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A novel turbulence trigger for neoclassical tearing modes in tokamaks
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Abstract

Stochastic trigger by microturbulence for neoclassical tearing mode (NTM) is studied.
NTM induces topological change of magnetic structure and has subcritical nature.
Transition rate of, probability density function for and statistically-averaged amplitude of
NTM are obtained. Boundary in the phase diagram is determined as the statistical long
time average of the transition conditions. NTM can be excited by crossing this boundary
even in the absence of other global instabilities.

Keywords: neoclassical tearing mode, statistical theory, stochastic excitation, turbulent
noise, probability density function, phase boundary, transition rate, nonlinear instability,
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Magnetized plasmas are non-uniform and far from thermal equilibrium.
Consequently, various kinds of bifurcations can appear!-2) producing an abrupt change of
the topological structure of the magnetic field. In tokamak and in other laboratory
plasmas, such a process appears as a magnetohydrodynamic (MHD) instability named
tearing mode.34 It is associated with magnetic field reconnection. Global perturbations
with wave numbers perpendicular to the magnetic field are unstable and, due to the
plasma resistivity, they can develop radial components that break the field lines. An
important problem is now investigated: the possibility of appearing such magnetic surface
breaking in ideally stable, low resistivity plasmas.

One possible mechanism is based on a nonlinear instability, the neoclassical
tearing mode (NTM).3>-7) This is a subcritically excited tearing mode under the influence
of the pressure gradient. The experiments have shown that such perturbations with finite
amplitude become unstable even for parameters corresponding to linear stability8-1%} and
that they can be triggered by other global MHD instability (as the sawtooth).10.11) But, in
some experiments, the excitation of this instability was produced in the absence of the
above trigger.1!12) The NTM can be stochastically triggered in these conditions. The
onset conditions of the NTM are not yet clarified, although the suppression of this
instability is necessary for stationary operation of high temperature plasma.!? The rate of
stochastic transition was determined at thermal equilibrium by evaluating the potential
barrier crossing induced by thermal fluctuations.'#) Tt is expected that in nonequilibrium
and turbulent plasmas the transition is triggered by the turbulence but there is no
theoretical prediction for the excitation rate of the NTM.

In this article, we formulate a Langevin equation for NTM as a stochastic equation
in the presence of noise source induced by background fluctvations. The statistical
properties of NTM amplitude, such as the probability density function (PDF), the rate of
excitation, the average of amplitude, the boundary in the phase diagram and its
expression, are derived. We show that the stochastic excitation of NTM is possible to
occur without seed island if B, > B+ holds. (B, is the plasma pressure normalized to
the poloidal magnetic field pressure.) We note that this mechanism is rather general. For
instance, in fluid dynamics it explains the transition of a linearly stable systems in a
laminar state (flow in a pipe) to a self-sustained turbulent state.!S) The transition is
tniggered by random disturbances such as inlet conditions.

The nonlinear instability of the NTM has been discussed, and a dynamical
~ equation of Ohm's law was formulated for the evolution of the amplitude as a
deterministic variable

%%A+A[A]A=O, (1)




where A =A. g2R/Brlq’ is the normalized amplitude of the (m, n] -Fourier component
of helical vector potential perturbation A at the mode rational surface, r=r,,and — A
is the nonlinear growth rate (— A >0 if unstable). The safety factor g = rB/B,R asa
topological index satisfies the condition q[r_,.] =m/n atr=r,. B isthe main magnetic
field strength, 7 and R are minor and major radii of torus, 4" =dg/dr , and m and n are

poloidal and toroidal mode numbers, respectively. The time is normalized to poloidal
Alfven transit time, T,, = gR/v, (v, : Alfven velocity) and the length to r; . The magnetic

island width w , being normalized to r, , is expressed as w = A" | The coefficient 1) is
the inverse of resistive diffusion time =145 'r; 2t Ap=S I where M, stands for a
parallel resistivity, and S is the Lundquist number.

An explicit form of the growth rate is given by

— A A-MZ_
~A=2AA Wiedl TWAA 2

within the neoclassical transport theory, where the first, second and third terms of RHS

stand for the effects of current density gradient, polarization drift and bootstrap current,
respectively. The term W, represents the cut-off due to the banana orbit effect,!®) and we

choose a simple model, W, =pgr;2 . W, represents the cut-off determined by the cross-
field energy transport.!” C,| = 2a, B £2pgr; zLﬁL;,z and C» =2a, 8 e'2L qL;,] for
the limit of small collisions,’- 18!% p, is the banana width, L, and L, are the gradient
scale lengths of safety factor and pressure, respectively, € is the inverse aspect ratio and
dy, 1s a numerical constant. The parameter A’ controls the linear stability of tearing
mode when induced by the current density gradient.3-4) When the amplitude A takes
finite values, — A can be positive even if A’ <0, because C, and C, canbe positive.
Namely, the mode is nonlinearly unstable while it i§ linearly stable. Figure 1 illustrates
the growth rate as a function of A for the case of A <0 . The marginal stability
condition A =0 can have three solutions at A=0, A=A, andA=A, (A, <A4,). 4,
and A are the threshold and saturation amplitudes, respectively. Near the linear stability
boundary, A" = 0, they can be estimated as A,,= C, C;' and A, = C¥ an’?

The helical perturbation is subject to a random excitation from the micro turbulent
noise. The level of noise is evaluated from the Lagrangian nonlinearity terms, and a

stochastic equation is obtained instead of the deterministic equation (1)
52 Vre 82
Ba"t A+NAA=s ?[% AA] =50 Ay) ~ s T;% aT[Ah’ AAhh : 3)

where s=aq’/q and 9 is the collisionless skin depth c/w, . O, is the stream function

and A, is the vector potential of the microscopic turbulence.2®) The suffix h stands for
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Fig.1 Normalized growth rate multiplied by amplitude, YA = AA/C, | is shown by dashed
line. Zeros indicate the nonlinear marginal stability conditions for the deterministic model.

Normalized nonlinear potential S(A) /TC,W, is shown by the solid line. (Parameters are:
W, =W, C2C,W,=1 and AW]?C,=-0.0922 )

the high mode numbers. The Poisson bracket [u, U.] is defined as (Vu X Vv)-b , and
b=B/B [ . ] ; indicates the Fourier component that matches to the test macro mode,
and & is the wave number for the macro mode.

We employ the following hierarchical approach. The microscopic turbulence has
much shorter autocorrelation time T, than that of the global perturbation. They are

statistically independent, and the adiabatic approximation is taken. It is induced by

plasma pressure gradient being in the nonlinearly marginal state.2!) The saturation levels
¢, and A, can depend on A . We do not consider such dependence here, but it can be

introduced in the model.

The RHS of Eq.(3) has two components. One is a coherent part, which has a
fixed phase with respect to global perturbation A . The coherent part is renormalized by

introducing turbulence-driven transport coefficients such as turbulent resistivity and
viscosity. They would modify M , C; and C, .19 We note that the sign of C, and C,

can be changed by this renormalization. The electric induction by microfluctuations has
been studied in conjunction with dynamo. The ¢—, B— or v~ dynamo have been

known.!) In this article, however, we use Eq.(2) as a starting assumption and leave the
effects of turbulence on A for future studies.

The other is an incoherent part. The relative phase to A changes rapidly in time,
and contributes to the noise term, being approximated to be random, i.e., 3(’ ) =g “{f ) ,
where g is the magnitude and w(t) indicates white-noise. 3(t) has a quadratic form of

¢, and A, , and the local instantancous amplitude of 3(1) is given as kk; C A} ; where

numerical constant C=—s f(52r§2 +k, 2) + 5/ Bm,-/meﬁzr; 2 with f=0,/A, is

_4_.




introduced. Estimations are made as AA, = — kf,A » and | VA, | =k,A, for microscopic
turbulence, and as | VA | =k A for macro test mode. k, is the typical mode number of

the micro fluctuations, the inverse of which is separated from the coherence length of
macro mode. (For a case of ballooning mode turbulence in tokamaks, f is evaluated in

ref.21 and is of the order unity.) The statistical average \/? is related to l 5 | by the law
of large numbers. Within the coherent area of global test mode, fk~ ' a large number
(N =k;€k™" ) of independent kicks contribute to 3(t) . {? : radial scale length of the
macro mode. N is evaluated by noting a quasi-two-dimensional feature of fluctuations.)
The average V&® isN" times smaller than the instantaneous local value of | S | . The

magnitude ¢ is evaluated as
g2 =k k207 | 3 1, = 'k} C? AT, )

4
having a dependence like gle (9 r‘,-,fBe) Ty . Experimental magnitude is explained later.

The stochastic equation of NTM amplitude A is rewritten as
d -
SA+NAA=g 2], (5)

and A is now a stochastic variable. The statistical property of the NTM amplitude 4 is

studied. It is worthwhile to compare it with Kramers' idea for thermal equilibrium.!4) In
Eq.(5), there is a nonlinear force but no Einstein drag term common in Brownian theory;

the fluctuations from turbulence are decidedly non thermal unlike standard Langevin
theory. The Fokker-Planck equation of P(A) is deduced from Eq. (5) as

2 py a(nA+;ga?4 )PzO. ©)

The stationary solution Peq(A) is expressed as P. (A) oc g~ texp {— S(A)) by use of a
nonlinear dissipation function as S(A J‘ 2n A A’] ~2A’dA’ which is proportional to

the entropy production rate near the thermal equilibrium.!’ Using Egs.(2) and (4), one
has

2
S(a)=T —%A’A3’2+%Clln(1+%)—C2(A—Wzlﬂ(l+i)) . (D
I



with =280k~ 3k; 4c-? Ay 4‘550! . The coefficient I shows a characteristic value of

the ratio between the dissipation for crossing over the barrier and excitation by turbulence
noise. Its magnitude and dependence are discussed at the end of this article. The PDF is

2 \-TCy2 —TC,W
givenasP(A)oceXp F4A'AW+TCA l+-4-2~ 1+-4 22_ThePDFhas
& 3 W, W,

a stretched non-Gaussian exponential form with power-law dependence. The exponential
term is determined by the damping by current density gradient and the drive by bootstrap

current. The power-law decay is mainly due to the polarization drift effect. The
minimum of S(A] , i.e., zero of A, predicts the peak of PDF and the probable value of A .

For the case of a bistable state, the nonlinear potential S{4) is shown by solid
curve in Fig.1, which has two minima at A =0 and A = A , separated by a local
maximum at A=A, . Statistical transitions take place between these solutions. The

dominant (i.e., the most probable) state is determined by the balance between the
transition for excitation (from A =0 to A = A, ) and the decay (from A=A t0A=0).

The long time average, i.e., the statistical average <A) , 1s calculated from the PDF.

Calculating a flux of probability density from Fokker-Planck equation (6),1-22)
the frequencies of excitation and decay are expressed as

rex

Nv2ohm exp( (Am)) , (8a)

\/A A
Fiee= T3 exp (5[4 ) - 5[4 ) (8b)
respectively, where the time rates A, ; are givenas A, (=24 |8A/3A | atA=A, and
A=A, . P,[A) hasapeak at A=0 . A noise level where the NTM is not excited is
evaluated from a local average of A near A =0 | being given as (A 0) ~ 0.5(— I"A')_ %

and yields Ay = A((A 0)) . Note that Ag , ¢ are normalized, being of the order unity.
The long time average is given as (A> = (A Fox + (Ag)rdec)(rcx + rdcc)— ! . <A)
approaches to A if 7oy > ryo. holds. It reduces to (A 0> , If Fex <T4ec holds. The phase
boundary for the statistical average is determined by the condition 7y = rye. . Apart from
a logarithmic dependence, the condition is given by S(AS) =0 . Figure 2 shows the
slatistical average <A> , together with threshold and saturation amplitudes (A, and Ay ),
as a function of i, . (A> drastically changes across the condition B, =B+ , a formula

of which is derived as follows. From Eq.(7), the condition S(A s) =0 is rewritten as

—% NAP=CA - 1 5 Cyln (A§W]‘2] where A >> W, W, is assumed. Using the

relation A~ C%/ 4A"? | we have
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Fig.2 Amplitude of NTM as a function of the plasma pressure. Solid line shows the
statistical average {(A) . A thin dotted line indicates the threshold A, and saturation

amplitude A for the deterministic model. Normalized B,y isC; f( A WUZ)

2a, "L, r_,lprp[— A'))Bp (Parameters are: W, =W, ,C,.2C,W, =1 ,TC,W, =5 )

‘= A \[12 32 ¢y "Z(m (3(?,/2(?2W,))_”2 : 9)

where dominant terms are retained. The boundary A’, is negative and of the order unity.
-122

Equation (9) is rewritten as A"=—,/eL/ 3L,,(1n (3LqI2Lp)) aps 1Py By by
substituting Cy and C; . It is reformulated in a form of a critical pressure as

1”2
Bpy=B,+=/3LJeL, (ln (3Lq/2Lp)) ag,! (— A’) pers ! .

An example of the transition frequency is estimated in the following. Near the
linear stability condition, A" = 0 , one has

S(A)=(C\Wi? - CoWs Ja%2 + WAV - (€ Wit + CW5P A% + - . The
potential barrier S(A m) is given by the maximum. For the case of W, > W, , one has a
simple estimate S(Am) = (I -2C,W¥C |W2)C /4 ~ C1/4 | by keeping the first order
correction of W /W, . Substituting it into Eq.(8a), one gets the excitation rate of NTM as

(10)

ex =

el rg)
0 exp 2|

The parameter I' is the key for the transition frequency. For L-mode plasmas,

when one employs the current-diffusive ballooning mode as micro mode, one has



Ay=10s (12(8/1‘5)2 , 9, =10 (13/2(8/."5)2 and T,. ~ 0.~ 12 where a= — qudB/dr is

the normalized pressure gradient.23) Substituting them into the formula of ' below
-2
Eq.(7), one has I' = 20k (— or”z(l + u) +5/Pm;/ m(,) 107454 - 112 571 (Slrs)_g ,

The argument I" C}/4 in Eq.(10) may be simplified as
47 la, £17? LEIL'I", zs‘z(mflﬁmi) k3104 o 112 BpS~ '02r86=% for Bmgm,>1 . This
result shows that when the resistivity becomes so low as to satisfy the condition
$=10"4 (mJBm ,-) 0k a2 p2r86~®  the exponential term becomes of the order of
unity, and the transition frequency of the order of | is expected. When the plasma
pressure gradient becomes large, a strong turbulence (M-mode) has been predicted.2!, 24)
In this case, A, is enhanced by the factor of (OtB m ;/me) "2 One has
T Cy/4 =47 aye" L2125 m /Bm,)’ k2104 01528 5' 0258 % . The
condition of frequent transitions, I' C/4 ~ 1 | is given as
S= 10_4.(m‘,/l3m JS €k 30152 52r68~8 | This condition might be easily satisfied in a
high temperature experiment of modern tokamaks.

In summary, we have developed a statistical theory for the excitation of nonlinear
NTM. The stochastic equation is formulated including the subcritical excitation
mechanism of NTM. The rate of transition and statistical average of amplitude are
derived, and the phase boundary in plasma parameter space, [.’)p » or A« , is obtained.

Linearly stable systems are prone to nonlinear instability if S(A 5) <0 holds. The formula

is applied to either cases of micro fluctuations or of other random MHD activities.
Experimental database for the presence of NTM must be compared with the result of
phase boundary derived from the statistical theory. The rate of stochastic transition
depends on the microfluctuation level and is evaluated for example cases. However, the
boundary is given by S(AS) =0 and is insensitive to the magnitude of micro fluctuations.
It is plausible that the stochastic transition without the trigger by large MHD events (e.g.,
sawtooth or fish-bone instabilities) can be observed in high temperature tokamak plasmas
if the condition B, > P« is satisfied. This explains observations in refs.11 and 12.
Equation (8) is a generalization of the result of thermal equilibrium, i.e., Eq.(476)
of ref.14 that recovers Arrhenius’ law, to the case of the turbulence trigger. The
turbulence amplitude is included in the denominator of S(A) that appears in exponential
term of 7y and rg.c . Owing to the turbulence trigger, the transition probability is greatly
enhanced and the variation of the average (A> across Bp = [3], + becomes less sharp. The

energy of microfluctuations is estimated in tokamak turbulence and is about 52!‘}-53
times larger than that in thermal equilibrium (§23 of ref.1). In the latter case, I is larger
by a factor 8*r2A;° and the transition is very difficult to occur.




This article does not give complete picture for the trigger of NTM but provides a
theoretical framework for future studies. There are a lot of effects and contributions
which could be incorporated in the nonlinear statistical theory. (Examples include: The
coherent part of RHS of Eq.(3), like dynamo term and other nonlinear drags, can
influence A so as to modify |3p « ; Excitation of large scale island, in turn, may suppress
the transport as in the case of Snakes.2%; Semi-micro structures could coexist as
reviewed in ref.1.) The analytic formula (9) and (10) could be verified by direct solution
of Eq.(5) by Monte Carlo simulation. These are left for future studies and will give
quantitative results.

Authors acknowledge Dr. Y. Miura for useful discussions and thank referees,
Prof. M. Vlad and Prof. F. Spineanu for improving the manuscript. This work is partly
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