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Modulation instability in two-dimensional nonlinear Schridinger lattice models with
dispersion and long-range interactions
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Vinda Institute of Nuclear Sciences, P.0.B. 522, 11001 Belgrade, Serbia, Yugoslavia
*Nationel Institute for Fusion Science, Toki, Gifu, 509-5£92, Japan
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The problem of modulation instability of continuous wave and array soliton solutions in the
framework of a two-dimensional continuum-discrete nonlinear Schrédinger Iattice model which ac-
counts for dispersion and long-range interactions between elements, is investigated. Application
of the linear stability analysis based on an energetic principle and a variational approach, which
were originally developed for the continuum nonlinear Schrodinger model, is proposed. Analytical
expressions for the corresponding instability thresholds and the growth rate spectra are calculated.
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I. INTRODUCTION

Mathematical models describing dynamical properties
of the systems with interplay between nonlinearity, dis-
persion and discreteness attract a growing interest due
to their rich applicability in different physical problems.
There are many nonlinear physical systems which are
both discrete and continuous, Hke nonlinear fiber arrays
(NFA) {1-9], arrays of coupled Josephson’s junctions [10},
elastic energy transfer in anharmonic crystals [11], ete..
Such systems show a complex dynamical behavior ex-
hibiting diverse physical properties like wave instabilities,
solitonlike localized structures, quasi-collapse (blow-up
solutions), pattern formation and spatiotemporal chaos.
These phenomena were intensively studied mainly for
one-dimensional (1D) continuum-discrete systems with
short range interactions using a nearest-neighbor approx-
imation [1, 4-9]. However, some physical systems can
not be described in the framework of this approximation
and the effect of long-range interactions between the lat-
tice elements must be taken into account. Examples are
DNA molecule chains with long-range Coulomb interac-
tions, excitation transfer in molecular crystals and vibron
energy transport in biopolymers with dipole-dipole inter-
actions. Mathematical modelling of these systems often
leads to one of the discrete or continuum-discrete vari-
ants of the universal nonlinear evolution equations like
nonlinear Schrédinger (NLS), sine-Gordon, Korteweg-de
Vries, Klein-Gordon and Kadomtsev-Petviashvili equa-
tions. The simplest and also most extensively studied are
NLS models described by the continuum-discrete NLS
(CDNLS)equation. In the physical situation where the
dispersion along the lattice elements can be neglected,
the CDNLS model reduces to the discrete NLS model
where dynamical properties of the system are determined
by an interplay between nonlinearity and discreteness.
The effects of long-range dispersive interactions in 1D
discrete nonlinear Schridinger (NLS) system was inves-
tigated in {12, 13]. The long-range interaction model
with a power law dependence on the distance between
interacting elements was used in reference [12]. A mod-
ified interaction model in a form of Joncgitre’s funec-

nonlinear dynamics, stability, continuum-discrete nonlinear Schrédinger equation

tion convenient to cover different physical situations from
nearest-neighbor interactions to ultra long-range interac-
tions was discussed in [13] . The dynamics of the dis-
crete two-dimensional (2D} NLS system with long-range
dipole-dipole interactions was studied in [14]. However,
in many physical problems the dispersion along the lat-
tice elements can not be neglected and CDNLS equation
must be used as a mathematical model.

The goal of this work is to study an important problem
of modulation instability of continuous wave (CW) and
array soliton (AS) solutions in continvum-discrete non-
linear Schrédinger (CDNLS) model describing dynamics
in two-dimensional lattice with dispersion and long-range
interactions between elements. In Sec. II we define the
hasic evolution equation and give the continuous wave
(CW) and array soliton solutions of the model. In Sec.
1T we describe a linear stability analysis based on an en-
ergetic principle and a variational approach which were
originally developed for the continuum NLS models [15,
16]. We obtain analytical expressions for the instability
thresholds and the growth rate spectra and finally, we
summarize our results in Sec. IV.

1I. THE MATHEMATICAL MODEL

The basic mathematical mode! desecribing two-
dimensional lattice with interacting nonlinear elements
in anomalous dispersion regime has a form of continuum-
discrete nonlinear Schridinger equation

By | 0%r '
T durln Y T () =0,
™ {7 A7)
(1)
where ¥ = (n,m,0) {(n = 0,£1,22.N; m =

0,231,142 Af) is the discrete lattice vector in a x — ¥y
plane, z is the spatial continuous coordinate along the
lattice elements and & = #iy s, is the wave function into
the (n,m)-th lattice element. The nonlocal interaction
term J, 5 . describe a long-range isotropic coupling be-
tween lattice elements and depend on the distance be-
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tween interacting elements. This interaction model is
quite general and enables a mathematical modelling of a
variety of discrete dispersive physical systems with long-
range interactions. The well known interaction model for
1D discrete NLS model with a power law dependence on
the distance between interacting elements was originally
proposed in [12]. In our case, for 2D CDNLS model (1)
for regularly spaced 21} lattice with interelement distance
equal to 1, the power law dependence can be written in
a form

o = 2)
EEnT

This interaction model can conveniently describe a
wide class of different discrete dispersive physical sys-
tems with a long-range isotropic interactions like DNA
molecule chains with a long-range Coulomb interaction
{p = 1), propagation of optical pulses in nonlinear fiber
arrays and excitation transfer in quasi two-dimensional
molecule crystals {p = 3). On the other hand, for the
sufficiently large p, the model Eq. (1) exhibits the same
qualitative features as the CDNLS equation with nearest-
neighbor interactions.

The CDNLS equation {1} has a Hamiltonian structure
and can be written as

Oy 0H
"B " 5er )
where H is the Hamiltonian defined by
0
H=3 [ (3 ot =3+ Wral? — i)z
T TR e
(4)

The number of quanta P (L? norm) is another con-
served quantity of the Eq. (1)

P=3 [ e 5)

For the lattice with periodic boundary conditions im-
posed on the discrete dimensions 7 we can consider a set
of lattice independent stationary sohutions of Eq. (1) in
a form

br= f(2) €N, (6)

where A is a real parameter. There are two such solu-
tions, the first is a uniform, continuous wave {CW) so-
lution fo, = A/v2 , while the second one is an array
soliton {SA) solution f,, = A/cosh(Az). In both cases
the parameter A is related to the amplitude of the wave
function.

III. STABILITY ANALYSIS

In order to study the stability property of the station-
ary solutions (6) we introduce small modulations, in a
form of square integrable, perturbations

Ul t) = [flz) + 6fa(z. )€™, fA < Ifl. (7)

Substituting Eq. (7) into Eq. (1) and linearizing with
respect to small perturbations é fz we arrive at the equa-
tion

B6fs 3% S
ot T o2

- Az&fr + 4l.f|2§fr + 21 izéfr

> T 0fs—58fz)=0. (8)
(7 £7)

For the perturbations with a dependence on the dis-
crete dimensions 7, such as

8 fe(z,8) = (a + ib) cos{knn) cos{kmm), (9)

where k, = 27/(2N + 1) and &k, = 21/{2M + 1) are
discrete wave numbers, the following eigenvalue problem
is obtained

abg; ) _ ~La(z,t),
aa(zat) _7
L ) (10)

The linear second-order differential operators I, are
defined by

L, = —;—22 + A% — 6f%(z) +4T(N, M), (11)
I_= —% + X% = 272(2) + 45(N, M).

The complete discrete properties of the system de-
scribed by the operators L. are taken into account
through the term (N, M), defined by

(N, M) = Z Jn.psin’( Z Jo,msin?( )
(N, M)
Z I m [cos(k,n) cos(knm) —

1],(12)

(n,m} =1

which depends on the lattice dimension and the interac-
tion law between lattice elements.
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A. Stability of the CW solution

For the case of CW solution (few = A/V2) the differen-
tial operators (11) are homogeneous and stability analysis
is straightforward. The Fourier transform ( e”“‘""’”) of
Eqs (10) gives the following dispersion relation

w? = (k2 + 4D) (K% — 2)% + 4%). (13)
The instability will occur for w? < 0, which leads to
the following instability threshold

2
P % + 25(N, M). (14)

As seen from (14) the lowest threshold is for an exci-
tation of small wave-number perturbations related to the
moduiational instability. Dispersion relation {13) and the
instability threshold (14) according to the dimensional-
ity of the lattice {one-dimensional or two-dimensional)
and type of the interaction (nearest-neighbor or long-
range interactions) is represented by four particular ex-
pressions:

a) One-dimensional lattice 7 = (n,0,0) with nearest-
neighbor interactions

- (k'2+4s'm2(%))(k2+4sm (k2 y—22%),  (15)
5 K2 s T

A>T i ) 16

> 3 + 2sin (ZN-I-I) {16)

Results (15)and (16) coincide with the corresponding
ones obtained in {3].

b) One-dimensional lattice 7 = (n,0,0) with long-
range interactions

The instability threshold in this case reads

s BN,
A >?+22Jnsm(
n=1

N1V ()

For the interaction model with a power law dependence
on the distance between the interacting elements (2) J, =
-L the instability threshold (17) reads

2 N sin® {xan)
2 5 SNAT
> 7 ..RE_I o . (18}

The instability threshold A. for long-range interactions
as a function of the size of the 1D lattice (V) for differ-
ent values of p is plotted in Fig. 1. The curve for p =5
practically corresponds to the result (16) for the nearest-
neighbor interactions model. Above results show that
due to the increased inertia of the system the instability

threshold for the long-range interactions is higher than
the corresponding threshold for the nearest-neighbor in-
teractions.

¢) Two-dimensional lattice ¥ = (n,m,0) with nearest-
neighbor interactions

The instability threshold for this case reads

2 f—
M > %—+2[1—cos(k" 5 “”“)]. (19}

) cos( 5

For highly elongated 2D lattices N »>> M, perturba-
tions dominantly develop along the longer dimension of
the lattice and the instability threshold (19) approaches
values for the instability threshold for 1D lattices (16).

d) Two-dimensional lattice ¥ = (n,m.0) with long-
range interactions

k2 4l .
A2 > 7 + 2{2 Jro sin2(—£2—) + Z Jo.m sin’(
=1 m=1
(N,A)

knm

)_

3" Jnmlcos(knn) cos(kmm) — 1]} {20)

(n.m) =1

For the interaction model with a power law depen-
dence on the dlstance between the interacting elements
(2) Jnom = —5—2——— the instability threshold (20) reads

(nZ+m?)2/2

B Z(kmm)

M
Z joikaY ) -
12
m=1 m

[cos(knn) cos{kmm) — 1]
(n? +m?)*

= _+z{z‘~““

(NaM)

o2

(n,m) =1

The instability threshold A, for long-range interactions
as a function of the size of 2D lattice (N, M) for p = 3
is presented in Fig. 2. The value p = 3 corresponds to
the case of isotropic dipole-dipole interactions discussed
in [14] for two-dimensional DNLS model. The instabil-
ity threshold decreases with the size of the lattice and
has a minimum for the square lattice N = M. Increas-
ing p leads to a decrease in A, and for large values of p
approaches the result given by Eq. (19) for the nearest-
neighbor interactions model.

B. Stability of Array Soliton solutions

Stability analysis of AS sclutions is more complicated
due to an explicit z dependence of the differential opera-
tors Ly. However, the fact that the discrete propertles of
the system are incorporated into the operators L. only
via L{N,M) term, enables a direct application of the
mathematical methods developed for stability analysis of
continuum models, In order to calculate the instability
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threshold and to find a detailed structure of the instabil-
ity growth rate we use an energetic principle introduced
by Laedke and Spatschek [15] and a variational method
by Rypdal and Rasmussen [16] originally applied to a
stability problem of the continuum NLS equation.

For further calculations it is convenient to substitute
Az— > z and to express operators Ly in a form

Ly =XN(8 +p- 5),
Lo=X8_ +pu-1), (22)

where 1 is the parameter containing information about
the discreteness of the system, defined by

4%
H= F: (23)
and §; are Sturm-Liouville- type operators

N &2 2
5, = —@- -+ 6tanh*(z),

2
& _ 9 2
5. = 572 + 2tanb~{z). (24)

These operators possess a well-known spectra [17]. The
smallest eigenvalues orf ) and corresponding eigenfunc-
tions y’)f ) in the discrete part of the spectrum are

P 1 y’)g‘)) =1/cosh{z) ,
o-f )= 2 w_(,'_)) = 1/ cosh®(z) . (25)

The procedure of the energetic principle described in
[16] shows that the system is unstable for 0 < p < 3,
when the operator L, is indefinite, and stable for > 3,
when the operator f.+ is positive definite. These results
lead to the next instability condition

_ 2y/%(N, M)
A> A= —a (26)

If we compare the above instability threshold for AS
solutions with the instability threshold for CW solutions
given by Eq. (14) it is obvious that for £ = 0 the dif-
ference comes only within a numerical factor 2/3 =~
0.8165. It means that all corresponding particular results
for the instability thresholds of the AS solutions can be
derived from the expressions given by Egs. (14-21) for
the instability thresholds of the CW solutions, by tak-
ing & = 0 and just multiplying by 0.8165. It also means
that the shapes of the curves displayed in figures 1 and 2
are the same as in the case of AS solutions. For 1D Iat-
tice with nearest-neighbor interactions, Eq.(26) readily
recovers earlier results, obtained in {5,9].

The application of the energetic principle to the sta-
bility problem of AS solutions proves the existence of
exponentially growing modes and gives threshold val-
ues (26) without any further detail. In order to find
out more about the growth rate structure of the in-
stability we apply a variational approach used in [16]
for the continuum NLS equation and also in [9] for
1D CDNLS equation with nearest-neighbor interactions
model. For the normal exponentially growing modes
a(t,z) = a(z)exp(1t) ;b(t,2) = b(z)exp(t) with the
growth rate v, the eigenvalue Egs. (10) are transformed
into

Lya(z) = —T'b(2),
L_b(z) =Ta(z), (27)

where I' = v/A? is the normalized growth rate. The
above equations can be derived from the variation of the
action

- ,
5S = 5/ L@, az,b,b;, 2)dz, (28)

where the Lagrangian £ is given by

E—Q(az+bz)+[ 5 coshz(z)]a +[ 3 +
1
——— % +Tab. (20
Coshz(z)] ab. (29)

The basic idea of the variational approach is to define
a set of test functions &(z) and b(z) with some variational
parameters and to calculate the action integral S. It is
obvious that with this approach, obtaired results will
critically depend on our choice of the test functions. It
was shown and also numerically confirmed in [9,16], that
& good choice for the test functions are eigenfunctions of
the marginally stable states, for (I' = 0) in Egs. (27).

a(z):[),b(z):coslm, p=0
1
a(z) = ::gshz_(z) ,b(z2)=0, u=3. (30)

Assuming test functions with two variational parame-
ters o and 3 in a form

B

oy -
a _ e, b = . 31
i(z) cosh®(z) ’ (2) cosh(z) (31)
we calculate the action integral
S = Qaz(-gi 1) — B+ gl“aﬁ. (32)

The following expression for the growth rate structure



D) = S5l = ). (33)

is obtained from the conditions % = gg =0

The instability threshold A. corresponds to the
marginally stable mode I' = 0 of the dispersion relation
(33). The expression for the instability threshold ealeu-
lated from Eq. (33) coincides with the expression (26}
obtained with an application of the energetic principle.

The dispersion relation (33) has the same structure as
results given in {16] for the continuum NLS equation and
in [9] for 1D CDNLS equation with nearest-neighbor in-
teractions model, because complete discrete properties
of the system are incorporated only via the parameter
1 defined by Eq. (23). Replacing the particular expres-
sions for p into Eq. (33) for lattices with different di-
mensionality (one-dimensional or two-dimensional) and
tvpe of the interactions (nearest-neighbor or long-range
interactions) we can readily obtain explicit formulae for
the corresponding growth rate structure.

a) One-dimensional lattice 7 = (n,0,0) with nearest-
neighbor interactions

82 T ) , 7
= - . (34
A2W\/§Sln(2N+1)\/3/\ 4 8in (2N+1) (34)

b) One-dimensional lattice ¥ = (n,0,0) with long-
range interactions

A?m/" ZJ sin? — ™

N
.2 T
?4;%& sin (———2N+1n). (35)

For the interaction model with a power law dependence
on the distance between the interacting elements (2} J, =
L the growth rate (35) reads

_ 32 i sin’ (R . 45‘5 sin? (fﬁﬂﬁn)
SV o P \ n—1 nP
(36)

The figures 3a-3b show the dependence of the growth
rate I" on the soliton amplitude, for three different 1D
lattices a) N = 2, b) N = 8 and ¢} N = 20. The
curves for large p practically correspond to the results for
the nearest-neighbor interactions model [9]. The growth
rate is less sensitive onm the variation of p for the lat-
tices with lower number of elements and for N = 1 (one-
dimensional lattice with 3 elements) all curves degenerate
into a single one which corresponds to the growth rate
for the nearest-neighbor interactions model.

¢) Two-dimensional lattice ¥ = (n,m, 0} with nearest-
neighbor interactions

_ 82 l—cos(frkn_ m)cos(frkn+km)
BE 2 2

- kn T
\/3A2 —4+4 cos(”fr{cmg—kﬂ) cos(ar%k—)]. (37

d) Two-dimensional lattice ¥ = (n,m,0) with long-
range interactions

8\/— N (N, M)
= s ZJ“ osinZ{knon/2) + Z Jo.msin?{k,m/2) — Z In.m|cos(knn) cos(kmm) — 1]
\ n=1 m=1 (n,m) =1
N Y (N, M)
- 4{2 Jno0sin2(k,n/2) + Z Jo.msin2{k,,m/2) — Z Tn.mlcos{knn) cos(kmm) — 1}}. (38)
n=1 m=1 {n,m) =1
For the interaction model with a power law dependence (38) reads
on the distance (2) Jom = m the growth rate
]
_ 8/2 il sing(k“Tn) N i sin?(Emm) B (A cos(k,n) cos{kmm) — 1
2273 — ne — me (n2 + m2)3



M Sing(k_,;i) (N, M)

cos(kpn) cos{knm) — 1

, Y sin2(kgn)
-4y 2=+ 3y —
n=1 m=1

In Fig. 4a and 4b we present the growth rate [ for
the instability of the array soliton with the amplitude
A = 0.5 as a function of the size of the two-dimensional
Iattice (N, M) with long-range interactions for p = 3.
¥ig 4a represents the surface I'(N, M), while Fig. 4b is
the corresponding gray scale map of the projection on
the N-AM{ plane. The black area in Fig. 4b is the region
below the instability threshold.

IVv. CONCLUSION

In this work, we have analytically studied detailed sta-
bility properties of the continuous wave and array soliton
solutions in two-dimensional lattices with dispersion and
long-range interactions, described by the CDNLS equa-
tion. The linear stability of the array soliton is sclved
by applying the energetic principle and the variational
method which were originally developed for the contin-
uum NLS equation [15,16]. We have obtained the in-
stability thresholds and first results for the growth rate
spectra that are valid for the two-dimensional NLS lattice
with a long-range isotropic coupling between lattice ele-
ments. Explicit expressions for the long-range isotropic
interactions with a power law dependence on the distance
between interacting elements are also calculated. Our re-
sults for highly elongated lattices and large p, recover

- > I (39)

(o) 1 {(n? + m?)‘;i

formulae for the one-dimensional lattice with nearest-
neighbor interactions, obtained in earlier papers [5,6,9].

The results presented in this study are based on the lin-
ear stability analysis and indicate a presence of exponen-
tially growing modes in the system giving no predictions
on the subsequent nonlinear evolution stage. Based on
the results for 1D and 2D CDNLS systems with nearest-
neighbor interactions [4,5] and for 2D discrete NLS mod-
els (without dispersion} with long-range interactions [14],
it is plausible to expect an existence of the quasi-collapse
process and solitary structures localized in both contin-
uum and discrete dimensions. A detail study of these
problems in the framework of 2D CDNLS lattice model
with long-range interactions as well as the problem of sta-
bility of the multi-dimensional continnum-discrete soli-
tary waves will be given in a separate publication.
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FIG. 1: Dependence of the instability threshold A; on the size of the one-dimensional lattice N with long-range interactions
for different values of p.

FIG. 2: The instability threshold . as a function of the size of the two-dimensional lattice (N, M) with long-range interactions
for p=3.
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FIG. 3: Dependence of the growth rates I" on the soliton amplitude X for three different one-dimensional lattices with long-range
interactions a) N =3, b) N =8 and ¢} N = 20.
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FIG. 4: Growth rates I of the instability of the array soliton solution with amplitude A = 0.5 as a function of the size of the
two-dimensional lattice (V, M) with long-range interactions for p = 3; (4a) surface I'(NV, M); (4b) corresponding gray scale
map of the projection on the N — M plane.



