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Enhanced Stretching of Material Lines
by Antiparallel Vortex Pairs in Turbulence

Susumu Goto! and Shigeo Kida

Theory and Computer Stmulation Center
Naotional Institute for Fusion Science
322-6 Oroshi-cho Toki 509-5292 Japan

Abstract

Deformations of material lines in homogeneous isotropic turbulence of an in-
compressible viscous fluid are numerically investigated to understand phys-
ical mechanism of the enhanced stretching of material lines in turbulence.
It is shown qualitatively bv careful visualizations of numerical data and
quantitatively by detailed numerical analysis that tubular vortical coherent
structures in small scales of turbulence play crucial roles in such intensive
stretching of material lines. In particular, the tubular vortices tend to align
to each other in an antiparallel manner, and a pair of antiparallel vortices
strongly stretch material lines in two regions between them.

Keywords: turbulence, mixing, stretching, material line, antiparallel vortices
PACS: 47.27.4 47.52.+j

1 Introduction

A line in a fluid which always consists of a same set of fluid particles is called the material line. It
was theoretically predicted (Batchelor, 1952) and numerically confirmed {Girimaji and Pope,
1990: Kida and Goto, 2002) that the total length of a material line increases exponentially
with time in homogeneous isotropic turbulence. This intensive stretching of material lines
(and surfaces as well) is believed to reflect a high potential of mixing by turbulence. Since
turbulence mixing is one of the most challenging unsolved problems in fluid dynamics, the
deformations and stretching of material objects have been investigated by many authors to
build a foothold for understanding of the strong mixing. In spite of the long history, however,
none of the physical mechanism of either the strong mixing or the exponential stretching of
material objects has been understood so far.
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Batchelor (1952) also suggested the validness of Kolmogorov’s {Kolmogorov, 1941) scaling law
in material line statistics. That is, the statistics are characterized only by the Kolmogorov
length = e tv% and the time Ty = E_%V%, where € is the mean dissipation rate of energy per
unit mass and v is the kinematic viscosity. The Kolmogorov scaling in the material line statistics
is verified numerically in Girimaji and Pope (1990) by the use of direct numerical simulation
(DNS) of infinitesimal material line elements. Note however that the non-equivalence between
the statistics of finite-size material objects and those of infinitesimal material elements has been
shown recently (Goto and Kida, 2002). Nevertheless, as will be described in §3 of the present
article that the true statistics of finite-size material lines also obev Kolmogorov’s scaling law.

This Kolmogorov scaling of material objects may be reasonable as material objects are de-
formed and stretched by eddies in the small length scales, i.e., scales around 7. The Kolmogorov-
scale eddies were nothing but an abstract concept in the era of Batchelor, but now we know,
by recent detailed DNS data analyses, their concrete properties. That is, they have tubular
shapes with radius of O(57), circulation of O(100v), and length ranging between O(n) and the
integral length (Makihara and Kida, 2002a). Tt is rather surprising that the length of small-
scale eddies is much longer than the Kolmogorov length. Thus we must bear in mind that
only the cross-sectional structures of the small-scale eddies are in the Kolmogorov scales. It
is readily shown that a solo tubular vortex has very weak ability to stretch material lines. In
other words, simple wrapping of a material line around a tubular vortex vields only algebraic
stretching of total length of the line. The main purpose of the present study is to show that
not single vortices but pairs of them make the effective stretching.

The rest of the present article is organized as follows. Governing equations and the numeri-
cal algorithm to solve them are described briefly in the next section. Numerically estimated
statistics of material lines and tubular vortices are given in §8§3 and 4. respectively. It wiil
be shown that the statistics of both material lines and cross-sectional structures of tubular
vortices obey Kolmogorov’'s scaling law. In §4, it is also shown that the vortices tend to align
to each other in an antiparallel manner. The main section is §5, where the physical mechanism
of exponential stretching of material lines is explained to be caused by antiparallel pairs of the
tubular vortices. Finally, summary and a brief discussion on stretching of material surfaces are
given in §6.

2 Governing Equations and Numerical Scheme

In order to investigate physical mechanism of the strong stretching of material lines in turbu-
lence, we perform DNS for temporal evolution of material lines in a high precision. Governing
equations of the system and the numerical algorithm to solve them are summarized below.

By definition, any point &,, on a material line is advected by the local velocity as

d

5 @alt) = w(zn(t), 1) . - (1)

Here, u(x,t) is the velocity field of an incompressible viscous fluid, which is governed by the



Navier-Stokes equation,

( % +ulx,t) -V) u(x, t) = —% Vple.t) + v Aule.t) + flx. 1), (2}

and the continuity equation.
V-u{z,t) =0 (3)

with the periodic boundary conditions in all three orthogonal directions. Here, p. p(e,t) and
Flx,t) are the constant density, the pressure field and an external forcing, respectively.

Temporal evolution of u(x, t) is simulated by integrating (2) and (3) numerically by the use of
the 4th-order Runge-Kutta-Gill scheme. The spatial derivatives are evaluated by the Fourier
spectral method, where the phase shift method is emploved for dealiasing. The amplitudes of
Fourier compeonents of velocity in a low-wavenumber range, less than /8 say, are kept constant
in time to realize a statistically stationary state. We report here several cases of different values
of Taylor-length Revnolds number R, = /20/(3v¢) £ ranging between 57 and 252, for each of
which we have used appropriate numbers N? of numerical grid points between 128* and 512°
in order to guarantee the numerical accuracy for small-scale motions. Here, £(t) is the kinetic
energy per unit mass.

A material line is expressed numerically by a set of a number of advecting points, each position
2,(¢) of which moves according as (1). The right-hand side of (1) is estimated by the 43-point
Lagrangian interpolation of the velocity field u(z,?) at the numerical grid points obtained
by the numerical method described above, and the time integration is carried out by the 4th
order Runge-Kutta scheme with time increment twice of that for the velocity field. In order to
express a line smoothly by the set of advecting points, the distance between any two adjacent
points must be kept short enough. Whenever the distance exceeds a threshold, 1.5 times the
numerical grid width, we add a new advecting pcint between the two points at the position
which 1s determined by the Lagrangian interpolation. Since the length of material line increases
exponentially with time (see the next section), this interpolation is made at every time step.

3 Kolmogorov’s Scaling law in Material Line Statistics

The purpose of this section is to confirm that the statistics of material lines obey Kolmogorov's
scaling by performing a sufficiently large number {J) of DNS of many {A{) sample lines over
long times (T). Simulation parameters and statistics of numerical turbulence are given in Tables
1 and 2, respectively. A measure of the numerical accuracy for the small-scale motions, kyaxn,
is shown in Table 2. Here, k.. (= 0.47N) is the maximum resolved wavenumber in the present
DNS. The frequently emploved condition &4,,,n > 1 is satisfied except the largest Revnolds
number case (run 9E), Incidentally. the time increment dt, shown in Table 1, of numerical
integration should be smaller than the sweeping time 1/(kya £'/2) of the smallest structure
of turbulence by the large-scale motions.

Before discussions of the statistics of material lines. it may be worthwhile to mention the



run N3 v dd M J T

7A | 1287 5x107%  1x10% 29 20 10 ~ 507 ~ 237
7B | 128° 2.5 x 1073 1x1072 29 20 8 ~ 577, ~ L8T
8C | 256° 125x107% 25x107% 2% 20 5~ 507, ~ 11T
9D | 512  625x107* 1.25x10° 28 20 25 ~ 347, ~ 05T
9E | 512° 3125 x107* 125x107% 28 20 2~ 397, ~ 047

Table 1

Parameters of simulations reported in §3. Here, dt is the time increment for the integration of
the velocity field, M is the number of simultaneously simulated material lines, .J is the number of
realizations, and T is the time period integrated in a single simulation in the unit of the Kolmogorov
time 7, and the eddy turnover time 7.

run Ry, £ € T 71 kmax? A

TA 2024 .10) x 107F (3.174£.08) x 1072 1.91 469+ 014

7B = 1071 (187 £ 04) x 1072 112 336 + .009

(5.65 £.23) x 10 544 +.039 124 + .013 )
( ( )

8C | {1.21 £.06) x 107 386 +.048 124 + .0153 (1.014.06) x 107! (LI2£.03) x 1072 135 243+ 009
{ ( )
( )

831+ .30y x 10 573+ .031 1274+ 011 (1.41+ .06

oD | {1.75 + .08) x 10 .385 +.037 .119£.012 (7.26+.36) x 102 (6.74 = .17} x 1072 1.62 1754 .007

9F | {2.52 +.10) x 10% .60l = .036 .121 £.011 (5.09+.22
Table 2

Statistics of numerical turbulence. Temporal averages and fluctuations are shown. Here, R, &, «,
Ty, 71 and A = /300E /e are the Taylor-length Reynolds number, the kinetic energy per unit mass, its
dissipation rate, the Kolmogorov time, the Kolmogorov length and the Taylor length, respectively.

x 1072 (3.99 £ 09) x 10?3 96,1254 .004

numerical method. In order to obtain accurate statistics of material objects in turbulence we
must simulate finite-size material objects instead of infinitesimal ones, though many authors
have preferred the latter. In other words, a frequently-used assumption by Batchelor (1952) that
statistics of material lines/surfaces are the same as those of infinitesimal material line/surface
elements in statistically stationary homogeneous turbulence is not valid in general (Goto and
Kida, 2002}. This may be understood as follows. According to Batchelor, we suppose that a
material line is a set of material line elements, each of which has a length ¢)(¢) shorter than
the characteristic length scale of the deformed line, which will be shown to be O(107) (§3.3).
Then the line average of a quantity g along a material line defined by a line integral can be
approximated by

I
gl at Z g () €9

<g line — 7 - (4)
fa > €90 |

=1

This is valid. However, Batchelor (1952) further assumed that this could be approximated by



the line-element average,

1. _
(g>iine-elemem = 7 Z g{’}(t) (5)
=1

in statistically stationary homogeneous turbulence because all the line elements would become
statistically equivalent after a sufficiently long time. Since this assumption makes numerical
and theoretical treatments of material lines drastically simple, it has frequently been used in
the study of material objects in homogeneous turbulence. Note that the line average (4) can
be rewritten as a ratio of two line-element averages,

{9 Dtine-cement

(g}Iine == (6)

<£>lineelement
By comparing (5} and (6), we find that the line average and the line-element average are iden-
tical if £)(¢) and g'®(¢) are statistically independent of each other. However, for an important
case of g = ¥ = dlog#®/dt, it can be shown (Goto and Kida, 2002; Kida and Goto,
2002} that the correlation between -+, and ¢ never diminishes even at large times, and that
{Ve(t))ine = 0.17 77" is not identical to {ve(t))iine element = 0.13 7,71 in turbulence at By = 58.
By this reason, we report here DNS results of finite-size material lines.

3.1 Temporal Fvolution of Material Line

The appearances of temporal evolution of material lines are different depending upon the the
observation scales. In Figs.1 and 2, we show typical temporal evolutions of a single material
line viewed in the energy-containing scale and the Kolmogorov scale, respectively. Three cases
of different Reynolds numbers are compared. The left five panels show the results at B, = 57.3
(run 7A), the middle at 84.1 (run 7B), and the right at 122 (run 8C). Time elapses from top
to bottom. A straight line is set at the initial time.

First, let us concentrate on Fig.1. The time increment between vertically successive two panels
is 0.27 . where T = £ /e is the eddy turnover time. The large box drawn in these figures is the
whole computational domain. whose side length is about 2£. where £ = £%2/¢ is the integral
length, while the side of small boxes in each figure indicates 107. A material line is deformed
more rapidly into a more complicated structure for larger Reynolds numbers. Actunally, the
total length

I{t)

Lit) =3 &9 (870 = iV w)) (7)

of the material line increases more rapidly for larger Reynolds numbers. Here, I (1) = 2tV (1)
z{(t) is the line-element vector between the ith and (i + 1)th nodes, and z{)(t) stands for
the position vector of the i¢th node. More precisely, L(¢) tends to be an exponential function
for sufficiently large times, and the exponent (i.e., the stretching rate),

d log L{#) , (8)

v(t) = T



Fig. 1. Temporal evolutions of a material line. Large boxes represent the whole computational domain,
while the side length of small boxes indicates 107. Time elapses from top to bottom by 0.27. Left
column, tun 7A; middle, run 7B; right, run 8C.

has a larger value for a larger R,. See Fig.4(a), below.

Note that statistics of the energy-containing-scale motions are almost independent of Ry in

the present DNS. That is, the eddy turnover time 7 and the integral length £ have very weak

R, dependence, since both of £ and ¢ hardly depend on R, as seen in Table 2. On the other

hand, the Kolmogorov time 7, and length 7 get smaller for larger R,. This is because the
3

ratios T /7, and L£/n are respectively proportional to R} and R, . Hence, the rapidness and the
complexity of material line deformatlons at larger R, 1mplv that the deformation is governed
by the small-scale fluid motions.

Next, let us turn our eyes to Fig.2, in which temporal evolutions of material lines shown in
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Fig. 2. Temporal evolutions of material lines viewed in the Kolmogorov scale unit. The side length of
boxes is 1007. Time elapses from top to bottom by 57,. Left column, run 7A; middle, run 7B; right,
run 8C.

Fig.1 are viewed in the Kolmogorov time and length units. The side length of the boxes shown
in Fig.2 is 1007 of each flow, and the time increment between two vertically successive panels is
57,- There seems no qualitative difference between these three temporal evolutions for different
Reynolds numbers. In other words, the deformation of material lines in the Kolmogorov units
may be universal independent of the Reynolds number. This is qualitatively consistent with
Kolmogorov’s similarity law of the statistics of material lines, which will be confirmed more
quantitatively in the following subsections.

In passing, we mention the behaviour of material lines in large scales. As seen in Fig.1, spreading
of the whole line is not so intensive, and seems to be independent of R,. Indeed, it is shown



(figures are omitted) that temporal evolution of the gyration radius

r(t) = \/<

of the material line, g (t) = (=, (t))

2(t) - 2 ()] ) ©)

line

line D€INE the centre of gravity of the line, is independent of
the Reynolds number, and tend to r(t) x t3 at farge £. This is reasonable because large-scale
separation is described well as a random walk in contrast with the small-scale separation. Inci-
dentally, the separation in the inertial scale should obey Richardson’s law, i.e., proportional to
t%, and deformed material lines in such a scale range may have fractal structures. Measurement
of fractal dimension of deformed material objects is an interesting topic, and it is expected to
be achieved by DNS in the near future which realizes a few decades of the inertial subrange.

3.2 Stretching Rate

A typical time scale of deformation of a material line may be estimated by the reciprocal of
the stretching rate v defined by (8). The value of v is calculated accurately by the following
numerical analysis of the DNS data of many finite-length material lines. In the present DNS,
each material line consists of N line elements ? and the stretching rate of each line element
£®)(t) can be estimated by

(w7 @). 1) - w(@P@).0) - (=500 - 20 ()
20 (1) — 2 (0)]]

. d ,
1) = 3, log (1) = (10)

in terms of the position vectors z{(¢) and the advection velocities u(z{(t),t) of the line
nodes. We track simultaneously M (= 128? for runs 7A, 7B, 8C, and = 642 for 9D, 9E) lines
in each simulation (see Table 1). Using the relation

NM ‘ NM
7(8) = {7e(?) tine (= PIRIGIRIGES f(”(f)) : (11)
i=1 i=1

which is derived from (7), (8) and (10), we can accurately evaluate -y as the line average
of .. Although the total number NM, which is O(10°) for all the cases *, seems to be
large enough to estimate the line average, the fluctuation of (¢} is substantial as seen in
Fig.3(a). This large temporal fluctuation of ~(t) synchronizes with that of the Kolmogorov
time (Fig.3(b)). When 7,,(?) is larger, then ~(¢) is smaller, and vice versa (cf. the thick curves
in Figs.3(a) and (b)). This is consistent with Kolmogorov’'s similarity law. Hence, we further
take an ensemble average of y(¢) over 20 realizations in each Reynolds number. The results are
plotted in Fig.4(a). As expected from the discussion in the preceding subsection, the stretching
rate is larger at a higher Reyvnolds number, that is, the time scale of deformation of material

2 In order to keep the number of samples a constant, we discard an endpoint of each material line,
whenever a new node is added to interpolate a stretched part of the line.

3 NM = 2,007,152 for N = 128 (runs 7A, 7B), 4,194,304 for N = 256 (run 8C), and 2,097,152 for
N =512 (runs 9E, 9D}
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Fig. 3. (a) Temporal evolutions of stretching rate of material lines, which is obtained by the line
average using 4 x 10% nodes, for 20 realizations. (b) The corresponding evolution of the Kolmogorov
time. Thick curves indicate a same realization. Run 7A.

lines 1s smaller. According to Kolmogorov's similarity law, when the time and the stretching
rate are respectively normalized by 7, and 7,7!, the temporal evolutions of stretching rate
should be independent of the Reynolds number. This is the case as shown in Fig.4(b). The
stretching rate starts from zero, takes a peak around ¢ = 57, and settles down to a stationary
value after ¢ 2 207,. A constant value of stretching rate implies that the total length of material
line increases exponentially with time.

Temporal averages of y(f) normalized by 7,7! in the statistically stationary state (f > 207,)
are listed in Table 3. Since there is no systematic dependence of the average values on the
Revnolds number, we may conclude that the time scale of deformation of material lines is
around (1/0.17 = 3.9) 7,,, which is also comparable to the time scale to forget the initial
conditions, i.e., the time scale to settle down to the statistically stationary state (Fig.4(b)).

The probability density functions (pdf) of the local stretching rate -, normalized by 7,7}
are plotted in Fig.5(a)} for the five cases. They are also independent of Ry, reflecting to Kol-
mogorov's similarity law.

3.3 Curvature

Material lines are stretched locally by Kolmogorov-scale eddies, and it is expected that the
characteristic length of the lines is proportional to the Kolmogorov length. In order to estimate
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Fig. 4. (a) Ensemble average of temporal evolution of stretching rate of material lines. (b) Time is
normalized by the Kolmogorov time and the stretching rate by its reciprocal. Thick curve, run 7A:
thin dotted, run 7B; thin, run 8C; thin dashed, run 9D; thick dotted, run 9E.

Runs YT an oA

TA 0.174 £0.009 | (9.76 £0.30) x 1062  1.444+0.04
7B 0.174 £0.007 | (9.55£0.25) x 102 1.71 £0.05
8C 0.175 £0.012 | (9.31+£043) x 1072 2.02+0.09
9D 0.160 £ 0.014 | (9.07 £0.27) x 102  2.36 £ 0.07
9E 0.173 £0.010 | (9.94+0.45) x 1072  3.10+0.14

Table 3
Statistics of material lines. The mean and standard deviation of stretching rate v and curvature o
of material lines averaged in the statistically stationary period (¢ 2 207,).

the (reciprocal of) length scale, we calculate the local curvature

e, t) = \1

where s is a coordinate taken along a material line. In the present DNS, this local curvature
al?(t), at the ith material line element, is estimated by the position vectors of three successive
nodes along the line. Then their line average

Of(t) — (ae(t»iine - (13)

gives the mean curvature of material lines. Similarly to the stretching rate, in spite of largeness
of the number of line segments, NM = O(10°), the value of a(t) exhibits relatively large
fluctuations, which may be caused by large fluctuations of n(t). Hence, we take an average
of at) over 20 realizations with different initial velocity fields for each Reynolds number.

2

il , (12)

@ mn(sr t)

10
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Fig. 5. Pdf of (a) local stretching rate and (b) local curvature of material lines. Five curves for different
Reynolds numbers are plotted. Each curve is obtained by taking an average over 20 realizations.
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Fig. 6. (a) Ensemble average of temporal evolution of mean curvature of material lines. (b) Time is
normalized by the Kolmogorov time and the curvature by the reciprocal of the Kolmogorov length.
Thick curve, run 7A; thin dotted, run 7B; thin, run 8C; thin dashed, run 9D; thick dotted, run 9E.

The result is plotted in Fig.6(a). Initiallv, the material lines are straight. and therefore their
curvatures vanish. As time progresses, the curvatures increase rapidly and saturate to constant
values which are larger for larger B, as expected from Fig.1.

According to Kolmogorov’s similarity law, the five curves in Fig.6(a) should coincide with each

other when the abscissa and the ordinate are normalized by 7, and n~

! respectively. This is

11



the case as shown in Fig.6(b). The normalized value a(t) 57 takes a peak around ¢ ~ 57, and
settles down around 0.17~ " after ¢ 2 207,. The temporal averages of o(t) normalized by !
in the statistically stationary state {t 2 207,) are listed in Table 3. There seems no systematic
Reynolds number dependence, and therefore we may conclude that the characteristic length
of deformation of material lines is around 10n. Kolmogorov’s similarity is also observed in
the pdf of local curvature normalized by 7! of material lines. In Fig.5(b), we plot it for five
different Reynolds numbers. All curves coincide excellently with each other. Note that the
universality of the curvature of material lines are less excellent than that of the stretching rate
seen in the preceding subsection (cf. Figs.4(b) and 6(b)). This may be attributed to the large
fluctuations of ¢, compared with ~, {cf. Figs.5(a) and (b)). Incidentally, the temporal average
«(t) normalized by the reciprocal of the temporal average of the Taylor micro scale A increases
monotonically with the Revnolds number (see the last column in Table 3). This implies that
the curvature does not scale with A. These results lead us to the conclusion that the material
line deformations are characterized by the Kolmogorov scales.

Finally, we point out a remarkable feature observed in the joint statistics of stretching rate
and the curvature of material lines. The joint pdf P{a.. 7.} is plotted in Fig.7 together with
the conditional average {v.laeine Of the stretching rate for a given curvature for five different
Reynolds numbers. The pdf is independent of the Reynolds number, and the stretching rate
and the curvature are negatively correlated. namely, the stretching rate takes large values
in the relatively straight regions of material lines. We will return to this point in §5.2 when
we discuss the physical mechanism of material lines from a viewpoint of a dynamical role of
small-scale coherent vortices.

3.4 Alignment

Since the stretching rate of material lines is one of the most important statistical quantities
of the present system, many attempts have been made to predict its value theoretically. A
conventional strategy is the one based on the alignment between the tangential vector of the
material line and eigenvectors of the rate-of-strain tensor S, since the stretching rate ~.(f) of
a line element can be expressed in terms of S as

1-5-1
e =%

= 51 cosf; + 5o coshy + 83 cosbs

= 51 Sinfy cosy -+ 89 sinfy sin + s3 cosfy . {14}

where $1, 52, 53 (81 > $3 > s3) are eigenvalues of S, and 8, 85, 85 are angles between l(”(t) and
the respective eigenvectors of S. The spatiotemporal averages of the eigenvalues are (s} =
047,71, {s2) = 0.17,7! and {s3) = —0.57,7! irrespective of the Reynolds number. The angle ¢
is defined in Fig.8(f). Thanks to the expression (14}, if material line elements tended to align
to the eigenvectors in a simple manner, as assumed in classical theories {e.g., Batchelor and
Townsend, 1956), a theoretical prediction of the stretching rate would be possible. However,
as seent in Fig.8 the alignment between the tangent vectors and the eigenvectors seems too
. complicated to construct a theory. Nevertheless, we emphasize that the alignment is quite
robust. In other words, the pdf of each snapshot at any time at any Reynolds number is
almost identical in the statisticallv stationary state. This is because the alignment property is

12
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Fig. 7. Joint pdf of local curvature o, and local stretching rate . of material lines. {a) Run 74A, (b)
run 7B, (¢) run 8C. {d) run 9D, (e) run 9E. Contour levels are 3n (n = 1,--- . 6). Thick curve denotes
the conditional average of -y, for fixed c.. Averages over 20 realizations.

related with neither the magnitude of 5 nor that of 7, in contrast with the stretching rate and

the curvature.
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9 458

Fig. 8. Pdf of the angles between the eigenvectors of the rate-of-strain tensor and the tangent vector
of a material line. Average over 10 snapshots. Contour levels are 0.4n (n =1,--- ,4). (a) Run 7A, (b)
run 7B, {c¢) run 8C, (d) run 9B, (e} run 9E, (f) definitions of A3 and ¢, where e;, e; and ey are the
three eigenvectors of rate-of-strain tensor.

4 Antiparaliel Pairs of Tubular Vortices

It was shown in the preceding section that the material line stretching is strongly related with
small-scale fluid motions. Recall that there exist coherent vortical structures in small scales of
turbulence. Hence, it is expected that we may understand the physical mechanism of material
line deformations as a dynamical role of the small-scale coherent structures. Before going into
detailed discussions on the dynamical roles. we describe the statistics of coherent structures in
this section. We will pay a special attention to clusters of the coherent vortical structures.

14



4.1 Small-Scale Tubular Vortices

Since a discovery of small-scale coherent vortical structures in homogeneous isotropic turbu-
lence in 1980s, many kinds of identification methods of the structures have been proposed by
many authors (see Kida and Miura, 1998a, and references therein), and their statistics have
been intensively investigated. In the present study we adopt the low-pressure criteria (Miura
and Kida, 1997} because it is highly objective and free from a threshold of any quantity. Details
of its identification algorithm are given in Kida and Miura (1998b), but we recapitulate it here
for completeness of the present article. The algorithm consists of the following two steps. In
the first step, we extract the axes of the tubular vortices by searching a chain of local pressure
minimum points. Here, the local minimum means that the pressure takes a minimum locally
on a plane associated with two eigenvectors of the pressure hessian. An axis is constructed
by connecting the pressure minimum points in the direction of the third eigenvector of the
hesstan. A line connecting two successive points is called the segment, the length of which
is of order of the numerical grid width. In the second step, we demarcate the core of each
vortex by applying the pressure convexity condition around each axis constructed in the first
step. In Fig.9, we draw typical vortical structures identified by the low-pressure criteria for
two different Revnolds numbers, Ky = 84 and 175. The well-known tubular structures at small
scales, called the worms, are clearly captured. In Figs.9(a) and (¢), the side lengths of larger
boxes are £/2 and £/3. respectively, while those of smaller boxes are 10n of each flow. Note
that radii of the tubular vortices are comparable to the Kolmogorov length, while some vortex
tubes extend as long as the integral length. In this sense, these tubular vortical structures are
small in cross-sections, but not small in general in the longitudinal direction.

Statistics of individual tubular vortices have been recently investigated to arrive, by comparing
three cases of different Reynolds numbers between R, = 84 and 175, at the conclusion that
the mean radius is ¢ &~ 51 and the mean circulation is I' & 110w irrespective of the Reynolds
number (Makihara and Kida, 2002a). These results imply that cross-sectional structure of
the tubular vortices is characterized by the Kolmogorov variables. For example, the mean
swirling velocity at the core boundary of vortices is I'/27a = 3.51/7,;. Although this conclusion
should be taken with reservation because of the limited range of Reynolds number examined,
it is certain that in contrast to the cross-sectional structure of the vortices, their longitudinal
length does not obeyv the Kolmogorov statistics. It may be observed in Figs.9(a)} and (¢) that
the lengths of the tubular vortices vary between (X{n) and O{L). Recall that the statistics
of material line stretching obev Kolmogorov’s similarity law. These observations, therefore,
suggest that material line deformations are closely related with flow structure perpendicular
to the tubular vortices.

4.2 Antiparallel Pairs

In Figs.9{a) and {c) we draw tubular vortices which are located within 257 from the central
relatively longer vortex. Each vortex core is coloured to indicate the direction of swirling
around it. That is, the vorticity vector is approximately pointed from red to vellow. A careful
observation of these figures makes us recognize that the surrounding vortices align antiparallel
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Fig. 9. Clusters of the tubular vortices identified by the low-pressure criteria. Only the vortices within
257 from the central vortex are drawn in (a) and (c¢). Vorticity vector is pointed approximately along
the tube from red to yellow. (a)(b) Ry = 84; (¢)(d) 175. In (a) and (c), side lengths of larger boxes
are L£/2 and L/3, respectively, while those of smaller boxes are 101 of each How. Figures (b) and (d)
are parts of (a) and (c), respectively, cropped by a cube with side of 757.

to the central one. Figures 9(b) and (d) are parts of (a) and (c), respectively, where each
cluster is cropped by a cube with side of 757 of each flow. Antiparallel alignments are clearly
seen of the vortices at the both sides to the central one in Fig.9(b) and of the left two vortices
to the right one in Fig.9(d). This antiparallel alignment will be shown. in the next section,
to play crucial roles in the strong stretching of material lines. It is also interesting to observe
that there is no difference in appearances of the vortical structures in the Kolmogorov scales
between Figs.9(b) and (d). This is similar to the case of material line deformations as seen in
Fig.2, and offers an evidence that material line deformations are governed by these vortical
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Fig. 10. Pdf of the cosine of angle ¢ between pairs of tubular vortices conditioned by distance d
between them. Solid curve, d/n < 20; dotted, 20 < d/n < 40; dashed, 40 < d/n < 60. (a) Ry = 84.
Averaged over 200 snapshots. (b) R) = 175. Averaged over 17 snapshots.

structures.

The tendency of antiparallel alignment of tubular vortices is quantitatively confirmed by eval-
uating pdf of the cosine of angle ¢ between pairs of the vortices. The pdf, plotted in Fig.10
for two Reynolds numbers, is conditioned by the distance d between them. Here, ¢ and d are
respectively defined by the angle and the distance between axis segments of a pair of tubular
vortices, the centre of one of which is located between two parallel planes crossing perpen-
dicularly the two endpoints of the other. In the evaluation of the pdf, we have ignored those
vortices shorter than 107 of each flow because such vortices do not have tubular shapes, and
the sign of cosine is determined by the directions of the vorticity vectors at the two segments,
ie.. cos¢ = —1 (or 1) indicates the antiparallel (or the parallel} alignment. The pdf for the
near region d < 207 has the highest peak at cos¢ = —1 and the second highest at cos¢ = 1.
implying that the antiparallel alignment is most popular and the parallel alignment is also
highly probable. By comparing the three curves, we find that as the distance between two
segments increases, the pdf approaches the flat distribution that the direction of vortices is
distributed isotropically. The pdfs shown in Figs.10{a) and (b) are conspicuously similar, where
the Revnolds number for the latter is twice that for the former. The tendency of the antiparallel
alignment of nearby vortices, therefore, is likely independent of the Reynolds number.

The tendency of the antiparallel alignments of tubular vortices has been shown both quali-
tatively in Fig.9 and quantitatively in Fig.10. Some examples of an antiparallel approach of
vortices are captured by automatic tracking of identified tubular vortices (Kida et al., 2001:
Makihara and Kida. 2002b). The antiparallel approach may be understood by the same ex-
planation as in the case of infinitesimally thin vortex filaments in an ideal fluid (Siggia. 1985).
However, in contrast to vortex filaments in an ideal fluid. tubular vortices in a viscous fluid can
be generated or destroved by the flow field induced by themselves. Therefore. some mechanisms
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other than the approach may exist to explain the antiparallel alignment of nearby vortices.
Understanding of the detailed physical mechanism of the antiparallel alignments is left for
future studies. It is, however, worth noting that through a number of visualizations, we obtain
an impression that three or four, rather than two, vortices frequently gather in antiparallel,
and necessarily parallel, manners. This tendency is clearly observed also in the examples given
in Fig.9, and may offer a reason of the another peak at cos¢ = 1 in Fig.10 corresponding to
the parallel alignments.

4.8 Cross-Sectional Flow Structure

As was mentioned in §4.1, the stretching of material lines is likely related with cross-sectional
flow structure of the tubular vortices, since statistics of both the quantities are characterized
by the Kolmogorov variables. On the other hand, the tendency of the alignment of tubular
vortices in parallel or antiparallel manners, observed in the preceding subsection, implies that
a cross-section is sometimes sheared by a few approximately aligned tubular vortices. These
two facts encourage us to investigate cross-sectional flow structures around a tubular vortex.
In Fig.11, we show the flow field on a cross-section of an arbitrarily chosen tubular vortex
located at the centre, where the vorticity component normal to the cross-section, magnitude
of the vorticity component parallel to the cross-section, the relative velocity to the centre and
the magnitude of strain rate are plotted in {a})—(d}, respectively.

The side length of the cross-sections shown in ¥Fig.11 is about 507, which is appropriate to
capture a cross-sectional structure of a vortex cluster. Recall that the alignment of vortices
is conspicuous in the near region d < 20n (Fig.10). As expected from the argument in the
preceding subsection, it is not difficult to find out antiparallel vortex pairs on an arbitrary
cross-section of any vortex as in this figure. The normal component, shown in Fig.11(a), of
vorticity has the highest positive peak around the centre at which the chosen vortex is located,
and two low negative peaks in the upper-right and the bottom-left quarters where antiparallel
vortices are located. The relative velocity field shown in Fig.11(c) may be regarded as the one
induced by these three vortices, where two elliptic stagnation points (denoted by solid circles)
around the centres of the central and upper-right vortices and, two hyperbolic stagnation
points (denoted by solid squares) between them are observed. It should be noted here that an
antiparallel vortex pair produces strong strain field near the hyperbolic stagnation points, as
shown in Fig.11(d).

In order to illustrate that an antiparallel vortex pairs are alwavs accompanied with two strong
strain regions between them, we show an ideal fiow field near an antiparallel vortex pairs in
Fig.12. Each vortex shown is the Burgers vortex tube which has a Gaussian vorticity distri-
bution. Figure 12(a) shows the vorticity field and the relative velocity to the centres of the
vortices. As in the case of the real flow shown in Fig.11{c), elliptic (denoted by solid circles)
and hyperbolic (denoted by solid squares) stagnation points exist on the frame moving with
the vortex centres. Figure 12(b) clearly shows that the vortex pair produces two strong strain
regions near the hyperbolic stagnation points. As was seén in (14), strong strain is necessary
for the intensive stretching of material lines. It must be emphasized, however, that the strong
strain is necessarv but not sufficient. Only when the material line aligns to the eigenvector
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Fig. 11. Cross-sectional flow structure around a tubular vortex. (a) Vorticity component normal to
the cross-section. Contour levels are +n 7,7 ' (n = 0,--- ,3). Around the central vortex, there exist
two vortices of opposite sign of vorticity at right-upper and left-bottom quarters. (b) Magnitude of
vorticity component parallel to the cross-section. Contour levels are 0.5n 'rn‘l (n = 1,2,3). Double
spirals are clearly observed. (¢) Velocity field relative to that at the centre. Hyperbolic and elliptic
stagnation points are denoted by solid squares and solid circles, respectively. (d) Magnitude of strain
rate. Contour levels are n7,”” (n = 1,2,3). In shaded regions the field quantity takes positive values
in (a) and larger values in (b) and {d). The side length of the squares is about 507. Ry = 84.

associated with the largest positive eigenvalue of the rate-of-strain tensor, they are stretched

intensively. Note that the directions of the eigenvectors, shown in Fig.12(b), are approximately
horizontal in the upper strong strain region, and approximately vertical in the bottom one.
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Fig. 12. An antiparallel pair of Burgers vortices. (a) The relative velocity field (arrows) and the vor-
ticity field (contour). There are elliptic {solid circles) and hyperbolic (solid squares) stagnation points
observed in the coordinate system moving with the vortices. (b} The magnitude of strain (contour)
and the directions of the eigenvectors associated with positive eigenvalues of the rate-of-strain tensor.

Hence, we expect that if the material lines are stretched strongly in such regions, then the
strong stretched parts of material lines take a T-shaped form. It will be seen in the next sec-
tion (see Figs.13 and 15(a))} that this is indeed the case. It is likely that the flow field around
an antiparallel vortex pair not only induces two strong strain regions, but also makes material
lines align to the eigenvectors in such regions. This is related with the fact the streamlines
are nearly parallel to the eigenvectors around the hyperbolic stagnation points. Note that a
material line element parallel to a trajectory, which coincides the streamline in a stationary
system, is always on it.

It will be shown in the next section that such strong strain regions near hyperbolic stagnation
points produced by antiparallel vortex pairs play a crucial role in the stretching of material
lines. It should be mentioned that the parallel component of vorticity to the cross-section also
takes larger values in the strong strain regions. This is reasonable since the vorticity stretching
on the cross-section is enhanced, similarly to the stretching of material lines, in the strong strain
regions in the direction of the eigenvectors. Indeed the T-shaped region, which is deformed
due to the difference in strengths of the central and the upper-right vortices, of strong cross-
sectional component of vorticity is observed in Fig.11(b). Such regions of strong cross-sectional
vorticity component around a tubular vortex were reported as the double spiral structures in
Kida and Miura (2000). The generation mechanism of such double spiral structures should be
explained in terms of the strong strain region formed near the hyperbolic stagnation points
between an antiparallel pair of tubular vortices. Needless to say, the strong strain means the
strong energy dissipation. Hence. the strong strain regions between antiparallel vortex pairs
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Fig. 13. Stretching of material line elements near (within 37) the cross-section shown in Fig.11. (a)
Projection of line elements. Colour of line indicates the strength of local stretching rate with red
for stronger stretching and blue for weaker. (b) Magnitude of local stretching rate of line elements.
Contour levels are 0.1n 7,,~' (n = 0,--- ,4). Stronger regions are shaded. The velocity field, which is
identical to Fig.11(c), is plotted with arrows. Solid circles denote elliptic stagnation points, and solid
squares denote hyperbolic ones.

play important roles in various aspects such as the enhancement of stretching of material
objects, the generation of cross-sectional vorticity component, the effective energy dissipation,
and so on.

5 Stretching Enhancement by Antiparallel Vortex pairs

A frequently-used phrase “deformations of material lines are governed by small-scale eddies”
now possesses a concrete meaning. The purpose of this section is to illustrate this picture clearly
by detailed analyses of DNS data of material lines. It was shown in the preceding section that
the small-scale eddies have tubular shapes with radii of O(57) and lengths ranging from O(7)
to O(L), and that they tend to align antiparallel to each other in the near region d < 207.
The cross-sectional flow field reveals a remarkable structure as shown in Fig.11, that is, an
antiparallel vortex pair produces strong strain regions near the hyperbolic stagnation points
between themselves. The formation of such strong strain region by antiparallel pairs provides
a key to understand physical mechanism of strong stretching of material lines. Before moving
in discussions how antiparallel pairs produce the strong stretching, it may be important to
mention that each tubular vortex has much longer lifetime compared with the Kolmogorov
time, which is the typical time scale of material line deformation (see §3.2). It is therefore
meaningful to investigate the stretching process as a dynamical role of the tubular vortices. In
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the following two subsections. the enhancement mechanism of material line stretching will be
illustrated from both the two-dimensional viewpoint as in Fig.11 and the three-dimensional
viewpoint as in Fig.9.

5.1  Cross-Section of Vortex Pair

The easiest and most reasonable way to understand how the tubular vortices enhance the
material line stretching is to observe stretching of material lines near the cross-section of a
vortex because the cross-sectional flow structure has a remarkable feature as seen in §4.3. For
this purpose, we perform DNS of a set of infinitesimal material line elements, which are initially
distributed homogeneously and as densely as the numerical grid points in the whole space. The
homogeneity survives forever since the fluid is incompressible. This propert.y is convenient to
study qualitatively in which part of the fluid the local stretching rate becomes larger, although,
as was stated in §2. DNS of infinitesimal material elements i1s not necessarily appropriate to
obtain accurate statistics of material objects of finite size.

We plot in Fig.13(a) the projections of material line elements. which are lengthened for vi-
sualization to be a same length. onto the cross-section shown in Fig.11. Only material line
elements located near, within five numerical grids (= 37), the cross-section are plotted. They
are coloured according to their stretching rate with red for stronger stretching. Figure 13(b)
shows contours of the magnitude of stretching rate of material line elements. It is clearly seen
that strong stretching of material line elements does take place around the strong strain re-
gions seen in Fig.11(d). The relative velocity field to the centre of the figure is also plotted
in Fig.13(b) for convenience. The local stretching rate, as the strain rate in Fig.11(d), takes
larger values around hyperbolic stagnation points on the cross-section, while it is small around
elliptic stagnation points. Of course. the latter tvpe of stagnation points are located near the
centres of tubular vortices.

In order to understand the strong stretching around hyperbolic stagnation points, we observe
the direction of the projections of strongly stretched material line elements, i.e., red ones. First,
they have almost same lengths, implying that thev are nearly parallel to the cross-section. Sec-
ond, they are approximately parallel to the extending direction emanating from each hyperbolic
stagnation point on the cross-section. This alignment obviously vields effective stretching there
because such direction is nearly paraliel to the eigenvector of the rate-of-strain tensor asso-
ciated with the largest positive eigenvalue (see Fig.12). It is likely that around hyperbolic
stagnation points the material lines tend to align to the eigenvectors, since streamlines are
nearlyv paraliel to the eigenvectors in such regions. Note again that the strong strain field takes
place near hyperbolic stagnation points. Thus, material lines are stretched intensively around
the hyperbolic stagnation points as seen in Fig.13(b), and strong stretched line elements take a
T-shaped form between the antiparallel vortices {Fig.13(a}). Although the alignment between
material lines and eigenvectors of the rate-of-strain tensor for the whole domain discussed in
£3.4 1s not simple, the alignment seems to be fairly simple as long as we observe them near a
vortex pair on their cross-section. This tendency of simple alignment of strongly stretched parts
of material lines will be clearly seen in three-dimensional visualization in the next subsection.
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Fig. 14. Stretching enhancement by a vortex cluster. Iso-surface (threshold being 0.367, ') of stretch-
ing rate of material line elements are drawn by blue blobs together with (a) the tubular vortex cluster
shown in Fig.9(a). and (b) the antiparallel vortex pairs shown in Fig.9(b). The latter is a magnification
of the former.

Fig. 15. Stretching enhancement by a vortex cluster. Deformed material lines are plotted together
with the vortex cluster shown in Fig.9(b) from two different viewpoints. (a) Bottom view and (b)
side view. the latter of which is seen from almost same the angle as in Fig.9(b). On white parts of
the material lines, the local stretching rates 4. are larger than a threshold, the average of v, plus its
standard deviation.

5.2  Three-Dimensional Flow Field

It is not difficult to confirm the stretching enhancement by antiparallel vortex pairs in three-
dimensional visualizations. We may observe in Fig.14 that strong stretching regions of material
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line elements, indicated by blue blobs. are located between the antiparaliel pairs of tubular
vortices. The vortex clusters in Fig.14(a) and aptiparallel pairs in Fig.14(b) are respectively
identical to those shown in Figs.9(a) and (b). The stretching of material lines is indeed en-
hanced by antiparallel pairs of vortices as readily expected from the discussion in the preceding
subsection.

Deformed material lines are too complicated if we observe them in the energv-containing
scales as shown in Fig.l. However, it is relatively simple and independent of the Reynolds
number if we look at them in the Kolmogorov scales (Fig.2). This is because the material line
deformations are mainly governed by the tubular vortical structures, and theyv have Reynolds-
number independent structure in the Kolmogorov scale as seen in Figs.9(b) and (d). Material
lines deformed by turbulence at R, = 84 are plotted in Fig.15 together with the cluster
of tubular vortices shown in Fig.9(b). Only the material lines near the central vortex are
plotted. The lines are coloured according to the local stretching rate 7., that is, white parts
are more intensively stretched, v > (7o) + ((7%2) — (7)%)7. At first glance, the deformed
lines are still too complicated, however a careful observation leads us to a simple conclusion
as shown below. Figures 15(a) and (b) are respectively the bottom and the side views of the
cluster of antiparallel vortices shown in Fig.9(b). Here, recall the discussion of the stretching
enhancement on a cross-section of a tubular vortex. The strongly stretched material lines
should be located around hyperbolic stagnation points, and they take a T-shaped form. In
Fig.15(a), we see the behaviour of the stretching on the cross-section of the vortex cluster,
where the central vortex induces clockwise swirling flow around it, and the other two vortices
vield anti-clockwise ones. We may observe two clusters of white material lines, and they form
a T-shape. The left vertical white cluster corresponds to the head of the T-shape of strong
stretching parts of material lines associated with the central and bottom vortices, while the
central horizontal white cluster can be regarded as not only its foot but also the head of another
T-shape associated with the central and right vortices. It is clearly seen in Fig.15(b) that
almost all the white parts of the material lines exist parallel to each other and perpendicular
to the vortices. In other words, the strong stretching can be regarded as a two-dimensional
phenomenon. Hence, this feature justifies the argument of the stretching enhancement on cross-
sections of tubular vortices as was done in the preceding subsection. These observations are
completely consistent with the conclusion obtained there that the stretching is enhanced in
the strong strain regions near the hyperbolic stagnation points.

A comment may be in order here on the negative correlation between the local curvature and
the local stretching rate of material lines seen in Fig.7. As mentioned in §4.1 (see Fig.9) the
tubular vortices have the radius of O(5n). On the other hand, the peak of the pdf of local
curvature is around a. =~ 0.0577* (Fig.6), that is, the corresponding radius of curvature is
about 207. These are consistent with the picture observed in Fig.15, namely the material lines
are stretched by vortex clusters rather than single vortices. Of course, there are fractions of
material lines which are wrapped by a single vortex, and their radii of curvature are around
51, but thev have only small stretching rate. On the other hand. the white parts seen in Fig.15
have obviously smailer curvatures than such parts wrapped by single vortices. This is a physical

explanation of the negative correlation between the local curvature and the local stretching
rate.

Finally, we refer to a quantitative estimation which supports the stretching enhancement by
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regions | fraction | stretching rate
inside 24% 0.14 7,7}
j=0 4% 0.16 7,
j=1 16% 0.18 7,7 !
j=2 19% 0.20 7,1
=3 16% 0.22 7,1
j=4 10% 0.23 7,70
iz5 10% 0.26 r,?} !

Table 4
Volume fraction and mean stretching rate of material lines in each region which is concerned with 7
tubular vortices. Average over 20 realizations of turbulence at R; = 84.

clusters of the tubular vortices. For this purpose, we divide the whole space outside of vortex
cores into regions according to the number of tubular vortices which affect it. Here, we define
the domain affected by a vortex as a tubular region whose local radius is the ¢ (= 3, say) times
as long as the core radius of the vortex. We list the volume fraction of such parts in Table 4,
together with the mean stretching rate of material lines in each region. In this estimation we
neglect vortices shorter than a threshold, 10y. If we take all the identified vortices into account,
the volume fraction inside their cores is about 30% (Makihara and Kida, 2002a). In this table,
the value of j denotes the number of vortices which affect the region. It is clear that the larger
the number is, the stronger the stretching rate becomes. This implies that tubular vortices
enhance the stretching by forming clusters. It may be speculated that antiparallel pairs, which
1s most popular in a cluster as seen in Fig.10, are playing key roles in the stretching, although
further quantitative investigations are necessary to draw a final conclusion.

6 Concluding Remarks

Physical mechanism of the intensive stretching of material lines in turbulence is investigated by
the use of DNS. Deformations of material lines by homogeneous isotropic turbulence are sta-
tistically characterized by Kolmogorov scale variables. The average stretching rate of material
lines is 0.177," and the average curvature is 0.1n~! irrespective of the Reynolds number. In
this sense. the deformations are mainly governed by fluid motions in the Kolmogorov scale, i.e..
the smallest scale of the Lagrangian motions in turbulence. On the other hand, it is clearly
seen, by a highly objective identification method of coherent structures in the small scales,
that there exist coherent vortical structures with tubular shape, which tend to align to each
other in an antiparallel manner. Note that cross-sectional structures of tubular vortices seem
to be characterized by the Kolmogorov variables, while their longitudinal length varies between
the Kolmogorov length and the integral length. We have stressed that the cross-sectional flow
of a cluster of vortices whose axes almost align with each other plays key roles in the effec-
tive stretching of material lines. More precisely, an antiparallel vortex pair produces always a
flow accompanied with both two hyperbolic stagnation points on the cross-section and strong
strain region near the stagnation points. Since material lines tend to align to the eigenvector
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Fig. 16. Stretching of material surface elements near the cross-section shown in Fig.11. (a) Projection
of normal vectors of surface elements. Colour indicates the strength of local stretching rate with red
for stronger stretching and blue for weaker. (b) Magnitude of local stretching rate of surface elements.
Contour levels are 0.2n 7,' (n = 0,---,4). Arrows denote the velocity vectors, which are identical
to Fig.11(c). Solid squares and circles are the hyperbolic and elliptic stagnation points. respectively.

associated with the largest positive eigenvalue around the hyperbolic stagnation points, the
stretching rate of material lines takes large values there. The directions of the eigenvectors
corresponding to the positive eigenvalues around the two hyperbolic stagnation points take a
T-shaped form, and therefore strongly stretching parts of material lines are observed with a
T-shape between an antiparallel vortex pair. It should be stressed here that a single vortex
does not possess ability to stretch a material line strongly. A simple wrapping of material line
around a single vortex leads to an algebraic stretching after a sufficiently long time. It seems
that a wrapping by a pair of antiparallel vortex makes exponential stretching forever around
the hyperbolic stagnation points. It is likely important also that an antiparallel pair of vor-
tex moves by the mutual induction for the effective stretching, since steadiness of flow is not
desirable, in general, for strong stretching.

The stretching of material lines is closely related with that of material surfaces because a
material surface can be regarded as a set of material lines. Deformation of material surfaces
in turbulence is of special interest, and has been intensively investigated as a foundation of
turbulence mixing, since a material surface is nothing else but the boundary between two
parts of fluid. So far in the present article, we have restrict ourselves within the stretching
of material lines. Here, we describe briefly the case of material surfaces. In Fig.16 we plot
the projections of normal vectors and the contour of local stretching rate of material surface
elements on the same cross-section shown in Fig.13. Colours of the projections indicate the
strength of stretching rate of the elements. The strong stretching regions of material surfaces
are also located around hyperbolic stagnation points denoted by solid squares in Fig.16(b).
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similarly to the case of the material lines. It is also interesting to see that the normal vectors
of strongly stretched material surface elements, i.e., red projections, are nearly perpendicular
to the expanding direction around the two hyperbolic stagnation points. Hence, the stretching
of material surfaces are enhanced in the region around the hyperbolic stagnation points due
both to the strong strain and to the alignment of the elements to eigenvectors of the rate-of-
strain tensor. Since the effective extension of the boundary of two parts of fluid leads to strong
mixing, we expect that turbulence mixing in small scales is enhanced by the antiparallel pairs
of tubular vortices.
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been partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (B} from
the Ministrv of Education, Culture, Sports, Science and Technology of Japan.
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