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Abstract

The dynamics of the transition processes in plasma turbulence described
by the nonlinear Langevin equation (1) is studied. We show that intermittent
or global transitions between metastable states can appear. The conditions
for the generation of these transitions and their statistical characteristics are
determined.
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1 Introduction

The statistical approach of plasma turbulence was much developed in the last years
[1], [2], [3]. An important application of these methods is the study of the transi-
tion and bifurcation phenomena which have been observed in magnetized plasmas
(1], [4]. In this theoretical framework a statistical theory of subcritically excited
strong turbulence in inhomogeneous plasma was recently developed [5], [6], based on
the renormalization and random coupling model. It was shown, that self-sustained
strong turbulence can be produced by subcritically excited modes [7], [8], [9]. The
current-diffusive interchange mode, for example, generates turbulence in inhomoge-
neous plasma through this non-linear statistical mechanism. In an unified treatment
of thermal and turbulent fluctuations it was shown that the coherent part determines
a nonlinear drag while the incoherent part has the effect of a noise in the evolution
of a test mode. A Langevin equation was deduced for describing the evolution of
the turbulence amplitude, which includes both the thermal and the turbulent noise
in the presence of turbulent and collisional drag [7]. Several studies of other modes
[10], of the L-H transition in tokamak plasma and of transport barriers [11] lead
to the conclusion that this statistical approach has a wide applicability in plasma
and fluid turbulence. The behavior described by the non-linear Langevin equation
appears to be generic for a wide class of processes in plasma turbulence. Moreover,
this method of analyzing strong turbulence shows a direction to extend principles of
statistical physics as Kubo formula and Prigogine’s principle of minimum entropy
production rate to non-equilibrium and non-linear systems.

In these models the quantity of interest z (a mode amplitude, or the turbulence
energy, or the electric field) is a stochastic function of time. Its evolution is shown to
be governed by a Langevin equation containing a nonlinear damping term and a noise
[7]. The latter can have several sources and is usually modelled by a white Gaussian
noise with amplitude that can depend on z. The main interest is to determine
the probability density function for this quantity. Due to the nonlinearity of the
damping or of the noise amplitude, the probability density is non-Gaussian. It
was determined by deriving a Fokker-Planck equation from the Langevin equation.
The solution of this equation was obtained in the asymptotic stationary regime and
the transition probabilities were determined. The transition between metastable
states were studied with this type of stationary solution for several systems and the
dependences on the physical parameters were determined. Non-Gaussian probability
density functions having two maxima or power law tails were obtained. However,
these were obtained only in the limit of stationary state, and the study of dynamical
evolution has not yet been fully addressed.

In this paper we study other characteristics of the transitions in strongly tur-
bulent plasmas, which are essentially related to the dynamics of this process. We
determine the time evolution of the system, the possible stationary states and the
conditions for reaching these states. The two moment Lagrangian correlation and
the frequency spectrum that characterizes the transition process are determined. To
this aim we analyze the Langevin equation rather than the Fokker-Planck equation
and we determine moments of the stochastic function z(f).

The paper is organized as follows. The physical model, the basic equation and



the method of study are presented in Sec. 2. The results are analyzed in Sec.
3 where intermittent and global transitions are evidenced. Statistical properties
related to Lagrangian correlations and frequency spectra are determined in Sec. 4.
The conclusions are summarized in Sec. 5.

2 Basic equation and statistical approach

The following nonlinear Langevin equation was deduced {7] in the studies of strong
turbulence:

dz
7 + A{z)z = Rw(t) (1)
where A(z) is a deterministic amplification and w(t) is a Gaussian white noise with
amplitude R. The diffusion coefficient determined by the noise in the absence of the
deterministic amplification is Dy = R%. We consider R = const. but the study can
be easily extended to x dependent amplitude. The essential feature of this equation
is contained in the deterministic term A(z)z which has three zeros such that in the
absence of noise Eq. (1) has two stable fixed points and one unstable fixed point.
The function A(z) is modelled by

Alz) = (e - 2)(1 - ) 2)

where 0 < a < 1. Thus multiple stationary states appear : all trajectory determined
from Eq. (1) with initial condition zy < a evolve to the stable point z = 0, those
with xy > a go asymptotically to x = 1 and there is an unstable equilibrium at
x = a. The noise makes the fixed points metastable and transitions can appear
between the two points = 0 and z = 1. As shown in [8], [11] such transitions from
a fundamental state with £ ~ 0 to an excited state with £ ~ 1 explain important
plasma processes as subcritical excitation of turbulence or generation of a radial
electric field and of H mode in tokamak.

We are interested here in the dynamics of the process of transition described by
Eq. (1). This evolution is well represented by the time dependence of the average
X(t) = {z(t)), which is actually an approximation of the probability of finding the
system in the excited state at time ¢. (...} represents statistical average over the real-
izations of the noise. We study directly the Langevin equation (1) by developing the
hierachy of equations for the moments and using the cumulant expansion procedure.
We show that the truncation of the moment system by neglecting the cumulants of
order higher than n converges rapidly if the process is not very slow. The main
features of the evolution already appear in the lowest approximation (n = 2) and
starting with n = 4 the corrections becomes of the order of 1% for the main range
of the parameters of interest. The results presented in the next section are in the
6th cumulant approximation.

The moments of the stochastic function z(t), the solution of the Langevin equa-
tion {1), can be systematically obtained from the explicit form of (1)

Z—f = -z 4 (a + D)z* — az + Ruw(t). (3)



where the right hand term is v(x) = —A(z)x, the rate of variation of z(t). The
solution of Eq. (3) in a realization of the noise will be called trajectory. The initial
condition in all realizations is z(0) = 0. Multiplying this equation with z"~! and
performing the average one obtains

1 dM,
n dt

= —Mn+2 + (a + 1)Mn+1 - G/Mn + R <1‘n_1w> (4)

where M,, = (z"(¢)) is the moment of order n of the trajectory. The average in the
last term of Eq.(4), Cp(t) = {z™(H)w(?)}, is determined using the formal solution of
Eq.(1) T
t
z(t) = z(t — ot} + v (x(t — &t)) 6t + Ruw(r)dr. (5)

t—-&t

for small 4. In order to obtain C(¢), this equation is multiplied with w(t), is averaged
over the noise and the limit 4f — 0 is performed. Since the average of the product of
any function of z(7) with a white noise w(t) is zero at 7 < ¢, the averages obtained
from the first two terms in the r.hs. of Eq. (5) are zero. The last term leads to
Rf ,(wtw(r))dr=R[ 8t —t)dr = R/2. Thus

Ci(t) = (z(t)w(t)) = 7 (6)

The higher order correlation are obtained using the identity

}E_%<([j6tw(r)dr)kw(t)> = %5k,1 (7)

which holds for Gaussian white noise. The correlation C,, is calculated as

Calt) = lim < [:r(t —6t)+ v (x(t — 68)) Ot + B ft ;t w(T)dT] " w(t)> (8)

and since the averages of powers of the first two terms in Eq. (5) multiplied with the
third one are zero (because T > #--§¢), this expression reduces, after straightforward
calculations and using Eq. (7), to

Cnlt) = R limn ([z(t — 6t) + v (z(t — 6t)) dt]"ﬁl) = n? (=" 1(8)) . (9)

at—0

The moment equation (4) can be written as:

1dM, R?
—m —Mp2+ (a+ V)M —aMy + (n— 1)“‘2—'Mn——2- (10)

and thus a system of exact equations is obtained for the moments. The source in
this system is determined by the noise and appears only in the equation forM,.
Since My = M? + (6z°(t)), where dz(t) = x(t) — (z(t)) is the fluctuation of the
stochastic solution, the noise drives the dispersion {§z*(¢}) of the trajectories and
this dispersion generates the whole chain of moments through the coupling of the
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moments. The moment coupling is determined by the nonlinear deterministic term
in the r.h.s. of Eq. (3) which thus represents the mechanism for transforming the
Gaussian white noise into a non-Gaussian probability distribution of the solutions
of the Langevin equation.

The system (10) has to be truncated and closed at an order n by providing
approximations for the two supplementary moments M,,, and M, » appearing in
the last two equations. This is done by neglecting the cumulants of order higher
than n and by approximating the two moments M, .; and M, using the first n
cumulants [12]. Due to the closure the system of moments (10) is actually nonlinear.
The moments M,, can be expressed in terms of the moments of the fluctuation éx(t)
(or central moments) as

M, = ;” (:) M7+ (5aF) (11)

and (dz*) are determined by the cumulants ; with ¢ < k. The following expressions
can be obtained for the first eight central moments in terms of cumulants:

(6z) =0, (0z%) = ko, (02") = ks, (12)

(5334) = 3k3 + fiy, (53:5) = 10k9K3 + Ks, (13)

(63:6> = 15Kaky4 + 15&3 + 10&% + Kg, (14)

(5m7> = 21KoKs + 105&%1%3 + 35K3K4 + K7, (15)

(83°) = 28kors + 210k5k4 + 105k5 + 3553 + 56K3k5 + 280Kak; + Ks. (16)

The successive approximations were considered, for n = 2, 3, 4, 5, and 6. For
instance, in the case n = 5 the system contains the Eqs. (10) for n = 1,...,5 and
Mg, My are determined in the fifth cumulant approximation using Eq. (11) with
{6z%) and (0z") determined from Eqgs. (14), (15) where kg, k7 = 0.

The results obtained for the average X(t) = M;(f) and the dispersion g(t) =
(6z*(t)) = My— M? for two typical sets of parameters are presented in Fig. 1. They
show that the truncation of the system by negleciing the cumulants of the order
higher than n converges rapidly. The differences between the approximations are
larger for larger values of the amplitude of the noise. One can see that even the
lowest 2-cumulant approximation already shows qualitatively the characteristics of
the sotution. We note however that the accuracy of the cumulant method depends on
the characteristic time for the evolution of the system. Higher order approximations
are necessary when the evolution is slow. Such a very small evolution appear for
a < 0.5 in the limit B — 0. The sixth cumulant approximation is not sufficient in
this limit.

This fast convergence of the cumulant approximation is due to the following
two aspects. First is the important property of the cumulants, namely that adding
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#=0.3, R?=0.01

Figure 1: Comparative results of the successive approximations for the average solution
X(t) (a) and for the dispersion g(t) (b): 2-cumulants (dotted), 3-cumulants (dashed),
4-cumulants (dot-dashed), 5-cumulants (solid) and 6-cumulants (red). Two typical set of
parameters are considered a = 0.3, R? = 0.01 and a« = 0.7, R? = 0.1.

a cumulant in the characteristic function does not change the values of the lower
order cumulants and moments, although it can strongly change the shape of the
distribution function. Secondly, the dynamics determined by Eq. (10) couples only
a few moments and the approximation involved in the closure of the system affects
directly only the last two equation for the highest moments.

Remark 1 The moment system (10) is very suitable for a study of closure methods.
It is rather simple and a large number of equations can be solved. This permits to
push the errors involved in the truncation at high order moments and to have a
rather correct evolution of the first moments at small time. One can easily try
various closure procedures for systems with 20 equations or more. Most of them lead
to correct evaluations at small time but to a fast, explosive behavior at later times.
The error propagation and amplification is so strong that even some stationary state
cannot be obtained. The fast convergence and the stability of the cumulant truncation
appear quite impressive in this context.

3 Intermittent and global transitions

Three types of evolutions were obtained for the system described by the Langevin
equation (1), (2). We present here results obtained numerically in the sixth cumulant
approximation.

The first type of evolution is shown in Fig.2, for @ = 0.7 and R? = 0.01. The
moments (Fig. 2a) and the cumulants (Fig. 2b) grow monotonically and saturate.
The average X (t) is small and the high order cumulants are negligible. Consequently
z(t) remains around the stable point z = 0 which means that a very small number
of trajectories perform the transition to the excited state. The distribution of z(t)
is close to a Gaussian with small dispersion around the initial position. The fluctua-
tions dz(t) have an amplitude comparable with that of the noise: (dz?) = R?/2A(0).
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Actually, the solution obtained in this case is close to the analytical solution cor-
responding to constant A in Eq. (1). Physically, this is the case of a very low
amplitude noise which cannot induce the transition to the excited state.
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Figure 2: The evolution of the moments (a) and of the cumulants (b) for a = 0.7 and
R? = 0.01.
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Figure 3: The evolution of the moments (a) and of the cumulants (b) for a = 0.7 and
RZ=0.1.

The second type of evolution is presented in Fig. 3 for a = 0.7 and R* = 0.1. The
moments {Fig. 3a) grow monotonically and saturate but at much larger values. At
fixed shape of the nonlinear term (fixed a), these asymptotic values depend on the
amplitude of the noise: they increase when the amplitude R increases. The evolution
to the stationary state is faster when the amplitude of the noise is higher. The
cumulants (Fig.3b) have more complicated evolution before reaching a stationary
state at values which are sensibly different from zero for all of them and depend
on the amplitude of the noise. This means that the probability distribution is not
Gaussian. The asymptotic value of X(t) is much larger than in the previous case
but remains smaller than a, even at high amplitude of the noise showing that the
trajectories are more attracted by the stable point £ = 0 and a smaller part of the
trajectories perform transitions to the stable point z = 1. A statistical mixture
of states with z(¢) ~ 0 and z(¢} ~ 1 exists and transitions between one state and
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Figure 4: The evolution of the moments (a) and of the cumulants (b) for ¢ = 0.3 and
R? = 0.01.

the other appear. The numbers of trajectories in the two metastable states are
of the same order, but with the fundamental state more present. The physical
interpretation of this type of states, which appear at higher amplitude of the noise,
consists in the intermittent behavior of the turbulent system. The noise determines
transitions to the excited state but also backward transition to the fundamental
state. Consequently, the evolution of the system consists of a random sequence of
time intervals in the fundamental and excited states, with fast transition between
these two metastable states.

The third type of evolution is represented in Fig. 4, for a = 0.3 and R? = 0.01.
All the moments are comparable and have similar evolution. They remain small
for some time, then they grow and saturate at a value close to one (Fig. 4a). The
second cumulant (Fig. 4b) grows slowly, then very fast during the time interval when
the moments grow and after that it decays rapidly and saturates at a small value.
The other cumulants remain zero at small time, have strong variations during the
increase of the moments and eventually they decay to zero. This clearly shows that
the probability distribution evolves from the initial 6— function to an expanding
Gaussian which moves toward z = 1. When it reaches the unstable point = a, the
distribution is strongly distorted and expands {g(¢) is more than 10 times larger than
R? for the case presented in Fig. 4b). The distribution continues its displacement
toward r = 1 and, when the unstable point is bypassed, it recovers the Gaussian
shape and the dispersion decays to a small value of the order R? (corresponding
to constant A). Thus, in this case an almost global transition to the excited state '
z = 1 was performed due to the noise. A stationary and stable excited state is
generated by the noise in these conditions, with backward transitions having very
small probability.

The dependence of the average at stationarity, X, on the noise amplitude in
represented in Fig. 5a. The almost global transition can be observed in the upper
curve with ¢ = 0.3. It has an upper threshold in the noise amplitude E. For
noise amplitude smaller this value, the global transition to the excited state always
appears as seen by the value of X, which is very close to 1. At higher amplitude of
the noise, the average stationary value decreases showing that the trajectories are
around both stable points. An intermittent behavior of the turbulence similar to
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that presented in Fig. 3 appears. The stationary value of the average corresponding
to the previous case (Fig. 3) is also represented in Fig. 5a (lower curve for a = 0.7).
One can see that the global transition (with X, = 1) does not appear in this case: at
low amplitude of the noise the upper state is almost empty and at higher amplitude
a statistical mixture of states appears with intermittent behavior.

1
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03+
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0

Figure 5: Effects of the noise amplitude: (a) the stationary (asymptotic) value of the
average as a function of noise amplitude R? for two values of a; (b) the time for reaching
the stationary state as a function of R? for @ = 0.3 {circles) and a = 0.7 (diamonds). Circles
and diamonds are determined by numerical simulation of the stochastic trajectories. The
results obtained with the 6th cumulant approximation (dashed and solid lines) are correct
when 74 < 30.

The noise amplitude R strongly influences the characteristic time of the evolution
of the system. This influence is represented in Fig. 5b there the time of reaching the
stationary state, T, is plotted as function of B? for a = 0.3 and 0.7. We have chosen
a physical definition for 7, as the time during which the average X (t) reaches 95%
of its stationary value. One can see that in the case of global transition {(a = 0.3,
R? < 0.01) this time is very long and it rapidly increases when R decreases. In
the intermittent case {R? > 0.01), 7, is practically independent on the shape of
the amplification rate (parameter a) and decreases approximately as 7, ~ R™'°.
We note that the results in Fig. 5b represented by circles and stars are obtained
from numerical simulation of the stochastic trajectories. The dashed and the solid
lines are the results of the 6th cumulant approximation. One can see that at small
noise amplitudes this approximation is not sufficient. Actually, the validity of the
curmmulant expansion depends on the characteristic evolution time of the system.
Figure 5b shows that this method used in the 6th order gives good results for
T < 30. At slower evolution (74 > 30) higher order cumulants have enough time
to develop through the coupling determined by the nonlinear term in Eq. (1) and
thus they cannot be neglected.

In conclusion, intermittent or global transitions to the excited metastable state
can appear depending on the parameters a and R. At the same values of the noise
amplitude, completely different evolution of the system was obtained (note that
the amplitude of the noise in Figs. 3 and 4 is the same). The strong difference
between the two cases is determined by the shape of the nonlinear growth term
zA(z) and more exactly by the relative values of the derivative of this growth term,
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v; = —d{zA(z))/dz, in the two stable points. This parameter characterizes the
stability of a fixed point, which is stronger at large negative values of v,. For the
model considered here, Eq. (2), v1(0) = —a and v,(1) = —(1 — a) and thus for
a < 0.5 the point £ =1 is more stable than z = 0 while for @ > 0.5 the initial point
z = ( is more stable.

The conditions for the global transition to the exited state can be observed in Fig,
6a where the stationary value of the average amplitude X, is plotted as a function
of a for several values of the noise amplitude. One can see that the global transition
is not possible at a > 0.5. It appears at small noise amplitude for a < 0.5. When
the threshold of the noise is attained, the global transition is not more possible, first
at a < 0.5 and then neither at small a. At higher noise amplitude or for a > 0.5,

the system has an intermittent behavior with trapping intervals around each of the
metastable points and fast transitions.

R? - 0.01
=" v Feaddvy,~,
.

‘e
-
0 " L - lesevevenna

0 0.2 0.4 08 [+X:] a 1

Figure 6: (a) The stationary value of the average as a function of a for several noise
amplitudes: the values of R? label the curves. (b) Comparison of the present method
(closed dots) with Eq. (19) (dashed line).

It is worthwhile to compare the present results with those obtained by an alterna-
tive method. In the steady state, a statistical estimate for (z) has been obtained by
employing a Fokker-Planck equation, which is derived from Eq. (1). By introducing
a potential function

S(X) = f QR dz’ (17)
0
the probability that the state is found near x = 1 is given as

_ 1
~ 1+exp[S(1)]

keeping the dominant exponential dependence (see [7], [11]}. In this case we have
(x}y = zP,_, and

(18)

=1

1
(z) = T+ exp[S)] (19)

This alternative evaluation is compared with the results in this article. Figure 6b
illustrates the results of this cumulant method (closed dots) and formula (19) (dashed
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line) for fixed value or R2. It shows that the agreement between the two methods
is good. The method presented in (7], [11] provides a simple formula for evaluating
the average in the steady state, while the present method allows the study of the
dynamical behavior associated with the transition.

4 Lagrangian correlation and transition spectra

More details about the dynamics of the transition process can be obtained from La-
grangian correlations and frequency spectra. They are determined from the corre-
lations of the trajectory fluctuations at two time moments, G(t,t') = (dz(t)dz(t')).
This is a symmetrical function of the two time arguments, with a maximum at
t = t', where G(t,t) = g(t). The Lagrangian correlation of the rate of variation of
z(t), v(z,t) = —xA(z) + Rw(t) is defined by

Lt,¥) = ((v(z(?), 1) — (v(=(2),1))) (v(=(t),t) — (w(z(),1)})) (20)

and its Fourier transform represents the frequency spectrum of the process. For a
stationary process this function depends on + = |t — /| . The Lagrangian correlation
describes the coherence of the stochastic evolution: it is delta-function in the case
of a non-correlated noise and a function extended to 7 — oo for a deterministic
evolution.

The equation for the fluctuations dz(t} = z(t) — X (¢) obtained from Eq.(1) in
each realization of the noise is

dé 1 1 dX

L u(X) + 0z vy (X) + =622 vy (X) + 202% 13 (X) + Rw — = (21)
dt 2 6 dt

where v, = dv/dz, vy, = d*v/dx? and v3 = d®v/dz® This equation is exact for
the velocity represented by a polynomial of order 3. Multiplying this equation with
dx(t') and averaging, one obtains

oG(t,t 1 ‘

L 6t Xy + grom (X @) o) @)
where the cumulants of third and forth order, were neglected for simplicity. This
equation is valid for # > t and the last term is the fluctuation-noise correlation
C{t; 'y = (w(t)dz(t')) . An equation for this function can be obtained using Eq. (21)
and the same approximation:

ac(t; ¢
atf

= Cltt) [ (X0 + Jahn (XCD| + BB = ). (29

The solution of this equation is
t

C(t;t) =0t —t)R?exp [ /: A(B)d&] (24)

where ©(t' — t) is the step function, which is equal to 1 for ¢ > ¢ and is zero
otherwise, and

\O) = o1 (X(9)) + 59(6)2 (X(0)). (25)
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Using Eq. (24), the solution of Eq. (22) in terms of the average X(t) is

G(t,t') = R? ft dEO(t’ — &) exp ![t,\(f?)df) + /tl /\(G)dﬁ} d€. (26)
0 £ 4

The Lagrangian correlation of the rate of variation of the fluctuations (20) is obtained
from Eq. (26) by time derivatives

L@t t) = At)g(t, )A(E) + A(t) exp [ /t t A(B)dﬂ} + R2S5(t — 1) (27)

for ¢ > t. Equations (26) and (27) show that the process is not stationary at small
time but it reaches a stationary state because A(f) saturates at a negative value as
seen from Eq. (23) with the time derivative equal to zero. The first two terms in the
Lagrangtan correlation (27) (denoted by L,(t,t')) are determined by the interaction
of the noise with the nonlinear amplification rate while the last term is the direct
contribution of the noise. L, is negative, showing that the deterministic part of the
process contributes to compensate the effect of the noise. The nonlinear term hiders
the diffusive evolution corresponding to the white noise producing the trapping of
the stochastic trajectory z(t). '

Figure 7: The correlation of the trajectory fluctuations G(t,¢') (a) and (b) the Lagrangian
correlation (27) for the intermittent transition (a = 0.7).

Typical results obtained for the correlations G(t,t') and L(¢,t') are presented in
Figs. 7 and 8. Significant differences can be observed between the intermittent and
global transitions. In the case of intermittent transitions between the two metastable
states, g(t), the maximum of G(¢,#'), and its width are continuously growing up to
stationary values (Fig. 7a). The Lagrangian correlation L, {Fig. 7b) has a negative
minimum at ¢ = t’ which is very deep at small time and it continuously rises and
becomes larger up to the saturation. This shows that the trapping effect is stronger
at small time and at later time it is reduced by the action of the noise. The stationary
correlations has an exponential shape

Lo(t,t) = L,(t — 1) ~exp (—u) : (28)

Te

12




Gt}
X

008 .

Figure 8: The correlation of the trajectory fluctuations G(¢,t') (a) and (b) the Lagrangian
correlation (27) for the global transition (a = 0.3).

In the case of a global transition (Fig. 8a), the correlation G(t,t') shows a
strong increase of its maximum and of its width when the average is around the
unstable point, X () = a. Later in the evolution the correlation strongly decreases
and becomes very narrow. The Lagrangian correlation L(t,t') represented in Fig.
8b has a deep negative minimum at small time (as in the previous case) but as X (t)
approaches the unstable point it becomes practically zero showing that at this stage
the deterministic process cannot determine an opposition to the noise and, due to
this, the correlation of the fluctuations G(¢,t') is strongly growing and expanding.
Later a small negative correlation L, appears on large time intervals which develops
a minimum at £ = ¢'. This minimum becomes at stationarity very narrow and deep
showing a strong trapping around the z = 1. The stationary Lagrangian correlation
is exponential as in the previous case, Eq. (28), but the correlation time is much
smaller.

The correlation time 7, was determined for the global and the intermittent
transition. In the first case it is practically independent of the noise amplitude and
can be approximated by 7. = |v1(1)|”' = (1 — @)~L. In the intermittent state the
correlation time depends on the noise amplitude and is only weakly influenced by
the parameter a of the deterministic term. The correlation time as function of the
noise amplitude is represented in Fig. 9 for the intermittent transition. At small
amplitude the correlation time is constant and is given by 7. = |1 (0){™' = a~1. At
such a weak noise the system remains in the fundamental state (only a negligible
number of trajectories perform transitions). The increase of the noise amplitude de-
termines a strong increase of the correlation time 7.. This shows that large coherent
displacements can appear and that the system has an intermittent evolution with
trapping in the two metastable states. At larger amplitudes of the noise the correla-
tion time decays due to the decay of the trapping time. The intermittent behavior
of the system is progressively lost and the evolution becomes random. Thus, the
intermittent transitions appear for a limited interval of the noise amplitude, as the
global transitions.
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Figure 9: The correlation time 7, for the intermittent transition as a function of the noise

amplitude.

The spectrum of the stationary state can be approximated by

1

S() ~ 1= (29)
where the first term is the contribution of the white noise and the second term is the
Fourier transform of the nonlinear contribution L, given in Eq. (28). One can see
that the nonlinearity eliminates the small frequencies (S(w) = 0 for |w| <« 7;'). The
stationary spectrum has the same expression for intermittent and global transitions.
There is however a significant difference due to the correlation time 7. which is
much smaller for the global transition than for the intermittent one. Consequently,
a large range of frequencies around w = 0 is eliminated in the spectrum of the
global transition. This means that only the components of the Lagrangian velocity
with large frequencies remain and thus the displacements in the stationary state
are all small. In the intermittent state, much smaller frequency components of the
Lagrangian velocity are present determining large displacements (between the two

metastable points).

B Conclusions

The dynamics of the transitions in plasma turbulence based on the nonlinear Langevin
equation (1) was studied. It was shown that two different types of transitions can
be generated by the noise from the fundamental metastable state to the upper state:
intermittent and giobal transitions.

In the intermittent transition the evolution of the system in each realization
consists of a random sequence of trapping intervals in the fundamental or in the
excited state separated by fast transitions. The probability distribution function
of the stochastic function of time z(t) is non-Gaussian during the evolution and
in the stationary state. The dispersion of the trajectories increases with the noise
amplitude and has weak dependence on the details in the shape of the nonlinear
term (on the parameter a). The correlation time of the Lagrangian rate of variation
of z(t) shows that the intermittent transitions appear for a limited interval of the
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values of the noise amplitude. At weak noise the system remains in the fundamental
state and at too large noise amplitude the evolution is random and metastable states
do not exist.

The global transitions lead to stable excited states and the evolution in most
of the realizations consists of a single transition and permanent trapping of the
system around the upper state. Such transitions strongly depend on the nonlinear
deterministic term (on @). They appear when the upper point is more stable than the
lower one and for the noise amplitude smaller than a threshold value (which depend
on a). The noise amplitude (below this value) does not influence the stationary state
but it determines the characteristic transition time. The latter is large compared to
the time of reaching the stationary state in intermittent transitions and increases
rapidly to infinity when R — 0. The statistical properties of the global transition
are different of those of the intermittent transition. The probability density shows
a strong non-Gaussian transitory state with large fluctuations (when the average is
around the unstable point, X (¢) = a) but at latter times the fluctuation amplitude
strongly decays and the distribution becomes Gaussian. The correlation time of the
Lagrangian rate of variation of x(t) increases very strongly around the unstable point
and then it decays at a much smaller value determined by the stability parameter of
the upper state. In the stationary frequency spectrum a large range of frequencies
around w = 0 is eliminated by the action of the nonlinear term showing that large
displacements (backward transitions) have very small probabilities and the system
is stable in the excited state.
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