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Abstract

A dctailed comparison between kinetic and fluid simulations of collision-
less slab ion temperature gradient (ITG) driven turbulence is made. The
nondissipative closure model (NCM) for linearly unstable modes, which is p-
resented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 {(2001)],
and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev.
Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity
of these closure models for quantitative prediction of the turbulent thermal
transport is examined by comparing nonlinear results of the fluid simulations
with those of the collisionless kinetic simulation of high accuracy. Simulation
results show that, in the saturated turbulent state, the turbulent thermal dif-
fusivity y obtained from the HP model is significantly larger than the x given
by the NCM which is closer to y measured in the kinetic simulation. Contrary
to the dissipative form of the parallel heat flux closure relation assumed in the
HP model, the NCM describes well the exact kinetic simulation, in which for
some unstable wave numbers k, the imaginary part of the ratio of the parallel
heat flux gy to the temperature fluctuation Ty is a oscillatory function of time
and sometimes takes positive values. The positive values of Im(gx/Tk), im-
ply the negative parallel heat diffusivity, correlate with the occasional inward
heat flux occurring for the wave numbers k. and reduce the total y.

Keywords: kinetic and fluid simnulations, ITG turbulence, closure model

I. INTRODUCTION

In recent years, gyrokinetic and gyrofiuid (or gyro-Landau-fluid) simulations® of plasma
turbulence driven by microinstabilities such as the ion temperature gradient (ITG) mode?
have actively been done in order to predict the anomalous transport coefficients in magnet-
ically confined plasmas from the first principle. Since the gyrofluid simulations®™ consume



less computer memory and time than the gyrokinetic simulations,5 the former is useful
for doing many runs to establish the scaling model of the anomalous transport coefficients.
However, in the gyrofluid model, some closure relations'?™!? are assumed to construct a
truncated system of fluid equations from the gyrokinetic equation and their validity in non-
linear or turbulent regimes is not clear because conventional gyrofluid closure models such
as the Hammett-Perkins (HP) model'® are originally derived so as to accurately reproduce
gyrokinetic dispersion relations for linear modes. In fact, there exist some cases, in which
the gyrokinetic and gyrofiuid simulations show disagreements in their nonlinear results such
as the saturated fluctuation levels and the turbulent transport coefficients.'!?

In our previous work,'* we have presented the nondissipative closure model (NCM),
which takes into account the time reversal symmetry of the collisionless kinetic equation.
The NCM relates the parallel heat flux to the temperature and the parallel flow in terms
of the real-valued coefficients in the unstable wave number space. The NCM was derived
such that the closure relation is valid both for the unstable normal-mode solution and its
complex-conjugate solution as well as for any linear combination of these solutions. Thus,
in the NCM, the phase of the parallel heat flux with respect to the temperature fluctuation
in the unstable wave number region can take either of positive and negative signs in the
turbulent states while it takes only the one-sided sign in dissipative closure models such as
the HP model. These different closure schemes lead to different nonlinear behaviors of the
fluid variables even though they give almost the same linear results. In fact, a fluid system
of equations using the NCM theory for unstable modes reproduces the exact nonlinear
kinetic solution of the three-mode ITG problem®!%!* found by Watanabe, Sugama, and
Sato!® while the HP model fails in representing that solution. Then, the next question is
whether the NCM can successfully describe strongly turbulent states of collisionless kinetic
systems with a higher number of degrees of freedom. In the present work, in order to answer
this question, we do both fluid and kinetic simulations of the two-dimensional slab ITG
turbulence and investigate how accurately the fluid sirnulation using the NCM or the HP
model can reproduce results of the collisionless kinetic simulation under the same conditions.

Zonal flows have been attracting much theoretical and experimental attention as one of
important factors to affect the turbulence saturation level and the anomalous transport.’® A
wrong description of zonal flow damping in the original gyrofluid model was once suspected as
a cause of difference between the gyrokinetic and gyrofluid simulation results.!” Subsequently,
the gyrofluid model was improved to correctly treat the zonal flow damping.!® However,
our work shows that the closure relations for the fluctuations other than the zonal flow
component are important as well because the gyrokinetic and gyrofluid simulations can
show significant disagreements even for no zonal flow case. In this paper, we consider the
no-flow case to examine the pure effects of the closure relations on the turbulence saturation.
Adding the complexity caused by the feedback-feedforward coupling of zonal flows obscures
the role of the closure problem for the fluctuations. Simulation results with flows included are
not shown here also because only quiet steady states with turbulence transport suppressed
are obtained by both of our gyrokinetic and gyrofiuid simulations of the two-dimensional
slab ITG turbulence when the zonal flow component is included.!® In toroidai configurations,
such effects as the collisionless transit time magnetic pumping and the neoclassical viscosity
would cause stronger damping of the zonal flow?® and accordingly larger turbulence transport
than in the two-dimensional case.

The rest of this work is organized as follows. In Sec. II, the basic kinetic and fluid
equations for simulating the collisionless slab ITG turbulence are presented. There, a de-



tailed expression of the NCM used for the parallel heat flux in the temperature evolution
equation is given. Also, the kinetic and fluid entropy balance equations are derived from
those basic equations in order to describe the quasisteady turbulence state in which the
entropy variable associated with fine velocity-space structures monotonically grows but the
low-order-moment fluid variables’ fluctuations and the turbulent transport are saturated. In
Sec. 111, results of the kinetic and fluid simulations of the two-dimensional slab ITG turbu-
lence are shown. Two different types of fluid simulations are done to separately examine the
validity of the NCM and HP closure models compared with the kinetic simulation results.
The quasisteady state is realized by the kinetic simulation with no zonal flow component.
The saturated fluctuation level, the turbulent heat diffusivity, and the ratio of the parallel
heat flux to the temperature fluctuation obtained by the fluid simulations are directly com-
pared with those in the kinetic simulation, and effects of the closure models on the resultant
transport are specified. Finally, conclusions are given in Sec. IV.

H. BASIC EQUATIONS

The collisionless electrostatic gyrokinetic equation for ions in the uniform magnetic field
B is written as’!

%’: + (‘U”b + %b X V(¢(X + P))) -Vf- mi:b : V(¢(X + P))% =0, (1)

where f = f(x,vy,ut,t) represents the ion gyrocenter distribution function, x is the ion
gyrocenter position, v is the velocity component parallel to B, = m;v? /2B is the magnetic
moment, and {(¢(x+ p)} is the electrostatic potential averaged with respect to the gyrophase
included in the ion gyroradius vector p. Here, p is defined by p = b x v /Q; with the
perpendicular velocity v, the ion gyrofrequency Q; = eB/(m;c), and the unit vector b
parallel to B.

The distribution function f is given by the sum of a background Maxwellian part
Fur = ng(m;/27T,)*/? exp(—mv?/2T;) and a perturbation part f, where ny and T; denote
the background density and temperature, respectively, which macroscopically depend on a
coordinate z in the perpendicular direction. Furthermore, in order to make nurnerical sim-
ulation easy, we assume v -dependence of f to be also given in the Maxwellian form. Then,
the fluctuation quantities f and ¢ are written in terms of the Fourier expansion as

. m; m;v? i Ao

f(X, Y||s My t) = s Xpl— = Z fk(vil, t)e K x’ ¢(X, t) = Z (}5k(t)€ . ) (2)
27T 2T; | 5 "

where macroscopic variations of ng and T; in the z-direction are considered separately from

microscopic spatial variations represented by the wave number vector k. Substituting Eq.

(2) into Eq. (1) and integrating over v_-space, we obtain

O h + ikH‘U”fk - % Z b - (k' x k")|¥ fir

k' +k"=k
mvi 1 1 el
=il ren (G- gn) e PR ¥

where k) = k - b is the parallel wave number, ¥, = @y exp(—by/2) is the wave-number-
space representation of the electrostatic potential averaged with respect to the gyrophase
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and v, b = k2T:/(m;?) is the square of the perpendicular wave number multiplied by
the thermal gyroradius, and Fyy = [ d?v) fu = no(m,/27T)/? exp(—mivﬁ/ 2T;). Here, the
parallel nonlinearity —(e/m;)b - V{¢(x + p))3f /vy included in Eq. (1) is neglected based
on the gyrokinetic ordering k) /k, ~ kjp < 1, and inhomogeneities in ny and T are taken
into account only through w.; = (cT;/eB)k-b x Vinng and n; = dInT;/dInng while ny and
T: in other places as well as w.; and 7); are regarded as constants.
Taking the velocity moments of Eq. (3), we obtain fluid equations,
by ) eV

) . c
Oy + ik not — tw.ittp (I - Eq,- T B

Z [b . (k' X k")]‘I’k:nku = 0, (4)

K +k"=k

g,
B

E [b . (k’ X k")]‘I’keru = 0, (5)
k'+k'"=k

ngm:Osuk + iky (Tim + noThk + nge¥y ) —

- . c i n
ng0, Ty + iky (2neTiux + i) — tw.iminee ¥y — n_;_ . b (K xK")¥Tw =0, (6)
Kk =k

where n'k(t) = ffom dv“fk(v”, t), nouk(t) = ffom d’U”fk(U” s t)'U”,
noTi(t) = J% dvyfilvy, t)(mavf — Tp), and gu(t) = [%5, dv)filvy, t)(miv] — 3Tiv)). Here
all nonlinear terms result from the E x B drift.

Assuming the adiabatic electron response and using the quasineutrality condition give

exp(~bu/2)m — g X[~ Tufb)] = D¢ (for ky £ 0), ")
where T’y is defined by To(bx) = Io(bx)exp(—b) with the zeroth-order modified Bessel
function I;. Here, the left and right-hand sides represent the ion and electron particle
density fluctuations, respectively. In the left-hand side of Eq. (7), the ion gyrocenter density
ny is multiplied by the factor exp(—by/2) due to the finite-Larmor-radius (FLR) effect and
the second term with the electrostatic potential ¢y results from the ion polarization. Dorland
and Hammett® employed [['y(by)]/? instead of exp{—b&y/2) for the FLR factor included in Eq.
(7) and in ¥, , which gives the same linear dispersion relation as that obtained by a rigorous
treatment of v, -dependence of f. The difference between exp(—by/2) and [To(by)]Y/? is
small for b, < 1. For the purpose of comparison between nonlinear results of the kinetic and
fuid simulations under the same conditions, it is not essential which FLR factor is used.
For the fluctuations with k; = 0, the electron density perturbation is often assumed to
vanish and then the quasineutrality condition gives

exp(—bi/2)me — na HE[L ~ Ta(b)] =0 (for Jy = 0) ®)

When using Egs. (3), (7}, and (8) for the two-dimensional slab ITG turbulence simulation,
we have found that a large zonal flow component, ¢, with ky = 0, is nonlinearly generated,
suppresses linearly-unstable modes with k; # 0, and results in no turbulent transport.'
Thus, efficiency of zonal flow generation and resultant transport coefficients are strongly
influenced by what condition is used for the kj = 0 modes. In more practical cases of
toroidal configurations, the zonal flow would be significantly reduced by the collisionless
transit time magnetic pumping and by the collisional damping?® although neither of these
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effects is included in Eqgs. (1) and (3). Here, in order to avoid the complexity brought about
by the zonal flow and get finite turbulent transport, we put

fk = ¢k =0 (fOl‘ kn = 0), (9)
and
Ny = U = Tk = ¢k =0 (fOI‘ k” = 0), (10)

in our kinetic and fluid simulations, respectively.

Now, a closed nonlinear kinetic system of equations are given by Eqgs. (3) and (7) for
k; # 0 and by Eq. (9) for ky = 0, which are used for kinetic simulation of the slab ITG
turbulence in the present work. In order to obtain a corresponding closed fluid system, we
need to express the parallel heat flow ¢ in Eq. (6) in terms of the lower-order moment
fluid variables ny, uy, and Ty. In the Hammett-Perkins (HP) model,’? gy is written in the
diffusive form as

gk = —noX ik T, (11)

where the parallel heat diffusivity is given by x; = 2(2/7)"?v,/|k)| with the ion thermal
velocity v, = (T:/m;)"/%. Then, Egs. (4)~(7) for k; # 0, Eq. (10) for k; = 0, and Eq. (11)
give a closed fluid system of equations in the HP model. In the NCM, the parallel heat flow
¢« in the unstable wave number region is given as'

g = Crinov/ Ty + CuxnoTiu (for linearly unstable modes), (12)

while the dissipative closure relation as written in Eq. (11) should still be used in the stable
wave number region. Requiring that the closure relation in Eq. (12) should exactly reproduce
the kinetic dispersion relation, the real-valued coeflicients Cpy and C,x are determined as

Cri = Croc — CL,-R%,
Cux =Cp 'k& (13)
b FIm(&e()’

where CLk = CL;-k + iCLik = _Z{B](WLk/(ﬁk”vi))/[\/iZ{.z)(WLk/(ﬁkHUf))] (Z("] : the nth
derivative of the plasma dispersion function), £x = L+l = [w{1+H(Te /T)(1—To(bk)) }—
wee(1= b /2)e™ ]/ (kyve), and G = Cact+iCa = wndic/ (kjv) =1 — (To/T:)(1— Lo (i) +-e )
are used. The complex-valued eigenfrequency, wyy is determined by the dispersion relation
Dy(wrx) = 0, where the dispersion function Dy(w) is defined by

eI/ w — w1 + ni{v}/ (2v}) - 1/2 — By /2}]
V2, w — k| '
| (14)

The above dispersion function, which is derived from Egs. (3) and (7), slightly differs from
that obtained by a rigorous treatment of v, -dependence of f as mentioned after Eq. (7),
although the difference is small for low perpendicular wave numbers b < 1.

The closure relation given by Egs. (12) and (13) is derived from the assumption that
the relation should be valid for a complex-conjugate pair of the linear kinetic eigenfunctions

i
Dif{w) =1—To(by) +e % + T e b fdvu
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fix(vy) and fi () as well as for any linear combination of them [see Egs. (23)(29) in
Ref. 14]. Existence of this pair reflects the time reversal symmetry of the collisionless
kinetic equation, and one of the eigenfunctions corresponds to a growing solution when the
other corresponds to a decaying one. In conventional linear problems, only the dominant
growing solution is considered while its conjugate partner is usually disregarded. However,
in the three-mode ITG problem, which is the simplest example of nonlinear kinetic systems,
transitions between growing and decaying phases occur repeatedly and the nonlinear solution
is given by the superposition of fri(vy) and f;, () so that the NCM is successfully applied.*
Numerical simulations in the next section reveal that the basic idea of the NCM mentioned
above also works for a better description of the anemalous transport in the strong ITG
turbulence.

Before showing simulation results, it is meaningful to consider kinetic and fluid entropy
balances in the slab I'TG turbulence based on the governing equations in the same manner as
in Ref. 14. We define the microscopic entropy S,, and the macroscopic entropy Sy for ions
per unit volume by*** S,, = — fdy fIn f and Sy = — [ dvyFr In Fyy where f = Fy + f.
[Here, both f and f are regarded as distribution functions on the v;-space obtained by
integrating those in Eqgs. (1) and (2) on the v, -space so that f = ¥y fi(vy, t)e™*] Retaining
terms up to O( f ), the relation between S,,, and Si; is given by Sy = (Sm)—i— f dv”( f2 Y/ Fat,
where (- - -) represents the ensemble average. As shown from Eq. (1), the total MiCroscopic
entropy il d%:SIn is conserved without collisions, although the macroscopic entropy Sy or
AS =1 [dy{f*)/Fy can increa.se through the turbulent or anomalous transport processes.
[Krommes and Hu? called § = —1 [ dvy(f*}/Fas(= S.. — Sas in our notation) the entropy of
the system to measure deviation of the fluctuating distribution function f from the ensemble-
averaged distribution function {f)} although we here regard AS = Sy — S,.(= -8 = F
in Krommes and Hu?*) as the entropy associated with the fluctuations because, in the
collisionless system, turbulent processes produce not S,, but Sy.] Throughout the present
work, we consider the system in the uniform magnetic field, and assume the turbulent
fluctuations to be statistically homogeneous in space. {Such homogeneous turbulence is
actually obtained by simulations in the next section. | Then, we replace the ensemble average
(---) by the volume average such that AS = 1 f dy{f*)/Fy = 3 L f dvoy| fi]?/ Fr-

From Egs. (3), (7}, and (9), we find that the turbulent entropy production rate is given
by
eRe( —?:k” 'I'kuf()

(3 o) =me s [Re (G oxw) vz + ST

_ % N, 9
_-f,—-(—VInT,)+Ti, (15)

i

where q, ='ing Ty Re[Tyi(c/B)b x k¥,] is the turbulent perpendicular ion heat flux and
@ = eng 1y Re(—ik) ¥y uy) represents the turbulent ion heating. Using Egs. (4), (7), and
Q

(9), we obtain
4 (Z B (14 - ro(bk)}]) =7 (1e)

Then, using Eq. (16), the kinetic entropy balance equation (15) is rewritten as
|fkl ﬂgT eq}k Te .
(fd e+ 5 |:1+i{1—rg(bk)}:| =

et
T.

T i)- (17)
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It is convenient to expand fi in terms of the Hermite polynomials H,(z) =
(—1)e* *die~="?/dz" (z = v) /vy n=10,1,2,---) as

ficlvp 8) = Far(91) 3 puac(8) Ha(vy /ve)
2
il 3 () 3G

Ll o {(ﬂ)s ~3 (v!)} +3 sonk(t)Hn(vu/vr)] ; (18)

6 nOT Yt n>4

where .1 (t) = ()~ 22 d(vy/v) flv, £)H.(vy/v) (n=0,1,2,---). Substituting Eq. (18)
into Eq. (17) gives

2 1 Tk 2 1 qk 2 n! 5
( ’Uf 4 f 12 ingTiv, + n; El‘pnkl
¢’k [ = {1 - Fo(bk)}]) TJ'- . (—VlnT,—), (19)
where the orthogonality conditions for the Hermite

polynomials (27)~%/2 [ dz e = /2H, (2)Hn(2) = n',m (n,m = 0,1,2,---) are used. It
is found from Eq. (17) or Eq. (19) that there is no perpendicular heat transport in the direc-
tion of the temperature gradient in the collisionless steady turbulent state where saturation
of the entropy f dv|fu|?/2Fy and the potential amplitude |¢y| occurs. Then, we assume a
quasisteady state!* in which the amplitudes of the fluid variables . with low n (n, wu,
Tk, qx, - - -) and the potential ¢y reach the steady state while the high-n moments included
in 3,54 %"l%klz grow indefinitely in time. (The quasisteady state should be regarded as
idealization of the real steady state in which those high-n moments eventually saturate as
well due to collisional dissipation even if the collision frequency is much smaller than the
characteristic frequency of the instabilities causing the turbulence.)

Using Egs. (4)—(7) and (10), we can derive another balance equation similar to Eq. (19),

d Ting? Llw? 1|Tkf T. 2 T,
el 3 s - == 142801
di 2™ (2 wl T2lul YT T (T [ g F°(b“)}]
qL Tx
= Tz . (—VlnTi) -+ %Re (ZTZ?,kuqk) (20)

which can be regarded as the fluid entropy balance equation. We should note that Eq. (20)
is valid irrespectively of closure relations. Comparing Eq. (20) to Eq. (19), we easily find

d

., . _d i
gRe (2—1?zk”qk) = dt%ng (12

For the quasisteady state in which d(¥,<; 5 2g,k|?)/dt = 0, we obtain from Egs. (20) and
(21),

qx
ngT;v,

ey %—!kpnkﬁ) . e

>4

: n>4

q.L Tk . * 2
—(-VInT) =-) Re (—-zk 4 ) (no Isonkl ) (22)
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Equation (22) represents the entropy production rate in the quasisteady state, where the
perpendicular heat transport in the presence of the background temperature gradient drives
the growth of the fluctuations in the high-n moment variables through the correlation be-
tween the parallel heat flux and temperature fluctuations. It is interesting to note that, in
a closed fluid system, the correlation term Re[(Ti/277)ikyqy) involved in the entropy bal-
ance is influenced by what closure model is used. The entropy balance equations in Egs.
(17) and (20) are also useful for checking numerical accuracy of nonlinear simulations of the
collisionless slab ITG turbulence.

ITI. SIMULATION RESULTS

Here, results of kinetic and fluid sirnulations of the two-dimensional slab ITG turbulence
are shown. We consider a rectangular domain of L, x L, in the z-y plane with a uniform
external magnetic field B = B(Z + 6y) (|#| < 1), where ¥ and Z denote the unit vectors
in the y- and z-directions, respectively. The system is assumed to be homogeneous in
the z-direction (8/9z = 0). We employ the periodic boundary conditions in both z and
y directions. Then, in Eq. (2), we can write k = k.2 + k,§ = 2x{(m/L.)x + (n/L,)¥].
f = fom, and ¢y = ¢y, (myn = 0,£1,42,---) and the parallel wave number is given by
ky = k,6. The background density and temperature gradients are assumed to exist in the
z-direction, and their gradient scale lengths are given by L, = —(dlnng/dz)~'(> 0) and
Ly = —(dInT./dz)~'(> 0), respectively.

The governing equations for the kinetic simulation are written in Egs. (3) and (7) for
ky # 0 and Eq. (9) for kj = 0. For comparison to the kinetic simulation, two types of fluid
simulations using different closure models are done. Both fluid simulations are based on
Egs. (4)~(7) for ky # 0 and Eq. (10) for kj = 0. However, one of them employs the NCM
given by Eq. (12) for linearly unstable modes and the HP dissipative closure given by Eg.
(11) for linearly stable modes while the other uses the HP closure for all modes. Here, for
all simulations, we use the conditions T../T; = 1, o, = L,/Lr = 10, and L, = L, = 20xp;
[p; = v:/Q; : the ion thermal gyroradius]. Another important parameter related to the linear
dispersion relation is © = 8L, /p;. We find from Eq. (14) that the normalized complex-valued
eigenfrequency wyi/w,.; is a function of the dimensionless parameters (k) p,, ©,n:,1./T;).
Simulation results for © = 2 are shown in Figs. 1-8.

Figure 1 shows time evolution of the entropy associated with the fluctuations per u-
nit volume AS = 3 [ duy( 7%/ Fys, which is obtained by the kinetic simulation. Here,
solid and dotted lines correspond to AS and AS(=2) respectively, where AS"<?) =
1o Yi{5In/nol* + Suw/v> + Tk /Ti|?) represents a contribution from the n < 2 terms
in the Hermite-polynomial expansion of fi to AS [see Eq. (18)] . It is clearly seen that,
even after the end of the linear stage at v,¢/L, ~ 90, AS continues to monotonically in-
crease while AS"=?) is saturated. This implies realization of the quasisteady state of the
collisionless turbulence described in the previous section, which was already confirmed by
Watanabe and Sugama.!” The monotonic increase of AS is sustained by generation of fine
velocity-space structures of fi through phase-mixing processes such as the ballistic mode.
In order to keep encugh resolution for the fine structures, 8,193 grid points are used here
for discretization of the velocity space, —5 < vy/v; < 5. Also, in order to satisfy the kinetic
entropy balance equation in Eq. (17) with high accuracy, we employ the time integrator,
which retain the time reversal symmetry and avoid numerical dissipation.” The kinetic com-
putation should be stopped when the velocity-space scale of the ballistic mode reaches the
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grid size {at v,t/L, > 800 for the present case).

For all kinetic and fluid simulations, we impose the same initial condition that the initial
amplitude (e¢/T.)/(p:/L,) = 107> and random phases are given to all potential compo-
nents ¢x with ky # 0. The mode wave numbers used here are (k,,k,) = 0.1p; ' (m,n) with
m,n = 0,%£1,%2,--.,+32, for which good numerical convergence is obtained. It is con-
firmed that, in the early time stage, the kinetic simulation, the NCM fluid simulation, and
the one using only the HP closure model show a good agreement on the growth of the linear
unstable modes because both the NCM and the HP model accurately reproduce the kinetic
linear dispersion relation. Figure 2 shows time evolution of the energy-like quantity,

ETEZTLG (% €¢7k
k

T,
the change rate of which is governed by Eq. (20). In Fig. 2, results of the kinetic, NCM, and
HP simulations are represented by solid, dotted, and dashed curves, respectively. We find
from Fig. 2 that the nonlinear saturation label of E7 in the HP simulation is much larger
than that in the kinetic simulation while the NCM simulation result is closer to the kinetic
one.

Figure 3 shows the normalized perpendicular heat diffusivity v/{p?v,/L,) as a function
of normalized time v:¢/L,,, where x = q. - X/{noT:/Ly) and q, = 319 ¥y Re[Tyi(c/B)b x
k¥,]. Here, black, red, and blue lines correspond to results of the kinetic, NCM, and
HP simulations, respectively. We see that y shows similar behaviors to those of Ey in
Fig. 2 except that more spiky oscillations appear in the former. In the saturated state of
turbulence, y obtained by the NCM simulation is in good agreement with y from the kinetic
simulation. In contrast, y obtained by the HP simulation are significantly larger than them.
We obtain (¥, Ax)/(p?v,/L,) = (2.57,0.97), (3.06,1.30), and (12.86, 3.43) from the kinetic,
NCM, and HP simulations, respectively, where y and Ay denote the time average and the
standard deviation of x over 300 < wi¢/L, < 726, respectively. The NCM simulation also
reproduces a big fall of y after the first overshoot shown by the kinetic one better than the
HP simulation.

Patterns of the electrostatic potential on the (z, y)-plane at v,#/L,, = 726 obtained by the
kinetic, NCM, and HP simulations are shown in Figs. 4 (a), (b), and (c), respectively. For
all cases, more isotropic vortex structures are seen in the nonlinear stage than in the linear
stage where the structure of the (m,n) = (0,4) {or (k.p:, k,p:) = (0.1m,0.1n) = (0,0.4)]
mode with the largest linear growth rate is dominant. We notice that the HP simulation
gives the largest amplitude of the potential.

In order to investigate more detailedly the difference between the turbulent heat d-
iffusivities shown in Fig. 3, we plot %x for linearly unstable modes with {(k.p;,k,p:) =
(0,0.1),---,(0,0.7) in Fig. 5, where ¥i is defined by taking a time average of the wave-
number-dependent heat diffusivity xi = q.i-%/(n07:/Lt) = —iRe[Tyi{c/B)k, ¥}/ (Ti/Lt)
over 300 < v,4/L, < 726. Here, black, red, and blue lines correspond to the kinetic, NCM,
and HP simulation results, respectively. It is noted that i ’s for other unstable modes with
k. # 0, which are not shown here, tend to become smaller with increasing k,. In Fig. 5,
the normalized linear growth rates m./(v;/L,) are also plotted by thin dashed and dotted
curves, which correspond to results from the NCM and the HP model, respectively. [For
unstable modes, the linear growth rates obtained by the kinetic model coincide with those
by the NCM because of definitions of the real-valued closure coefficients in Eq. (13).] Due to
the inverse cascade, contributions to x are dominantly made by lower wave number modes
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than the most unstable (k. p;, k,p:) = (0,0.4) mode. We find that, in the kinetic and NCM
simulations, the lowest wave number (k. p;, k,0;) = (0,0.1) mode plays a dominant role in
the turbulent heat transport while, in the HP simulation, other low wave number modes
such as the (k. p:, k,p:) = (0,0.2) and (0, 0.3) modes also give relatively large contributions
to x, which leads to significantly larger x in the HP simulation as seen in Fig. 3.

Figures 6 {a) and {b) show the wave-number-dependent heat diffusivity yi as a function
of time for the cases of (k.p;, k,p:) = (0,0.1) and (0, 0.2), respectively. Here, black, red, and
blue curves correspond to the kinetic, NCM, and HP simulation results, respectively. As seen
from Fig. 6 (a), all kinetic, NCM, and HP simulations show similar behaviors of i for the
lowest wave number unstable mode (k. p;, k,0;) = (0,0.1) in the nonlinearly saturated state:
Average values and distribution widths of xy in the three simulations are close to one another.
On the other hand, we find from Fig. 6 (b) that, for (k.p;, k,p:) = (0,0.2), xi’s distributions
in the kinetic and NCM simulations become much smaller than for (k.p;, k,p;) = (0,0.1)
while xi’s behaviors in the HP simulation for the two cases of (k,p;, k,0:) = (0,0.1) and
(0,0.2) are not much different from each other. Especially, it should be noted that, in the
kinetic and NCM simulations for (k.p;, k,p:) = (0,0.2), there appears a significant length of
time for x\ to be negative, which is a contrast to the case of (k.p;, k,p;) = (0,0.1).

Now, let us consider how results shown above are related to the closure relations. We
directly check the validity of the closure relations themselves for the parallel heat flux ¢,
by examining what values the ratio of ¢ to the temperature fluctuation 7y takes in the
kinetic and fluid simulations. The real and imaginary parts of ¢/(nov,T}) are plotted as a
function of time in Fig. 7. Figures 7 {(a) and (b) show Re[q/(nov:Tk)] and Imjgx/(nev, 7% )]
for the lowest wave number unstable mode (k.p; k,p0;) = (0,0.1), respectively, while their
correspondences for the case of (k.p;, k,p;) = (0,0.2) are given in Figs. 7 (c) and (d). Here,
results from the kinetic and NCM simulations are represented by black and red curves,
respectively. In the HP model, Re[gqi/(nov:Tk)] = 0 and Im[g/(nevTy)] = —2(2/x)/? ~
—1.5958 as shown by blue horizontal lines. It is found from the kinetic result that both real
and imaginary parts of gi./(nyv:Tk) are oscillatory functions of time, which is better described
by the NCM than by the HP. The oscillation amplitudes of the real and imaginary parts in the
kinetic simulation are about the same as those in the NCM simulation, and these amplitudes
become smaller for the lower wave number mode. Up to the early part of the nonlinear
stage [v,¢/ L, < 200 for (k.p; k,p;) = (0,0.1) and v,t/L, < 150 for (k.p; k,p:) = (0,0.2)], the
kinetic and NCM results show a good agreement on the behaviors of Re[gy/(nov,Tk)] and
Im[gi./(nov;Ti)] although, in the later time, the values of both real and imaginary part in
the NCM case slightly shift in the positive direction on average from those in the kinetic
case.

The sign of Im|q/(nev,Tx)] is especially important since it determines the sign of the
dissipation term Re[3(Ti/T7)ikygy] in the entropy balance [see Eq. (20)]. For k; > 0,
negative (positive) Im|qi/(nov;Tx)] corresponds to dissipation (anti-dissipation) and to pos-
itive (negative) xi if we assume that the mode structure is given by or close to a linear
combination of the unstable linear eigenfunctions and its complex conjugates. [This as-
surnption is valid for the three-mode I'TG problem!* and is supported to some extent for
the collisionless turbulence as shown in Watanabe and Sugama,'? where it is checked by the
kinetic simulation how closely fi(v)) for the linearly most unstable mode takes the form
of ¢ frx(vy) + e2fir(vy) with the linear eigenfunction fri(v) and its complex conjugate
Fix(v).] The kinetic and NCM results in Fig. 7 (b) show that, for the lowest wave num-
ber unstable mode (k.p; k,p;) = (0,0.1), Im[gy/(nev;Ti)] is almost always negative as in

16



the HP model, which means that the mode structure for (k.p; k,p;) = (0,0.1) stays close
to that of the unstable eigenfunction. This fact is related to the large positive x values for
(k.p: k,p;) = (0,0.1) shown in Figs. 5 and 6 (a). On the other hand, for (k.p; k,p:) = (0,0.2),
the kinetic and NCM simulations show that the length of time for Im[gy/(nev,Tk)] to be
positive increases as seen in Fig. 7 (d). Then, the (k,p; k,p;) = (0,0.2) mode structure can
sometimes approach the complex conjugate of the unstable eigenfunction, which enables yx
to reduce or take negative values as shown in Fig. 6 (b). This fact is confirmed more clearly
in Fig. 8, where xix and Im[gy/{nev;Tx)] for (k.p;: k,p:) = (0,0.2) are plotted as a function
of time on the same frame. Figures 8 (a) and (b) correspond to the kinetic and NCM sim-
ulations, respectively. It is obvious that positive (negative) Im[g./(nov,Tx)] correlates with
negative (positive) xx. Allowing for this positive Im{g /{nov,Tk)] in the NCM is considered
to be the key to the better prediction of x than in the HP model.

Figure 9 shows the normalized perpendicular heat diffusivity x/(p?v,/L,.) as a function
of normalized time v;t/L,, for the case of © = 1. Parameters used here are the same as
in Figs. 1-8 except for ®. The linear growth rate of the most unstable mode increases
from Y., = 0.182(vi/L,)} at (k.p;, kyp:) = (0,0.4) for © = 2 to Ymer = 0.379%(v;/L,,) at
(k.p:, kyp:) = (0,0.7) for © = 1. Also, the wave number region for unstable modes extends
from k, p; < 0.7 for @ = 2 to k1 p; < 1.2 for © = 1. Thus, the heat diffusivity x in the
nonlinearly saturated state becomes larger for © = 1 than for ©® = 2. Still, the NCM
simulation describes the behavior of y in the kinetic simulation better than the HP model
because of the same reason as explained in the case of ©® = 2.

IV. CONCLUSIONS

In the present paper, we have made a detailed comparison between kinetic and fluid
simulations of two-dimensional collisionless slab ITG turbulence. In the fluid simulations,
two types of different closure relations, namely, the NCM and the HP model are employed for
linearly unstable modes. We examine how accurately they can reproduce nonlinear results
of the kinetic simulation such as the turbulent heat diffusivity x. In the collisionless kinetic
simulation with no zonal flow component, the quasisteady turbulent state is reached, in which
the entropy variable associated with fine velocity-space structures AS = J fdvy(f*}/Fu
monotonically increases while the low-n fluid variables and the electrostatic potential reach
the real steady state. (Here, n denotes the number of order in the Hermite polynomial
expansion of the distribution function.)

We show that the saturation level of the low-n fluid variables and y in the quasisteady
state of the kinetic stmulation are better predicted by the fluid simulation using the NCM
than by the one using the HP model. In the kinetic and NCM simulations, unstable modes
other than the lowest-wave-number unstable mode have low amplitudes and small contribu-
tions to the turbulent heat transport while, in the HP simulation, the number of unstable
modes with significant effects on the transport increases, which leads to the higher satura-
tion value of x. The kinetic and fluid simulation results all show that the contribution of
the lowest-wave-number unstable mode to the turbulent diffusivity y always tends to take
relatively large positive values, which is associated with the dissipative nature of the relation
between the parallel heat flux ¢, and the temperature fluctuation Ty that the imaginary part
of the ratio gi /Ty for that mode is constantly negative. However, it is a common property
found in the kinetic and NCM simulations that, for other low-wave-number unstable modes,
xx can take negative values in response to Im{qy/7i) becoming positive. The HP model
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misses this mechanism and causes x to be larger. Here, ) represents the contribution of
the mode with the wave number vector k to the total heat diffusivity x, and the meaning
of negative xi is that the E x B convective thermal flux produced by that mode is up the
background temperature gradient.

The real and imaginary parts of the ratio g/} for unstable modes obtained by the NCM
simulation are oscillatory functions of time, which have distribution widths similar to those
in the kinetic case, although the averaged values in the former shift from those in the latter in
the positive direction. So, there is still room for improvement of the NCM to reproduce the
kinetic results more accurately. Also, extensions of the present work to the cases including
important effects such as toroidal geometries, zonal flows, and electromagnetic fluctuations
remain as future problems.

ACKNOWLEDGMENTS

Numerical computations of the kinetic and fluid equations are performed on the NIFS
MISSION System (Man-Machine Interactive System for Simulation) and the NIFS General
Purpose Computer System, respectively. This work is supported in part by the Japanese
Ministry of Education, Culture, Sports, Science, and Technology, Grant No. 12680497 and
14780387, the U.S. Department of Energy, Grant No. DE-FG03-96ER-54346, and the Na-
tional Science Foundation, Grant No. ATM-9907673.

12



REFERENCES

"A. M. Dimits, G. Bateman, M. A. Beer, ef al., Phys. Plasmas 7, 969 (2000).

?'W. Horton, Rev. Mod. Phys. 71, 735 (1999).

?W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993).

*R. E. Waltz, G. D. Kerbel and J. Milovich, Phys. Plasmas 1, 2229 (1994).

M. A. Beer, G. W. Hammett, G. Rewoldt, E. J. Synakowski, M. C. Zarnstorff, and W.
Dorland, Phys. Plasmas 4, 1792 (1997).

5 W. W. Lee and W. M. Tang, Phys. Fluids 31, 612 (1988).

S. E. Parker, W. W. Lee, and R. A. Santoro, Phys. Rev. Lett. 71, 2042 (1993).

5 A. M. Dimits, T. J. Williams, J. A. Byers, and B. I. Cohen, Phys. Rev. Lett. 77, 71 (1996).

97. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 (1998).

10G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).

11 Z. Chang and J. D. Callen, Phys. Fluids B 4, 1167 (1992).

2N. Mattor and S. E. Parker, Phys. Rev. Lett. 79, 3419 (1997).

138, E. Parker, W. Dorland, R.A.Santoro, M. A. Beer, Q. P. Liu, W. W. Lee, and G. W.
Hammett, Phys. Plasmas 1, 1461 (1994).

1“H. Sugama, T.-H. Watanabe, and W. Horton, Phys. Plasmas 8, 2617 (2001).

15T -H. Watanabe, H. Sugama, and T. Sato, Phys. Plasmas 7, 984 (2000).

16 P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).

'"M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).

M. A. Beer and G. W. Hammett, Proceedings of the Joint Varenna-Lausanne Int. Work-
shop on Theory of Fusion Plasmas, Varenna, 1998, edited by J. W. Connor, E. Sindoni,
and J. Vaclavik (Societa Italiana di Fisica, Bologna, Italy, 1999), p.19.

1¢ T .H. Watanabe and H. Sugama, Phys. Plasmas 9, 3659 (2002).

WZ Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Phys. Plasmas 7, 1857
(2000).

1D. H. E. Dubin, J. A. Krommes, C.Oberman, and W. W. Lee, Phys. Fluids 26, 3524
(1983).

2 H. Sugama and W. Horton, Phys. Plasmas 2, 2989 (1995).

3 H. Sugama, M. Okamoto, W. Horton, and M. Wakatani, Phys. Plasmas 3, 2379 (1996).

2 3. A. Krommes and G. Hu, Phys. Plasmas 1, 3211 (1994).

2 T.-H. Watanabe, H. Sugama, and T. Sato, J. Phys. Soc. Jpn. 70, 3565 (2001).

13



FIGURES

1.5x10°|

AS
ng(pi/L,)"

1.0x10°

0.5010°

£ DA 100 200 300 400 500 600 700
v t/L,
FIG. 1. Time evolution of the entropy associated with the fluctuations per unit volume
AS = § [dyy( f%)/Fa obtained by the kinetic simulation. Solid and dotted lines correspond'

to AS and ASS2) = ng Ty (3 |nic/nol? + 3l /vil* + 1|Tic/T:|?), respectively.

4x10" Frvrrrrry T
—Kinetic h
W
----- NCM X
ao* | l— i "rl .
% M
L ] 'l""“l F‘| A p}
7 DAL LI WY ]
uo(pi /Ln) : "|‘1 f
2a0* F -
b l}
1
- r -
J
x0* E ," pr— L 7

0 E; 100 200 300 400 500. 5(‘)0 700
v t/L

FIG. 2. Time evolution of Er = Y, ng(%|nk/ng|2 -+ %|uk/ut|2 + %lTk/’IHZ

YT, T:)|edx/T.?[1 + (Te/T;){1 — To(bx)}]). Solid, dotted, and dashed curves represent re-

sults of the kinetic, NCM, and HP simulations, respectively.

2%

L

X ¢
(pt,zv..f[..)w _

urmzmmcwsoosoom

v, t/L
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vit/Ly. Black, red, and blue lines correspond to results of the kinetic, NCM, and HP simulations,

respectively.
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FIG. 4. Patterns of the electrostatic potential on the (z, y)-plane at v;t/L,, = 726 obtained by
(a) kinetic, (b) NCM, and (c¢) HP simulations.
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turbulent heat diffusivity. Symbols on black, red, and blue lines represent xi/(p?vi/L,) obtained
by the kinetic, NCM, and HP simulations. respectively. Here, Yk is defined by taking a time
average of xx = qik - x/(nTi/Lt) = —3Re[T}ti(c/B)ky¥x]/(T;/Lt) over 300 < vt/L, < 726.
The normalized linear growth rates vk /(vi/L,) calculated from the NCM and the HP model are
also plotted by thin dashed and dotted curves, respectively. (For unstable modes, the linear growth
rates obtained by the kinetic model coincide with those by the NCM.)
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FIG. 6. The wave-number-dependent heat diffusivity yx as a function of time for the cases
of (a) (kzpi,kypi) = (0,0.1) and (b) (kzpi,kypi) = (0,0.2). Here, black, red, and blue curves
correspond to the kinetic, NCM, and HP simulation results, respectively.
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FIG. 8. Time evolution of x/(p?vs/Ly) and Im[qk/(noviTx)] for (k.pikypi) = (0,0.2). Results
from the kinetic and NCM simulations are shown in (a) and (b), respectively. Red and blue curves

represent y/(p?vi/Ly) and Im[gy/(noviTi)], respectively.
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FIG. 9. Normalized perpendicular heat diffusivity x/ (p?vi/Ly,) as a function of normalized time
vit/ L. Black, red, and blue lines correspond to results of the kinetic, NCM, and HP simulations,
respectively. Parameters used here are the same as in Figs. 1-8 except for © = 1.
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