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We propose a simple polynomial basis-set that is easily extendable to any desired higher-order
accuracy. This method is based on the Constrained Interpolation Profile (CIP) method and the
profile is chosen so that the subgrid scale solution approaches the real solution by the constraints from
the spatial derivative of the original equation. Thus the solution even on the subgrid scale becomes
consistent with the taster equation. By increasing the order of the polynomial, this solution quickly
converges. 3rd and 5th order polynomials are tested on the one-dimensional Schrddinger equation
and are proved to give solutions a few orders of magnitude higher in accuracy than conventional

methods for lower-lying eigenstates.
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There is a growing interest in computational design
of material properties, catalysis, medical drugs, and so
on. For this purpose, we need accurate solutions of the
excited states of atoms and their time dependent solu-
tions. Much pioneering work have been performed with
this goal in mind [1-4].

The purpose of this paper is to establish a systematic
and simple method to get solutions with any desired ac-
curacy by the use of the Constrained Interpolation Pro-
file {CIP) method. The CIP method was first proposed
by one of the authors for the solution of hyperbolic-
type equations [5-8]. In its original form, it used a cu-
bic polynemial to describe the subgrid-scale profile. All
the coefficients of the polynomial are determined so that
the piece-wise polynomial can reproduce a local analyt-
ical solution within a grid cell by the constraints from
the spatial derivatives of the original equation. Result-
ingly, the CIP method can accurately describe the solu-
tion of a propagating wave having a wavelength of only
two grid cells, which is beyond the capability of exist-
ing schemes. In this paper, we apply this method to the
one-dimensional Schrodinger equation and obtain very
accurate solutions which are a few orders of magnitude
better than conventional methods for lower-lying eigen-
states. It is important to note that the scheme is easily
extended to higher order polynomials or to other func-
tions with any desired accuracy by simply adopting the
higher-order derivatives of the original equations as con-
straints to generate a self-consistent subgrid profile.

We need a basis set where it is easy to define val-
ues and derivatives of an arbitrary function f{z) at the
grid points. Therefore, we assume that the functions in
the domain of R! can be approximated by the CIP-basis
set of degree K method {CIP-BS¥), where K refers to
the order of the derivatives we retain in the calculation,
through the expression

K
) =305 1% (), (1)

1=1 k=0

where f,;(k) is the k-th coefficient at the grid point z;,
the summation on the index i is taken over all grid
points, and the basis functions ¢y ;(z) on the local sup-
port [#i—y, ;1] are expressed in the form

Pii(z) = (0 —xiy) — 6(z — 7))k .- (T}
+ (0(r — i) — 0(z — Tip 1 )dr st (2), (2)

where @(z)} is the Heaviside step function, and
Pi,i— (2}, P4+ (x) are polynomials of degree (2K +1) de-
termined from the constraints at the grid points
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Did’k‘id-(-ri‘#l) =0 for k=01 K,
respectively, where D; is the derivative operator in z,
and D¢ = 1.

From this definition, we can verify that the basis func-
tions for the CIP-BS” method are

$oi-(z) =1+ T/Ari. ¢o,i4(2) = 1 —T/Azy, (5)

for the CIP-BS! method are

oio(x) = 1-3z%/Az? —27%/Ax? |

(,750‘!'_’_(.’13) = 1- STz/AIH_ + 2$3/AI1+

¢r: (x) = T4 28 /Ax,o + /At

bra4(x) = T 28/ Ax + T3/ Axl . (6)

and for the CIP-BS? method are

dos (2) = 1+ 108%/A23 + 155" /Az?. +62°/Ax)_,
bois(x) = 1 102° /A2, + 1574 /Az!, — 62°/Axf,,
$1i_(z) = T—63°/Az> —8F/Azd - 37°/Axl
Prie{z) = F— 68 /Axl +8T/Ax}, - 3T/ Az,
G- (z) = T2/2+ 3T /247,

+ 3F/2027 4 3 /2A22
¢2,i+($) = f2/2*3$3/2AI,+

+ 3z'/282%, —T° /2040, (M)

where T =r—x,, An;_ =z, —x;_1, and Az, = Tip1 —
z;. In particular, for a uniform grid system (Az;_ =
Azx:y = Ar) the basis function satisfies the transiational
relation ¢r :(z) = drin(T — Tn)

In each grid interval we can see that the function f(x)
is approximated by linear, cubic, and quintic polynomi-
als for the CIP-BS? -BS* -BS? method, respectively. For
example, the interpolating function in [r,,z;4,] for the
CIP-BS! method is written by the Hermite type interpo-
lation as f(z) = co + o1 + 22 + 3F°, where ¢y = f;,

= fis e2= 3(fun = F/BP® = (2f; + fiy )/ Ba, ez =
2(f1 Jor ) /AT 4 (f{+ f101)/ 8%, and Az = 2401 — 3
The coefficients cyey, ¢z, ¢y are the same with those de-
termined with the constraints: f(2;) = fi. f{(z) =
fiv flxee) = firn, £ za) = f;H. This is rewrit-
ten in the form of Eq.(1) as f(z) = fidoir + fldra+ +
fir1dois1- + Fli1¢1iw1- in the interval [z;, z41]. Via
the same procedure, we can verify that the CIP-BS?
method gives coefficients equivalent to the ones used in
the Interpolation Differential Operator (IDO) method (9],
which is one of the extensions of the CIP method. This
means that the definition the CIP-BS method through
Eq.(1) is equivalent to the CIP representation.

The first derivative of the basis function is expressed
as

Doty () = (8(z —x0_1) — 6(z — ))dn. ()
+ (8{c —2)) — d{x — T:+1))Cf’kz+(ﬂ")
+ (Blz—x01) — (I—Ia})fﬁm (z)
+ {#z—x,) —O(r— TL+1))®F€ o)

= (B(z ~ zi1) — Bz — 2))05 ()
+ (B = ) — 0w = i) @) (8)

where 6(z) is the Dirac delta function. Here. we have
used the fact ¢p i+ (2)d(x ~ 2441} = 0 due to the relation
xé{z) = 0, and Pp ;- (z:) = ¢p.14(x:). Similarly, we can
obtain the {-th order derivatives of ¢y ;{z) for | < K +1
as

Digeidz) = (B{z - 2,01) — 8z - 2))p ()
+ (0 — ) — 6z — 1)) (&) (9)

Although the basis functions are constructed by using
distribution functions, the functions represented in the
CIP-BS¥ method belong to the CF class.

It is easily found that the k-th spatial derivative of
f(z) at the grid point ; equals the coeflicient fi(k), i.e
DEf(@)lews, = g f(@:) = £ 1f f(z) = 0 in Eq.(1),
we can deduce that all the coefficients fi(k) are zero, and
that the basis functions are linearly independent. The
function f(r) can also be written on this basis set as
f = (Fy, b2 ), where £ = (£, 9, £5).

To better understand the procedure we use to solve
the differential equation that will be given below, we re-
view the process of the CIP method in comparison with
the CIP-BS! method. If the equation to be solved has
a form like 8f/8t = L[f], where L is the spatial op-
erator. then the time evolution of f at the grid point
is given by this equation. The CIP method uses the
derivative of this equation, 8f'/8t = dL/dxz, to deter-
mine the time evolution of f' at the grid point. Thus
the profile inside the grid cell is described by flz) =
fido,ir + fidris + fiv190.i01- + fii11a41- by using 4
constraints f, f’ at the neighboring two grid points. In-
stead of using such an equation at each local grid point,
we here use the integrated equation over the grid cell.
Therefore, integration of the equation multiplied by ¢ ;
picks up the contribution from f and corresponds to
Of /6t = L[f] while the integration with ¢, ; corresponds
to 8f' /8t = dL/dx as in the CIP method. The prediction
of the value and derivative based on the original equation
is thus realized by the following inner product.

<glf >= ]R o(@)f(x)dz = (g,S6),  (10)

where S is a positive-definite matrix with the element
Sprit pi =< Py o 1@k >, Since Sy i, is non-zero only
fori =i —1,i,i +1, S is a banded diagonal matrix with
bandwidth 3(K + 1). The matrix representation of an
analytic function u(z) also has the same structure as the
matrix §, and the matrix elements < @, |uldy, > can
be analytically calculated. The matrix elements of the
differential operator < ¢, »|D% ¢k > can be defined
properly for | < K + 1 with the use of Eq.(9), and by
taking a partial integral the following relation holds

< ¢y oD > = (—1

ki

Y™ < DGy | D bk >



form = 0,1.--- L (11)

It is worth noting that we can extend the above definition
to ! = K+2. This can be seen by directly taking the (K +
2}-th derivative of ¢, ;{z) and considering that ¢ (x}
is zero at T = z;_1,%;41 and continuous at x = x;. This
means that even for K = 0, i.e. the CIP-BS” method,
the matrix elements of second order derivatives are well
defined. To clarify the role of the inner product, we list
the following examples calculated in the CIP-BS® basis
set.

1 2 1
< goilflz) > = (Efi—l + gfl + gfi+1)AI
. 1 1
< ¢o.i|D:|f(x) > = (_gfifl + §fé+1)
< ol D2 f() > = {fir = 2fi + fin)/Bx (12)
These simple illustrations indicate that taking the inner
products is a kind of procedure to extract approximated
local properties of the function.

Writing the wave function as {z,t) =
YN K o™ $)deilz), where a)(t) is a com-
plex number, the one-dimensional time dependecnt
Schridinger equation in an external potential V{x, t)

-6"0(1‘:t) o 1 2
L4 at - 2Tan¢(rat) + V(T', t)W(I' t) (13)

is reduced to the ordinary differential equation
d
15 alt) = (Ho + Hi(thalt), (14)

where atomic units (i = e = m, = 1) are used,
and the matrix S, Hy, and H/(t) are banded diagonal
matrices with bandwidth 3(K + 1}. The matrix ele-
ments of Hy and Hj(t) are — g < ¢ |D2|¢x,: > and
< Py ¢ |V{2,t}|dk; >. respectively. In general, this pro-

cedure is used to form equations for the coefficients fi(k)
from the the ordinary and partial differential equations
for f(z). Even if nonlinear terms are involved, for exam-
ple H; = ep{x,t)?, the structure of the matrices is same
as one for the linear equation except that the coefficients
ffk) would be included.

In the case of the stationary potential, the energy spec-
trum is obtained by setting agk)(t) = exp(fi)\t)afk) and
solving the generalized eigenvalue equation

(H0+H;)a: ASa. (15)

We have applied the proposed idea to the Schrodinger
equation to demonstrate it’s efficiency and accuracy. For
simplicity we consider the one-dimensional eigenvalue
problem Eq.(15} with a uniform grid. The extension to
multidimensional probiems or non-uniform grid systems
is straightforward in a manner similar to the CIP method
[7]. Furthermore, it is easy to solve the time-dependent
Schrodinger equation Eq.{14) by means of either an ex-
plicit or implicit time propagation scheme [10].

For the first case, we consider eigenvalue spectrum for
the Schrddinger equation for the free electron in a box.
The results are shown in Tables I and IT, where the box
size is taken to be 1.0 a.u and the number of grids N
is 50. As seen from the error, the results by the CIP-
BS? method, which includes second derivatives, are 10°
to 10° times more accurate than those by the CIP-BS!
method. The zere derivative boundary condition at grid
point N is built in by setting ek, =0 (i.e., ¢ (ry) = 0).
In the same way setting the boundary to zero is done by
setting a% = 0 (i.e. ©{0} = D). Since the derivatives
are included in the state vector a, incorporation of the
boundary conditions can be achieved keeping a one-to-
one correspondence to the analytical ones. Periodic or
other types of boundary conditions can also be treated
in the same manner. Although we use basis functions
that do not satisfy boundary conditions, it is not nec-
essary to add a Bloch operator to the Hamiltonian like
the discrete variable representation (DVR) method [3].
The numerical results in Tables T and 11 indicate good
agreement, with the exact values.

For the second case, we consider the eigenvalue spec-
trum for the radial Schrédinger equation of the hydrogen
atom. The system size is set to 1000.0 a.u. in order
to obtain sufficient precision for states with a high prin-
cipal quantum number n. In Table III we present the
results of energy levels for s—, p—, and d—orbitals. Here
the grid interval is 1.0 a.u. and the boundary condition
@(0) = p(ry) = 0 is imposed for this eigenvalue problem.
We can see that the cigenvectors simultanecusly contain
derivatives consistent with the eigenfunctions from sam-
ples of the calculated orbitals shown in Figure 1. The
results show excellent agreement with the analytical spec-
trum. It should be emphasized that the singularities due
to the kinetic operator (%) and the Coulomb potential
(%) at r = 0 are eliminated in the Hamiltonian by taking
the inner product.

For the third case, we consider the eigenvalue spec-
trum for the Schrédinger equation in the Morse poten-
tial, V(z) = D[(e”?*® — 2e” ") + 1}, which excellently
describes the vibrations of a two-atom molecule. Using
the variable z = Z1e~%, where v = (2mD)!/?, the equa-
tion turns out to be a confluent hypergeometric equation
s0 that the complete solution becomes [11]

o(z) = PP {1 M (a,b, 2) + CaU(a,b,2)},  (16)
% +lLa=%5-12

where 8 = (2m(D — E))}Y/%, ¢ = -7
M(a,b, z) and U{a, b, z) are Kummer’s functions, m is the
reduced mass, and F is the energy of the system. For the
bound state, the constant 'y must vanish, the constant
(4 is fixed by the normalization, and the eigenenergy
must be determined from the relation @ = —n, where
n is a non-negative integer which satisfies 0 < E < D.
The results are shown in Table IV. where the parame-
ters are o = 0.9374 au., D = 0.0224 a.u., m = 119406
au, and —0.8 < x < 2.0 (the interval of the system).
These parameters are chosen to compare our results with
those by Braun et al. [1] who used the block-Lanczos



method with the Chebyshev approximation and Wei et
al. [2] who used Lagrange Distributed Approximating
Functionals (LDAFs). The boundary condition for the
wave function is zero at + = —0.8 and r = 2.0 a.u. Our
results are better than those of Braun et al. or Wei et
al. for the lower-lying eigenstates. The high eigenvalues
can be improved by enlarging the system size, and/or
increasing the density of grid points. Although these dis-
positions induce the increase of the number of states, the
computational time does not increase so rapidly due to
the inherent locality of the CIP-BS method (narrower
bandwidth}.

While the CIP method has provided accurate solutions
for various differential equations, especially for hydrody-
namics, the CIP-BS method is more attractive for the
analysis of quantum mechanical processes. The CIP-BS
method, which is the reconstruction of the CIP method
from the view point of the basis function of the Hermite
type interpolating functions, has taken over the two im-
portant properties in the CIP method: (i} Any variable
inside the grid cell is approximated not only by values
but also the derivatives consistent with the governing
equations. (i) Interpolating functions are uniquely de-

termined without problem- or algorithm-specific parame-
ters. The system size and grid intervals are essentially in-
evitable parameters to be adjusted. The CIP-BS method
offers additional advantages as follows: (i} It leads to
banded diagonal matrices, which are easily adapted to a
nurnber of numerical methods developed for large, sparse
linear systems [10], by transforming ordinary and par-
tial differential equations. If the system is linear and
contains only time-independent interactions, all the rel-
evant matrices are constant and the time propagation of
the wave function is carried out in a computationally ef-
ficient way. (ii} The boundary conditions are imposed
with a one-to-one correspondence to the analytical ones.
(iii) It provides a proper mean to relieve numerical diffi-
culties due to singularities, e.g. Coulomb potential. {iv)
Although our basis set is non-orthogonal, it introduces a
close resemblance between quantum mechanics and nu-
merical simulations.
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TABLE I: Relative errors of eigenvalues of the free electron.
The box size=1.0 a.u. and ¥ = 50. The boundary condition
for the wave function is zero at r = 0 a.u., and zero derivative
at r = 1.0 a.u.

no. Analytical CIP-BS! CIP-BS?

1 1.2337005501 8541077 6.75 107 °
2 11.103304951 2.31 10711 1.23 10713
3 30.842513753 492 107 4.07 107
4 60.451326957 368 10°° 1.12 1074
5 99.920744561 1.64 107% 270 1071
6 149.27776657 5.40 1078 9.65 10714
7 208.49539297 1.45 1077 1.01 10713
8 277.58262378 3351077 1.34 10713
9 356.53945899 6.96 1077 4.38 10712
10 445.36589860 1.33 10°° 1.33 10712
11 544.06194261 2.36 107° 3.68 10712
12 652.62759102 3.96 10°° 9.39 1012
13 771.06284384 6.35 10°° 2.22 1071
14 899.36770105 9.78 107° 4.93 107!
15 103.75421627 1.45 107° 1.04 10~

TABLE 1I: Same as Table . The boundary condition for the
wave function is zero at r = 1.0 a.u.

no. Analytical CIP-BS! CIP-BS?

1 4.9348022005 28310712 1.47 1077
2 19.739208802 1.30 10710 1.o4 10713
3 44.413219805 1.46 10~° 2.35 10713
4 78.956835209 8.15 107° 3.26 10~
5 123.37005501 3.07 10°® 2.53 10714
6 177.65287922 9.0310°8 2.26 10714
7 241 80530783 2.24 1077 7.60 1074
8 315.82734083 4891077 2.52 1013
9 399.71897824 9.70 1077 8.19 10~
10 493.48022005 1.78 107° 2.31 10712
11 597.11106627 3.08 107° 6.00 10712
12 710.61151688 5.04 107°¢ 1.46 101
13 833.98157189 7.92 1078 3.33 1071
14 967.22123131 1.20 10°% 7.17 101!
15 111.03304951 1.75 107° 1.47 107*°




TABLE III: Relative errors of energy levels of bound states
of the hydrogen atom with the CIP-BS? method. The sys-
tem size is 1000.0 a.u. and the grid interval is 1.0 a.u. The
boundary condition for the wave function is zero at r = 0 and

r = 1000.0 a.u.

n  Analytical I=0 i=1 =2

1 —5.0000000000 10~ 8.21 167°

2 —1.2500000000 10! 2.77 107° &.16 101!

3 —5.5555555556 1072 7.34 107! 3.10 10~ 1.40 1072
4 —3.1250000000 10-2 3.88 107! 1.48 107! 3.63 1072
5 —2.0000000000 1072 2.37 1071 2.12 107! 6.25 10712
6 —1.3888888889 1072 2.76 107" 3.93107'7 1121071
7 —1.0204081633 102 2.40 10~'* 1.56 1072 1.31 1072
8 —7.8125000000 102 4.09 10712 2.84 1071 1.32 10712
9  —6.1728395062 10~% 3.10 107! 3.19 107" 5.93 1072
10 —5.0000000000 1073 2.17 1072 3.14 107'? 7.90 10™'2
11 —4.1322314050 1072 3.92 1072 6.96 10~"® 6.73 1071
12 —3.4722222222 1073 3.56 10712 2.01 1071 8.85 10712
13 —2.9585798817 1072 3.94 107 '? 262 107" 57510712
14 —2.5510204082 1073 4.23 107" 248 10~ 4.37 10712
15 —2.2222222222 107* 1.11 107" 1.49 107! 5.34 1072
16 —1.9531250000 10~ 9.86 10712 1.09 10711 1.71 10™12
17 —1.7301038062 107% 7.61 107" 2.53 107*% 3.48 107*2

TABLE 1V: Relative errors of energy levels of bound states in the Morse potential with the CTP-BS? method for different grid
numbers N. The boundary condition for the wave function is zero at r = —0.8 and r = 2.0 a.u. a) Braun et al.(Ref [1],N = 128},
b) Wei et al.(Ref.[2],N = 100)

no. Analytical N=T0 N =140 Braun et al.® Wei et al’
1 2.8617197881 107 593 10713 1.73 10718
2 8.5299662358 10~¢ 2.91 10742 4.56 1071 1.18 1078 1.64 1071
3 1.4124621846 103 1.12 1071 2.00 1071 2.13 1078 3.05 10711
4 1.9645686617 1073 3.49 10~ 6.20 10~ 2.55107% 3.57 1071
5 2.5093160551 102 9,15 1071 593 1074 2.80 1078 3.92 1071
6 3.0467043647 1072 2.09 1074° 1.71 10712 2.90 107% 4.28 1074
7 3.5767335905 103 4.31 10710 3.08 10722 3.08 1078 4.20 1074
8 4.0094037325 1072 815 10710 5.79 1018
9 4.6147147907 1072 1.4410°° 9.88 1012
10 5.1226667650 102 2.39 107° 1.61 107
11 5.6232596556 1073 3.79107° 2,49 10712
12 6.1164034624 1077 577 107° 3.71 10712 3.27 1078 4.58 10~ 11
13 6.6023681854 1073 848 10°° 5.34 1072
14 7.0808838246 10—° 1.21 1078 7.47 10712
15 7.5520403800 1073 1.68 10~¢ 1.02 10~
16 8.0158378516 102 2.28 107% 1.37 107t
17 84722762394 1073 3.02 103 1.81 10711 3.21 1078 4.77 1071
21 1.0224438953 1073 7.91 1078 4.45 10711 3.39 1078 2.83 10~
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FIG. 1: The calculated {a) eigen functions and {b) their first
derivatives for the 3d,4d, 5d orbitals of the hydrogen atom.
They are not normalized or interpolated.
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