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Abstract

Transport phenomena in torus plasmas are discussed focusing on the genaration of the
neoclassical radial electric field. A sophisticated éf Monte Carlo particle simulation code
"FORTEC” is developed including the effect of finite orbit width (FOW), which is the non-
local property of the plasma transport. It will be shown that the neoclassical radial electric
field in the axisymmetric tokamak is generated due to this FOW effect. The Lagrangian
approach is applied to construct a non-local transport theory in the region of near-axis. The
reduction of the heat diffusivity toward the axis will be shown. From a statistical point
of view, diffusion processes are studied in the presence of irregular magnetic fields. 1t is
shown that the diffusion processes are non-local in almost all the cases if there are some
irregularities in the magnetic field.

keywords: neoclassical transport; effect of finite orbit width, radial electric field, FORTEC,
potato particle, Lagrangian formulation, heat diffusivity, diffusion process, irregular mag-
netic field, statistical point of view, non-local transport

§1 Introduction

It is well known that a large radial electric field can suppress various instabilities or
turbulence in torus plasmas and thus improve the plasma confinement. Such a radial large
electric field is generated in a plasma with a steep pressure gradient as seen in the ETB
(External Transport Barrier or H-mode) and I'TB (Internal Transport Barrier) discharges in
tokamaks. The sheared radial electric field E7 may be considered to destroy phase relations
of pv, ng, - - -, resulting in suppressing the turbulence.

It is of great interest to investigate the generation mechanism of the radial electric field
E.. One possibility is the determination of F, as a result from the neoclassical transport.
Input of toroidal momentum or torque due to, e.g., the neutral beam injection for heating
(NBI heating) can alter F,.. Another possibility is that the Reynolds stress ¥%' produced in
anomalous transport may generate E,. through the inertia term V - (pt7).

Suppose that the radial particle flux I' consists of ion and electron particle fluxes (as-
suming ionic charge number Z; = 1)

F — —F:;C 4+ F;n,c _ an 4 F?n 4 F:m _ Fioss + I\f:oss R (1)

Here, I'?® and I'7¢ are electron and ion particle fluxes due to the neoclassical difusion, and
I'" and I'?" are electron and ion particle fluxes due to the anomalous diffusion, respectively.
The charge exchange process and particle orbit loss remove momenta out of the plasma
region to generate particle fluxes ['¢®, T°** and T'°**. T given by Eq. (1) is a function of the
radial electric field F,. Owing to the plasma property of charge neutrality, the particle flux
or radial electric current must vanish at the steady state to lead the ambipolarity condition
I'(E,) = 0 at the steady state, which determines E,.

In the present paper, we focus on the the neoclassical transport, which can be described
only by particle guiding center motions and Coulomb collisions. The standard neoclassical



transport, theory {1,2] assumes regular flux surfaces (nested flux surfaces) and
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where p, is the poloidal Larmor radius, L is the plasma scale length, B is the magnetic
field strength, B, is the poloidal field, u; is the parallel flow velocity, and vy is the thermal
velocity. The standard neoclassical theory is constructed in the limit of small orbit width
(SOW). It can explain observed bootstrap current, electric conductivity, plasma rotation,
and some others. On the other hand, the radial diffusion is governed by anomalous transport.
The neoclassical transport gives the minimum radial diffusion.

However, the assummptions for the standard neoclassical theory in the SOW limit often
‘break down. In the plasma with ITB, there exists a region where the pressure gradient
is so steep that the condition € < 1 does not hold. Near and inside the ITB region, the
diffusivities become drastically reduced to the level lower than those predicted by the stan-
dard neoclassical theory. It also breaks down near the magnetic axis in tokamaks because of
complicated particle orbits, which are different from those of standard banana and passing
particles {3,4]. The width of this exceptional region is very wide for the ITB plasma with
negative magnetic shear, because it is roughly proportional to the central safety factor gy and
the Larmor radius p or the ion temperature T;, both of which are high in ITB plasmas. Mag-
netic islands and their overlappings generated by field irregularities or perturbations may
alter the standard neoclassical transport drastically. For such plasmas to be understood, it
is necessary to take into account the effect of finite orbit width (FOW), which has not been
considered in the standard theory.

To take the FOW effects into account, a 4 f Monte Calro particle simulation code "FORTEC”
(Finite ORbit Transport Extended Code)} has been developed [5]. The code "FORTEC” clar-
ified new physics which can not be obtained in the standard neoclassical theory. Further,
the self-consistent radial electric field has been successfully calculated in a tokamak in both
small and large Vp plasmas [6]. Recently, the radial electric field in a rotating tokamak
plasma has been calculated and compared with analytical estimations [7,8]. Plasma trans-
port near the magnetic axis is analytically investigated by a Lagrangian method, in which
the drift kinetic equation is solved using constants of motion. By averaging particle orbits,
this formulation can include the FOW effect to correctly describe transport near the axis [9].
Diffusion processes in a partially destroyed magnetic field and in the fully destroyed field
(stochastic field) are studied. In such plasmas, the condition for the standard neoclassical
theory to hold breaks down, because it assumes regular magnetic flux surfaces. In this case,
the non-local FOW effect is essential and is considered from a statistical point of view [10,11].
It should be noted that the transports including FOW effects have some characteristics of
non-lolality.

The paper presents three topics. First, in section 3, the é f simulation code "FORTEC”
is described emphasizing the importance of FOW effect in determining radial electric field.
Secondly, non-local transport near the axis is formulated by the Lagrangian method in section
4. Thirdly, the diffusion processes in destroyed magnetic fields are studied in section 5 from
a statistical point of view.



§2 Neoclassical Radial Electric Field

In helical systems or stellarators such as LHD (The Large Helical Device), the electron
and ion particle fluxes I'. and I'; are functions of the radial electric field E, even on the
lowest order of € = p,/L. The ambilorality condition has multiple solutions for E, and thus
a bifurcation of the solution may occur under some condition. The solution with negative
E. is called the ion root and positive one is called the electron root.

However, in axisymmetric tokamaks, ', == I’; is independent of E. on the lowest order
of €. This is called the intrinsic ambipolarity. What determines the radial electric field in
axisymmetric tokamaks is the subject in this section. _

Consider the momentum balance equation at the steady state which is given, neglecting
the inertia term, by

Neeo(E + @, x BY+ F,— VP, - V-1, =0 (4)

where n,, e, are the density and the charge for species a, respectively, E, B are the electric
and magnetic fields, 4, F., P, and II, are the plasma flow velocity, friction force, scalar
pressure, and stress tensor (V - I1, is the viscosity force), respectively, for species a. We
define the coordinates (1,8, ¢) with ¢ the flux as a radial coordinate, 6 the poloidal angle,
and ¢ the toroidal angle. Taking toroidal component (R?V¢-) of Eq. (4) gives the particle
flux ~

Cop = (nii, - Vo) = (R*V¢ - ngii, x B) (5)

Loy = (VS (- Fy +na)) + (V- (V- TL)) (6)

In Eq. (6), >_ F, = 0 (the momentum conservation during the collision), )" e,n, = 0 (charge
neutrality), and > II, = 0 (viscosity force balance). Then we obtain the ambipolarity

condition
D ealay =0 (M

at the steady state. This relation determines the radial electric field E, since it depends on
E,.

The particle fluxes coming from the friction force F, are obviously independent of E,.
These fluxes, which are called axisymmetric fluxes, can be calculated by the parallel force
balance (B - F,) = (B -V -II,). It should be noted that the axisymmetric fluxes are
independent of F, regardless of the order of e. For tokamaks, if ¢ is a small parameter,
the toroidal viscosity for ions, the last term in Eq. (6), is small due to the axisymmetry
and on the order of e* [12], whereas the axisymmetric fluxes for electrons and ions are on
the order of €. On the lowest order, the axisymmetric fluxes dominate and the relation
Eq. (7) is independent of E.. This is called the intrinsic ambipolarity. On the other hand,
in non-axisymmetric tori (stellarators or helical systems) such as LHD (The Large Helical
Device), the toroidal viscosity (B, - V - I,) dominates the particle diffusion.

It is the ion particle flux generated by the toroidal viscosity that determines the radial
electric field, since the intrinsic ambipolarity condition can not determine the radial electric



field. In the case of small ¢, the toroidal viscosity has been calculated by Rosenbluth et al.,
assuming V7T; = 0 [12], where T; is the ion temparature. The toroidal viscosity is small,
but finite due to FOW effect even if € is very small, because the drift surfaces of particle
orbits deviate from the magnetic surfaces due to the toroidicity. For any value of €, the
intrinsic ambilorarity condition holds for axisymmetric fuxes, and the toroidal viscosity
T'; = (V-(R*V¢-1,)) depends on F, and it is this flux to determine E.. In the case of
arbitrary ¢, we need a numerical calculation to obtain F, taking into account accurately
the FOW effect. For this purpose, we develop a df Monte Carlo particle simulation code
"FORTEC” to solve the drift kinetic equation.

83 ¢f Simulation — FORTEC —

In this section, we solve the drift kinetic equation for ions by a simulation code. Particle
orbits are followed and Coulomb collisions are modelled by the Monte Carlo method. To
reduce the statistical noises in the simulation, we employ the df scheme. The code is
called "FORTEC” (Finite ORbit Transport Extended Code), in which orbits of many test
particles are accurately calculated to include the effect of finite orbit width (FOW). The
code "FORTEC?” is applied to the calculation of the radial electric field E, with and without
the plasma parallel flow.

3.1 Formulation of §f method

We consider only ions. The density n and temperature T are assumed to be functions of
position Z and constant with time ¢t ; n = n(Z) and T' = T(Z). whereas the electric potential
depends both on position and time ; ® = &(Z,1). In (€, u, ¥) space, where £ = mv?/2 + e®
is the energy of a particle and u = v2 /2B is the magnetic moment, the drift kinetic is given
by [1]

of e d®of
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where f is the distribution function, 7 is the velocity parallel to the magnetic field, and 74
is the guiding center drift velocity, which includes the E x B drift moltion {13]. C(f, f) is
the Coulomb collision operator.

We decompose f into two parts : f = fir + 8f, where fy; is a Maxwellian distribution
function given by n

__ e®/T —mEJT
fﬂ«f =€ (th )3/26 (9)

with v, is the thermal velocity. &f is the distribution function perturbed due to particle
drift motions. The decomposed equafions are

Ofu ¢ 00 8fu

_515_+m6t Oe +’UH VfM—O (10)
88f < 0DIS

5t o 0 Vi () +5) - V] = COf, fu) + Cin6f) (1)



Here, we have neglected the collision term of C(6f,8f) assuming | §f |< fu. In Eq. (11),
the term #; - V4 f represents the effect of FOW.

We denote the linearized collision operators in Eq. (11) by Crp = C(6f, far) and Pfy =
C(fu,0f). Crp is the test particle collision operator with a background Maxwellian ions
including pitch angle scattering, drag or slow down, and enegy diffusion. We employ the
collision model for Crp by Lin et al.[14} in the present paper. On the other hand, P fis is the
collision term to garantee the particle number, momentum, and energy during the collisions.
This operator compensates the excess momentum and energy produced in the process of test
parficle collisions Crp. The most accurate collision model for P fys has been developed by
Wang et al. [4], which is used in the present simulations.

We introduce a function g(Z, v, t) which satisfies

Dy
= 12
where the operator D/ Dt is defined, for arbitrary function A, by

DA _9A e 3%0A

Dt~ 9 mot o
with Crp = C(A, fu). If we introduce weight fields W(Z, ¥, t), P(Z,7,1)
fu=Pg (14)

of =Wg (15)

Then we can derive the equations for P and W to satistfy,

+ (v +vg) - VA—Crp (13)
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By solving Eqs. (16) and (17), we finally obtain the objective distribution functions fj and
0f from Eqgs. (14) and (15).

3.2 4f Monte Carlo particle simulation

We solve the set of equations (12) to (17), by an orbit followong and Monte Carlo method.
The function g corresponds to the test particle distribution function, which can be expressed
by

9(Z,9,1) = > 8(F — Z())8(7 — Bi(1))- (18)

where Z;(f) and #;(f) are the position and the velocity of the #th test particle at time ¢ and
obtained by solving the guiding center equations and collisions Crp. We assign two weights
to each test particle '

wi(t) = W(Zi(2), i), 1) (19)

pi(t) = P(:(t), %.(2), 1) (20)



The distribution functions 6 f and fis can be obtained once w;, p; are determined

fu(E8,6) =Y plt)8(T — T(1))3(0 — vi(2)) (21)

of(Z,7,t) = sz-(t)&f — 2i(2))8(7 - i(t)) (22)

We can derive the equations for weights w; and p; from Eqgs. (16) and (17), paying attention
to the problem of weight spreading [15]. The equations are given by [5,15]

dw; D

&= 7m0 Vi O £l =0 [wi = W(E, 5.0)] (23)
Mi
dp, Bz
;{ sz ['Ud VfM] -7 [p P(.I:,-, 'Uiat)] (24)

Here, the sufixes 7 means that any quantity must be evaluated in the phase space of
(z;(t), 7i(t)) and 5 is the damping rate to be specified. After calculating Egs. (23) and
(24), we average the weights w; and p; of test particles in a small phase space element to
obtain W(&;, ¥, t) and P(Z;,¥;,t). Then, new weights for i-th test particle are chosen from
the averaged weights W and P ; w;(t) = W(Z,, ¥, t), p:(t) = P(Z:, T:, t).

3.3 Equation for the radial electric field

From Poisson equation and the continuity equation, we obtain the time development
equation for the radial electric field E,,

OFE,
ot

J. is the current density in the radial direction consisting of

= —dnl, (25)

Jo =I5+ J5C + ITE (26)

We neglect the electron current, since it is much samaller than ion current by mass ratio.
JYNC and JJC are neoclassical polarization and drift current which are calculated in the
s1mulat1011 whﬂe the classical polarization current JC is not calculated in the simulation
and is given by the analytical expression. In general coordinates {cgs-units), the radial
electric field is given by

| Vi, 2] %@
{| Vag, ) + dmnmc?{ B;a ) 599, = 4qel’; (27)
The ion particle lux I'; is defined by
= [ diteis- Vi) (29)



At every time step in the simulation, the distribution function f is calculated and thus T';
can be obtained. Eq. (27) is solved by a predictor-corrector scheme.

3.4 Analytical estimation

We estimate analytically the time behaviour of the radial electric field and its value in
the long time limit assuming a distribution function. We restrict ourselves only on the case
of VI' = (. In such a case, the drift kinetic equation has a solution of a shifted Maxwellian
distribution function in the standard neoclassical theory in the SOW limit [1]. We assume
for f as

fsu(v,7) = Wezp{—(vi + (v — )"} v (29)
Taking the time derivative we have a coupled equation of E, and fgpr
A FE, s Of
1+ 53 = —dmel f Bv ) (30)

where vy = B/+/4nnm is the Alfven velocity. From the drift kinetic equation, we calculate
af /ot
of e 090fsm

e _Ea—?ﬁ“+(ﬁ]+ﬁd).vaM - (31)
The wave equation (30) becomes
O*FE,
2 +whaBr =S (32)

wean is the frequency of Geodesic Acoustic Mode [16]. Generally, E, has a following form
[17]
E.(t) = E, + Ae “eaMteT1cant | Be—Tmpl (33)

Yeans depends strongly on ¢ and vy p is the damping term due to the magetic pumping term
with a small damping rate. In the limit of t = oo

g - Leldn

T e‘ndr

(— — ’tL du"} + -na——u” (34)

with I, /Iy =~ 3@y, I/ ~ 043, and o = r/(gRp). It will be shown that this analytical
estimation agrees well with simulation results [7,8]. In case of no toroidal momentum,
Boltzman relation holds from Eq. (34)

_  Ton

E, = (35)

e or

3.5 Calculation of E, by FORTEC

Using the 6 f Monte Carlo particle simulation code ” FORTEC” -version S, the simulations
are carried out for a simple magnetic field geometry in the large aspect ratio limit. Many

. B



particles are initially loaded in the simulation domain to form a local shifted-Maxwellian
distribution with 1" in each cell devided in the r and #-directions. In the present simulation,
the effect of the parallel flow is treated as a perturbation in §f according to the procedure
described in section 2. The flow is initially given by

ay(z,t = 0) = oexp (—au(z — zo)™) {36)

Here, z = r/a,, iy = uy{T = To)/Vsn, @, By, and zo are input parameters. In the present
paper, three cases of 4y = 0, and 0.1 are examined. The parameters throughout the
calculations are By = 3T (magnetic field strength), Ry = 3m (plasma major radius), a, =
0.5m (plasma minor radius), no = 5.0 x 10m™ (central density), T = 1.5keV , o, = 2,
B, =2, x5 =0, and Ny, = 10° (number of test particles).

We show the calculation results for the case with a small density gradient and positive
shear of ¢(r). The potato region of ions is A,/a, = 0.1 and ions lie in the banana regime in
z =7/a, =0.2 to 1.0. In other region ions are in the plateau regime.

Er (kV/m)

Figure 1: E. profiles in a rotating plasma.

The particle flux [; first oscilates with the GAM frequency and damps in a short time to
become zero. The time behaviour of E, synchronizes with that of I'; and finally it reaches the
value of E, gven by Eq. (34). The collision operator in "FORTEC-S” ensuring momentum
and energy conservations keeps I'; = 0 and constant E..

Figure 1 demonstrates the radial profiles of E, for three cases of (1) @y = 0,(2) @y = —0.1,
and (3) @y = +0.1. Dotted lines are simulation results and the dashed lines are analytical
results by Eq. (34). Simulation results are obtained by time averaging from ¢ = 4.87; to
t = 5.07;, where 7; is the ion-ion collision time. Figure 1 shows clearly that the simulation
results and the analytical results are in good agreement.

84 Transport Near the Magnetic Axis

The orbits of particles moving near the magnetic axis are different from those of passing
and banana particles apart from the axis. Those particles near the axis are genarally called

_gm



potato particles. The typical orbit width of potato particles is A, ~ (¢°p*Ro)'/?, and the
fraction is ~ (gp/Ry)Y/*, where g, p, and R are the safety factor, Larmor radius, and major
radius, respectively. Potato particles, which move complicatedly with A, comparable to
the particle radius position r, may alter transport near the axis. Here, we apply first the
Lagrangian formulation for transport to the near-axis region, which can include FOW effect

9.

4.1 Particle orbits near the magnetic-axis

Near the magnetic axis, 6 is given as

2

g = (@"b + ) - V6 :_ qLRe [v” - % (vﬁ + %) cosﬁ} (37)
Note that 7;- V8 < r~! and r ~ A, (potato width). Assumptions for the standard neoclas-
sical theory vs < vy, and Ay~ AP) < 1 break down near the axis.

We identify particle orbits, which are different from those of standard banana and passing
particles, by the number of the turning points of v; and the turning points of . The
classification of particle orbits is shown in Fig.1 with parameters of ¢ = 3, By = 4T, T =
10keV for hydrogen plasma [4] ; (A) standard banana particle, (B) fattest banana, (C)
passing particle, (D) inner-circulating, (E) outer-circulating, (F) kidney particle, and {G)
concave-kidney particle. In Fig.1, the mark bar means a turnibg point of vy and the mark
square indicates a turning point of 8.

02} : ] | 02}
A

0.1} 0.1
Z (m) Z{m)

0.0 0.0
01 0.1}

o2t & 0.2} |

39 40 41 42 43 38 40 42
R (m) R (m)

Figure 2: Types of orbits : (A) standard banana, (B) the fattest banana, (C) passing, (D)
inner-circulating, (E) outer-circulating, (F) kiduey, (G) concave-kidney orbits.

4.2 Lagrangian transport theory

In the Lagrangian formulation {18,19,20], the drift kinetic equation is described in terms
of three constants of motion (COM) of £ (particle energy), 1 (magnetic moment), and {¢')



or {r) (averaged radial position of a particle). The average particle radial position is defined

by 1 [ de
-~ ¢ 5 (38)

dé
with 7, = f — thr poloidal period. {---) means the average over a particle orbit. Using

these COM’s (&, p, {1}), the drift kinetic equation can be written as

6 Ofe
0.t) + 6 =
g falEo (), 0,) + 055 = Car (39)
We assume that the plasma is in the collisionless regime 8, = v*f7, <« 1, where v is

the effective collision frequency and 7, is the poloidal period. In the zero-th order 0(60) we
obtain

;010

80 0 oo = fol&p, (), (40)
The next order O(6.) gives
0 19 18 oz
.0+ 535 (255) = 5 (955 - T) (1)
Taking the orbit average vields the reduced kinetic equation
8f 1 & 0z . =
Ysl (n(Frn))-c (42)
where f = fo and .J, is the Jacobian in the (£, u, {¢’))-space
_ Togy s ad I
r= ol (o= g0 (an) *3)

d, is found to be negligible for almost all orbit-types of particles.
We employ a model collision operator [21] which conserves particle number, energy, and
parallel momentum on a local point of the particle. The averaged operator is given by

ey 18 wv[/oz ., 8z\8f [muy 0z

Cif) = AR [<5v_.v.av> 5 < T 5% szM>:| (44)
Here, V(v) = v?l—vv and w = V-b. u; is determined to satisfy the relation [ d*vv|C;(f;) =
0;

Ti

where K; = 0.2664 and 7; is the ion-ion collision time.

4.3 Transport equation

The reduced kinetic equation (42) for ions is expanded by a parameter &, = A,/L < 1
where A, is a typical orbit width (A, ~ A,)} and L is the typical gradient scale length. We
assume the following orderings

2 .9
o Oy

o}

1 8)‘_' 2 1
50 O(0) » =~ 0(8;) , wiy ~ O(4)

0
o, at



We neglect C,; here. By expanding f = fo+ 0 fs +02fo+---and C=C® + CO 4 ... in
(42), the kinetic equation is solved order by order. In the order O(69), C%(f,) = 0, which

yields
- _ /T \3/2 E—ed
fio = 7 (ﬁ) €Xp [— T } (46)

The next order gives C\V(fi) = —CY(fio), or equivalently,

d mavj\ 8fa| O Iy \ Ofn  mQaWy /Iv\ -
%[J°”< B >8u]_ EEJC”K o) 3 O

where ;) is the lowest order of u; (¢, 8). The second order O(8?) is

a£° C(Fo) + G () + CO(F) (43)

Taking moments of this equation, we have the equations for particle and heat fluxes.
By changing the radial coordinate from (¢/) to (r), we have

on;, A, O

5 T'/,a(>(VT) = 0 (49)
o (3. A, 8 T, 3 B d®
i (2) + gy [V (3 508) | = vy o0
where
M) STV, M) = ety (51)
Ne=Y [dedurta . =Y [deduiwio (52)

N is the total particle numbers which have the same (1)) whereas Q; is the kinetic energy of
particles having the same (). Numerical calculations show that A, ~ 1 and A; ~ 1. Then
the direct comparison of the transport equations between the two representations (Eular and
Lagrangian) is valid.

Particle and heat fluxes are given by

T dlﬂﬁi 4 €; dd

i A; A T

% ] — [A; A;Z ] A dhl% d(} (53)
' ()

(54)

It is shown [9] that the transport coefficients A;;’s are Onsagar-symmetric. Transport coef-
ficients are in the following form

Al = Y, [ dsdron (e, o, 7). 0) (55)



where T = exp(—£&/T), Ay = pBo/E, and o, is the orbit type. Along the orbit of n-th
particle (Zn, Ao, (T); 01n), we calculate 7, and Fji.  (Fj, contains orbit-averaged functions
such as (By/B), (Bovy/B), etc.) Particle orbits are numerically traced without collisions.
It should be noted that the flux-force relation, Eq. (53) contains the property of nonlocal
transport, although it has the same form as that of the standard neoclassical theory or the
local transport theory. The nonlocal property comes from Fj; in Eq. (55), which contains
information of all the particles having the same {(¢).

We calculate the ion thermal difusivity using Eqs. (53) and (55). The calculation pa-
rameters are By = 4T, g = 3, T = 20keV, n = 10®®m~3. The fattest banana width is
rp = 2(¢°p%Ro)'/? ~ 0.24m. We have obtained the ion thermal diffusivity decreasing from
r = r, toward the magnetic axis {9]. Outside the position of r,, it agrees with the prediction
by the standard neoclassical theory

§5 Diffusion in Destroyed Magnetic Field

The standard neoclassical transport theory assumes nested magnetic surfaces. If there
are some irregularities in the magnetic field, the neoclassical transport (determined only by
particle orbits and Coulomb collisions) may drastically change. In this section, we investigate
the particle radial diffusion in a magnetic field with irregularities as a realization of collisional
(statistical) stochasticity and the magnetic field (deterministic) stochasticity. The diffusion
process will be studied from the statistical view point.

5.1 Model

We solve the guiding center equations for electron orbits and give pitch angle scattering
collisions to the electrons by random numbers. Specify the magnetic field with irregularities
in a tokamak, ]

B=B,+dB (56)

with . .
0B =V x (bB.,) (57)

where B,, is the regular nested magnetic field and b is

b(®,6,) = D bun () cOS(mB — 1 + Gmyn) (58)

mn

where (., is the phase and | by | /a < 1. The form of by, is given by

_ 2
e 59)

where s indicates the strength of perturbation, the stochasticity parameter. If s = 0, the
magnetic field is regular and has nested magnetic surfaces. To make a magnetic field with



irregularities, we specify the value of s, rational surface(s) with the mode number of 7 and
n, and the width of the perturbation A.

5.2 Statistical approach

The statistical measure with respect to the radial displacement is
or(t) = r{t) — T(O) (60)

We define the first and second cumulants by C;(t) = {(dr(t)) and Ca(2) = {(dr(t) — (6r(t)))?),
respectively. The diffusion coefficient is defined by
_ dCs(?)

()= 52 (61)

The power law equivalent diffusion coefficient is

Co(t
D, (t) = £10) o~ 21 (62)

2t
If @ = 1, the diffusion is called the normal diffusion, if o > 1, it is the super diffusion, and
if < 1, the diffusion is sub diffusive. The 3rd cumulant, which indicates the asymmetry of

the distribution function, is defined by

Cs(1)
1s(t) = C:zz/z ) (63)
Ca(t) = ((or(t) — (6r()))°) (64)
The 4th cumulant represents the peakedness of the distribution function
O = o3 (65)
Cult) = ((&r(t) — (or(t)))*) — 3Ca(t)® (66)

It is noted that -,’s are relative measures with respect to Gaussianity because y,>3 = 0 for
the Gaussian process. The auto-correlation coeflicient is defined as

At 0K — ErO)6r(t) - (r(e)) o
T Vi - Gr)er) — ore))?)

5.3 Statistical results

The equilibrium magnetic field is a simple tokamak field geq, in which magnetic surfaces
are circular and concentric. The perturbed field is given by Egs. (57), (58), and (59).
Initially many test particles (electrons) having the same energy are loaded on a specified
magnetic surface in the equilibrium field by using uniform random numbers. The guiding
center equations are solved in a very short time step and pitch angle scatterings are given to



each particle at every time step. The particles do not change their energy during the motions.
We measure the position of i—th partilce r;(¢) and calculate cumulants and auto-correlation
function.

In the case of 8B = 0, the stochasticity origin is only pitch angle collisions. The orbit-
following and Monte Carlo calculation recovers the standard neoclassical diffusion. Statistical
analysis shows that the diffusion without 5B is the Wiener process or Gaussian Brownian
motion [10]. Transport in a magnetic field with §B are studied in detail from the statis-
tical point of view [11]. In this study the Coulomb collisional statistical stochasticity and
the deterministic magnetic stochasticity coexist. Four cases are studied. The first is the
field having only one island. The second is a disturbed field generated by overlapping of
two islands. The third is the case of many island overlapping, but the field is still partially
destroyed. The final case is a fully destroyed and stochastic field. In all the cases, perturbed
(partially or fully) regions are bounded. This situation is different from that discussed by
Rechester and Rosenbluth [22]. By analyzing the statistical quantities, the radial diffusions
in almost cases are recognized as the strange process cheracterized by a power-law auto-
correlation coefficient, subdiffusivity, neither Gaussianity nor uniformity, and statistically
pon-stationary. The strict justification of Markovianity remains open problems.

§6 Discussion and Summary

Neoclassical transports or collisional transports in toroidal systems have been considered
beyond the framework of the standard neoclasssical theory including the non-local property
of FOW effect. FOW effects have been emphasized in generating neoclassical radial electric
fields, in transport near the magnetic axis, and diffusion in rregular magnetic fields. All the
results in this paper have non-local property of transport attributed to FOW effects.

The 4f Monte Carlo simulation code ”FORTEC” has been developed to explore neo-
classical transport including FOW effects, employing a new method for collisions and two
weighting scheme. It has been cleared that the radial electric field in axisymmetric tokamaks
is determined by the FOW effect.

The Lagrangian formulation has been firstly applied to the region near the magnetic axis,
where particle orbits are completely different from ordinary banana and passing particles.
The formulation was successful to include the non-local property of FOW effect.

Non-local transports in perturbed magnetic fields ¢ B have been studied from a statistical
point of view. Without 5B, standard neoclassical diffusion is recovered. The diffusion
process is Wiener process or Gaussian Brownian motion. In the bounded region with 5B, the
diffusion is non-Gaussian, non-Markovian, non-stationary, sub-diffusive. However, further
studies are needed on this subject.
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