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Abstract

A statistical model for the bifurcation of the radial electric field E, is developed in
view of describing L-H transitions of tokamak plasmas. Noise in micro fluctuations 1s
shown to lead to random changes of E , if a deterministic approach allows for more than
one solution. The probability density function for and the ensemble average of E, are
obtained. The L-to-H and the H-to-L transition probabilities are calculated, and the
effective phase limit is derived. Due to the suppression of turbulence by shear in E,, the
limit deviates from Maxwell's rule. The ensemble average of heat flux as well as that of
E_do not show a hysteresis in contrast to the deterministic model. Experimental

condition for observing the hysteresis is also addressed.

Keywords: Statistical theory, L-H Transition, Tokamaks, Micro fiuctuations,
Hysteresis, Transition probability



1. Introduction

The formation of structures in inhomogeneous magnetized plasma has been one of
the main issues in modern plasma physics. The strong turbulence, turbulent-driven
transport and self-regulation of plasma profile take place through strong nonlinear
mteractions. An important example is the L-to-H-mode transition in toroidal plasmas [1,
2]. The key is the bifurcation of the radial electric field E_ [3, 4] and its mutual mteraction
with micro-scaie turbulence [5, 6]. The micro-fluctuation has a micro scale length (such
as the ion gyroradius p; or collisionless skin depth 6 = ¢/®, ). The radial electric field,
which is on a meso-scale (a hybrid mean between the characteristic scale length of the
plasma radius g and micro-scales [7, 8]) including the zonal flow [9, 10], plays an
essential role in the bifurcation and the suppression of the micro scale turbulence .
Theory has made progress in explaining the existence of bifurcation in the radial electric
field structure and the suppression of micro turbulence. (See reviews, e.g., [7, 11, 12].)
Nevertheless, a further breakthrough is yet needed for understanding of the L-H
transition phenomena. First, the statistical and stochastic properties of L-H transition
must be clarified. This is because fluctuations and the mesoscale electric field are not at
all in thermodynamical equiltbrium. Phenomena evolve far from the laws of
thermodynamical equilibrium. Efforts have been made for the far-non-equilibrium
statistical law of micro turbulence [12-17], and the role of nonlinear noise source was
found to be important. These analyses must be extended to cover the L-H transition
phenomena. Also, an experimental test of theory is necessary. Experiments have shown
recently that the change of radial electric field occurs in a very short time (a few times
gR/c,, where g is the safety factor, R: majour radius and c,: ion sound velocity) [18] as
has been predicted [3]. This supports the models implying hard bifurcation. On the other
hand, a test of observing a hysteresis by use of a very slow change of parameters (on the
scale of the energy confinement time or longer than that) could not identified clear
hysteresis [19].

In preceding letter article [20], the statistical theory of the L-H transition has been
discussed. In this article, we present a detailed description of the statistical model of the
electric field bifurcation underlying the L.-H transition in toroidal plasmas. Nonlinearity
of micro-fluctuations statistically induces random noise in the meso-scale £. Being
kicked by this random noise, transitions between the L- and H-states occur in a
probabilistic manner. A Langevin equation can then be formulated including the
mechanism for hysteresis of £. The probability density function (PDF) for and the
ensemble average of E, are obtained. The flux of probability density is calculated, and the
transition probabilities between L-and H-states are found. The ensemble average of E|
does not show hysteresis in contrast to the deterministic model. The phase limit is given
by the condition that the H- and L- states have equal probability. This implies an
extension of Maxwell's rule. The phase limit shifts to the ridge of cusp for H-to-L
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transition, due to the suppression of fluctuation by the shear in E. Whether the
hysteresis is observed experimentally or not is shown to be determined by the competition
between the life time (inverse of the transition rate) and the time for the change of global
parameters. A condition that probabilistic transitions frequently occur is discussed.

The organization of this paper is in the following. In §2, Langevin equations as
statistical equations are presented for microscopic fluctuation mode, for £ which is on a
meso scale and for the pressure gradient with a global scale. Section 3 is devoted to
show the stationary solutions of the equations presented in §2 from a deterministic view
point, discarding the stochastic noise source. Shown are the cases where a deterministic
approach allows for more than one solution. Namely, the self-consistent solution of E,
contains hysteresis characteristics. Results from statistical analyses are given in §4.
Stochastic noise sources are included by assuming a time scale hierarchy. PDF for E,
and the L-to-H and H-to-L transition rates are obtained. The ensemble average of £, and
that of the heat flux are calculated and the effective phase limits are derived. Summary

and discusstons are given in §5.

2. Langevin equation

Understanding of the L-H transition mechanisms bas been in progress, and the
interactions between the radial electric field structure, micro fluctuations and pressure
gradient are now considered to play the key roles. (See reviews, e.g., [7, 11, 12].)
They suppress and/or activate the others with strong nonlirearities. In the presence of
microscale fluctuations, there arise random noise sources in the dynamics of larger scale
structures due to nonlinearities. Both the averaged force and the statistical noise are to be
included as the nonlinear effect of micro fluctuations. In this regard, we formulate
Langevin equations of reduced variables for micro fluctuation mode, for the radial electric
field which is on a meso scale, and for the global pressure gradient. To formulate the
dynamical equations, we adopt a time scale hierarchy in the following. The characteristic

times of the dynamics are

1,=alc, , Ty=qRlc, and Ty =0y, (1)

for micro fluctuations, the transition time of radial electric field and the evolution of
pressure gradient, respectively. (The suffices i, X and Y are explained later. In

equation (1), ¢ : characteristic radial scale length of E_, and X yo : characteristic value of
turbulent thermal diffusivity.) They are assumed to be well separated as T, << Ty << Ty .
For the convenience, we employ a normalization: @ for length, T, =2qgR/c, for

time, ®,=cJ2gR for decorrelation rate, V=cs(a/2qR) for wvelocity,



®=aVB,=a CS(G/ZQ’R)BD for electrostatic potential, P=B{R/2an, for plasma
pressure, and aV =a cs(a/2qR) for diffusivity. (By : magnetic field)

The derivation of the stochastic equation has been developed [21]. They are
symbolically written as

2+ L =1.7)+0, @)

where fT = (¢, T Vip Pe p,-) is the time-varying component of electrostatic potential,

parallel current, parallel velocity, electron pressure and ion pressure, and L{O)f
represents the linear response. The term %(f i ) stands for the nonlinear terms

Al f. £)=—|VE[o. V3ol (1-8v1%) [o. 1) [0 Vi [ P} [o P | . The bracket

[f.g] denotes the Poisson bracket, | f, g| = (VfxVg)b, b = By B, denotes the unit vector
in the direction of the magnetic ficld and & =p2572. Tn the right hand side of

equation (2), @ denotes the source terms, e. g., energy SOUrce or INOMENtUM SOUrce

which might be consirained by external conditions. (The thermodynamical noise source
S + could be kept in equation (2), if one studies the transition between thermodynamical

fluctuations and turbulent fluctuations {15, 16]. It is not included in this article for the
simplicity.) equation (2) describes micro fluctuations on the scale of T;, , the evolution of

E, on the time scale of Ty, the slow evolution of the order of Ty , the energy balance
equation. equation (2) is solved for three dynamical components with time scales T; , Ty
and Ty .

The Lagrangean nonlinearity term .’F((f . f ) gives three effects on a test mode f;
which is taken from the turbulent fluctuations. Part of the Lagrangean nonlinearity
(%(f o ) for f) is coherent with respect to the test mode. This coherent part is
considered to cause the turbulent drag, which is written as — I'.f, . The second effect is

the modification of the driving term. This is generated by the interaction of modes of
different scale lengths, and is symbolically written as 2% f; . (A symbol 'D' stands for

'drive’.) The other incoherent part is considered as a random self-noise §,. In order to
describe the turbulence characteristics, we assume that the system has a large number of

degrees of freedom and has many positive Lyapunov exponents. This assumption serves
as a basis to treat the incoherent part §, as a rapidly varying random noise term.

Symbolically, we write

S f)=-Tifi + DS+, . )



As has been discussed in [15, 16, 21, 22], a scale separation is introduced. In
calculating the nonlinear drag term, fluctuations which have shorter wave-lengths are
renormalized. One writes the nonlinear effects on the neighbouring modes (i.e., lower

and higher modenumbers modes) as
(. f) == T+ Tl + 8}y + Siy @a)

and
S, FY=-Thyf "+ Dhyf" + S0y (4b)

respectively. In this expression, the subscripts (l) and (h] denote the contributions from
lower-modenumber modes and higher-modenumber modes, respectively.

The renormalized drag (coherent part) is given in a form of the eddy-viscosity type
nonlinear transfer raie y J A random-noise part is regarded to have a shorter decorrelation

time than v; ! according to rapid change model.{14, 23] The nonlinear drag term is

written in a form of turbulent diffusivity as
(rf]T :(HNVifl’ HNHVifza WpeV1f AneV L oo XNiVi.ﬁj) . (5

For micro fluctuations, it is simplified as (F f )T=* (’Ylfp Vafor Yoo Yalo mg) . The

explicit form of the driving part is given n {21].

The same argument as above is applied to the other combination of perturbations
with neighbouring scales. Therefore, more than three classes of modes with separated
scale lengths are treated by the same procedure. Equations for £, and global pressure
gradient are also formulated as Langevin equations, in which the turbulent diffusion and

nonlinear noises due to micro fluctuations are incorporated.

2.1 Micro mode
The microscopic fluctuation in turbulent plasmas has been studied intensively [12-
17]. We adopt the result of the Langevin equation {15, 16] for the spectral amplitude of

micro fluctuations as

B%Ih+AhIh= w1)g) (6)



where [, = ¢'§ , (9, being the normalized electrostatic potential associated with
microscopic fluctuations). The relation A, =0 gives the staticnary solution of nonlinear

dispersion relation in a deterministic analysis where
Ay=265{VT, - D) 7

with D, being the transport coefficient by micromode, and kg is the characteristic

wavenumber of microscopic fluctuations.
The parameter D), , which is essential in determining the level of turbulence, has a

dependence on the plasma parameters and the radial electric field. An explicit form differs
by the choice of turbulent modes. If one employs example of the CDBM turbulence [7],

one has explicit dependences as

G 2
D -2f_C
B 1+an':2 5 (“mp) (8a)
k%o oc GO (1 + (I)Etz ) (Sb)
A, = GY? (1+(:)E‘172) X ' (8¢c)

where Gy is the normalized pressure gradient, s is the magnetic shear, ®,, is the plasma
frequency, o, =B " dE /dr is the E x B shearing rate and T,. is the autocorrelation time
of fluctuations [3, 7].

The right hand side of equation (6) denotes the statistical (stochastic) noise and
8y denotes the magnitude of the noise source and 71{1‘) is assumed to be the white noise.

The typical time scale of micromode is represented by the relaxation time of the
amplitude. Let [, =1, + 8 | with \/f,: =D, . The term A, is expanded with respect to
8 as

k%,D
An=ki{VT; Dy} = a8l 9)

Then perturbation equation is given as

g; 8 + A 31 = {t)g, | (10)

with



A,=kpD,, (11)

showing that the characteristic time for the microscopic modes is A, , which gives

T, = alc; in diemnsional variables.

2.2 Radial electric field
We consider the case that a radial extent of f characterizes the meso scale of the

radial electric field E, . The gradient is evaluated by dE/dr = E /€ . For this reduced

variable E, , a Langevin equation for the dynamics of the radial electric filed has been

derived in [20] as

L X+ Ay X = dfr)ey (12)

where normalization is introduced for the electric field as
X =ep EJT (13)

and p,, is the ion gyroradius at poloidal magnetic field and T is the plasma temperature.

The damping term,

gR
(1+29%)pecn;

AyX= J, (14)

is the normalized current. The source term € in equation (2) for the radial electric field
contributes to the radial current J, .

A specific form of A is chosen according to the model of L-H transition.
Although there is no complete theoretical model that quantitatively explains the

experimental observation as is tested in [24], D II-D observations supported the theories
that had predicted the jump of £, . Under this circumstance, let us consider a case of the

E, bifurcation where the bulk viscosity of ions, ion orbit loss and zonal flow excitation
with shear viscosity damping have the key roles [3, 4, 10, 25} . One has

AxX=ImZ(X+ivs) (X +Xyc|+ 5 EXp (_- (vb + aX“)m} + Y somat X

Vb
(vb-t—aXA')

(15)



where Z{X) is the plasma dispersion function, Xyc is the neoclassical drive and is of the

order of normalized pressure gradient

Y=-p,pydpydr, (16)

Va=V;gRe; ! is the normalized ion collision frequency, vV, =€ >?v. , e=a/R, O is a
numerical parameter that denotes the orbit squeezing [4] and v, is the zonal flow
excitation rate combined with shear viscosity damping [10]. We here employ a
simplification Xy~ Y . This simplification does not qualitatively affect the statistical
property which is the subject of this article.

The radial current has two components: a time-averaged component, J,, and the
rapidly-varying part J7. The former, i.e., the time average-part (deterministic part) J ,
has various ongins including the buik viscosity of ions, 1on orbit loss, and eddy damping
(or zonal flow excitation) for £, by microfluctuations. The latter is induced by the
convective nonlinearity in the vorticity equation V-VV  associated with micro

fluctuations. It changes with the characteristic autocorrelation time of micro-fluctuations
Tac » which is much shorter than the typical evolution time of E, . In this article, the term

J? is considered to be a random noise. The time-average part J, dictates the deterministic
picture of bifurcations, and the noise part J. gives a random kick for £, and causes a
probabilistic nature in transitions.

The magnitude of J, is evaluated as follows. The nonlinearly-driven current,
J=mnB l(ﬁVf/’) (( ) : averaged over the magnetic surface), is given as a sum of

radial-Fourier components, J,= 2, J,(d,), where d_ is a radial wavelength of a
d, N

randomly-excited current. One component is given as ]Jf(dz) I =nmbB 3d; 1k§$2 for
electrostatic fluctuations, where ¢ and k, are the amplitude of electrostatic potential
perturbation and a characteristic wave number of micro-fluctuations, respectively. (When
the finite-ion-gyroradius effect is included, ¢ is screened by a numerical factor.) Time-
varying current J)(d_ ) with various vales of d, can be simultaneously excited. Each
d, component J{d_ ) is considered to be statistically independent, so that an average of
the sum of J7{d, ) over the length ¢ is estimated as | J7 | = M J(e) I after the law of
large numbers, ie., |J}] = nmB mkgff. (¢, : a characteristic value of d,.) The

fact that J7 changes much faster than E, enables us to approximate it as a white noise

jft = nimr-B_3?; 12p- 1/2k'(2)('§2 JT;w(t) , (17}
where T, is explicitly written for the dimension. (A detailed argnment of modelling of
noise term is given in [14, 17].) When 1, is much shorter than the response time of £, |

the statistical average of micro-fluctuations is calculated by treating £, as a constant

__8_



. . . . ~ |2 -1~ 2
parameter. In this dc-limit, fluctuation level has been given as I¢| = (1 + CO%TEC) |¢ |L ,
o2
where |¢ tL is the fluctuation level in the L-mode state, o, = B ' dE/dr is the EXB
shearing rate.[5, 7] Using an evaluation dE,/dr = E /{ | one has 012, = T2.B~ 4 2E 2

or

1+wgt2.=1+UX? (182)
with
U =(tyall)’ (18b)

and T,. = T,.c/2gR . A magnitude of the noise source has been given as

R2k3p2 6%
gx= /Tac o oP; ¢ 1 (19)

aflf, 1+UX?

where (’3\)=6|3;">|L/T . In the following, Ifﬁli and global plasma parameters (like

temperature) are treated as control parameters.

2.3 Pressure gradient
For the slower time scale of Ty , equation (2) yields the energy balance equation

Sp=V-(xV py-q,)+ 5% (202)
with the source @ =—V - ¢, and the thermal diffusivity

X=Xc + Kturb » (20b)

where % stands for the heat diffusivity due to the collisional process and X, denotes
that due to the turbulent transport process, 4, is the radial heat flux, and SE is a noise
source for the global pressure from the fluctuations of the smaller scale length. The

evolution of the pressure gradient is modelled from this equation (20). The evolution of
the normalized pressure gradient Y =—p, py ldpy/dr is modelled by

dy- _Prp
&Y—A@Y %qJ+&, 1)



where Sy the noise source corresponding to S . Using the scale length £ | the operator
is evaluated by A= ¢~ > . With the normalized time T = t c/2qR, the Langevin equation of

the pressure gradient is reduced to a point model

B%Y"'AYY: ﬂ/(t)gy, (22)

where the damping term coefficient is expressed as

AY=YC+YIurb_PinY_1 (23)

with the normalized rates and heat flux as

o<

_2qR ¥, -2 X 4 p _2Rq Pp (24)
n

Y 72 fturb= 7 4qr.
c Cy uri C, PZ CSPZ Po r

ja=t

In equation (23), P;, is the parameter that characterizes the magnitude of heat flux. (A
brief explanation of the normalization is made; 7V,,,, and Y. are turbulent and collisional
diffusion rates normalized to the ion-sound transit time gR/c, . Normalization of the heat
flux, poc,? 2/2qu p » is a characteristic Bohm-diffusion flux ¢,p;pp/a being multiplied
by a geometrical factor %/ 2p2 )

The turbulent heat flux )(,,,;, depends on the pressurc gradient and the gradient of

2
radial electric field. The driving parameter Gy is rewritten asG, = (G%IHBO) ?{pB v.
r

For the case of CDBM turbulence, it takes the form

Kourh = ff Og; , (252)
or
yls
Yeurb = TNO 1T+Uxe (25b)
Normalized coefficients are given as
Yo =Xno2gRic, and Yno= (a%ln B, .;;E)S/zs_z (a—f%)z 6



2.4 Set of Langevin equations

The set of Langevin equations is derived as equations (6), (13) and (22).
Equations

9 1+ AT, = 1)

ot 1n Hn= &

d X +AyX = t)

o X g x

Sy +A, Y=ty

form a basis of the analysis.
Note that there is a difference in a time scale;

Kp>>1,|Ax]~0(1),|Ay|<<1.
Time scale separation: time-scale hierarchy

{T\hi>>|AX|>>]AY[ 27)
is understood that characteristic times of dynarmics are

T, = alc, (28a)

for micro fluctuations,

Ty = gqRic, (28b)
at the transition of electric field, and

Ty=¥¢ g Xno s (28¢)

for the evolution of the pressure gradient. For Bohm-like transport, one has Ty = bqu 'g; .

One has a relation

T, << Ty <<Ty (29)

i.e., equation (27), for typical parameters of tokamak plasmas.



By employing this time-scale hierarchy, statistical property of the system
(I X Y ) is studied. In solving dynamics of micro mode, global parameters X and ¥

are treated as constant parameters. (Adiabatic approximation) This process has been
analyzed in preceding articles, and statistical average (I h) has been obtained.[15]

A couple of models has been proposed to study the dynamics of the L-H
transition. A set for the fluctuation level, electric field inhomogeneity and pressure
gradient has been given in [26]. Other models with soft bifurcations are given in [27].
The case with hysteresis has been proposed in [8]. The previous models are devoted to
the discussion based upon the deterministic view without a noise contribution. However,
this set of equations (6), (13) and (22) includes the statistical noises so that the statistical
and stochastic description is available in the bifurcation dynamics. In the following, an
analysis of the deterministic picture is first explained in §3. Then the statistical analysis is
developed in §4.

3. Solution of deterministic picture
Staticnary solutions in the deterministic view without a noise is obtained from the

nonlinear dynamic equations

A,=0, (30a)
Ay=0, (30b) -
and
Ay=0. (30c)

One of the solutions of equation (30a) for CDBM is given by equation (8). In the
following, the solutions of equations (30b) and (30c) along with equation (8) are

discussed as an example case.

3.2 Electric field structure
Equation A y = 0 means that

Im Z(X +iv.) - (X + Y]:—(—V"—;jﬁem(—(vbwf)m) (31
vy +0oX

holds. For given parameters (V b Y) , this is a nonlinear equation of X and has either

one solution of X or three solutions of X . For a fixed value of v, , V= 0.5 | the

—12—
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Figure 1 (a) The electric field solution X as a function of the normalized gradient ¥
for a fixed value of v, (v==0.1). (b) Phase diagram of the radial electric field solution

in the space of (V ¥ ) . The result of the deterministic analysis, Ay =0 . (Parameters
are: 0 =05 g=3,e=a/R=1/3 )

solution X is illustrated as a function of ¥ in figure 1(a). When there are three

solutions, we call them X, , X,, and Xy . (The intermediate solution X, is unstable.)

"L" is the low confinement region, and "H" stands for the high confinement region.
When the value of V,, changes, the characteristic curve changes. AtV,=1.7, the H-

branch and L-branch merge. The phase diagram of X on (va Y) plane is shown in the
figure I(b). A cusp catastrophe is shown. "C" (where V,=1.7 holds) denotes the

critical point. In the cusp region three branches of solutions exist, two of which are
stable.

3.3 Pressure gradient
The nonlinear relation for the normalized pressure gradient ¥ , Ay =0, provides

another relation between the electric field and pressure gradients. This equation is

rewritten as

’YNO Y2.5
y+MW-__1-p
(Yc 1+ UX2 mn - (32)

For a fixed heating power Py, , X as a function of Y is shown in the figure 2(a).
(Parameters are P, =0.01 , v, =0.01 | y5;=05 and U =3 . Small normalized values
of P;,, comes from the relation |A yl <<1)

The limiting form of the solution of ¥ for small X and large flux P}, is

p. \04
= (33a)
YNO)

Y=YL-=-(



and that in the limit of large X is given as

Y=Y =" (33b)

In equation (33a), ¥, corresponds to the gradient in the absence of the electric field shear
stabilization, and in equation (33b), ¥, is the pressure gradient in the absence of the
turbulent transport, respectively.

Let us study the variation from ¥; to Y. . For a various heating power, the
solution X(Y) of Ay=0 is illustrated in figure 2(b). For a small heat flux,
P, <yPyyE3 | the curve is close to a vertical line ¥ =Y, =Y, . As P, increases, the
curve X(Y ) is inclined more strongly. Note that the sign of X is negative.

o 0.2 04 08 0.8 Y o

Figure 2 (a) The solution of Ay =0 for P, =0.01 ,. xx/X.=50. (b) Solution of
Ay =0 for various values of P;, . (Paremeters are: ¥, =0.01 , Yp=0.5 and U=3).

3.4 Self-consistent solution
Self-consistent solutions must satisfy all the conditions of A, =0, Ax=0 and

Ay =0 _ They are obtained in the following. (Those with trivial solutions I, =0 are not
discussed in this article.) Figure 3 illustrates the curves of Ax=0 and Ay =0 on the
(X, Y ) plane simultaneously, so that the cross points are the self-consistent solutions.
For a weak hating power, P;, <0.0023 for the parameters of the figure 3, there is only
one solution in the branch of X; . In an intermediate regime, 0.0023 <P, <0.03 | three
branches of solution are possible. In a c.se of strong heating power, P;,,>0.03 | one
branch of solution, Xj; , exists.

The heat flux as a function of the gradient is calculated for these self-consistent
solutions. In the deterministic model, a hysteresis appears in the gradient-flux relation.
Figure 4 shows a cusp type relation of the heat flux as a function of the gradient. Thick
lines are for the total flux. Thin dotted line indicates the contribution of the collisional



Figure 3 Solution of Ay =0 (a thick curve with hysteresis) and that of Ay =0 (thin
lines, P, =0.002 , 0.01 and 0.03 ). The crossing points represent the self-consistent

solution of the stationary state in the deterministic view. Arrow indicates the increment of
P, . (Parameters are: =05 ,g=3  €=a/R=1/3,U=3 )

0.01

0 N Akl 1 i
o 02 0.4 0.6 &8 Y 1

Figure 4 Heat flux in the vertical axis is measured in the unit of el 2p0/2qu » - Thick
lines are for the total flux. Thin dotted line indicates the contribution of the collisional
transport. (Parameters are: ¢ =0.5 ,g=3 [€=a/R=1/3 , U=3 )

transport. The ridge point of this hysteresis depends on the collisionality and is
illustrated in the figure 1.

4 Statistical picture

In the presence of the noise, the statistical and stochastic description of the
problem is inevitable, if a deterministic approach allows for more than one solution. The
transition rate between different branches are to be evaluated. Based on this, the
statistical ensemble average and the variance of the heat flux are discussed.

In this section, we study the L/H transition, focusing to the dynamics of the
variable X . The required time scale hierarchy among three variables of I , X and ¥ is
discussed (§4.1). Then the probability density function (PDF) is obtained in relation with
the noise source (§4.2). Transition probability can be evaluated by means of transition

rate (§4.3). Long time average and ensemble average arc then obtained as the statistical-



average values (§4.4). The limit (boundary) is drawn in the phase diagram. The relation
between phase limit and the conventional Maxwell's rule is discussed (§4.5). The
condition for observing hysteresis in experiments is discussed (§4.6).

4.1 Time scale hierarchy
In analyzing the dynamics of radial electric field X , global parameter ¥ is

considered as constant, and the micro-mode is replaced by its statistical average (I h) .
The dynamics of ¥ are solved by introducing statistical averages of X and micromode
I, . This is due to the time scale hierarchy previously introduced in the previous section

(§2.4), i.e., equation (27),

|As|>>{Ax|>>|Ay].

The statistical transition is possible for system with the hysteresis characteristics
of the radial electric field. Stationary solutions which satisfy Ax =0 and Ay=0 are
shown by the crossing points of curves in figure 5. Let us study the temporal evolution
on this plane in the following. First, the evolution from the neighborhood of A is
considered. Both the transition from A to A’ and the back-transition from A' to A take
place, because the change of the radial electric field is much faster than the variation of ¥ .
The equilibration between A and A’ is reached. If A is much more probable than A’, the
evolution of ¥ does not occur and the state A is the stationary state. If A'is more
probable than A, the transition to the branch X = X happens, and then the change from
A'to B occurs along the path of X ~ X, .

Next, the evolution from B is studied. The equilibration between B and B’ takes
place much faster than the change of Y . When the state B' is more probable than B, the
jump from B to B' takes place and the transition to the branch X =X; occurs. It is
followed by the slow evolution from B' to A along the path of X = X .

t L
o 055 05 075 1
Y

Figure 5 Adiabatic limit of transition and path of evolution.



The transition process is analyzed by calculating the transition rate between
branches X, and X, for fixed value of Y . In the process of the jump of X , the micro-

fluctuations are considered to reach their long-time statistical average.

4.2 Probability density function (PDF)

Statistical property of the radial electric ficld is described by use of the probability
density function (PDF) of X, P(X ) . Based on the adiabatic approximation,

equation (27), X varies much faster than ¥ but slower than 1, . Therefore the equation
for PDF of the variable X is formulated with a fixed vatue of ¥ and statistical average of
I;, , which is governed by the Fokker-Planck equation

%P+§§(AX+3X%gX)P=0. 34)

The stationary solution Pst(X ) for 3/0t=0 is obtained from a conventional approach of

statistical physics and expressed as
P(X)="P, gx" exp (- (X)) (35)

with the nonlinear potential defined as

S(X):J de' , 36)

N2
8x{X)
where P, is a normalization constant. In performing the integral with respect to X in

equation (36) , Y is kept constant (the path like A — A’ in figure 5).

The dominant parameter dependence of Pst(X ) comes from exp (— §i (X )) , where
X , AV 2 )
—S(X):FJ. Axx (1+Ux?) ax 37)
0

with
T=2%1a20 0 R k%746 . (38)

The minimum of S(X ] , i.e., zero of Ay (apart from a correction In g ), predicts the

most probable state of X. S(X) can have two minima at X =X, and X = Xy, which are



separated by the local maximum at X = X, . When two minima exist, the L-H transition

has a hysteresis in a deterministic description. In this case, (i.e., the cusp region of
figure 1(b)), S(X] has the maxima at

X=0andX=X,,, (39a)

where X =0 corresponds to a branch only with a thermal fluctuations, and has the

minima at
X:XL a.IldX=XH. (39b)

The potential function S(X ) is illustrated in figure 6 for the case with a hysteresis. The
thick solid line, ¥ = 0.4 is the case where the minima of S(X) take nearly equal values,
S(XL) = S(XH) . Below this critical pressure gradient with fixed collisionality, the relation
S(XL) < S(XH) holds (thin dotted line, ¥ = 0.38 ) and the branch X =X, is dominant.
At higher pressure gradient, the relation S(X L] > S(X H) holds for fixed collisionality (thin
broken line, ¥ =0.42 ), and the branch X = X,; is dominant.

Figure 6 Nonlinear potential function S(X ) for various values of the pressure gradient
Y. Y =04 for the solid line, ¥ =0.38 for the thin dotted line, and ¥ =0.42 for the
thin broken line. Two minima, X =X; and X = X , and two maxima, X =0 (branch
with only a thermal fluctuation) and X = X, , are seen. (Other parameters are fixed as
U=3,T'=5 andv.=0.1))

Probability density function for the stationary solution Pst(X) is illustrated in
figure 7 for the conditions of figure 6. The case where two branches of X =X, and
X =Xy have nearly equal probabilities is shown by the solid line (¥ =0.4 ). The dotted
line indicates the case that the branch X = X; is dominant (¥ =0.38 ), and the broken line



Pst(X)

0 -0-“ | ‘J_

3 AXH 2 A\Xm A s
Figure 7 Probability density in a stationary state in the adiabatic limit of fixed value of
Y . Lines correspond to those in figure 6. ¥ =0.4 for the solid line, ¥ = 0.38 for the

thin dotted line, and ¥ = 0.42 for the thin broken line.

shows that the branch X =X, is dominant (¥ =0.42). In these three cases, the
hysteresis exists and the bistable solutions are given. However, it is seen that, depending
on the depth of the potential function § (X ) , the probability being in one branch or in the
other can be strongly different.

The parameter I' , being in proportion to (I h)_ ? | denotes the width around the
peak of PDF. The widths become narrower, if the turbulence level (1 h) islow and I' is
large. When the turbulence level increases, I' becomes smaller and the width around the
peak of PDF turns broader. In figure 7, the width of the peak at X = Xy is narrower
than that at X =X, for a given value of I' . This is because the fluctnations are

suppressed due to the shear in £, becomes stronger.

4.3 Transition rate
The transition rate is obtained from the Fokker-Planck equation (34). Calculating

a flux of probability density by a conventional procedure, it is expressed by use of the
potential S{X) .[16, 28] The rates of the L-to-H transition and the back-transition (H-to-L

transition) are obtained as

AN 7”1\2!;‘:\’“ exp (S(XL) - S(Xm)) ) {40a)

o= L exp (S(Xu) - (X)) (40b)

respectively, where the time rates A}, i are evaluated as

aA
AL,m>H=2‘X?x—X

at X=X{ ny. ' 41)



Coefficients Ay y are of the order unity, because the time rates are normalized. The
transition rate dominantly comes from the exponential dependence on S(X ) .

The transition rate is explicitly evaluated by use of the expression of the noise

intensity equation (19). By use of equation (37), one has

§(X,)— S(Xn)=-T K =-T f T ALX (1+Ux?)ax (42a)
Xm

$(u) = S(a) =T K= T [ "ax 1+ 03 ax (2
Xy

Substitution of equation (42) into equation (40) provides the transition rate and back-
transition rate as,

VALA, exp (—FKL) ,

TLoH= = A7 (43a)
VAEA L
FgoL= Y exp (- I Ky | (43b)

respectively.
Figure 8 illustrates the L-to-H-mode transition rate (solid line) and the back-

transition rate (H-to-L-mode transition, dashed line) as a function of the pressure
gradient. (Transition rates ry _,y and rg_,; are normalized to VAzA,, /21 and

vAgA,, /2% respectively.) By substituting equations (15) and (42) into

equation (43), the transition rates are numerically calculated and are shown in figure 8.

v=11=3 1=5
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- “
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r »
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Figure 8 Transition probabilities 7y _,y and 7y _,1 vs. pressure gradient. They are
normalized to  AfA,, /2% and /A gzA,, / 2T | respectively. (Other parameters are
fixedasU=3,I'=5 andv«=0.1 )

—20 —



From figure 8 it is found following results. First, the transition rates become of the
order of VA A, /2 or/AgA, /2n near the ridge points. Second, the transition

rates become of the order of 1072 or 107> (measured in the units of yA A, /2T or
VA A, /21 ) in the region where 73,y ~ 'y 1 holds.

It is seen that owing to the statistical noise of micro-fluctuations, the transitions
occur in a probabilistic manner. The life time (the staying time in one state) is given by

the inverse of the transition rate,

e "=1/r, Lu. (44)

4.4 Long time average and ensemble average

In a long time average, the probability that the state stays in the L-state is given as

,
p =—-HoL 45
- rpsutrysp )

That for the H-state is given by

-
Py=—-=20 (46)
ST ST Y

The probability being in the H-mode is illustrated in figure 9 for the parameter of I' =35 .
It starts to increase when Y reaches the critical value of transition Yy,, . Then an

exponential increase of the probability staying in the H-mode, Py , is observed. For the
case of figure 7, one observes Py o< exp ((Y - Y,mm)lc y) and Gy = 0.038 . The width

oy isinversely proportional to the parameter I ; that is, Oy o< [ 2o o

vl Us3 [=5

1.5 T 1 T

o5k

¥ 0.3 04 05 Yy o6

Figure 9 The probability being in the H-mode state for the case of figure 1 with fixed
collision frequency Vs =0.1 . (Parameters are: .=0.5 , g=3 ,€=a/R=13,U=3
andI'=5 )



The ensemble average of the electric field is expressed by the relation
(X)= [ XPox)ax . @)

The ensemble average is equal to the long time average, and one has the evaluation from
equations (45) and (46) as

(X)=XP_ +XyPy . (48)

This relation is alternatively derived if equation (47) is estimated by use of the
method of the steepest descent. The Taylor expansions near X =~ X; and X = Xy; give

the relations
S(X) = Agx? (X - X,)? and S(X) = Apgz? (X - Xy), (49)

respectively. Substitution of equations (35) and (49) into equation (47) provides an

estimate

_ VAgexp (—FKH) X, + A exp (— FKL)XH

(x)= ./A_Hexp(—l"KH)-i-\/A_Lexp(—I"KL) ’

(50)

which agrees with equation (48).
The ensemble average <X> 1s calculated for the case of figure 8, and is illustrated

in figure 10. It is shown as a function of the pressure gradient ¥ for fixed value of

Ytran “ ¥

, )
0 ez 04 Y %os 08 Y 1
=}

Figure 10 Statistical average of electric field as a function of the pressure gradient is
shown by the thick solid line for fixed collision frequency v+ =0.1 . Thin solid line

shows deterministic solution, Ay X =0 . Y, denotes the statistical phase limit, and

Y denotes the condition of equal area where J. JdE vanishes. (Parameters are:

x=05,g9=3,e=alR=1/3,U=3 andT=5 )



collision frequency V«=0.1 . The solution from the deterministic analysis, Ax =0, is
also shown by the thin line for the reference. Although a hysteresis exists in the
deterministic solution, the ensemble average is a single-valued curve and does not exhibit

the hysteresis. This is due to the statistical nature of transitions.
The statistical average (X > is a smooth function of ¥ in the vicinity of the critical

transition point Yyran . It is noted that the PDF of X has double peaks near ¥ = Yyry .
Apart from the ensemble average <X> , the instantaneous value of X takes either X or
Xy depending on the probabilities P, and Py . It fluctuates near the statistical average
(X). Away from the transition region, the PDF P (X ) has one dominant peak: the

second peak exists but it is very small in the magnitude.
The ensemble average of the heat flux is calculated by substituting X = (X) into

the relation of the heat flux equation (25) and is illustrated in figure 11. The statistical
average in the long time limit of heat flux (q ,) as a function of the pressure gradient ¥ is
shown by thick solid curve. Thin line (with hysteresis) indicates the result of

deterministic theory. Thin dashed line indicates the collisional transport. (See figure 4.)
The statistical average (q r} does not show hysteresis, although the deterministic analysis

predicts the hysteresis. The instantaneous value of g, takes the value of either
q,[X = XL] or g ,{X = XH] near ¥ =Y,.,,. This is because the PDF of X has double
peaks in the vicinity of the transition region ¥ =¥, . Away from the transition region,
the instantaneous value of g, fluctuates near the statistical average (q r) .

4.5 Phase limit
The phase limit between the L- and H-modes in a control parameter space is

obtained. The phase limit, on which the L-mode and H-mode have equal probability

0.04 T T T
<q>
T
0.03 -
1
0021 : ]
.
:
,
0.01 - q_rc LA
-2 R
o T i i L H
1+ 0.2 0.4 08 0.8 Y 1

Figure 11 Statistical average of heat flux as a function of the pressure gradient. (Thick
solid curve.) Thin line indicates the result of deterministic theory. Thin dashed line q,.

indicates the collisional transport. Heat flux in the vertical axis is measured in a unit of
cSPZPQ/Zqu,, . (Parameters are: 0=0.5 , g=3,€=a/R=1/3 U=3 andT'=5))



P\ =Py , is given by the relation
"LoH=THSL - (31)
This condition is given from equation (43) as

S(Xy)=S(X,)+ 5 In (Ag/Ag) . (52)

Apart from a weak logarithmic dependence term, it is approximated as S(XH) = S(X L) .

ie.,

J.XLAXX(1+UX2)2dX=O_ (53)
Xp

This result is an extension of the Maxwell's rule. When the noise is independent
of X | the condition

X
f AxXdX=0 (54)
Xy

describes the phase limit. Noting that Ay X is the normalized current, f Ay XdX

corresponds to the usual work function f JdE | and the Maxwell's mile is deduced.

However, in far ronequilibrium systems like this turbulent plasma, the noise itself has the
nonlinear dependence on X . The correction of UX” (illustrating the turbulence

suppression) in the integrand is important in the H-mode X ~ Xy . By this effect, the
phase limit of ensemble average (X) deviates from the conventional criterion and the
region of the H-mode becomes wider. The phase limit of the ensemble average
equation (53) on (V I 4 ) plane is shown in figure 12. The thick dashed line
corresponds to ¥y, for the various value of v, . Thin dotted line indicates the equal-
area condition Y5* (Maxwell's rule) equation (54).

4.6 Observation of hysteresis

The observation of the hysteresis at the transition is determined by the competition
between the transition rate and the rate of change of global plasma parameters. The
presence of the statistical noise in the micro-fluctuations induces the transition and back-
transition to occur in a probabilistic manner. As an average, the life time (the staying time

in one state) is given by the inverse of the transition rate, T ¥ =1/r_ g or



Figure 12 Phase diagram of the L-H transition. The solution of Ay X =0 is
characterized by the cusp catastrophe (thin line). 'C' denotes the critical point. Thick
dashed line shows the phase boundary of ensemble average, equation (53). Thin dotted

line indicates the equal-area condition (Maxwell's construction, equation (54)).
(Parameters are: 0=0.5 , g=3 [ €=a/R=1/3,U=3 and'=5 )

tH LY =1/ry_ 1. When the characteristic time of the evolution of global parameters

Tysona 15 Much longer than the life time, T, >> T tWo states are equilibrated by a large

numbers of transitions. The probability that the state is found in one state is given by the

long time average of many transitions. Therefore, it does not depend on from where the
global parameters have evolved. In the case that T, is in the range of life time,

T

~ 1., the probability that the state is found in one state strongly depends on from
‘global life p y g y p

which branch the parameters have evolved, i.e., from the L-mode or from the H-mode.

The hysteresis in the response to the global parameters is observed.
The condition T, ~ T;, depends on the absolute value of the difference of
nonlinear potential. Statistically, the frequently enough number of transitions requires

L s> Talobal « (55)

i.c., exp (I"‘KL)C’EglobaJ AA (21:)7I . (Rgiobal = Tglobal ¢/gR ) This imposes an

upper bound for I' as
I'K; <In ("tgloba“/ALAm (2m) ‘) : (56)

The coefficient I' depends on the level of micro fluctuations as I o< [ 72 in an L-mode

plasma. This condition for I' is evaluated as



/s
, (57)

310[ 5.\ /10
¢ <(§) (&) N

VRp; a

In (%globan/ALAm (2r) 1)

where a strong turbulence limit § = 1/ , together with estimates ko = 1//, = 1/p; , is
used. The integral I is of the order unity and logarithmic term is unimportant. Only a
weak parameter dependence remains in the RHS of equation (57). The condition
equation (57) is satisfied if the scale length £ belongs to a class of meso scale of Rp; .
It is noted that this scale length /Rp; is much longer than micro scale lengths p, and 9§,

so that the scale separation which is assumed in the beginning is validated.

S. Summary and discussion

In summary, the statistical theory of the E_bifurcation in the edge of tokamak
plasmas was analyzed. Micro fluctuations induce a random noise to the E -dynamics and
the transition occurs in a probabilistic manner, if a deterministic model allows for more
than one solution. The PDF for and the ensemble average of E_ were obtained. The rate
of L/H transition was obtained, and a life-time of each state was calculated. The
ensemble (statistical) average and the long time average were obtained. The effective
phase limit of two states was given by the equal-probability condition for the H-and L-
states. Owing to the suppression effect of turbulent noise by the shear in £, the limit was
found to deviate from Maxwell's rule.

Implications to experiments are as follows: First, the cusp-boundaries of H-mode
and the ensemble average of the transition condition in plasma parameters are different.
They may show the different parameter dependences. They must be judged by both the
ensemble averages of statistical models which have a noise source, and by a value of
deterministic model. See figures 10 and 11. Due to the noise, each transition occurs
being scattered around the ensemble average. This must be noticed in the future
comparison of experimental database with many theories. Second, the ensemble averages
of (X ) and (q ,) do not show a hysteresis against giobal parameters ¥ , in contrast to the
deterministic model. Third, the observation of hysteresis in experiments critically
depends on the speed of global parameter change: this is another feature which
characterizes the non-equilibrium properties. Fourth, the probabilistic onsets may change
the occurrence of dithering between H-and L-states. Dynamical response in the presence
of a model noise source has been studied in [29]. This theory gives a theoretical basis for
the transition rates that governs the probabilistic occurrence of transitions.

In this article, the model of equation (15) was taken to show a typical example of
probabilistic transition. Other mechanisms have been known to influence L-H

transitions.[12] The inclusion of zonal flow excitation in statistical theory {17] or the



coupling of dynamics of different scale lengths {21] must be investigated for quantitative

analysis of tokamak plasmas, and are left for future studies.
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