions of avemffed particle position {¢). while the latter describes the
change in n, and p, = n,7T, through radial fluxes averaged on a magnetic suzface ¢ Then. the comparison
of noocla%slc al flux between these two representations is not straightforward. Let us consider this problem
here.

As a preparation. we introduce a normalizing factor for @, as follows

Ag{(¥})

3
STV

. -1
37, wT, i ja
= % (Qm ) 1 (Z / d€dpd, Wexp {T] . (R7)

where V' = dV/dy(< = {0)). A, has a similar property to A, meq. (51). The particle flux and the heat
flnx are redefined as

I,
7,

Ty (88a)
1A% : (83b)

so that they represent fluxes per unit cross-section. Note that ¢ differs from its general definition by L',
since we adopt Fs = dInT, /d{i"} as a driving force rather than the pressurc gradient. Then transport
cquations are rewrnitten as follows

B Aw O
S Vg T =0 (39)
D (3. 7\ M @ Lol 37N = Aer, 22 90
-t - ! . — ZLk:4, - . )
a\2" ) e P \ET ) PRER (0]

where we assume that the time variation of A, and A4 is slow compared with that of M, and Qz These
transport equations have the same dimensions as those of a standard Eulerian representation.’ In the
SOW limit, A, and A; becomes unity, and egs. (89) and (90} reduce to the Eulerian representation.
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As will be shown in See. VC . A, and A, is nearly unity around the region {r} ~ r, though the
finiteness of the potato width significantly affects the transport coefficients there. Only in the region
(ry < gp.o they become much larger than unity. Then, the qualitative difference in I', and ¢, between
two representations are not so much significant as far as we are interested in the neoclassical transport
around (r) ~ ry,.

V. CALCULATION OF THERMAL CONDUCTIVITY
A. Definition of collisionless regime

In this section, we calculate the ion thermal conduectivity in the near-axis region. As a preparation. let
us reconsider the definition of the collisionless regime in which Lagrangian approach is valid.
Usnally. the collisionless {or banana) regime is defined as follows

(_{HO Veff v,

Ty ™~ . ~ —
L‘n‘,.‘u\/; : €
- v,qRg
= n,m__‘13/2<<1. (91)
Uthe €

since banana particles exist in the range (1] < ¢y/¢. In Eulerian representation. collisions cause diffusion
only in the velocity space. and then the collisionless regime can be defined as above. In Lagrangian
representation. however. collisivns bring about diffusion directly in the {¢} direction through the factor
O{wy/0vy This fact means that the effect of scattering on each particle differs according to this factor.
Remember here that. as mentioned i Sec IV B. transport coeflicients can be obtained by using the
estimation that
C)_<t_) N { —é (banana), (92
vy 0 (well — passing).
In the near-axis region. potato particles can be assumed to have 9{y}/dvy ~ —I/Q like bananas. The
transition of orbit topology of a potato particle occurs when their averaged radial position changes as
large as its orbit width A, ~ rp. or

T ] 1/3
Awm—(q“) : 93)

To change () as large as A,. pitch-angle scattering of the magnitude

b 10)) apo\
Avp~ A, [ 2 [ 250 ‘e
l ¢ / aey (RQ th

is needed. Therefore. on the analogy of eq. {91). the effective collision frequency for potato ions can be
defined as

1/ B\
pelf = — (22 . (64)
° 7. \gp.o
On the other hand, 7, for potato particles 1s estimated as
R\ 13
ot , 450 ( 0 ) . (95)
Prhe \ QP

From eq. {91) and {95). we obtain
arot = Vﬁfffg,’“t <1
Z%(n, BoR3)*/>

e I —
¥ T (mefmp) i

(96)

where T, (keV), A, (106°°m™*) and m, is the mass of proton. For example, if By = 4T, Ry = 4m and
71, = 1x 10%m~2 for hydrogen ior. then 7, 3 5keV is needed for the collisionless assumption. Note that
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the criterion eq. {96) corresponds to that from the usual defimution of 4, in eq (91) evaluated at r ~r,
as mentioned in Ref. 13.

In reality. barely-transit potato particles have much longer 7, than the estination m eq. (85} Then.
particles around the transition boundary 12 in Fig 3 break the collisionless-assumption d. < 1. Treating
these collisional particles 1n Lagrangian transport theory like the banana-plateau transition n the stan-
dard Eulerian theory? is not considered here. Thercfore. our caleulation corresponds to the collisionless
Limit of neoclassical transport

B. Ion heat flux

In Eulerian transport theory. the ion heat flux is expressed as follows

% =1, ;—i_]nT‘. 97
where x7 is the ion thermal conduetivity n the r direction. Here. ¢, in the form as above is the result
of (i) neglecting ion-electron collisions. and (ii) I', = 0 because of the momentun: conservation 1n ion-ion
self collisions. In Lagrangian approach. however. the condition I', = 0 is not intrinsic. In reality. the
momentum-restoring term 53 £y in J) cannot exactly cancel S Fy + S12Fy. especially m the region
near the magnetic axis. This is because of the non-local nature of Lagrangian formulation. and partially
becanse only the lowest order expansion of T is included 1n the present caleulation. we rewrite the
transport equation in eq. (30) to eliminate F)

=22 5 ™ 2T, 9%
.Sy Mean? o
2.2 Q2
() 3q° 0y, o Sta
= — Son — = 99
X 320 {e}?r, [ - S”] (99)

where ¢. p,o. and 7, are evaluated at r = (r). and we change here the radial coordinate from {¢) to {r}.
The ion heat conductivity Xf” defined in this way is compared te x. though Ff') does not vanish here.

. 111 , . T 5o /00N i T bz U W) P P, AV, [ TV
I1 is well-known that x 22 J{e 37 :Y in Duderian theorv., while the apparent depondence of T gg
L 0/ 4 i) . 17} 1% A

q*p%/({€)?7,). However. S, away from the magnetic axis is proportional to / {¢}. and x:"\ has the same
dependency as x| there.

C. Calculation result and discussion

Numerical caleulation of transport coefficients in eq. (33) 18 implemented by usmg Monte Carlo in-
tegration method. In the caleulation, test particles which have a given (ry are gencrated randomly and
uniformly in the phase space {r. Ag; o). where r and Ap are defined n See. IV B. And. all the functions
in the integrand of S,i. which we write Fyx{r. Ao. {r}: 74} herc. are calculafed by tracing each particle
orbit. Then. transport cocfficients at {r) are given as

N
- . 1 <
S {{n)= lim v Z}Ff*("’r“)‘o’*' (Mo, {100}

N—x

where N is total muuber of test particles and {i,. Agn: 0w, is the position of n-th test particle in the
phase space. we can include all the types of orbit to transport coefficients. Note that we approximate
1 — 4, =1 s0 that 51, = S13 and Si2 = 5a3.

As a example, we calculate the ion thermal conductivity X,M under the conditions By = 4T, ¢ = 3.
T, = 20keV and 7, = 1 x 102®m~3. The radial electric field d®/dr is neglected. In this case. typical
potato particles appear in the region (r) < r, = 0.244m. According to eq {(96). the plasma is well in
the collisionless regime. The calculation result of xfr> is plotted in Fig. 6. For a comparison. x; by a
standard Fulerian theory in the banana regime.? is also plotted. Note that x] is obtained by regarding
ras{r).

A significant reduction in xzm can be seen in the region {r) < r,. The main reason of this reduction
explained in Lagrangian approach is that potato particles. which mainly contribute to the radial transport,
annot exist in the region {r} < 7,/4 when observed m the COM space (£. . {r}). as is shown in Fig. 3
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The FOW effect is thus included in the calculation by reflecting the real population of potato particles
neat the magnetic axis.

In Fig. 7, A, defined in eq. (87) is plotted. One can see that A; becomes much larger than unity only on
the inner-most point {r} = 2gp,p = 0.03m in this case. As mentioned in Sec. IV C, simple comparison of
X. between Lagrangian and Eulerian formulations is possible as long as A, ~ 1. Then it can be said that
the reduction of the ion thermal conductivity oceur not only when it is observed in the {r)-coordinate,
but also in the real space around r ~ r,/2. On the other hand, it will be an underestimation that y; ~ 0.1
at (r) = 0.03m because it is almost the same level as the classical transport v, ~ o2 /7 and slso berance
of A; 3 1 there.

In Fig. 7, we also plot A1;/A3; which is approximately the ratio of T', to q,. Away from the axis it is
almost zero and then I, can be neglected, while it becomes finite around {r) = r,/2. It is the FOW effect
that cause the finite particle flux by ion-ion collisions. Since the electron particle flux is negligible com-
pared to the ion flux, radial electric field E, will develops to satisfy ambipolarity T', = 0+0(y/m./m,).12
In our present formulation. however, the ambipolar electric field cannot be caleulated correctly, because
it requires to solve dE,/dt from the particle flux equation. which in turn affects transport coefficients
Ajx({r}.t) through the orbit-squeezing effect of potato particles.? It is a future work to determine neo-
classical E; in the core region.

Next, to investigate the degree of contribution from each orbit type to transport coefficients, we plot
in Fig. 8 the factor Hy = (k) — (huy)?/ (I;ﬁ) for particles at (r} = 0.12m and £ = 20keV. Since S,
contains H. one can see that not only banana particles but also all the potato particles, that is. kidney.
outer-circulating. and inner-circulating particles appearing around the transition boundary, contribute
transport to the same degree. In the numerical calculation. the factor Hj is evaluated without any
approximation by using Monte Carlo integration method.

The reductive tendency of x, in the near-axis region is the common feature of recent simulation

results.l® 13 Our ! also shows a similar dependence on {ry to these simulations, for example. to the
fitting formula by Lin et al based on a simple random-walk model. This suggests that the neoclassical
transport in the near-axis region can be explained by the random-walk diffusion process of the potato-
center {r}. However. there is a difference between ours and the others in that the reduction of y, compared
to the standard neoclassical value begins at r ~ r, in our calculation. while it begins from somewhat
more outer position r ~ 2r;, in the other simulations. This may be caused either by the differences of the
profiles. of the treatment of collision terms. or of the algorithms used in each caleculation. More detailed

comparison between Lagrangian formulation and 4f simulations will be done in a future work.

VIi. SUMMARY

Lagrangian formulation of neoclassical transport theory is applied to the near-axis region {ry ~ry
to include the effect of potato particles in the calculation of ion thermal conductivity. In a collisionless
regime plasma. a significant reduction of ¥, compared to the standard neoclassical level is found as shown
in Fig. 6. By introducing the factor X,. we show that the direct comparison of x, between Eulerian and
Lagrangian representations is possible at r ~ r,.

Since the reduction of x, occurs from {r} ~ r, > ¢%/%. the finiteness of potato orbit on neoclassical
transport will be important in a reversed-shear configuration in which ¢value becomes very high at the
near-axis region.?* The development of ambipolar radial electric field E, and its effect on X.- will be
studied in a future work.

in the present article. we show that the Lagrangian transport theory is of practical use in treating
transport phenomena in which the orbital property of particles is really important. This approach will
also be useful to analyze other problems treating FOW effects. such as the bootstrap current near the
magnetic axis. or the neoclassical transport around the internal transport barrier in tokamaks where the
gradient scale length of plasma pressure becomes comparable to tvpical banana width.
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APPENDIX A: ESTIMATION OF 4.

From the definition of 4.. we have to evaluate

. o a6t a4 )
4

=\ 5 T A A
\5u T alv) % (AL

where o, = I/ evaluated at the averaging point (.8) = ({¢).8*). The difficulty lies m the evaluation
of 78 /&{y). First. let us consider the case for orbits whick have the turning points of g, that is.
for banana. outer-cireulating, and inner-circulating orbits. The averaging point of these orbits can be
approximated by the turning points. Therefore. from the equation of # m eq. (21). 8, /Oy = 1 must be
satisfied on the averaging point. Then. we have

a (da,
a6* N Jy \

oWy ~ 8 (acx,,)‘ (42)
o8 \ Sy
Substituting eq. {A2) into (Al). we have
b = (A3)

T L0B&B 9B (0BN’ [ uB 2me
iy —— = i— | — = -
“Vagagos T o0 \Be) \uBrme  uB

Note that eq. (A3) is evaluated at the averaging point. Since 1y > 0 at the turning point of f. one can see
that 4, =~ 0 for banana and outer-. inner-circulating orbits. As coucerns kiduey orbits. we can evaluate
26" /84y by approximating the averaging point by ‘rhe turmng point of ;. Then one also finds that 4,
can be neglected for kidney orbits.

For passing particles. we cannot determine the averaging poiut #* in a simple way as above. However,

for well-passing particles. 86" /{¢) in eq. (Al} can be negligible. and oze can estimate

au . 1B gp

e THBa Ty

(Ad)

which is negligible when considering {r} ~ r, 3 gp.
Thus the approximation 1 — 4, >~ 1 is ensured for all tvpes of orbit

APPENDIX B: INTEGRAL IN THE {¢.u) PLANE

In the derivation of transport equations. integrals in the (£, ) plane appear. Ve prove some properties
used in the integral here. Consider a mtegral of a function F

> /dé’ /d,u,], (E. p ey o VFE mlehim), (B1)

where J. and F also depend on the orbit type ;. Integral region m the g direction is shown in Fig. 9.
L1 g2 and ps correspond to the boundaries 11, /2 and /3 in Fig. 3. respectively. The kidney region is laid
between gz and ;. and it is overlapped with a part of the banana and co-passing regions. The integral
path in p is taken in the direction of arrows in Fig 9.

To use Gauss's theorem to take moments of the reduced kinetic equation {60). some boundary conditions
are needed. First, consider the boundary ¢ = . Here. noting that all the integrand having the form
A/8p in eq. (60) are proportional to g Then the surface integral vanishes there  Second. consider the
boundary ;. where a co-passing particle moves into a kidney region. This transition oceurs continuously.
since the differcnce between kidney and co-passing orbits is only that the former has turning point of v
and the latter does not. Then. we have

im J (o= P+) = 11111 J Ay = K). (B2)

=g

Therefore. the surface integral is canceled at gz between co-passing and kidney. since any physical vaiue
in the integrand F is also continuous on the boundary.
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On the boundary ps. a banana particle bifurcates into a kidney or a counter-passing particle as shown
in Fig. 5. At the limit 4y = p2, the particle is stagnated at (r,8) = ({(r}, 7). All the values contained in
the integrand F are then evaluated at the stagnation point. On the other hand. Jacobian J, becomes
infinity at g, as is pointed out in Sec. IHI. Noting that the kidney and counter-passing orbit at the
boundary correspond o outer- and mner-sections of a banana orbit, we have

lim Jo(piop = B) = lim [J{pu;0,=K) + J.(pu;0: = P-)). (B3)
B pe ppen

Therefore, the integrand F for each orbit type are required to be continuous on the boundary so that the
surface integral on the boundary ps can be canceled between banana, counter-passing and kidney.

The last condition is on the u = 11 corresponding to stagnated outer-circulating orbits. In eq. (60),
one can see that all the terms within the 9/0u operator have i) in the averaged operator {---). As
mentioned in Sec. II. vy is not exactly zero for stagnated orbits when particle orbits are solved strictly.
Then, there remains small contribution from the surface integral in the p direction when one takes the
moment of eg. (60) to obtain egs (61) and (65). However. this contribution vanishes in the SOW limit.
since stagnated condition is ) = 0 in this limit Therefore. the contribution from the surface integral to
ON, /0t and 8Q, /8t is considered to be negligible in this paper.

As a consequence. the perturbed distribution function g, must have continuous derivative dg, /81 on
the boundary pe and ps. This fact is used in eq. (82).

APPENDIX C: TRANSPORT COEFFICIENTS IN THE SOW LIMIT

To show that the particle flux .J! vanishes in the SOW limit. consider the transport coefficients Sy,
and 547 away from the maguetic axis. We assume a model magnetic field B = By(1 — ecos#) as in Sec.
II. Orbit types considered here are passing and banana in a usual sense. and the factor |1 — & becomes
unity in this imit From the definition of the normalized transport coeflicients eqs. (83) and (35). one
has

S =5u+Y / dieddom () o (). (1)
Since § = vyb - V# in the SOW limit, the integral above can be calculated as

t+{e)
S [ asidoneonoin = 3 [ aen e [ pon f 22
Iy

:Z%K /
¢Ro ‘.0 B- ve W_AD/

|
Therefore. we obtain

SBoicl dV

Sz =Sy + 3raRy dzf;< B (C2)
where we have used the flux-surface average
o 2
7). T d(,, B
And, combining egs. (86) and (C2) yields
3 =55 (C3)

Since Ay oc S11(1 —3517) and A1z x S12(1— 3511). the transport matrix Ay other than Ass-component
vanish intrinsically. Therefore. ion particle Hux does not occur in Lagrangian formulation in the SOW
limit when only ion-ton collision is considered.

Note here that, in the SOW limit. q.(83) for S;x becomes the same form as eq. (80) in Ref. 25 since
{huy} = O for bananas in this limit. Then. the ion thermal conductivity obtained from our formulation
reproduce the result from Eulerian formulation in the SOW limii. Though this property has already been
proved by Bernstein et al, we succeed in introducing the momentum-conservation nature in Lagrangian
formulation

18



'F Purcelll, R Stankiowicz. H L Berk and Y. Z. Zhang Phys Fhuds B 4. 3017 (19492)

2 JET Team. Nuclear Fusion 39, 1743 (1999)

‘DR Baker C.M Greenficld. J € DeBoo M R Wade and B W Stallard Phyvs Plasinas 8. 1565 {20015,
iF L Hmmton and R D Hazeltine Rev. Mod Phys. 48 234 (1976)

"S P Hir-hman and D. J Sigmar Nuclear Fusion 21 1074 {1951)

K Shamg. R D Hareltine and M. C. Zamstorff Phys Dlasmas 4 771 (1697)

K. C Shwung and R D Hareltine Phvs Plasmas 5. 553 (194%)

® P Helander. Phys. Plasmas 7. 28758 {2000)

“Z Wang Plasma Phys Control. Fusion 41. A6TH (1999).

W7 Lin W. M Tang. and W. W. Lee. Phys. Plasmas 4. 1707 {(1997}.

"YW X Wang. N, Nakajima. M. Okamoto and § Murakami. Plasma Phys Control. Fusion 41. 1081 (1999).
Uy X Wang. F. L. Hinton and 8. K Wong. Phys. Rev. Lett. 87. 055002 (2001)
A Bergmann. A. G. Peeters. and 5. D. Pinhes. Phys. Plasmas 8. 5152 (2001).

Y1 B. Berustein and K. Molvig. Phys. Fluids 26. 1485 {1983)

P, §. Zaitsev . M. R, O Brien. and M Cox. Phys Fluids B 5 509 {1993)

"4 Wang Phys. Plasmas 6. 1393 (1598).

1" ], Egedal. Nuclear Fusion 40. 1597 (2000).

WT. K Chu Phys Plasmas 3 3397 {1996)

198 Satake. H. Sugama. M. Okamoto and M. Wakatani Journal of Plasma and Fusion Research 77, 573 (2001}
2 A H Baozer. Phys. Fluds 23. 904 (1930).
21F 1, Hinton. in Handbook of Plustna Physies. Vol. 1 {(North-Holland. Amsterdam. 193.3). pp. 147-197
22 1\ Connor. R. C. Grimm R J Hastic. and P M. Keeping Nuclear Fusion 13, 211 (1973).
2} R. D. Haczeltine, Phys. Fluids B 1. 2031 {1959).
3T Fgita. T Olkawa. T. Suki S Ide. Y. Sakamoto. Y Koide. T. Hatae O Naito. A, Inavama. N Hayashi

and H Shirai. Phys. Rev. Lett B7. 245001 (2001)

Al N Rosenbluth. B D. Hazeltine, and F L Hinton. Phys. Fluids 15. 116 (31972),

TABLE 1. Classification of pariicle orbiis.
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conc ave-kidney 2 4 -

*Numbers of turning points.
BFor tons. The sign is opposite for clectrons.
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FIG. 1 Examples of partidle orbits for £ = 10keV jons in the model field By = 4T and ¢ = 3.
The circle and bar marks represent turning poiants of the signs o and g||- Tespectively. Orbat
types are A : standard banana. B : the fattest banana. C : passing. D : inner-circulating. and E -
outer-circulating. respectively.
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FIG. 2. Examples of kidney (F) and concave-kidney (G} orbits.
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FIG. 3. Theregions and the boundaries for each types of orbit in the ({r). do} plane for £ = 10keV
ions. QOrbit types are abbreviated as B banana. P+ @ co-passing. P : counter-passing. OC :
outer-circulating IC : inner-circulating. respectively The solid-line part of 12 up to the triangle
mark is the transition boundary The boundaries {1 and the dotted-line part of I2 correspond to
zero-width outer-circulating and inner-circulating orbits. respectively. I3 is the boundary between
the kidney and co-passmg regions. The circle mark corresponds to the fattest banana. orbit.
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FIG. 4 Regions of K : kidney {shaded) and CK : concave-kidney (endlosed by solid lines} orbits.

The kidney region overlaps with the banana. co-passing. and concave-kidney regions. A part of

ramrava ridnae rorian averlang with ranaggine reornn
conrave-Kidngey egienll overiaps with [Co-pPassing reglon.
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FIG. 5. Transition in orbit types. (a) A banana orbit changes into a kidney or a counter-passing
orbit according to the position on which the transition occurs. (b) Similarly. a concave-kidney
changes inte a kidney or an inner-circulating orbit.
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FIG. 6. The ion thermal cond tivity normalized by ¢#pZ/7  Solid line is the result fiom our
Lagtangian formulation Dashed line is from standard Eulerian theory by Hinton and Hazeltine

Y01 o2 o3

FIG. 7. Dependenca of Ay defined in eq. (87) (solid line) and the ratio of transport coefficients
Au/Agz (dabhed line) on (T)
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1.05

FIG. 8. Hy = {h} — (hvy)"/{hv{} vs. Ao for ions with £ = 20keV at {r} = 0.12m. The transition
boundary is at Ao = 0.965. Abbreviations of orbit type are the same as in Figs. 3 and 4.

OC

s

FIG. 9. Integral way in the p direction. Abbreviations of orbit types are the same as used in

Figs. 3 and 4.
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