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Abstract. In this paper, we analyze the turbulence composed of collective modes with
different scale lengths. The hierarchical model for multiple-scale turbulence is developed.
Nonlinear interactions between different scale length are modeled as turbulent drag, nonlinear
noise and nonlinear drive and a set of Langevin equations is formulated. Using this model, a
case where two driving mechanisms coexist (one for the micro mode and the other for semi-
micro mode) is investigated. It is found that a new type of turbulence transition and a cusp-type
catastrophe exist in some parameter regime. Numerical simulations are also performed for
neighboring multiple-scale turbulence such as ion temperature gradient driven dnft wave(ITG)
(k,p,< 1) and short wavelength ITG(k p;>1 ) modes in the shearless slab geometry. The
cascade and inverse cascade in muitiple-scale turbulence are investigated. The cascade is mainly
observed in &, space. On the other hand, the cascade and the inverse cascade are observed in
k. space. Another interesting result is that the particle flux is negative (inward pinch) due to the
short wavelength ITG modes, while the ion and electron heat flux are positive, which indicates
nonlinear interaction between different scale length mode might affect transport.



1. Introduction

Fluctuations with different scale lengths coexist in high temperature plasmas. In a conventional
approach, the scale separation is assumed and one class of mode is analyzed neglecting
fluctuations with other scale length. However, this simplification is not always relevant. For
example, the dynamics of the meso-scale structure of the radial electric field is known to cause
variation in the dynamics of microscopic fluctuations[1]. The interaction between zonal flow
and drift wave turbulence is another example[2]. :

In this paper, we analyze the turbulence composed of collective modes with different scale
lengths based on two approaches. First, the hierarchical model for multiple-scale turbulence is
developed. Nonlinear interactions between different scale length are modeled as turbulent drag,
nonlinear noise and nonlinear drive and a set of Langevin equations is formulated. Using this
model, a case where two driving mechanisms coexist is investigated, where the drift-type
fluctuations in the range of k0.~ 1 (ion temperature gradient driven drift wave(ITG), trapped
particle modes, etc.) are called the 'semi-micro mode' and .those in the range of k,c/®,~1 are
called the 'micro mode'. It is found that a2 new type of turbulence transition and a cusp-type
catastrophe exist. A new insight is given for the physics of the internal transport barrier. Next,
numerical simulations are also performed for neighboring multiple-scale turbulence such as
ITG(k,p. <1 ) and short wavelength ITG(k,p;> | ) modes[3} in the shearless slab geometry. The
cascade and inverse cascade in multiple-scale turbulence is investigated. The cascade is mainly
observed in k, space. On the other hand, the cascade and the inverse cascade is observed in

k| space. Another interesting result is that the particle flux is negative (inward pinch) due to the
short wavelength ITG modes, while the ion and electron heat flux are positive. This result
indicates nonlinear interaction between different scale length mode might affect transport. In §2,
the hierarchical model is discussed. Nonlinear simulation is explained in §3.

2. Nonlinear Interplay and Transition in Multiple-Scale Turbulence

2.1 Transition in Multiple-Scale Turbulence

To derive the hierarchical model for multiple-scale turbulence, the effect of the semi-micro mode
to the micro mode is taken into account. The local pressure steepening and the ExB shearing
induced by semi-micro fluctuations are incorporated into the model. The former has the
destabilizing influence and the latter has suppressing effect on micro mode. The change of local
magnetic shear by the semi-micro mode is not kept in this model, since the semi-micro mode is
assumed to be electrostatic mode. ITG mode and current diffusive interchange mode (CDEM)[4]
are considered as semi-micro and micro modes, respectively. A detailed derivation of the
Langevin equation and the deduction of the statistical average are explained in [5]. Langevin
equations for semi-micro mode and micro mode are given by
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where superscripts / and /% denote the semi-micro and micro modesf4]. x,=1,/ D} and
x, =1,/ D; denote the spectral intensities of semi-macro mode, I,= 2 <¢,: O ,) and micro

mode, [,= E <¢k O k) normalized by driving sources, D, D, , which are defined by
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and D, = )2 . Y. and k;, are the
maximum growth rate and corresponding wave number, C; , numerical coefficients of order
unity, ®g , the equilibrium electric field shear, ® | the critical value of the inhomogeneous
radial electric field for the suppression of modes. Explicit expressions of these valuables for
ITG and CDIM are given in [3]. ®,, =k e D~ Vi represents typical growth rate for these
modes and w,w,,w, are Gaussian white noise with mean zero and deviation unity. Other

parameters are given by r= D,/ D, (the driving ratio of semi-micro and micro modes),
G
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nonlinear noise of the micro mode) and p = D; /I, with I;=(1+ (g /®f) ot )k
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FIG.I The steady state solution of FIG.2 The phase diagram in (7.p)
egs.(1) and (2) without noise term. phase space.

Figure 1 shows the steady state solution of eqs. (1) and (2) without noise terms as a function of
the driving ratio 7 . Parameters p =30 and €=0 are used. The solid curve corresponds to the

semi-micro mode and the dashed curve to the micro mode. For r<0.493 | the micro mode is

excited but the semi-micro mode is quenched. In the region 0.493 <r <1, the semi-micro
mode is also excited and a hysteresis appears in the relation between the gradient and fluctuation
level. For 1 <r, the micro mode is quenched and only the semi-micro mode survives. The
presence of hard bifurcation in the fluctuation level forms a cusp-type catastrophe in the phase
space. Figure 2 shows the phase diagram with a cusp-type catastrophe in  (r.p) phase space.
In this diagram, the semi-micro mode is quenched in the region 'h phase’ and the micro mode is
quenched in the region 'l phase’. Both modes coexist in the region 'bi-stable’. If the trajectory
crosses over the region 'bi-stable’ from 1 phase' (corresponding to I.-mode state) to 'h phase’
(corresponding to I'TB state), then the hard transition will occur. Since ./E corresponds to

the transport coefficient, this figure represents the cusp-type catastrophe of the turbulent
transport.

2.2 Noise Effect on Multiple-Scale Turbulence

To investigate the noise effect on multiple-scale turbulence, the Fokker-Planck equation is
derived for the semi-macro mode. Using the adiabatic approximation for the micro mode, it is
given by



3P(x, : A
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where eq.(4) is obtained from the maximum value of the steady state distribution function of
the micro mode and the third term represents the noise effect from the micro mode[6].
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FIG.3 The steady state distribution function FIG.4 The most probable state for X,
of the semi-micro mode. as a function of T.

Figure 3 shows the steady state distribution function of the semi-micro mode. The solid curve
represents the case with r=0.7,p =30 and the dashed curve represents the case with
r=1.5,p=30. In the case with 7=0.7 , two peaks are observed, however, the well between
two peaks is very shallow, which is due to the noise effect.  Figure 4 shows the most
probable state for x; as a function of 7. The results from deterministic mode! are also shown
by the dashed curve. It is found that for 7> 1, the most probable state does not tend to unity.
In that sense, we might say that the noise effect change the phase diagram drastically. For
r~0.3, there is a bi-stable region, however, the difference between two solutions is smaller
than that from the deterministic model. The noise effect smears out the sharp boundary.

3. Cascade and Inverse Cascade in Multiple-Scale Turbulence
3.1 Model System of Direct Nonlinear Simulation

The numerical stimulation is performed to investigate the cascade and inverse cascade in
multiple-scale turbulence. We consider the neighboring turbulence such as I'TG and the short

wavelength ITG mode. The kinetic-fluid equations for the ion density 7, and the electrostatic
potential ¢, , which are relevant to describe ITG and the short wavelength I'TG mode in the
shearless slab geometry are given by
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where the linear gyrokinetic response is used as a closure for equations and the ion gyro
frequency £ and ion Lamor radins p; are used for normalizations[7}. Z,. isthe plasma

dispersion function with the argument {,, =@/ (k5. . Toe=lo:(ble™ with
b,=k2p?/2 and A2 =(Q7/@2)T/2 with ©=T,/T, (8]. In the limit of M, =7;=0 and
1<<{, L, <<1 for k,#0 , the energy conservation relation is written as

Fap [1 A 41 T | o[ + 2 2?4201 T &, b =0 . D

where the first term in the left hand side represents the drift wave energy and the second term
the convective cell energy. 1D and 2D energy spectra of the potential energy and flux are
defined by

Eyk,)= Z o] Eghoky) = Zle i (8)
Fu=- ‘k E nkk)¢k= gy = E_k %pikk'y¢k" Gor == kE ;pekk (o &)

where the ion and electron pressure are evaluated by using the linear distribution function such
as Paa=m;, /3 J- dv v’ ffl:A ,then pp=(-t+K/3)¢; and p,=7(1+ L/3)¢k with

K=- ZCf(T +o. /O)Z (1 - b)) + bsrm}*’gr‘(l +§1"Zi)r0k]
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and

L=20,1 - @./@)Z,+L (1 +L.Z)]
Lo /0 1Z,+C(0 +5Z) + L1 +2 50 +LZ)H

— 5 —



3.2 Result of Nonlinear Simulation

Figure 5 shows (a) the frequency and (b) the growth rate of linear mode with k.p,=0.1 and
k,p;=0.01 . The solid curve represents the case with M;=3,M,=3 and the dashed curve the

case with M, =3, N, =0 . The destabilization mechanism for short wavelength ITG mode
comes from the finite Larmor radius(FLR) effect and the electron temperature gradient further
enhances the instability[3].
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FIG.5 (a) the frequency of linear mode. FIGS5(b) the growth rate of linear mode.

The nonlinear simulation is performed using the spectral code. The minimum wavenumbers
are kop;=0.1, kop,=0.1, kop,=0.01, respectively and 8x 128x 16 Fourier modes are

used. Other parameters are given by T=1, m,/m,=1836, p,/L,=02, Q' /o%=10.
Initially, the linear frequency and growth rate are evaluated, then ® ineqs. (5) and (6) is fixed

as a parameter, therefore, we regard eqs.(5) and (6) as the coupled first order ordinary
differential equations. The nonlinear Landau damping is not taken into account in this numerical
scheme.

Figure 6 shows the time evolution of the drift wave energy and the convective cell energy
defined by eq.(7). The solid curve represents the drift wave energy and the dashed curve the
convective cell energy. Figure 7 shows the time evolution of 1D spectrum of the potential
energy. Time slices at 2z = 100,200,300,350  are plotted. The cascade in k, space is

observed and the convective cell is excited by the nonlinear interaction.
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FIG.7 Time evolution of
potential energy.

FIG.6 Time evolution of the drift energy 1D spectrum of

and the convective cell energy.



Figure 8 shows the time evolution of 2D spectra of the potential energy in the case with
kp,=0.3 . Time slices at Q7= 100,200,300,350  are plotted. The inverse cascade occurs in

the longest wavelength region. The another peak appears in the short wavelength region.
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FIG.8 Time evolution of 2D spectrum of FIG. 9 Contour plot of potential ar t =350 ,
potential energy.

Figure 9 shows the contour plot of the electrostatic potential ¢(x,y,z=0) at ¢ =350 . Two
vortex elongated in the x direction are observed, which corresponds to 'streamers’. However,
the single elongated vortex in the x direction is observed in the contour plot of flux around
x=0,y=0 _ Ttis found that I, <O (corresponding to the averaged particle flux) for n.=3,
on the other hand, I',, >0 for M, =0, which means particle pinch occurs in the case with

M. =3 . For electron and ion heat flux, they have positive values for both cases. This result
indicates the nonlinear interaction between different scale length mode might affect transport.

4. Summary and Discussion

in this paper, nonlinear interactions of fluctuations with different scale lengths are investigated.
First is the theoretical approach: the hierarchical model for multiple-scale turbulence is
developed and a set of Langevin equations is formulated. Using this model, a case where two
driving mechanism coexist is investigated. It is found that (1) a new type of turbulence
transition and a cusp-type catastrophe exist in the case without the noise effect due to the micro
mode. Next, assuming Gaussian white noise, the Fokker-Planck equation is derived to
investigate the noise effect on multiple-scale turbulence. It is shown that (2) the noise effect
change the phase diagram drastically. More detailed study on the noise character should be
necessary and it is left for future work. The second approach is the numerical simulation to
investigate cascade and inverse cascade in multiple-scale turbulence. ITG and short wavelength
ITG mode in the shearless slab geometry are considered as a first step. It 1s found that (3) the

cascade occurs in &, space, on the other hand, both the cascade and inverse cascade occur in
k, space. Another interesting result is that (4) the particle flux has a negative value in the case
with 1, =3, although it has a positive value in the case with N, =0 . More quantitative
analysis should be necessary and it is left for future work.
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