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Abstract

A statistical model of bifurcation of radial electric field E, is analyzed in relation
with L-H transitions of tokamaks. A noise from micro fluctuations leads to random noise
for E.. The transition of E, occurs in a probabilistic manner. Probability density function
and ensemble average of E, are obtained, when hysteresis of E, exists. Forward- and
backward-transition probabilities are calculated. The phase boundary is shown. Due to
the suppression of turbulence by E, shear, the boundary deviates from the Maxwell's
construction rule.
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Structural formation in inhomogeneous magnetized plasma has been one of the
main issues in modern plasma physics. An important example is the H-mode transition
[1] in toroidal plasmas. The key is the bifurcation of radial electric field E, [2, 3] and its
mutual interaction with turbulence which has a micro scale length (such as the ion
gyroradius p; or collisionless skin depth 8 = ¢/® 5} [4]. Theory has made progresses in
explaining the existence of bifurcation in E, of meso-scale (a hybrid between the plasma
radius @ and micro-scales [3, 6]) including zonal flow [7]. (See reviews, e.g., [5, 8, 9].)
A further breakthrough is needed. First, the statistical and stochastic properties of L-H
transition must be clarified. This is because E, and fluctuations do not satisfy the laws of
thermodynamical equilibrium. Efforts have been made to establish the far-non-
equilibrium statistical law of micro turbulence,[9-15] and the role of nonlinear noise
source was found important. The analyses must be extended to the L-H transition
phenomena. The other is an experimental test of theories. Experiments have shown
recently that the change of E, occurs in a short time (a few times of gR/c,, g: safety factor,
R: majour radius and c,: ion sound velocity) [161 as has been predicted.[2] This supports
the model based on hard bifurcation. On the other hand, a test of observing a hysteresis
by use of slow change of parameters (longer than the energy confinement time) has not
shown clear hysteresis.[17]

In this article, we present a statistical model of the electric bifurcation of the L-H
transitions in toroidal plasmas. Nonlinearity of micro-fluctuations statistically induces a
random noise of the meso-scale E. Being kicked by this random noise, transitions
between the L- and H-states occur in a probabilistic manner. A Langevin equation is
formulated including the mechanism for hysteresis of E,. The probability density
function (PDF) of E, is obtained, and the ensemble average is given. The flux of
probability density is calculated, and the transition probability and back-transition
probability are obtained. The ensemble average of E, does not show a hysteresis
although a deterministic model includes the hysteresis. The phase boundary of the
statistical view is given by the condition that the H-mode and L-mode states have an
equal probability. This is an extension of the Maxwell's construction rule. The phase
boundary shifts to the ridge of cusp for H-to-L transition, due to the suppression of
fluctuation by the E_ shear. The competition between the life time (inverse of the
transition probability) and the time for the change of global parameters determines
whether the hysteresis is observed experimentally or not.

We consider a thin layer near the tokamak edge. We analyze the dynamics of the
radial electric field E, (averaged over the magnetic surface) in the presence of micro

fluctuations. The radial extent of £, has the scale length £ . (We assume a spatial and
temporal scale separation between E, and micro-fluctuations, i.c.,  >>p; 8 ) The

dynamical equation for £, has been expressed in terms of the charge-conservation

equation combined with Poisson's equation as
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where J, is the radial current density, €, is the vacuum susceptibility and

g, = (1 + 2q2)czv; 2 is a dielectric constant of the magnetized toroidal plasma. The radial

current has two components: a time-averaged component, J . and the rapidly-varying part
J7. The former, i.e., the time average-part (deterministic part) J , has various origins
including the bulk viscosity of ions, ion orbit loss, and eddy damping (or zonal flow
excitation) for E, by microfluctuations.[5-9] The latter is induced by the convective
ronlinearity in the vorticity equation V-VV associated with micro fluctuations. It
changes with the characteristic autocorrelation time of micro-fluctuations T, , which is
much shorter than the typical evolution time of £, . In this article, the term J Tis
considered to be a random noise. The time-average part J, dictates the deterministic
picture of bifurcations, and the noise part J " gives a random kick for £, and causes a
probabilistic nature in transitions. The scale length ¢ istreated as a constant parameter in
the statistical evolution of the magnitude of E, , and Eq.(1) is rewritten as a Langevin

equation of the magnitude of E, as

L X +Ax=w(t)g )
where normalization is introduced for the electric field and time as X = ep E/T and
T =t¢/2gR and w(z) is a white-noise. (p,: ion gyroradius at poloidal magnetic field, T :
plasma temperature.) The damping term, A X = (1 +24°) i (qR/ p.ecn j) J ., is the
normalized current. The term g denotes the noise current J;.

Let us consider the L-H electric bifurcation where the bulk viscosity of ions, ion

orbit loss and zonal flow excitation with shear viscosity damping have the key roles.[2,
3,7, 18] One has

AX=TmZ(X +iv.) - (X + Xye) + ——2— exp (— (v, + aX“)”z) v, X (3)

(v,, + aX“)

where Z{X} is the plasma dispersion function, X is the neoclassical drive and is of the
order of —p , 7, ldn Jdr , v« =V gRc; I' is the normalized ion collision frequency,

v, =€ 32v. e=alR, 0. denotes the orbit squeezing [3] and v, is the zonal flow
excitation rate combined with shear viscosity damping.]7] Zeros of A and relation with
1.-H transition have been discussed in literature.{2, 3] When A X = 0 has one solution,
the solution describes either the I.-mode state or H-mode state. When multiple solutions

exist, the bifurcation has a hysteresis and the hard transition is possible to occur. A thin
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curve in Fig. 1(a) illustrates the solution of deterministic model, A X = 0, as a function
of the gradient on the X, for a fixed value of v,. Bifurcation and hysteresis of the radial
electric field are shown.

The magnitude of J7 is evaluated as follows. The nonlinearly-driven current,
JL=mnB' (VV ‘7) (( ) : averaged over the magnetic surface), is given as sum of
radial-Fourier components, J = dz J7(d.), where d, is a radial wavelength of a

randomly-excited current. One component is given as I.Ii' (d.) , =nmB 3a§ ikf)a? for
electrostatic fluctuations, where ¢ and k, are the amplitude of electrostatic potential

perturbation and a characteristic wave number of micro-fluctuations, respectively. (When
the finite-ion-gyroradius effect is included, ¢ is screened by a numerical factor.) Time-
varying current J}(d, ) with various values of d, can be simultaneously excited. Each

d . -component J7(d,} is considered to be statistically independent, so that an average of
the sum of J7(d.) over the length ¢ is estimated as |J]'|= /€ /¢ J;‘(PZ) after the law of

large numbers, i.e., ]Jf , =nmB" 39; W2g- Uzk(z)@;z . (¢, : a characteristic value of d,.)
The fact that J, changes much faster than E, enables us to approximate it as a white noise

TP =nm B PR o) @)

where T, is explicitly written for the dimension. (A detailed argumerit of modelling of
noise term is given in [11, 14],?) When T is much shorter than the response time of £, |
the statistical average of micro-fluctuations is calculated by treating E, as a constant

parameter. In this dc-limit, fluctuation level has been given as l 6]2 = (1 + CO%'!?%C)‘ II $ li s
where |8];. is the fluctuation level in the L-mode state, ,= B dE/dristhe EX B
shearing rate.[4, 5] Using an evaluation dE,/dr = E /¢ , one has @12 =128~ 20" °E z.
In the following, |$Ii and global plasma parameters (like temperature) are treated as

control parameters. The amplitude of the noise is a nonlinear function of X , and is
explicitly given as

_ i RPkpie®
g= ac a‘/p—f)z— 1+UX2, (5)

where ;ﬁ = e{ if) IL/T s T = Ta0d29R and U = (%aca/?)2 .
Statistical property of radial electric field X (the PDF of X, P(X ) , ensemble

average, transition probability between the L-and H-modes) is studied. The Fokker-
Planck equation of P(X ) is deduced from the Langevin equation (2) as
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Fig.1 (a) Electric field X as a function of global gradient Xnc (for fixed collision
frequency V+ = 0.1 ). The solution of A X =0 is characterized by the cusp catastrophe

(thin line). Ensemble average of the electric field (X ) is shown by the thick solid line.
Transition in ensemble average takes place at Xy = Xye. Xpne = Xy denotes the

condition of f J dE = 0. (b) PDF in a stationary state. Solid line is for

X = 0.4 = Xy, dotted line for X, = 0.38 (L-mode is dominant), and broken line for
Xy = 0.42 (H-mode is dominant) . (Parameters are: 0. = 05,9=3,e=a/R=1/3,
U=3 andV'=5))

P+ ZlA+g-—¢g P=0 6
The stationar Y solution Feq(X ) is expressed as | eq(X) o g I exp ("- S(X )) by use of the

nonlinear potential as
X
S(X) = f AAXg? dX. %)

The minimum of S(X ) (apart from a correction In g ), i.e., zero of A, predicts the

probable state of X. The probable state agrees with the one in deterministic model, and

the dominant (i.e., the most probable) state is determined by the statistical theory in which
noise is kept. S(X ) can have two minima at X = X| and X = Xy, which are separated

by the local maximum at X = X, . Figure 1(b) illustrates PDF P, (X ) for various values

of parameter X,.. The PDF has two peaks, representing the hysteresis. However, the
state X = X;_ is dominant if X < X} holds (X = 0.4 for the parameters or Fig.1(a)),

and X = Xy is dominant if X, > Xy The ensemble average (X} = f X P, (X)dx

changes smoothly as the global control parameter varies. The ensemble average (X ) is

illustrated by a thick curve in Fig.1(a). When one solution of bistable branches is chosen



as an initial condition, many transitions in between Xy and X branches occur in a long
time, and P(X) reaches to Pf_,q(X )

The transition probability is obtained by calculating a flux of probability density
from the Fokker-Planck equation (6), and is expressed by use of the potential S(X ) 13,

15} The probabilities of the L-to-H transition and back-transition are given as

L H= YALAW exp (S(XL) - S(Xm]) , (8a)

2T

vAHA
L= VR oxp (S(Xy) - S(X,)) (8b)
respectively, where the time rates A i are givenas A}, y=2X I dA/dX I at

X = Xj, m,i - Note that the time rates are normalized and Ay, g are of the order unity.

Therefore, the dominant dependence of the transition probability comes from the
exponential parts in Eq.(8). By use of Eq.(5), the transition probability is explicitly

evaluated as,

S(XL)~S(Xp)=—F I =-T f T AX (1+ux?ax (9a)

S(Xy) - $(Xp) =T Iy=-T f " Ax(1+uxY ax (9b)

with the coefficient I' =21, /a? ¢ ¢ R~ *k5*p;4$™* . Substitution of Eq.(9) into Eq.(8)
provides the transition probability and back-transition probability as
rLoH= \/W(Zn)"l exp (-—FIL) .and ry = VAgA L, (2] ' exp (—FIH) :
Integrals I, and /, are calculated and are of the order unity. (Details are explained in a full
paper [19].)

The phase boundary between the L-mode and H-mode (e.g., X},.) is defined by
the condition that both are equally observed. The probability that the state is found to stay

in the L-state is given as P =ryg 1 / (rL TR B 4T L) . That for the H-state is given by
Py=ry ,u/ (f’ LoHTTH L) - The equal-probability condition, ry _,y=ry_,1 , is

given from Eq.(8) as

S(Xp)=S(XL)+ 3 n (Ay/Ay) . (10)



Apart from a weak logarithmic term, it is approximated as S(X H) = S(X L) , i.e.,
X, 2 2
f Ax{1+Ux? dx=0. (11)
XH

This result is an extension of the Maxwell's construction rule. When the noise is

x.
independent of X, Eq.(11) gives that the condition I A X dX =0 describes the
XH

boundary of phases. f A X dX corresponds to a work function f JdE | and Maxwell's

construction is deduced. The correction of UX” in the integrand (turbulence suppression
term) is important in the H-mode X = X . By this effect, the phase boundary of
ensemble average (X5, in Fig.1(a)) deviates from the conventional criterion {denoted by
Xy in Fig.1(a)), and the region of the H-mode becomes wider. It is noted that the
boundary does not depend on the magnitude of fluctuations. A phase diagram ina
control parameter space ( v,, X NC) is obtained and is explicitly given in a separate
paper.[19]

We further address the problem whether a hysteresis in X is observed in
experiments or not. The ensemble-averaged value (X ) is reached if the averaging time is
longer than the life time, Thee” H=1/r_ _, 5 .[15] The observation of hysteresis
critically depends on the ratio between the life time of one state and the time of global
parameter change, Ty I Tyga >> Ty hOlds, two states are well equilibrated via
abundant transitions. The averaged observations do not depend on from where the global
parameters have evolved. In the case of T,,,,, — Ty, the observed results strongly depend
on from which branch the parameters have evolved, i.e., from the L-mode or from the H-
mode; The hysteresis in the response of X to the global parameters is observed.

In summary, the statistical theory of the E, bifurcation in the edge of tokamaks
was analyzed. Micro fluctuations induce a random noise for the transition to occur in a
probabilistic manner, when a hysteresis is predicted in the deterministic model analysis.
The PDF and ensemble average of E, were obtained. The probability of L/H transition
was obtained, and a life-time of each state was calculated. The phase boundary of two
states was given by the equal-probability condition for the H-and L-states. Owing to the
suppression effect on turbulent noise by the E, shear, the boundary was found to deviate
from the Maxwell's construction rule. Implications to experiments are as folows: First,
the appearance of H-mode in plasma parameters must be judged by the ensemble averages
of statistical models which have a noise source, not by a value of determninistic model.
(See Fig.1(a).) Due to the noise, each transition occurs being scattered around the
ensemble average. This must be noticed in the future comparison of experimental
database with theories. Second, the ensemble average (X ) does not show a hysteresis
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against global parameters X, even though a deterministic model predicts the hysteresis.
(Ensemble average of heat flux is also obtained. This is discussed in a full paper [19].)
Third, the observation of hysteresis in experiments critically depends on the speed of
global parameter change: this is another feature which characterizes the non-equilibrium
properties. Fourth, the probabilistic onsets may change the occurrence of dithering
between H-and L-states; In conjunction with it, coupled dynamics with giobal pressure
gradient are discussed in [19]. In this article, the model of Eq.(3) was taken to show a
typical example of probabilistic transition. Other mechanisms have been known to
influence L-H transitions.[9] The inclusion of zonal flow excitation in statistical theory
[14] or the coupling of dynamics of different scale lengths [20] must be investigated for
quantitative analysis of tokamak plasmas, and are left for future studies.
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and Prof. A. Yoshizawa for useful discussions. This work is partly supported by the
Grant-in-Aid for Scientific Research of MEXT Japan and by the collaboration
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