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Abstract
A program to solve the quantum-mechanical collinear three-body Coulomb problem is described
and illustrated by calculations for a number of representative systems and processes. In the inter-
nal region, the Schrodinger equation is solved in hyperspherical coordinates using the slow/smooth
variable discretization method. In asymptotic regions, the solution is obtained in Jacobi coordi-
nates using the asymptotic package GAILIT from the CPC library. Only bound states and scéttering
processes below the three-body disintegration threshold are considered here; resonances and frag-

mentation processes will be discussed in subsequent parts of this series.

Keywords: three-body Coulomb problém, bound states, scattering matrix,. hyperspherical adiabatic ap-

proach, slow /smooth variable discretization method, discrete variable representation



Contents

1.

IL.

II1.

IV.

VI.

Introduction

Basic equations

A. Description of the system and formulation of the problem
Schrodinger equation in a laboratory frame

Separation of the motion of the center of mass

. Jacobi coordinates

Hyperspherical coordinates

Scaling

Permutation symmetry in the symmetric case

Asymptotic states

- T Qm @m0 oW

Asymptotic boundary conditions

Hyperspherical adiabatic (HSA) approach
A. HSA eigenvalue problem
B. H5A expansion

Slow/smooth variable discretization {SVD) method

‘A SVD eigenvalue problem

B. SVD solution

. Numerical procedure

A. Solution of HSA eigenvalue prdblem
B. Bound state calculations
C. Scattering calculations

1. Internal region

2. Asymptotic regions

3. Matching

D. Structure of the program

ITlustrative calculations

A epe, 0 = + (case A}

o

o =1 o

12
13
15
16
17

19
19
20

22
22
24

25
25
26
27
28
30

32

33

34
35



. epe, o = — (case A)
. pee {case B)

. eeTe, o=+ (case A)
_eete, 0= — (cése A)
. eTee (case B)

. peet (case A)

. epe+. (case B1)

. eetp (case B2}

. i,ud (cése Aj

R 5 B I B o R o =~

VII. Conclusions
Acknow_ledgments

"A. Asymptotic states -
1. Bound-motion part
a. Hydrogenic states
b. Hydrogenic states in a box
2. Free-motion part
- a. Coulomb wave

b. Multichannel Coulomb wave with mulfipole couplings

B. Discrete variable representations (DVR) based on classical orthogonal
i)olynomials (COP) |
1. DVR basis
2. Application of DVR to the solution of a Sturm—Liouxf.ille problem
3. Application of DVR in the SVD method ‘
a. Kinétic matrix for bound states
b. Kinetic matrix for scattering in the ﬁrst.sector
¢. Kinetic matrix for scattering in further sectors

d. Weight matrix

References

36

37
38

39

40

41

43

44

45

47
47

48
48
48

. 49
- 51

al
52

53 -
.93

56
60
60
60
61
62

64



I. INTRODUCTION

It is well known that the two-body Coulomb problem (the theory of hydrogen-liké atoms)
allows a complete analytical solution. It will not be an exaggeration to say that this solu-
tion provides a foundation for the whole field of atomic physics. The three-body Coulomb
problem (the theory of two-electron atoms, one-electron diatomic molecules, and more ex-
otic systems which apart from nuclei and electrons include also positrons, muons and other
elementary particles) is the next problem in terms of the number of particles involved. It is
much richer in contents, in fact it is the simplest (but far nontrivial) realistic model which
embraces all types of phenomena (bound states, resonances, elastic scattering, excitation,
rearrangement, and fragmentation processes) considered in the theory of atomic and molec-
ular collisions. This problem is not solvable analytically, but it is still simple enough to be
studied by eiact (analytical and numerical} methods, i.e., beyond any approximations. The
results of such studies, besides being interesting in themselves, may shed a new light on the
behavior of more complex systems.

This work is a part of a larger project whose goal is to comprehend major mechanisms gov-
erning the quantum dynamics of three-body Coulomb systems via the synergism of asymp-
totic methods and modern computer resources and computational technologies. Here we
consider the three-body Coulomb problem in one-dimensional world — the so-called collinear
three-body Coulomb problem. This simplified problem allows a relatively cheap in terms of
computational expenses required and very accurate numerical solution and at the same time
preserves basic features that make the dynamics of the full-scale three-dimensional three-
body Coulomb problem so nontrivial, thus presenting an excellent mode] for studying the
dynamics. In this work we describe a program CTBC which enables one to solve the collinear
three-body Coulomb problem numerically and illustrate its application by calculations for
a number of representative systems and processes. Such quantitative analyéis is essential as
a source of information using which a qualitative understanding will hopefully be developed
in future studies.

"This work is written with the intention to make it self-contained and understandable to
a student. All necessary technical details are given in the main text or in appendices. We
hope it will be useful for students who wish to continue our efforts as an introduction into

the field, but also for all interested physicists who wish to use program CTBC.



II. BASIC EQUATIONS
A, Description of the system and formulation of the problem

We consider a system of three particles restricted to move along a straight line and
interacting via the Coulomb forces. It is assumed that particles cannot penetrate through
each other in collisions, so they preserve their order on the line. In fact, this is not an
assumption but a consequence of the dimension of the problem; we shall return to this
point in the discussion of bdunda,'ry conditions. Particles are enumerated and will be called
by their numbers i = 1,2,3, and pairs of particles will be called by the number of the
remaining particle. It is more convenient to have natural order of pairs rather than of
particles, therefore particles are numbered as shown in Fig. 1a. Then only pairs 1 and 2 can
be formed when the system disintegrates into a free particle and a bound pair. Particles are

assumed to be structureless and completely characterized by their masses m; and charges e;;

case A

@ —O ®
case B1

O @ ®
case B2

O o @

FIG. 1: Three particles on a line. (a) The convention for their numbers; this order does not change
during the motion. (b) Three physically different variants of their relative position; open circles —
the oppositely charged particle, solid circles — similarly charged particles, the difference in their

size symbolizes a difference between the particles.



two particles with equal masses and charges will be treated as identical. We shall consider
only the case when one of the particles is charged oppositely to the others. Then two of
three interparticle interactions are attractive and one is repulsive, pairs of particles can form
bound states, and there is a rich variety of scattering processes that can occur in the system.
The other possibility, i.e., when all three particles are charged similarly, is of less interest
from the physical viewpoint. By convention we assume that e;e; < 0, i.e., the interaction in
pair 1 is attractive. Then there are two possibilities: either e;e3 < 0 or e;e3 > 0, which will
be referred to as cases A and B, respectively. In case A, the oppositely charged particle has
number 3, see Fig. 1b. Interchanging similarly charged particles 1 and 2 in this case does not
lead to a new physical situation, because it can be compensated by changing the direction
of the variation of a coordinate on the line. So the way of numbering similarly charged
particles in the case A is a matter of convention which will be specified later. Case A under
an additional condition that particles 1 and 2 are identical will be called the symmetric
case. In case B, the oppositely charged particle has number 2. Now interchanging similarly
charged particles 3 and 1 does lead to a new physical situation, if these particles are not
identical. Accordingly, we shall distinguish two subcases, Bl and B2, illustrated in Fig. 1b;
their formal definition will also be given later. Cases A, B1, and B2 exhaust all physically
different variants of the relative position of three given particles on the line.

Considering evolution of this system in time, its initial and final states can be classified
by the number of fragments. There are three types of states: (i) one fragment, i.e., bound
states of the whole system, (ii) two fragments, i.e., a free particle and a bound pair, and
(iii) three fragments, i.e., three free particles. In case A, the system can disintegrate into
two fragments in two ways, (23) + 1 and 2 + (31}, which will be called arrangements 1 and
2, respectively, while in case B such disintegration may occur only in the arrangement 1.
The same classification applies to initial and final states of scattering processes in time-
independent formulation which will be used in this work. Thus, depending on its energy,
the system can be found in one of the following (bound or scattering) stationary states:

in both cases A and B

(231) — bound (ground and excited) states, (1a)

(231) — resonance (complex energy) states, (1b)



(23); +1—(23);+1 — elastic scattering and excitation in the (1)
arrangement 1,

(23);+1—=22+3+1 — fragmentation in the arrangement 1, (1d)
and in addition in case A only

2+ (31); = 2+ (31)f — elastic scattering and excitation in the (1e)
arrangement 2,

(23);+1— 24 (31);

— rearrangement, (1f)
2+(31); = (23)5+1

24+(31); =2 2+3+1 — fragmehtation in the arrangement 2, (1g)

where indices ¢ and f identify states of the bound pair in the initial and final states of the
system, respectively. The purpose of program CTBC is to provide an accurate numerical
description of all these states in a wide interval of energy for arbitrary combinations of
the masses and charges of particles. In this work we consider only bound states (la) and
scattering processes (1c), (1e), and (1f) below the threshold of fragmentation processes (1d)
and (1g). Resonances (1b) and scattering processes (1c)-(1g) above this threshold will be

discussed in subsequent parts of this series.

B. Schridinger equation in a laboratory frame

Let us introduce a coordinate X on the line with the origin at the position of an unmov-
able observer (a laboratory), and let X; be the coordinates of particles, see Fig. 2a. The

Schrodinger equation in these coordinates reads
(T+V_£)\I’(X1)X2;X3) :0) (2)

where T is the kinetic energy,

1 2 2 1 2
ro_ 1 @& 1@ 18 )
le 6.X1 ng a.Xcz 2m3 3X3

V is the Coulomb potential energy,

_ €o€3 €36 €1€92 : (4)
|Xo — X3l | X3 —X)|  [|X1— Xyl

Vv
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FIG. 2: Different sets of coordinates used in the problem. (a) Individual particles’ coordinates
X; defining a three-dimensional configuration space of the system R*. (b) Jacobi (z.,¥.) and
hyperspherical (r,¢,) coordinates in the reduced configuration space R?. Only the sector lying

between two thick lines is considered; the wave function vanishes along these lines.

and £ is the total energy of the system. Configuration space can be thought of as a three-
dimensional Euclidean sﬁace R?* with Cartesian coordinates (X, X3, X3). Interparticle colli-
sions occur on the planes X; = Xy, X5 = X3, and X3 = X which intersect each other along
the line of triple collisions X; = X; = Xj, dividing the configuration space into sectors. In
order that matrix elements of the potential energy (4) be finite, the solutions of Eq. (2) must
vanish on these planes. This requirement is a mathematical formulation of the mentioned
above physical condition that particles cannot penetrate through each other; it is specific to
one-dimensional Coulomb problems, the situation in spaces of higher dimension is different.
Thus Eq. (2) can be considered separately in each sector, and by interchanging particles
the problem can be reduced to the consideration of one particular sector. Assuming that

particles are in the order shown in Fig. 2a, the coordinates X; are restricted to vary in the
‘ sector

-0 < X3 € X3 <X <00, (5)

and the wave function must vanish on its boundaries,

‘~I’(X1,.X2,X3)|X2-'_“X3 = @(X13X2’X3)|X3=X1 - 0 (6)



Only this sector will be considered in the following. Inside it, we can rewrite Eq. (4) as

€363 €ze; €1€3

V= ) 7
X - X K- X5 Xa— X -0

C. Separation of the motion of the center of mass

The center of mass of the system is located at

1
Xem = I (mi Xy +me Xy + m3X3), : (8)
where
M =m; + mg + ms. (9)

Let r denote a set of two variables defining the positions of particles for a given value of Xem;
a two-dimensional Euclidean space R? spanned by r will be called the reduced configuration
space. We wish to change independent variables in Eq. (2} from (X, X3, X3) to (X, 1).
This can be partially done without specifying r. Indeed, variations of Xy, without changing
r correspond to motions parallel to the line X; = X, = X;, and variations of r withduf
changing X, correspond to motions parallel to the plane X, = 0. Let us introduce mass-
scaled coordinates X; = /m; X; in R*. After such scaling, the line X; = X, = X3 and
the plane X ., = 0 become orthogonal. The kinetic energy operator (3) reduces to a three-
dimensional Laplacian in terms of X. Its transformation to cobrdinates (Xem,T) can be
performed by a rotation of the frame (X7, X}, X3) which brings one of its axes into the
position of the line X, = X, = X3, and then the other two will lie in the .plane Xem = 0.
Because the Laplacian preserves its form under rotations, there will be no cross derivatives
in the expression for 7 in terms of the new variables, and hence no cross derivatives with

respect to X, and r. Knowing this, it can be shown-that

7= L % r (10)
oM oaxz, |

where the reduced kinetic energy T is a differential operator acting on the variables r only.
The .potential energy (7) depends only on the distances between particles which are de-
termined by r. Thus we can separate variables X, and r in Eq. (2). Substituting into
Eq. (2) .
T(Xy, Xa, Xa) = exp(iK o Xom) ¥ () (11)



and
_ K
YYi

where K.n is the momentum corresponding to the motion in Xcm and E is the reduced

£ +E, (12)

energy of the system (its energy in the center-of-mass frame), we obtain a two-dimensional

differential equation describing dynamics in the reduced configuration space
(T+V —E)¥(r)=0. (13)

Only this equation will be considered in the following, so we shall refer to T and E simply as
the kinetic and total energy of the system, omitting the adjective ‘reduced’. When particles
are at rest (T = 0) at infinite distances from each other (V = 0) we have E = 0, which
defines the three-body disintegration threshold energy. In this work we consider only the
solutions of Eq.'(13) for E < 0. Because the solutions will be expressed in terms of different
sets of coordinates in the different parts of configuration space, in some situations it will be
convenient to leave coordinates unspecified. In such cases, we shall use notation r for the

argument of the wave function.

D. Jacobi coordinates

Let us introduce reduced masses

Mip1Miyn
= AR N 14
e M1 + Mit2 (14)
and angles of kinematic rotations
m,-M
v; = arctan 4 | —————, 0 <y < 7/2, (15)
M1 Miy

where (3,44 1,7 + 2) is a cyclic permutation of (1,2, 3). The angles ; satisfy

Y+t =T. (16)

We shall also use the simplified notation v = -y;. In addition, it is convenient to introduce
the parameter
£ = Yo — "

, —1<e<1, 17
o (17)



which characterizes mass-asymmetry of particles 1 and 2. In terms of ~ and £ we have

m=glr-(1+eh], (18a)
=gl —(1-ehl, (18b)
and
% = cot 7y cot[(1 + £)v/2], | (19;)
%Z = coty cot[(1 — )v/2). - (19b)

Jacobi coordinates are Cartesian coordinates in the reduced configuration space R?. There
are infinitely many ways to introduce Jacobi coordinates, the different sets being related to
each other by (kinematic) rotations and/or reflections. We shall use two. particular sets of

{mass-scaled) Jacobi coordinates defined by

My Mias ( m2X2+m3X3)
T =4 — | X1 — )

,U«1M Mo + My
= \/#_I(Xa - X:z):

M1 MMaing (m3X3 + lel )
T2 = - XQ )
V M my +my (20b)
Y2 = Vit2 (X1 — X3).

These coordinate systems are shown in Fig. 2b. They are related by

(20a)

©and

T cosy sin-y 1
) = - . | (21)
Yo siny —cosvy (3

Jacobi coordinates of the 1st and 2nd sets are convenient for solving Eq. (13) in the asymp-
totic regions corresponding to disintegration of the system into two fragments in arrange-
ments 1 and 2, respectively. In the following, arrangemehts will be specified by the Greek
index « taking the values 1 or 2 in case A and only 1 in case B, and all the quantities relevant
to the given arrangement will be indicated by the same subscript, e.g. (z,,%s). Many of
equations below have identical forms for both arrangements; in such cases, we shall omit
the subscript o where this does not lead to ambiguities. Substituting Eqs. (8) and {20) into
Eq. (3) and comparing with Eq. (10) we obtain

r=_12 _1 9 (22)



The potential energy (7) as a function of Jacobi coordinates is given by

z z z
v=24 2 y— , (23a)
Y T1SINy3 — Y1 C087ys I SInyp + Y COS Y2
z 2 z
= — + 24— = , (23b)
ZySiNy3 — Y2CO87Y3 Yo ZT2SINY + Y2008

where z; are the pair charges,
Zi = ei+!ei+2\/ﬁTi- (24)

As follows from Egs. (5) and (6), the Schrodinger equation (13) must be solved in the sector
0<z <400, 0<Ly<ztany, (25)

with the boundary conditions

lI’(Iﬁ y)'y:ﬂ = ‘I’(:E, y)'y:mtan'y =0 (26)
The volume element, in R? is given in terms of Jacobi coordinates by

dV = dady. - (27)

E. Hyperspherical coordinates

Hyperspherical coordinates are polar coordinates in the reduced configuration space R?.
They will be used for solving Eq. (13) in the internal region, where all three particles strongly
interact with each other. We introduce two sets of hyperspherical coordinates, (ry, ¢) and

(72, ¢2), defined in terms of the corresponding sets of Jacobi coordinates by

T =TCos @, r =zl + 22,
YRS (28)
y = rsin ¢, ¢ = arctan(y/x).

These coordinate systems are shown in Fig. 2b. Using Eq. (21), it can be shown that ry = 7y

and :
$1+ ¢2 =1. (29)
The kinetic (22) and potential (23) energies in terms of hyperspherical coordinates read

., 18 8 1 & '
"= %o 2 o (30)



and

21 2 23 .
(sin & M sin(y; — ¢1) + sin(7y, + ¢1)) J (31;)

1
— %( il 7+ 2y “ )). - | (31b)

sin(y3 — ¢ sip do  sin(y + ¢o

The sector {25) corresponds to
0<r<oo, 0<¢<y, (32)
the boundary conditions (26) takg the fofm
¥, 9)lpmg = ¥(r,8)lpey =0 (33
and the volume element (27) becomes
dV = rdrdg. (3

Ast — 0, terms T, V, and E in Eq. (13) grow as r=%, 7=, and 7", respectively, see Eqs. (30)
and (31). Neglecting V and E, it can be shown that a general solution to Eqs. (13) and (33)

behaves as

(7, @)leso o 777 sin(mh /). (35)

F. Scaling

We are going to consider systems with vastly different masses m; and charges e; of par-

ticles. In order to bring them to a common scale, it is convenient to introduce scaled

coordinates
(£,9,7) = hlat| x (z,9,7),  d=h"9, (36a)
scaled energies _ : _ ‘ ,
(T,V,E) = |2 x (T, V, B), (36b)
and scaled charges - ‘
5= |l % 2, (36¢)
where _
2 : ‘
h="2 o0<h<1l . (37)
™ .



Besides convenience in calculations, such scaling pursues a deeper goal: it reveals the pa-

rameter h (a resemblance of this notation to Planck’s constant is not accidental) essential for

the analysis of this problem by-'a,svrnptotic methods (to be discussed in future publications).

Only scaled quantities will be used in the followmg, so from here on we shall omit the tilde.

After scaling, pair charges are explicitly given by

= —].,
o . e my(mg + mg) e cos[(L+ £)v/2)
? ma(my + ms) ey cos{(l — ¢ 7/2]
e = ml(mg + mg) cosy + cos ey cos[( ) /2]
2T ma(my 4 ma) 2sin?y  cos[(1 —e)y/2]

Other changes in the above equations are summarized below.

| .(38a‘)

(38b)

(38c)

Jacobi coordinates. The two sets (z1, %) and (z9, y2) are related by the same equation

(21). The kinetic (22) and potential (23) energies become

h* 3> R &
T=—_____
2 9z 2 Oy?
and | -
hz 7 h hz
y=2y 2 o :
1 Z1SIMY3 — Y1 €083 X181 yp + Y1 COS Y2
h.Zl h,ZQ h,Z3
= + — +

TySinys — Y2 €OSY3 Yo T8Ny + YpCOSYy

The intervals of variation (25) and the boundary conditions (26) remain unchanged.

Hyperspherical coordinates. Relations (28) and (29) take the form
T =1 cos ho, = \/W,
y = rsinhg, ° ¢ = h~'arctan(y/z),
and
b1+ o = /2.

The kinetic (30} and potential (31) energies become

ro Moo 1 &
T 2ror Or 22 9¢7

and

( hzl 4 hZQ n h23 )

sinfh¢y] ~ sin[h(7/2 — ¢1)]  coslh(¢r —7(1 —¢€)/4)] /"

( hz N hzo N hz3 )
sin[h(m/2 — ¢2)]  sin[hga]  cos[h(p2 — 7(1 +£)/4)]

N =

(39)

(40a)

(40b)

(41)

(42)

(43)

(44a)

(44b)



The intervals of variation (32) are changed to
0<r<oo, 0<¢<7/2, (45)
and the bbundary'.(:ohditibns (33) read

U1, )l = W, B)lyorjp = 0. (46)

G. Permutation symmetry in the symmetric case

. The symmetric case (case A when particles 1 and 2 are identical) requires a special
consideration. In this case, Eq. (2) remains unchanged under the permutation of X; and
X,. As can bee seen from Egs. (20), such permutation corresponds to (z1, ;) — (—:cé, —Y2)
in Jacobi coordinates. However, if the initial point (z;,%;) lies inside the sector (25), its
image (—xg, —ys) falls outside it. We can return back to the sector (25) by the inversion
(X1, X2, X3) = (= X1, — X2, —X3) which also leaves Eq. (2) unchanged. This corresponds to
(=2, —12) = (22, y2) in Jacobi coordinates. The composition of these two transformationis,
(z1,41) = (Z2,%2), amounts to mirror reflection of the sector (25) with respect to the line
y = rtan(y/2). The solutions of Eq. (13) can be chosen to-be either even or odd under such

reflection. Even (odd) solutions will be indicated by the subscript & = 4(~). They satisfy

Vo (z1,31) = 0¥o(z2,92). (47)
This relation can be presented in the form of boundary conditions on the line y = z tan(~y/2),

=0,
y=ztan(7/2) (48)

‘D— (-’Ea U) Iyza: tan{y/2) = 0

sin(/2) 2 = cos(r/2) 5| B (5,0)

In hyperspherical coordinates, these conditions read
a‘I’+(T> ¢) =0
2L B PR (49)
(1, O)lgnss = 0

Taking them into account, in the symmetric case it is sufficient to consider Eq. (13} only in

a half of the sector (25), (45).



H. Asymptotic states

The disintegration of the system into two fragments in arrangement o occurs in the region

To — 00, Yo = O(2?). Here, the potential energy (40) can be expanded in powers of ',

hzo, hZ, hD,ya

V= + + + O(z?), 50
2 2 ol 4 0(a) (50)
where Z, are the asymptotic charges,
7 = 2 4 B (51a)
sinys SIn‘ys
Zp = L4 = (51b)

sinys siny’

and D, are the asymptotic dipole momenta,

COS cos '

Dl = 22— 273 — &3 272: (523‘)
sin? 7y sin” 7,
cos cos

Dg = Z1- 273 — Z3— 271 . (52b)
sin? y3 sin® 1,

Retaining only first two terms in Eq. (50) and substituting them into Eq. (13) we obtain

h? &2 h? &? hz, hZ,
B BT M e Bl W ge) = 0. 53
- Tt (o) (53)

Asymptotic states are the elementary solutions to this equation defining physical asymptotic
boundary conditions for scattering processes. They can be found by separating variables z,
and y,. In this work we consider only the solutions for E < 0. The regular (s) and irregular

(¢) at z, = 0 solutions are given by

V) (20, Ya) = (A kan) > FENkanta/ h; Zafkan) X (|7al/B)/? Ba(|2alvalh),  (54)

vas = (o, 1), a=1,2, n=12,....
The two factors here describe the relative motion of the free particle and the bound pair
and the internal state of the bound pair, respectively, where v, identifies asymptotic chan-
nels, with o and n specifying arrangement and state of the bound pair, k., is the channel

momentum,

k?m = 2(E - 'U-:m): . (55)

Van 18 the channel threshold energy,



and functions B, (z) and F©<)(x;7) are defined in appendices Ala and A2a, respectively.
Functions (54) sa..tisfy the first of conditions (26), but they do not satisfy the second one.
However, the second condition is satisfied asymptotically for z, — 00, because B,(x) expo-
nentially decays for large values of its argument. In the symmetric case, in order to satisfy

Eq. (47) we introduce symmetrized asymptotic states,

W) = = (1@ m) + o8 @) (57)

Now we can complete the definition of cases A, B1, and B2. The following table summa-

rizes our conventions in terms of pair charges z;:

case A:  z; <z <0, 0 < z,
case Bl: 0 < 2, 2 <23 <0, (58)
case B2: 0 < 2z, <z <0 .

The physical meaning of these conditions can be seen from Eq. (58). In case A, we assume
that the hydrogenic spectrum of the bound pair in arrangement 1 lies lower or coincides with
that in arrangement 2, which is always possible to achieve by interchanging particles 1 and
2, and cases B1 and B2 are distinguished by the relative position of the hydrogenic spectra
in pairs 1 and 3 (note that with the assumed order of particles pair 3 cannot be separated
from the remaining particle 3). Thus in all the cases the lowest channel is (@, n) = (1,1).
Taking into account that z; = —1, see Eqs. (38), from Eq. (56) we have v;; = —0.5, which

defines the threshold energy for disintegration into two fragments.

I. Asymptotic boundary conditions

We are interested in the solutions of Eq. (13} which apart from the regularity boundary
conditions (26), (46) satisfy appropriate physical boundary conditions in the asymptotic
region 7 — oco. Let us formulate these conditions. _

For bound states, the wave function must vanish at large separations between any two
particles, therefore

U(r)|, Lo = 0. (59)
The solutions of Eq., (13) satisfying conditions (26), (46), and (59) simultaneously may exist

only for discrete values of E , hence we obtain an eigenvalue problem (EVP}). The purpose of

program CTBC in the bound case is to calculate bound state eigenvalues and eigenfunctions.



For scattering states in the energy range —0.5 < E < 0, the physical asymptotic boundary
conditions are formulated in terms of the asymptotic states (54),

open

Uy, (F)], oo = HET) + D ¥ (1)K, 0, (60)

Has
where summation goes over all open channels (a channel is open if E > v,q, otherwise it
is closed). Equation (60) defines the reactance matrix K which is related to the scattering

matrix S by [1]

1+:K
S = . 61
1-:K (61)
In case A, matrix S can be partitioned into four blocks according to the index « specifying
arrangements,
g(11) g(12)
S = : (62)

g(21) g(22)

In case B, there is only one arrangement o = 1, therefore only one block SV is present.
In the symmetric case, the boundary conditions (60) can be reformulated in terms of the
symmetrized asymptotic states (57),

open

Uon(r), oo = L) + D LK. (63)
m

Note that there are rio transitions between states with different permutation symmetry.
Equation (63) defines the reactance matrix K, and the corresponding scattering matrix
S(9) is again given by Eq. (61). In this case, matrix S can be partitioned into blocks according

to the permutation symmetry index o,

s+ ¢ '
S = - - (64)
0 S

As follows from Eq. (57), representations (62) and (64) are related by

g _ g(22) _ % (S(H + S(—)) 1 (65a)

g12) _ g(@1) — % (S(+) _ S(—)) _ (65b)

The purpose of program CTBC in the scattering case is to calculate scattering matrix S.
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III. HYPERSPHERICAL ADIABATIC (HSA) APPROACH

This approach [2] to the solution of the Schrodinger equation for a few-body syétem is
based on the adiabatic expansion of the wave function in hyperspherical coordinates, with
hyperradius and hyperangles treated as “slow” and “fast” variables, reSpectwely It suggests_
a consistent computatlonal scheme which enab]es one, at least in principle, to obtain accurate ,
solutions of Eq. (13) for £ < 0. The SVD method used to solve Eq. (13) in CTBC, see next
section, is intimately related to the' HSA approach, so before describing the former it is

useful to recall main steps of the latter. To this end, let us rewrite Eqs. (13), (43}, and (44)

in the form \
ka8 Ur) _
2o A e RN,
where U(r) is S the HSA Hamiltonian,
ury= -+ 2 L o) (67)
T2 8¢ ’
and C(¢) is the effective charge,
hzl h22 h'ZS
C(gp) = = + — + ) 68

@)= Galhen] ¥ sz = a0] T coslh(gn — (1 = 2)/4)] (682)
_ hz1 + h,Zg 4 hz;; . (68b)

sin[h(r/2 = ¢3)] * sinlhs) | coslh(gs — w(L + £)/4)]
The notation U(r) emphasizes that this operator parametrically depends on r. Note that

for any fixed value of £ we have
¢ :
C@Opsp =7 = —— — — + O(hg) ‘ (69)

Thus in the limit h — 0 the parameter h enters into Eq. (66) only in the form of an effective
Planck’s constant for the motion in 7, which renders Eq. (66) amenable to the aﬁalysis by

asymptotic methods. This circumstance justifies scaling (36).

A. HSA eigenvalue problem

First in the HSA approach is treated the motion in angular variable ¢ for a fixed value

of hyperradius . This motion is described by the HSA EVP

(r) - Ulr)] (47} =0, (70a)
®(0;r) = ®(x/2;7) =0, (70b)



where, again, the argument r shows that the eigenvalue U(r) and eigenfunction ®(¢;r}

depend on 7 as a parameter. The solutions to Eq. (70) will be denoted by

U,r), @.(¢;7), v=12,... (71)

For any r, the eigenfunctions form a complete set in the space of square integrable functions

in the interval 0 < ¢ < w/2. We normalize them by

(2u(8;7)|Puldi 7)) = buns (72)
where o
()E%fn ... d¢. (73)

In two limiting cases the solutions can be found analytically For r — 0 we have

U (1), = 22 +rC, + O(T ),

(74)
D,(p;7) Ir—m = sin(2v¢),
where C, = C,,(0) and
Coulr) = (@u(§;7)|C(9)|2,(#;7)) = Cpu(7)- (75)
For-r - 00, using the expansion
C(Ba)lguso = 5+ hZa+ ¥ (Do -+ 20/6) 0+ O(87), (76)
we obtain
_ z§r2 g o (3D, 1 o
Uu&s('r)l,._)oo 2 + hZ r+ h. . (M — Z)+ O(T )‘,
By (fai ) = %<wlza|r)”23n(|zalr¢a), | (77)

vas = (o, 1), a=12 n=12,..
where the funetion B,(z) is defined in appendix Ala.
B. HSA expansion
Second in the HSA approach is treated the motion in hyperradius r. Let us rewrite
Eq. (66) as

h? 8% U(r)— h*/8
[_7 e + ‘_(_)TQ_L — E|{r'?U(r,¢) = 0. (78)



The solutions to this equation are sought in the form of the HSA expansion
U(r,g) = 72D " F(r)®, (7). (79)

Substituting this into Eq. (78), one obtains a set of ordinary differential equations defining

the functions F,(r),

—h—zﬁ-i-V()—E F(r)—h—QZ 2P ()i-i-Q (r)| Fy(r) (80)
2 @ TV ATy L [Ty T T
where
U,(r) - h%/8
i) - LS o
are the HSA potentials and
0P, (d;r
Putr) = (wutoin)| 248D < o), Putr) =0, ®)
02, (¢; T
Qur) = (it 2680, (#3)
are the matrices of nonadiabatic cou;plings. Introducing an additional matrix,
90, (4i1)| 0Pyu(di7)
(s) — . | — (s
Qg = (22480 2203 — g, (84)
we obtain the relations
QW) =" Pu(r)Pulr), ' (85)
S .
P, (r :
Qui(r) + Q5 (r) = mét(_). (86)
T
Using the perturbation theory, it can be shown that
—C, . (r | .
Pulr) = Ly | (57)

Uy(r) = Uu(r}’

Solving Eqs. (80) with appropriate boundéry conditions and substituting the solution
into (79), one obtains a solution to Eq. (78). In practical calculations, only a finite number
of HSA channels N, can be retained in expansion (79) . However, completeness of the HSA
basis (71) ensures that this expansion converges as N, grows. The main advantlage of the
HSA approach stems from the observation that in many situations expansion (79) converges
more rapidly than it could be a priori expected. Its difficulties are hidden in the solution of

equations (80).
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IV. SLOW/SMOOTH VARIABLE DISCRETIZATION (SVD) METHOD

This method {3] of solving the Schrédinger equation applies to systems whose Hamiltoni-
ans allow adiabatic separation of variables. It is based on the expansion of the wave function
in a concerted combination of the adiabatic basis for “fast” variables and a DVR basis for
the “slow” one. In application to the present problem, SVD preserves all advantages of the

HSA approach leaving aside its difficulties. Let us introduce a new function

Y(r,¢) =72 U(r, ¢) (88)
and rewrite Eq. (66) as
Rt o ,8 h? '
[—? 57"25 +U(r) - E’ - ETQ] (r, ¢) =0. (89)

Suppose we wish to find a general solution to this equation in the interval
ry <1 <1y (90)
As a first step, r must be replaced by a new variable t,
T = .T(t) = t=1t(r). (91)

The purpose of this transformation is to map the interval (90) into the interval of orthog-
onality a < t < b for a suitable set of COP, see appendix Bl. Only linear transformations

will be used here; let us introduce notation
dr(t)/dt = s. (92}

Then the type of COP is uniquely defined by the interval (90) and the boundary conditions
for the wave function ¥(r, ¢) at its ends. Let ¢; and m(t), i = 1,..., N,, be the corresponding
N,-point Gaussian quadrature and DVR basis, and ; = r(¢;). Note that this basis becomes

complete in the space of square integrable functions in the interval (90) as N, — oo.

A. S8VD eigenvalue problem

Let us introduce a Bloch operator [4],

2

L= h—r2 [8(r — rp) — 8(r — 74)] 0



and consider the equation

o Z v rrut) - - BB ) =0 (04)

which differs from Eq. (89) by the term with £. The solutions to this equation are sought

in the form of the SVD expansion

B(r, ) = D cumilt) . (dim3), (95)
where ®,(¢;7) are HSA basis functions defined by Eq. (70). Substituting this into Eq..(94)
and using (B16) and (B19}), one obtains an algebraic SVD EVP defining the coefficients c,,,,

Z (h2Kij — Esgpij) Oiu,j,ucjp -+ [U,,(Ti) - hQ/S]CiV = 0, (96)
i#
where K;; and p;; are the DVR kinetic and weight matrices,

iy = o [ 2 Sl o)
1 b
P = 3 [ mOROmO @ (98)
and Oy, ;, is the overlap matrix for HSA bases at different quadrature points,
Oivju = (Du(;70) [Py (5 75))- (99)
Let ¢}, be the eigenvectors of Eq. (96); we normalize them by 7 -
5 Z Z €5 i Oivju = Snm. (100)
The éorrésponding solutions to Eq. (;:) will be denoted by
| En, ba(r,9), n=12... (101)
The eigenfunctions satisfy |
(a7, )|r* [om(r, @)}) = Orms | (102)
where ] ‘
(.0 = / U Vr. (103)
Similar‘to Eq. (79), they can be expanded in ESA basis, |
Ualr,$) = 77D Fun(r)@,(¢;7). | (104)

Comparing this with Eq. (95) and taking into account property (B15), we obtain a relation
between F,,(r) and ¢

Wy

Fun(ri) = Tiﬁ'_lc?y' (105)

)



B. SVD solution

In the SVD method, the solutions of Eq. (89) in the interval (90) are sought in the form

of expansion in terms of 9,(r, ¢). It can be shown that an arbitrary solution satisfies

r) =3 (@, AL 9))

balr, 9). (106}

From this, for a particular solution defined by the boundary conditions

<<I>u(¢; T) w> = dz’b, v=12 ..., (107)
we obtain

P(r, ¢) = 2 “”"(T ¢) Z Ty (T)dY, — 7o B (ra)d2] (108)

where
Fon(Tap) =Tap 3 5,75(a, )00, (109)

j it

and

052 = (D5 Tap)|Ruld;75))- (110)

In these formulas ‘a, b’ stands for one of a or b. Treating d® and d® as arbitrary constants,
Eq. (108) gives a general solution of Eq. (89} in the interval {90). There are two cases that
require a special consideration. First, if energy E in Eq. (89) coincides with one of the
eigenvalues E, of Eq. (94), the coefficient in the corresponding term in (106) is arbitrary,
and the solution is not defined uniquely. Second, if d and d®, are such that all the coefficients
in (106) are zero, we obtain an eigenvalue problem: a solution to Egs. (89) and (107) in this
case exists only if E coincides with one of £, and is given by ,(r, ¢).

In practical calculations, expansion (95) contains a finite number Ngyp = N, x Ny, of
terms, where NN, is the dimension of the DVR basis and Ng, is the number of HSA channels.
Thus solving Eq. (96) one obtains Ngyp SVD solutions (101). Due to completeness of the
DVR and HSA bases, these solutions form a complete set in the space of functions square
integrable in the region r, <7 < 71, 0 < ¢ < 7/2 as both N, and N, tend to infinity, which
ensures convergence of expansion (108). The rate of this convergence with respect to N
is as high as in the DVR method and that with respect to N, is the same as in the HSA
approach.



V. NUMERICAL PROCEDURE

Here we discuss major elements of the numerical procedure used in CTBC, describe struc-

ture of the program, and specify recommended values of the input parameters.

A. Solution of HSA eigenvalue problem

The HSA EVP (70) expiicitly reads
—5 5z T7C(6) —Ulr)| ®(¢;r) =0,
®(0;r) = ®(7/2;7) = 0.
Let us introduce a new variable,

o(t) = m(l+1t)/4, o t{g) = 4¢/m — 1,
0< ¢ <7/ -1<t<1,

and rewrite Eq. (111) in the standard form (B23),

2 :
dl d 1 +W—(1—t2 O(; )

at' _tz)&_l—ﬁ 8 ) (U(r) —rC(¢)) v

(111a)

(111b)

(112)

0. (113)

We solve this equation by the DVR method using Nj-point Jacobi PP )(t) quadrature.

The parameters of the Jacobi polynomials are uniquely determined by the condition that

®(¢; r) must linearly vanish at the ends of the interval (112), which yields @ = 8 = 1. The

polynomials of even/odd order are even/odd functions of ¢, so the permutation symmetry

boundary conditions {49) in the symmetric case can be easily implemented. The solutions

are obtained in the form

U,(r), @,,((,i);?‘):\/l—t?z c;-(”r) mi(t), v=12...

The eigenvectors ¢ (r) are normalized by

> et r)ek(r) = b

Then_ .
(D, (5 7)|® (5 7)) = by,

Ne.  (114)

(115)

(116)



in accord with Eq. (72), where the approximation amounts to the use of quadrature (B7).

With the same accuracy, the overlap matrices (99) and (110) can be calculated using

Ny
(@ ()| Buli 7)) = D () (), (117)
i=1
and the potential energy matrix (75) is given by
Ng
Coulr) = ) el (r)C(ea)el (r), (118)
i=1

where ¢; = ¢(t;). Taking into account property (B15), at the quadrature points we have
®, (i) = k7' (r): (119)

We solve Eq. (111) using angular variable ¢, from the 1st Jacobi set. The main limitation
of the proceduré described above stems from the fact that for large values of r functions
®,(¢1;7) are localized in small intervals of ¢ near ¢, = 0 (arrangement o = 1) or ¢; = 7/2
(arrangement o = 2) whose size is o< 1/r, see Eqgs. (77). This situation is similar to that
discussed in appendix Alb. To cope with the iocalizatidn problem the dimension of the

DVR basis must grow o /7,
R 120

where the coefficient 17 depends on the accuracy required. We have found the following

dependence between 77 and the relative accuracy of the lowest eigenvalue U, (7)),

n=4.0 = U, /U; <1078, (121a)
n=4.5 — U, /U, <1078 (121Db)

This agrees with Eqs. (A20) and (A21), where one must substitute a = rz /2.

B. Bound state calculations

In the calculation of bound states, Eq. (89) is considered in the interval 0 < 7 < co. The

transformation (91) in this case is defined by

T(t) = st, o t(r) =r/s,

(122)
0<r <o, 0 <t <o,



where
8= Tm/tn,. o (123)

Here ty, is the last quadréture point for the given dimension Nr'of the DVR basis, and the
parameter 7 characterizes the size of the region where bound state wave functions to be
found are localized. A suitable DVR basis can be constructed i"rom Laguerre polynomials
A% (). Then function (95) exponentially decays as 7 — oo, which is in accord with Eq. (59),

and behaves o r®/?

as r — 0. Taking into account Eq. (88), in order to satisfy Eq. (35)
we would have to put o = 27/ —1, which gives growing values of « for v — 0. However, -
the interval of 7 where the power behavior (35) holds decreases as v — 0, and large values
of the exponent in this case indicate that the wave fu_nction decays actually exponentially
under the centrifugal barrier, hence there is no point to strictly observe Eq. (35) in numerical
calculations. In CTBC we use @ = 3 which corresponds to the largest possible v = 7/2. In
thus defined DVR basis, matrices (97) and (98) can be calculated analytically, see appendlx
B3. Bound states are represented by the solutions of Eq. (96) with eigenvalues E, < —0.5.
Convergence of the eigenvalues with respect to the dimension of radial DVR basis N, is as
fast as in applications of DVR to the calculation of bound states in a simple one-channel
potential well; it is sufficient to have 6-8 quadrature points per half of the wave length for
the highest bound state desired. Convergence with respect to the number of HSA channels
Na, dépends on the system; the value of Ny, required varies from several units (~ 3) to
several tens (~ 30) for systems with & < 1 and h ~ 1, respectively. A typical value of rp,
for the ground state is 50-100.

.C. BScattering calculations

For energies below the three-body disintegration threshold, the solutions of Eq. (13)
exponentially decay as r — oo except for near two sihgular directions at ¢ = 0 and ¢ = 7/2,
where asymptotic states (54) representing disintegration of the system into two fragments
are localized. In order to reproduce this asymptotic behaviour in the numerical solution,
we divide conﬁguratibn space into parts as shown in Fig. 3 and following [5] assume that
the wave function vanishes in the hatched area. In the calculation of scattering, Eq. (13)
is solved separately in the internal region and in asymptotic regions corresponding to each

of the arrangements. The internal and asymptotic solutions are then matched along the
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FIG. 3: The division of configuration space into parts used in scattering calculations. The wave

function is assumed to vanish in the hatched area.

arc r = r,,, where they are valid simultaneously, to construct a global solution satisfying

Eq. (60), from which the scattering matrix is obtained.

1. Internal region

In the internal region hyperspherical coordinates are used, see Fig. 3.- This region is
defined by
0<r<ry, 0<¢<7/2, (124)

where 7, is the matching radius. This interval of r is divided into- Ny sectors with bound-
aries at Ty,

D=« <Tp<... <TNo = Tm- . (125)

Within each sector, the solutions of Eq. (89) are found by the SVD method. The infofmation
obtained is then used to calculate the R-matrix at the matching arc r = rq,.

'SVD EVP in a sector. ansider the k-th sector, 74—, < r < 7. Here, the transforma-
tion (91) is deﬁ'ned_by |

©or(t) = st + 1), tir}=r/fs—~t., :
O =ste+r),  U)=r/s-t (126)
et <7 <, —1<t<, o



where
Fr + Fr_1

| s = 5(Fk — Tk—l?: t.= T | | (127)
In the first sector, a suitable DVR basis can be constructed from Jacobi polynomials pet }(t).
For the same reasons as in the case of bound states we put 8 = 3, which is in accord with
Eq. (35) for v = #/2. In order to satisfy arbitrary boundary conditions at the right end
of this sector we put a = 0. In all further sectors, radial DVR basis is constructed from
Legeﬁdre polynomials P,{t) = P"”(t). Matrices (97) and {98) in this case also can be
calculated analytically, see appendix B3. Solving Eq. (96), we obtain Ngyp solutions (101)
from which the SVD surface amplitudes F,(7;) and F,,,(F«_,) are calculated using Eq. (109).
There is certain dependence between the dimension of radial DVR basis N, and sector size:
increasing the latter one must simultaneously increase the former. On the other hand,
choosing sector size one must take into account that the wave length of radial oscillations of
the wave function is proportional to A. We recommend the following combination of these
parameters: sector size hw, which is equal to half of the wave length in the asymptotic region

in the 1st channel for E = 0, and then N, = 6-8, similar to the bound case.

R-matrix propagation. The R-matrix [6] is defined by
o (r,
(@,(437) = SRl < (¢ )‘ "’5> | (128)
As follows from Eqs. (35) and (88),
R(0) = 0, 7 (129)

which provides the initial condition for the R-matrix propagation [7]. The propagation of

R(r) throh'gh the k-th sector, i.e., from r = 7 4 to 7 = Tk, is accomplished using

R(ri) = R* — REF[RA-V1 L R(7 )] 7 RAHE, (130)
where N
R? SR B () Fun (7
RY, == S J(a;k) E( 0} | (131)
n=1

Repeatmg th1s procedure Niec times, we obtam R = R(ry), which is the final result of the

computatlonal procedure in the internal region.



2. Asympiotic regions

In the asymptotic regions Jacobi coordinates are used, see Fig. 3. These regions are

defined by

Tam £ Za < 400, 0 < ya < Yam, (132)
where
Tom = Tm €0S(RPam), Yam = TmSin(hdam), (133)
and
$im = bm;,  P2m = T/2 = Pm. - (134)

There is certain freedom in choosing the parameter ¢n; we define it by

A1 \gy=gn (135)
case B:  C(1)l4,-4, =0

ase A:

In each of the asymptotic regions, the potential energy {40} can be expanded in a series,

hz, hZ
V=" +h V(") : 136
Ya Ty ; xé-H ( )
where Z, are the asymptotic charges (51) and
v = £ B (—coty) . © (137
| - (coty3)* + Sin72( cotyz)”, (137a)
AL R B (—coty)t. 137b
L 2= corm) (137h)

The asymptotic dipole momenta (52) are related to these coefficients by D, = ,,Sl). Retain-

ing only A, terms in this expansion, the Schrédinger equation (13) takes the form

ht & R & + hzy + hZ,

_= _ X _ - _ (N Yo
2 81:02 2 aya2 Yo T, E:| ‘I’ $m% hZV ,\_H \I’(.T;ai 'Ua) (138)

The asymptotic states used in CTBC are approximate solutions to this equation given by

Na _ |
i’x():c)(xaa ya) = Z }.:1(3’6) (xa/hi Ny, Zq, ki: Ag, A ) |z¢1|1!r2 (|za|ya/h§ aa): (139)

m=1

v = (@,n), a@=12  n=12...,N,,
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hsa.inf inf:

svd.inf

Ibeig-l. |bfunI

F1G. 4: CTBC executing sequence for bound state calculations.

where functions B, (z;a) and Fi™(z; N, Z, kQ,A, A) are defined in appendices Alb and
A2b, and the parameters used in their definition are given by:
the box size,

ta = |2alyam/h: (140)

the asymptotic channel momenta k2 = (k%,,...k2y), where

al>
k2, =2(E — z2en(aa)), ‘ (1‘41)

and the matrix of rﬁultipole couplings,

ZVLS)‘) G .
A&):Bm - W A Bn(t, aq)t’\Bm(t; aa.) dt (142)

It is usually sufficient to put A, = 3-5. Expansion (139) must include all open channels

(k2, > 0) and several closed ones (k2, < 0).
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rad
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svd.inf

FIG. 5: CTBC executing sequence for scattering calculations.

3. Maiching

Let W, (r) be a solution of Eq. (13} satisfying

( (95 T |’r—l/2‘p )I,. =rm ZRu,u< #(¢:

oYy, (r)
or

N ¢ )

and

‘DVas (r) ITZTm ‘= (I-JEI ) + Z \1’(") #as”as (]44)

Has . B . , .
Matching consists in the requirement that this function and its derivative with respect to

r must coincide on both sides of the arc r = r;,. Projecting these conditions on the HSA
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TABLE I: User-supplied input information.

file contents ' description
sct.inf N, dimension of radial DVR. basis
Nee number of sectors
T, k=1,..., Neec sector end points
hsa.inf my, e, 1 =1,2,3 masses and charges of particles
o permutation symmetry (for symmetric case)
Ny dimension of angular DVR basis
Nehmax < Ny maximum number of HSA channels to be used in CTBC
svd.inf New € Nmax actual number of HSA channels
E energies for which scattering matrix is to be calculated

basis, we obtain

F&) L FOK = R (D(S) + D(C)K) , (145)
where
Fd = ()P0 e)| (146a)
Br= 12 1)\ |
D) = <‘I’u(¢;’r) TQ> (146b)

Matrix equation (145) is solved using singular value decomposition [17], which yields
-1
K=- (F(“) - RD("-)) (F(‘) - RD(-*)) . (147)

The scattering matrix is then obtained from Eq. (61).

D. Structure of the program

The execution of the program proceeds in several steps, differently for bound state and
scattering calculations. The program executing sequences and the organization of the in-
formation flow are illustrated in Figs. 4 and 5. There afe three types of files: user-supplied
input information, executables, and generated output results. Their contents and role are

described in tables I-I11.
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TABLE II: Executables.

file description
RAD generates a set of radial points where HSA EVP (70) is to be solved
HSA solves HSA EVP (70) and generates information needed to calculate matching

integrals (146)

OVLP calculates overlap matrices (99) and (110)
SvD solves SVD EVP (96) in sectors

BOUND calculates bound states

SCATT calculates scattering matrix

TABLE III: Generated output results.

file contents description

rad Ty radial points

inf HSA run information, an auxiliary file
eig U, (r:) HSA eigenvalues

fun D, (¢; 1) HSA eigenfunctions

inas ®,(¢d;rm), Bul(z;a), dB(z;a)/dz matching information

ovlp Oivjps O,‘f”;’# overlap matrices

svd En, Fun(7e) - ‘ . SVD eigenva.lues and surface amplitudes
beig En bound state energies

bfun Fun(r;) o | bound state radial functions

smat . S(E) ‘ scattering matrix

VI. ILLUSTRATIVE CALCULATIONS

Application of program CTBC is illustrated in Figs. 6-29, where results of calculations for a
number of representative systems and processes are shown. HSA eigenvalues are represented

by HSA potentials (81) and effective quantum numbers
n(r) = [-2U(r))]"'/2 (148)
Inelastic scattering processes are characterized by probabilities p;; = |S;;|* as functions of

n(E) = [-2E]7/2. - (149)
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The scattering results reported in Figs. 6-29 were obtained with N, = 250, Ny, = 30,
sector size equal to hw, N, = 6, and r,, = 3000. The energy independent part of the
calculations (modules RAD, HSA, OVLP, and SVD) took from 5 minutes for epe (a symmetric
system with h =~ 1) to two hours for tud (a general system with h <« 1). The energy
dependent module SCATT took 10-30 seconds per one energy point. The main parameter
controlling what could be calculated with the given set of energy ir_ldependent information
is the matching radius ry,. In order to consider scattering processes in the near threshold
energy regions as well as those involving highly excited states the parameter r, must be
sufficiently large; if it is not, then the calculated transition probabilities may have unphysical

oscillations as in curve pys in Fig. 25.

VII. CONCLUSIONS

Program CTBC provides a tool for studying the quantum dynamics of the collinear three-
body Coulomb problem. However, the results obtained by this tool have the character of a
virtual experiment rather than a theory, and another theory is required for their qualitative
interpretation. For example, Figs. 6-29 show that probabilities of similar processes in systems
with different masses of particles may differ by many orders of magnitude. Why it is so?
What are the major mechanisms governing the dynamics? We believe the answers to these
questions can be obtained by asymptotic methods. In order to appreciate the quality of the
asymptotic results and hence the prediction power of the asymptotic theory, the accurate

numerical information supplied by CTBC is indispensable.
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APPENDIX A: ASYMPTOTIC STATES

Asymptotic states in our problem are represented by products or linear combinations
of products of two functions describing the internal state of a bound pair and the relative
motion of the bound pair and a free particle, respectively, see Eqs. (34) and (139). Here we

define these functions.

1. Bound-motion part
a. Hydrogenic states

Defining equation:

14 1
BT BERGLGRT (A12)
B(0) = B(oc) = 0. (A1b)
The solutions are given by
1 2z —z/nF(1)
€n =5, B,(z) = e L.’ (2z/n), n=12,..., (A2)

-where L) (z) are normalized Laguerre polynomials [15]. Functions By, (x) satisfy

| Bu)Bn(a) do = b, (A3)
0 ‘
Their derivatives are given by
dB, 1 . -
df’) = e VAT TED 2o/n) — V=T L, (20/m)] (A4)

Using the relation [15] |

- n T K1 —a)"*

£®(az) = Z nll'{n+a+1) a*(1 — a) Li )(z), (A5)

KTk +o+1)  (n—k)!

various matrix elements can be calculated. For example,

_4v/nm(n - 1){(m — 1)!

(n+ m)»tm

_/000 B,(z)z™'B,,(x)dx

(4nm)¥|n — m|rtm-2k-2

" kzzg(él)nkkk!(k + ) n—k—1)m—-k-1)Y1 (A6)

where x = min{n,m) — 1. In particular, (z71),, = n2



b. Hydrogenic states in a boz

Defining equation:

1 1 |
5T 1 s(a):I B(z;a) = 0, (A7a)
B(0;a) = B(a;a) =0, (A7Db)

where a is the box size. Introduce a new variable,

2(8) = a(1 + 1)/2, tx) = 22/a — 1,
“
0<z<a, -1<t<1,

(A8)

and rewrite Eq. (A7) in the standard form (B23),

d d 1 a ) 2 B(x;a)
[a—t(l—tﬁ)% -3 +?(1—t ) (E(a)+ a(1+t))] i =0. (A9)

This equation is solved numerically by the DVR method using N-point Jacobi P,gl'l)(t)

quadrature, see appendix B. The solutions are obtained in the form

T
T

.—tQ- ’.’T,‘(t), n:1?2v"'1N: (AlO)

enla), Bn(z:;a):(%)l/?\/Wi ¢

=1 1

The eigenvectors ¢ are normalized by

N
D = bum. (A11)
_ i=1
Then functions B, (x; a) satisfy
. ' ‘ :
f B,(z;0)B,(z; a) dx &= dpm, (A12)
0 .

where the approximation amounts to the use of quadrature (B7). They can be represented

in terms of polynomials

N
Ba(z;a) = (1) > frBLP ), (A13)
k=1
where 2 N . .
9\ 12 AT
n_ |2, ik Al4
fE (G) g T (A14)
Using the relation
d - ~ .
= [a =R 0] = BP0 - e BV ), (A15)



where

[ k2 -1
= A

their derivatives are given by

B,(z;a) N+l . '
i 3 E : {1,
T ~ . )
where
2 ‘ 1l
_dl‘ = P (Pk+1fl?+1 - pkfk:—l) (A18)

and it is understood that f§ = fR,, = fe,, = 0. The matrix elements required for
calculating multipole couplings (142) are given by

a N
, j;. B,(z;0)2*Bm(z; @) dz =~ (a/2)* Z (1 + ) ™ (A19)

i=1

.Equation (A7) is a typical EVP arising in atomic physics. Let us use it as an-example to
demonstrate efficiency of the DVR method. The accuracy of eigenvalues £,(a) obtained by
this method as a function of the box size @, state n, and basis dimension N is illustrated in

Fig. 30. For small a, function B,(z; a) has similar amplitude all over the interval 0 < z < a.
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FIG. 30: The minimum dimension of DVR basis N which ensures the specified relative accuracy

of eigenvalues () as a function of the box size o for three representative states n = 1, 10, 50.



The minimum N which ensures the required accuracy of e,(a) in this case does not depend
on a and is proportional to n with the coefficient about 2. For large e, function B, (z;a) is
localized in a small interval of = near ¢ = 0 whose size vanishes as n?/a, while the position
of its first zero does not depend on n and can be estimated as 1/a. In order to obtain an
accurate solution, the interval between x = 0 and the first zero of B,(x;a) must contain
several quadrature points. Taking into account that for N — oo the first point z; of the
Jacobi quadrature satisfies (1 — z;) o« 1/N?, we obtain the relation

N =nva. . (A20)
The coefficient 77 here depends on state and the accuracy required. The localization problem
is most severe for the lowest state n = 1, see Fig. 30. We have found from numerical

calculations the following dependence between i and the relative accuracy of €,(a),
n= 3.19 = (551/51 < 10_6, (AQI&)
n =356 = be /e, < 1078 (A21b)
Equations (A20) and (A21) were checked in the interval 10 < a < 5x 104,
2. Free-motion part

a. Coulomb wave

Defining equation for an open channel:

[di; - ? + 1] Flz;m) =0, | (A22a)
F(z;n)|,_,0 = exp [iz — inln(2z) + i8], . (A22h)
where
§ = ag (1 + ). (A23)
The solution is given by
Flzym) = — 4™ o ze*U (1 +in, 2, —2iz), (A24)

where U(a, b, z) is a confluent hypergeometric function [15]. The regular (s) and irregular

(¢) at z = 0 solutions are given by

—00

FO(z;n) =ImF(r;n) T sin[z —nin(2z) + 4],

— 00

(A25)
FO(z;n) = Re F(z;n) = cos|z —nln(2zx) +4].

5]



For 7 = 0 we have

F)z;0) =sinz,
F(z;0) = (:0) (A26)
Fz;0) = cosz.
For a closed channel, only irregular solution is needed. It is defined by
> 2 . ' '
[d_:ﬁ - 1] F)(z;m) =0, (A27a)
Fle) (g, 'r,r)|:,Hoo =exp [~z — nin(2z)]. (A27b)
The sotution is given by
Fllgn) =2 x 2e”*U(1 + 1,2, 2z). (A28)
For n = 0 we have
FO(z) =™ (A29)
b Multichannel Coulomb wave with multipole couplings
Defining equation:
& 22
[Eﬁ? k] Z A+l Fmlz), n=1,...,N. (A30)

m=1 A=1

For open channels, k2 > 0, the regular (s) and irregular (¢) solutions are defined by

Falol(z)

,',L(C)(a:)

= Gk sin [knz — 1y (2knz) + 6n), (A31)
z—00 31
= Spmbin 1% 08 [kn® — T In(2k,z) + ), '

r—roao

where

M = Z/kn, dp = arg T (1 + inpy). (A32)

For closed channels, k2 < 0, only irregular solution is needed. It is defined by

Fel(z) o= ambin 2 exp [~k + (Z/K0) In(26,7)], {A33)

T—

where K, = |k,|. In the main text, these functions are denoted by f,’:}(s’c)(m; N,Z,k* A A).
They can be obtained in the form of asymptotic expansions [8, 9]. In CTBC they are
caleulated using CPC library subroutine GAILIT {10].



APPENDIX B: DISCRETE VARIABLE REPRESENTATIONS (DVR) BASED
ON CLASSICAL ORTHOGONAL POLYNOMIALS (COP)

All numerical schemes used in CTBC are based on DVR. This method was originally
proposed in [11], its rigorous mathematical justification was given in [12], bﬁt its present
wide applications to the numerical solution of various problems in quantum mechanics were
initiated in [13], where the method received its name. So far DVR does not belong to the
family of traditional numerical methods whose description can be found in standard text-
books on computational mathematics. Rather, it is'still in a state of development which can
be seen from a large number of publications suggesting new variants of its implementation
and generalizations. Here, partly following [14], we describe a well-established and very
efficient approach based on COP. All necessary information on COP and associated with '
them Gaussian quadratures is given in [13]; more thorough discussion of the theory of COP

can be found in [16].

1. DVR basis

There are three major types of COP named after Jacobi, Laguerre, and Hermite; all other

sets of COP often used in the literature are their particular cases. COP
Palx), n=20,1,2,..., (B1)

as well as more general sets of orthiogonal polynomials, apart from a normalization factor
are completely defined by their interval of orthogonality {a, b] and weight function w(zx), sce

table I'V. The orthogonality condition reads

b
/ Pn(2)pm(z)w(z) dz = hndnm, (B2)

where the normalization constant h, is determined by the convention of standardization.

Instead of polynomials (B1) it is more convenient to introduce functions

on(z) = Vw(z)/ hn-1pn1(z), - n=1,2,3,..., - (B3)

which are orthogonal over the same interval with the weight 1 and normalized to 1,

f 0n(T)om(z) dT = dpm- (B4)



TABLE IV: Summary of notations used in Eqgs. (B1)-(B6} for three major types of COP.

Jacobi Laguerre Hermite
Pa(z) P L) Hu(z)
[a, ) [-1, +1] [0, +00] [—o0, +c0]
w(z) (1-2)°(1 +3)° %7 e
a(x) 1-—2z? © i
a? 1 _ L 1 a? 2
vle) 21zt 2 T+s it n ‘
€n (n—l)(n+a+,6)+Z(a+ﬁ)(a+ﬁ+2) n+§(a—l) 2n-1
2 nn+a)n+ B)(n+a+5) _
Cn 2Zn+at+f \/ (2n+a+p)2-1 Vrin + a) n/2
162 - a2
bn CGn+a+B-2)(2nta+tp nta-l 0
i m+a+B-2 [nn+a)(n+Bn+a+h) . _
on T nta+p \/ @n+a+t By -1 z2vn{n+a) n/2
B Pn -1/2 0
¥ 20— — Q-1 —tn_1 —Gp-1

COP are the solutions of certain EVP formulated on the basis of the hypergeometric equa-

tion. As a consequence, functions (B3) satisfy the following basic EVP

[ia(m)% - v(x) + €n| @n(z) =0, (B5a)

dz ‘
wala) < oc, - "u(b) < oo, (B5b)

where the boundary conditions mean that the solutions are regular at the ends of the interval
a < z < b. Besides, COP satisfy certain three-term recursion relations, which leads to the

following properties of functions (B3)

$(Pn(I) = an‘;on;i-l(x) + 6n(Pn(I) + an—l‘,on—l(m): (Bﬁa)
0($)d¢d;:£$) = d’ncpnd-l(x) + 611‘19,1(55) + :Tn(Pn-l(x)- (Bﬁb)

All notations here are defined in table IV. For each type of COP there is an associate

Gaussian quadrature. An N-point quadrature formula reads

N
f ’ Fo)u(z) do ~ S wiF (), (B7)



where F(z) is an arbitrary function such that the integral exists, z; are the quadrature
points coinciding with the zeros of py(z), and w; are the quadrature weights (the Christoffel
numbers) given by

_ knhn_t
kn_10ly (®:)pn—1(zs)’

w; () = knz™ + ... (B8)

Formula (B7) gives an exact result if F(z) is a polynomial of the degree not higher than

2N —1, otherwise it is an approximation., Simple and efficient algorithms for the computation

of quadrature points z; and weights w; for all three types of COP are described in [17].
Functions (B3), being the solutions of a Sturm-Liouville problem (B3), constitute a com-

plete set in Ly[a, b]. Consider an N-dimensional subspace L\"[a, b] of functions
M) (z) = Vw(z) Py—i(z), _ (B9)
where Py_;(x) is an arbitrary polynomial of the degree not higher than N — 1. Functions

01(z), walz), ..., on(z), ..., on(x) (B10)

belong to LgN)[a, b] and provide an orthonormal basis there. Thus an arbitrary function

from L{")[a, b] can be expanded as

N b . -
pz) =3 P, (z), = f-wn(x)w“”(x) dz. (B11)
n=1 i . @
Let us introduce another basis in LgN)[u, b,
m(z), m(z),... mlz), ..., (). . (B12)

The two sets (B10) and (B12) are related by

ealz) = ZTmm(:c), m(z) = Y Tniwn(2), (B13)

where
Wy

Toi = (T )in = ritpn(m4), K'i‘E w(z) (B14)

and orthogonality of the transformation matrix T follows from the Christoffel-Darboux iden-

tity. It is easy to see that functions m;(x) have the property

milz:) = k7164 (B15)
7 1 'J



Basis (B12) is also orthonormal,

j‘b ‘FI','(I)TI’J'(I) dr = 6,']', (Blﬁ)

and an arbitrary function from Lg’v)[a, b} can be expanded as
N b
YW@ =) d'm@), o= [ mi(2)9V)(z) da. (B17)
i=1 a

Note that a product of any two functions from L{V[a,b] has a form of the integrand in
Eq. (B7), where F(z) is a polynomial of the degree not higher than 2V — 2, hence the
quadrature gives an exact result in this case. In particular, it gives an exact result for the
normalization integrals (B4) and (B16) within the sets (B10) and (B12) as well as for the
integrals defining the coefficients in expansions (B11}) and (B17). Using this circumstance
and property (B13) we obtain

&M = k™ (z)), (B18)

thus the coefficients in (B17) are proportional to the values of 9(*)(z) at the quadrature
points x;, which is a remarkable property of this expansion. Moreover, Eq. (B7) gives an
exact result also for the integrals of a product of any two functions from LgN}[a, b] and a

polynomial of the first degree, hence

5 ‘ ‘
/ mi{z)rm;(z) dz = 265, (B19)

This result shows that functions (B12) arc the basis of a discrete variable representation
conjugate to the polynomial basis (B10). For an arbitrary function f{z), using Eqs. (BT7)
and (B135) we obtain

b
/ 74(2) [ (2)73(2) dz ~ F(z2)6i;. (B20)

a

The smoother is f(z), i.e., the better it can be approximated by a polynomial of low degree,

the more accurate is this formula.

2. Application of DVR to the solution of a Sturm-Liouville problem

Many problems in quantum mechanics require to solve the Sturm-Liouville problem

d d
T 5X) 75 + ER(X) = V(X)| ¥(X) =0 (B21)



with appropriate boundary conditions at the ends of the interval A < X < B, where E
and ¥(X) are the eigenvalue and cigenfunction io be found, and S{X) > 0, R(X) > 0, and
V(X)) are some given functions. Let us introduce a new independent, variable z and a new

unknown function ¥(z) related to X and ¥(X) by the transformation

X = X(z), dXdJ(f) — f(z) >0, X(a)=A, X(b) =B, (B22a)
V(X) = ¥(X(x)} = g(z)p(=), (B22b)

defined by two functions, f(z) and g(x). Substituting Egs. (B22) into Eq. (B21), the original

Sturm-Liouville problem takes the following standard form

%a(x)% ~ o(z) - u(x) + Eplz) | $(a) = 0, (B23a)
bla)<oo,  (B) < o6, (B23b)
where
(z} = LXS%))Q?&) (B24a)
u(z) = F(B)F @)V (X (2)) - g(w)%s—(j%jﬁ%g(w) —u(m), | (B2ab)
o(w) = F(&)g* (@D R(X (z). (B24¢)

We wish to make Eq. (B23) as close in form to the basic EVP (B5) as possible. To this end,
we require that the interval [a,. b and functions ¢(z) and v(z) coincide with the corresponding
characteristics for a suitable set of COP, sec table IV. Then Eq. (B24a) defines g(z) in terms
of f(z). The latter function remains undefined; some recommendations concerning its choice
will be given below.

Let us seek an approximate solution of Eq. (B23) by the variational method with trial

functions from L[ZN)[a, b},
ExEM,  lz) ~ 9™ (z) € L§[a,b] (B25)

Because the set (B3) is complete in Lo[a,b], this approximation converges to the exact
solution as N grows. Any of the expansions (B11) and (B17) can be used in the variational
procedure. Substituting (B11) into Eq. (B23) and using Eq. (B5) we obtain a generalized
algebraic EVP in the ¢ representation,

(€9 1+ ul?)) ) = B g0 @), (B26)



where

GE:'?,); = €nbam, (B?Ta)
b
ut) = [ ena)ulalon(a) ds (B27)
b
P = [ ealedolelpn(z) . (B27¢)
Starting from (B17) and acting similarly we obtain a generalized algebraic EVP in the =
representation,
(€ 4 u™) (M = B pm) =), (B28)
where
(w) ZTmfn e (B29a)
b .
S;r) / mi(z)u(z)7;(z) dz, (B29b)
b
o = [ mla)pta)m(a) da (B29¢)

If all the integrals defining matrices u and p in Egs. (B26) and (B28) were calculated
exactly, these equations would be related by the orthogonal transformation (B14) and both
approaches would obviously ylcld identical results. The essence of DVR is to calculate
maftrices u and g approximately using the quadraturc (BT) In this case it is more convenient

to work i in the 7 representation. From Eq. (BQO) we obtain

u‘-’-r) ~ u(z,-)dij, (B30d)
P~ plx:)dis. .+ (B30b)

Seeking an approximate solution of Eq. (B23) in the form

N JDOVR)
ExEO, y(a)~ pPVR(5) = Z WOk (B31)
and using Eqs. (B30), we obtain an ordinary algebraic EVP,
h{PVR)(DVR) _ p(DVR)(DVR) (B32)
where ()
€ ;
p(OVR) _ ij 1 u(z:) &;. (B33)

p(zi)o(z;)  pla)



This is the DVR. Due to property (B13), the components of the eigenvectors ¢PYR) are

proportional to the values of the corresponding eigenfunctions at the quadrature points,

) A w(z;) ~DVR) . _
¥(z:) ek . (B34)

The values of 1(x) at an arbitrary point of the interval [a, b] can be obtained by tran;;fo_rming
expansion (B31) back to the polynomial basis (B10).

As can be seen from the above discussion, DVR contains an additional appmxi‘maﬁion
(B30) in comparison with the variational method. The accuracy of this approxiﬁation
depends on functions u(z) and p(z). If these functions are lincar, then formulas (B30)
are exact, and the variational (B25) and DVR (B31) solutions coincide. Otherwise they are
different, however, the difference is the smaller the better u{z) and p(x) can be approximated
by polynomials of low degree. This circumstance should serve as a guide in choosing the
function f(z) defining the transformation (B22) of the original Sturm-Liouville problem
(B21) to the standard form (B23), the other function g(z) in this transformation being
deteﬁnined by Eq. (B24a). The present approach does not provide a unique prescription
for f(z), but in each case a suitable function can be usually found without difficulties. Tt
should be noted that if the transformation of the independent variable in (B22) is linear,
i‘c., f(z) is a constant, then the type of COP used for constructing the DVR and all the
other parts of the described scheme are defined uniquely. If functions u(z) and p(z) are
sufficiently smooth, the difference between the variational and DVR solutions is small, and
then in choosing between the two methods one should consider the matters of simplicity in
implementation and convenience in practical calculations. Here DVR has several important
advantages. First, for calculating the DVR Hamiltonian (B33) one needs to know only the
values of «(x) and p(z) at the quadrature points z;. Second, matrix €™ depends only on
the type of COP and the dimensiorll of the basis N and does not depend on the particular
problem under consideration, therefore it should be calculated once and then can be used
for recurrent solution of the same problem with different values of some parameters defining
the functions p(z) and u(z). Finally, the form of the DVR solution (B31) is very convenient

for subsequent calculations of various matrix elements using Eq. (B20).



3. Application of DVR in the SVD method

A general scheme of the SVD method (3] requires to calculate matrices of the kinetic
energy operator and weight function in a suitable DVR basis. In the applications of SVD
to the solution of the three-body Coulomb problem in hyperspherical coordinates these

matrices can be calculated analytically. Here we summarize the results used in CTBC.

a. Kinelic matriz for bound states

For bound states, the DVR basis is constructed from Laguerre polynomials Lsf)(:c). The

kinetic matrix {97) in this case is given by

1 drm(x) 22 d‘ﬂ'j. 3
Ky =5 /0 - n;_ T KT, (B35)
where
1 [ dpa(z) 5 don(z)
(e} — Z 2 ) B36
Ko 2,[0 dz © " dr de (B36)

This is a symmetric matrix with three nonzero diagonals,

KW =10m+2a—1)n—-—a+2], (B37)
K9,y = K = 4 In(n+ Dn+ )(n+a+ DI

Matrix {(B33) is calculated by subroutine DVRB.
. b.  Kinetic matriz for scattering in the first sector

For scattering in the first sector, the DVR basis is constructed from Jacobi polynomials

P%)(z). The kinetic matrix (97) in this case is given by

1 [ dm(x) d’frj,( (@)
Ky = §f_1—dx (1423 R;IT K{D T (B38)
where : :
din(z) dpm (2) _
K('ﬂ) m\rs 2 Fm g .- B
2[_1 T (1 + ) Iz dz (B39)
We have
d n
(1+2) ‘P ( ). zanm (B40)



where

g = /_ o(x)(1+2) d‘“”;f) dz.

Using |
d
[ 2 onl@)1 + 2)pu(@)] o = aus + i + bk = 20 (1)1,
-1
we find
Gpn = (P?;(l) - %:
ank = 20n{)0x(1), k< n.

From this we obtain

n—

K& =200(1) Y wp(l) + 4 [02(1) - 4]%,
’ .

n—1
K% = KB = 0u(Don(1) |23 @2 +@2(1) - L], n<m
k=1

-
1

Matrix (B38) is calculated by subroutine DVRSJ.

€. Kinetic matriz for scattering in further sectors

(B41)

(B42)

(B43)

(B44)

For scattering in all further sectors, the DVR basis is constructed from Legendre polyno-

mials P, (z). The kinetic matrix (97) in this case has the form

1
dm; dar
Ky = cnkf»?} + clkgjl.) + cgk(?) kg') — [ mi() o 73 () da.

i 1 d$ d.'r
We have L
dip,(z —
(ii_m() = GnkPk (I)a
k=1
where .
dipn (z)
= d
aﬂk /I‘P ( ) d:l?
From

1

we find

{ VO Dk =1, ifk=n—1n—3_ >1,
Ang = )

0, otherwise.

f_l % [pn(2)9k(2)] d2 = g + aen = §4/2n = T2k = 1) (1 = (-1)™*)

(B45)

(B46)

(B47)

(B48)

(B49)



Using this we obtain

dipa(2) dom(z)
(0) Dn L4 )
Z TﬂtTme dz d:z: dx = Zblkbjk:

n,m=1 k=1
where .
bik = O _ Tnitnk-

n=1

Next
Vdpa(2) donm(z —
k(l) Z TmeJ/ (pdg(: (P ) dz = Z \/F— (b,kb_,k+1 + b,k+|b1k)

and finally

N
kg) = ’ng) - Z(TL - l)nTm'Tnj.

n=1

Matrices k,(-;) in (B43) are calculated by subroutine DVRSL.

d.  Weight matriz

In all the cases considerced above, the weight matrix (98) has the form

py= [ m@o@m (s dz, o) =+ oz +

We have

/ m(2)7%m;(x) do = Z TyiTns / on(2)2% 0 (x) d

nm=l1

N
= Z Tniij (Z Tnkmika + A(N)JnN‘SmN)

n,m=1 k=1

= z}8i; + A(N)YTwiTw;,
and therefore
pi7 = p(x:)di; + 2 A(NYTwi T,
where

N
A0N) = [ onta)eton(a)do - Y- TuseiTin.
k=1
It remains to calculate A(N ). First,

f (2P on(z)dz = o + B + Ay,

(B50)

(B31)

(B52)

(B53)

(B54)

(B35)
(B56)

(B57)

(B38)



Second, taking into account that Tyyy; = 0,

ziTwi = BuTni + a1 Tw-1i ' (B59)

From this using the orthogonality of T we obtain

N‘ .
N TwziTue = By + o, (B60)
k=1

Thus A(N) = a%. In the cascs of mtcreat here

N(N + a), for I (z),
4NN + §)? |
AN =S eV AN + -1 PO, (B61)
N2 :
W—_l, for Pn(;r).



REFERENCES

(1] R- G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982).

(2] J. Macek, J. Phys. B 1, 831 (1968).

[3] O. I Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B 29, L389 (1996).

[4] C. Bloch, Nucl. Phys. 4, 503 (1957).

[5] D. Kato and S. Watanabe, Phys. Rev. A 56, 3687 (1997).

(6] E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

{7] K. L. Baluja, P. G. Burke, and L. A. Morgan, Comp. Phys. Comnm. 27, 299 (1982).

[8] P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).

(9] M. Gailitis, J. Phys. B 9, 843 (1976).

[10] C. J. Noble and R. K. Nesbet, Comput. Phys. Commun. 33, 399 (1984).

[11] D. O. Harris, G. G. Engerholm, W. D. Gwinn, J. Chem. Phys. 43, 1515 (1965).

[12] A.S. Dickinson, P. R. Certain, J. Chem. Phys. 49, 4209 (1968).

(13] J. C. Light, L P. Hamilton, J. V. Lill, J. Chem. Phys. 82, 1400 {1985).

[14] O.I. Tolstikhin, D. Kato, T. Morishita, S. Watanabe, and M. Matsuzawa, unpublished (1995).

[15] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover
Publications Inc., New York, 1972).

{16] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhduser
Verlag, Basel, 1988).

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in
FORTRAN (Cambridge University Press, Cambridge, 1992).




NIFS-759

NIFS-760
NIFS-761

NIFS-762

NIFS-763
NIF5-764
NIFS-765
NIFS-766
NIFS-767
NIFS-768
N IFS-'.;69
NIFS-770
NIF5-771

NIFS-772

NIFS-773 .

NIFS-774

NIFS-775

NIFS-776

NIFS-777

NIFS-778

NIFS-779

Recent Issues of NIFS Series

5. Kubo, T. Shimozuma, H. Idei, Y. Yoshimura, T. Notake, M. Sato, K. Ohkubo, T. Watari, K. Narihara, I. Yamada, S. Inagaki, Y.
Nagayama, 5. Murakami, S, Muto,Y. Takeiri, M. Yokoyama, N. Ohyabu, K. Ida, K. Kawahata, O. Kaneko, A. Komeori, T. Mutoh, Y,
Nakamura, H. Yamada, T, Akivama, N. Ashikawa, M. Emoto, H. Funaba, P. Goncharov M. Goto, K. Ikeda, M. Isobe, H. Kawazome,
K. Khlopenkov, T. Kobuchi, A. Kostrioukov, R. Kumazawa, Y. Liang, S. Masuzaki, T. Minami, J. Miyazawa, T. Morisaki, §. Morita,

H. Nakanishi, Y. Narushima, K. Nishimura, N. Noda, H. Nozato, S. Ohdachi, Y. Oka,

M. Osakabe, T. Ozaki, B. J. Peterson, A.

Sagara, T. Saida, K. Saito, S. Sakakibara, R. Sakamoto, M. Sasao, K. Sato, T. Seki, M. Shoji, H. Suzuki, N. Takeuchi, N. Tamura, K.
Tanaka, K. Toi, T. Tokuzawa, Y. Torii, K. Tsumori, K. Y. Watanabe, Y. Xu, S. Yamamoto, T. Yamamoto, M. Yoshinuma, K. Iich, T.
Satow, S. Sudo, T. Uda, K. Yamazaki, K. Matsuoka, O. Motojima, Y. Hamada and M. Fujiwara

Transport Barrier Formation by Application of Localized ECH in the LHD
Oct, 2002 (EX/C4-5Rb)

T. Hayashi, N, Mizuguchi, H, Miura, R. Kanno, N. Nakajima and M. Okamoto
Monlinear MHD Simulations of Spherical Tokamak and Helical Plasmas

Qgct, 2002 (TH/6-3)

K. Yamazaki, S. Imagawa,.T. Muroga, A. Sagara, 8. Okamura

System Assessment of Helical Reactors in Comparison with Tokamaks

Oct. 2002 (FI/P1-20)

5. Okamura, K. Matsuoka, S. Nishimura, M. Isobe, C. Suzuki, A. Shimizu, K. Ida, A, Fujisawa, S. Murakami, M. Yokoyama, K. Itoh, T.

Hayashi, N. Nakajima, H. Sugama, M. Wakatani, Y. Nakamura, W. Anthony Cooper
Physics Design of Quasi-Axisymmetric Stellarator CHS-ga

Cet. 2002 (1C/P-07) .

Lj. Nikolic, M.M. Skoric, S. Ishiguro and T. Sato

On Stimulated Scattering of Laser Light in Inertial Fusion Energy Targets

Nov. 2002

NEFS Contributions to 19th IAEA Fusion Energy Conference (Lyon, France, 14-19 October 2002)

Nov. 2002

S. Goto and §. Kida

Enhanced Stretching of Material Lines by Antiparallel Vortex Pairs in Turbulence
Dec. 2002

M. Okamoto, A.A. Maluckov, §, Satake, N, Nakajima and H. Sugama
Transport and Radial Electric Field in Torus Plasmas

Dec. 20{12

R. Kanno, N. Nakajima, M. Okamoto and T. Hayashi

Computational Study of Three Dimensional MHD Equilibrium with m/n=1/1 Island
Dec. 2002

M. Yagi, S.-I. Itoh, M. Kawasaki, K. Itoh and A. Fukuyama

Multiple-Scate Turbulence and Bifurcaion

Jan. 2003

S.-I. Iroh, K. Itoh and S. Toda

Statistical Theory of L-H Transition and its Implication to Threshold Database
Jan, 2003 .

K, Itoh

Summary: Theory of Magnetic Confinement

Jan. 2003

$.-L Ttoh, K. Itoh and 5. Toda

Statistical Theory of L-H Transition in Tokamaks

Jan. 2003

M. Stepic, L. Hadzievski and M.M. Skoric

Modulation Instability in Two-dimensional Nonlinear Schrodinger Lattice Models with Dispersion and Long-range Interactions

Jan. 2003

M. Yu. Isaev, K.Y. Watanabe, M. Yokoyama and K. Yamazaki

The Effect of Hexapole and Vertical Fields on o-particle Confinement in Heliotron Configurations

Mar. 2003

K. Itoh, S.-1. Itoh, F. Spineanu, M.0. Vlad and M. Kawasaki

On Transition in Plasma Turbulence with Multiple Scale Lengths
May 2003

M. Viad, F. Spineanu, K. lioh, S.-I. Itoh

Intermittent and Global Transitions in Plasma Turbulence

July 2003

Y. Kondeh, M. Kondo, K. Shimoda, T. Takahashi and K, Osuga

Innovative Direct Energy Conversion Systems from Fusion Output Thermal Power to
Adiabatic Processes of Electron Fluid in Solid Conductors. :

July 2003

5.-1. Ttoh, K. Ttoh and M. Yagi

A Novel Turbulence Trigger for Neoclassical Tearing Modes in Tokamaks
Tuly 2003

T. Utsumi, J, Koga, T. Yabe, Y. Ogata, E. Matsunaga, T. Acki and M. Sekine
Basis Set Approach in the Constrained Interpolation Profile Method

July 2003

Oleg 1. Tolstikhin and C. Namba

the Electrical One with the Use of Electronic

CTBC A Program to Solve the Collinear Three-Body Coulomb Problem: Bound States and Scattering Below the Three-Body

Disintegration Threshold
Aug, 2003

Printed on 100% Recycled Paper for this Text




