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Abstract

Alfvén eidenmodes and their destabilization by energetic ions in stellara-
tors, mainly, in the Large Helical Device (LHD) plasmas, are considered. A
general expression for the instability growth rate is derived, which general-
izes that obtained in Ref. [Ya.l. Kolesnichenko et al., Phys. Plasmas 9, 517
(2002)] by taking into account the finite magnitude of the perturbed longi-
tudinal magnetic field. The structures of the Alfvén continuum and Alfvén
eigenmodes, as well as the resonances of the wave-particle interaction, are
studied. A numerical simulation of the destabilization of Alfvén waves with
low mode numbers during neutral-beam injection in a particular LHD shot
is carried out. The obtained solutions represent even and odd core-localized
Toroidicity-induced Alfvén Eigenmodes, the calculated frequencies and the
mode numbers being in agreement with experimental data. The growth

rates of the instabilities are calculated.
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L. INTRODUCTION

Alfvén instabilities (AI) caused by energetic ions were observed in many experiments
on tokamaks.! Various Alfvén modes were destabilized also in stellarators.>? These in-
stabilities arise because of the resonant interaction between energetic ions and Alfvénic
perturbations. Depending on plasma characteristics, the same resonances can lead to the
destabilization of either Alfvén Eigenmodes (AE) or Energetic Particle Modes (EPM).
The frequencies of AEs lie in the gaps of the Alfvén Continuum (AC), whereas frequen-
cies of EPM lie in AC but close to the gaps. Therefore, to know AC is important for
explaining experimental data and making predictive calculations.

A joint feature of AC in all stellarators is the presence of gaps caused by the break
of the axial symmetry of the magnetic configuration. This leads to appearance of AEs
which are absent in tokamaks.? 7 Note that such gaps are present in AC of the so-called
“quasi-axisymmetric” stellarators as well because in these systems only the magnetic field
strength is symmetric in flux coordinates, but not the plasma configuration. On the other
hand, different stellarators have different plasma shaping and different characteristics of
the magnetic field (shear, rotational transform, Fourier harmonics of the magnetic field
strength). Furthermore, different shots in the same machine, especially, in large Helical
Device! (LHD), may have very different characteristics of the magnetic configuration,
which leads to different ACs.

Due to the mentioned gaps, high-frequency Als associated with the destabilization
of various Helicity-induced Alfvén Eigenmodes (HAE instabilities) and Mirror-induced
Alfvén eigenmodes (MAE instability) can arise in stellarator plasmas in addition to the
Toroidicity-induced Alfvén Eigenmode (TAE) instability. This was shown in Refs.>°,
where Als in a Helias reactor!’ were considered. High-frequency Als were observed in
experiments on LHD and Wendelstein 7-AS (W7-AS'?), but only recently they were iden-
tified as HAE and MAE instabilities.'* ' Moreover, detailed analyses of the instabilities
in the cited works are absent, so that further work is required for reliable conclusions.
Note that Als in stellarators may differ from those in tokamaks not only because dif-

ferent Alfvén modes can be excited. Another important circumstance is that the res-



onant wave-particle interaction in stellarators has peculiarities caused by the fact that
the toroidicity is not the only factor that determines the particle drift motion. Because
of this, there exist “non-axisymmetric” resonances in stellarators, which dominate under
certain conditions.%1¢

In this work, we further develop the general theory of Als in stellarators and study
Als in a particular shot of LHD, namely, the shot #24512. In the mentioned shot, low-
mode-number Als were observed, as was reported in Refs.'7, The work contains various
components of the analysis required for the identification of the Als: the structure of
Alfvén continuum is calculated, and the main gaps are identified; the spatial structure
of AEs is considered; the resonances of the wave-particle interaction are analyzed; the
growth rates of Als are calculated.

The structure of the work is as follows. In Sec. 1I we present a qualitative picture of
the AC and AE structure and analyze the existence of the multi-harmonic structure of
AEs; in addition, we determine the relevant resonant velocities of circulating energetic
ions in stellarators. In Sec. Il an expression for the instability growth rate driven by
the circulating energetic ions is derived. It generalizes a corresponding expression of
Ref.9 by taking into account the finite magnitude of the perturbed longitudinal magnetic
field. Section IV deals with Als observed in the LHD shot #24512. In this section
the experimental results are briefly described, and numerical calculations of the mode
structure and the instability growth rate are carried out. Finally, Sec. V summarizes the

obtained results and contains the conclusions drawn.

II. ALFVEN MODES AND THEIR DESTABILIZATION: QUALITATIVE

ANALYSIS
A. Alfvén continuum, gap modes and their structure

If the plasma were a cylinder, the dependence of wys = {ky|va (k) is the longitudinal
wave number, v,4 is the Alfvén velocity) on the radial coordinate, r, would determine an

Alfvén continuum in the frequency bar Aw given by wpmin < Aw < Wpmaez. Spatial



inhomogeneity of the magnetic field strength and plasma shaping affect AC. First of all,
AC is affected in the points r, where the pairs of cylindrical branches of AC, wg;{r) and
waz(r) intersect. Near these points a reconnection of the branches takes place, which
produces the gaps in AC where AEs can reside. Due to this, a simple and vivid picture
of possible frequencies of Alfvén gap modes, i.e., the modes that can be destabilized by
the energetic ions most easily, can be obtained by considering the intersection points of
the cylindrical branches of AC.

Let us obtain such a picture for LHD. This stellarator is characterized by a rather
large number of the field periods along the large azimuth of the torus, N = 10, and the
considerable magnetic shear: the rotational transform ¢(r) typically varies from ¢ ~ 0.4
at the magnetic axis to ¢ 2 1 at the edge.

We proceed from the general Fourier expansions of the perturbation, X, the magnetic

field, B, and a contravariant component of the metric tensor given by

[o <]
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where g¥¥ = |Vy|?%; (¢, ¥, @) are Boozer flux coordinates with ¢ the toroidal magnetic
flux; ¥ and ¢ are the poloidal and toroidal coordinates, respectively; B is the average
magnetic field at the magnetic axis; the radial coordinate r is defined by v = Br?/2; m
and n are the poloidal and toroidal mode numbers, respectively, e‘(B_; ) = eg";’)*. Let us
consider a pair of Fourier harmonics of the perturbation with the mode numbers m,n and
m+p, n+vN. Taking wa(t*,m,n,) = wa(t*,m+p,n+vN) and using ky = (me —n)/ Ry

with Ry the radius of the magnetic axis, we easily obtain ¢, (or r.) and the characteristic

frequencies w, = |ky(rs)|va(ry) as follows:®

w, = K v, @



w2n+uN

2m+p’ (5)

L, n

where “+” denotes magnitudes at r = r,, k" = {(ut — vN)/(2Ry); below we will also use
the normalized quantity k* = k"’ R,.

The characteristic frequencies w, in an LHD plasma with the dominant coupling num-
bers (u, v) = (1,0),(2,0),(2,1), (3,1),(1,1) are shown in Fig. 1. We observe that the fre-
quency regions associated with the axisymmetric Fourier harmonics of B and g¥¥ (v = 0)
and the non-axisymmetric harmonics (v 7 0) are well separated, more than in other ma-
chines, cf. Ref.®. This is a consequence of the fact that LHD is characterized by rather
large N (for comparison: N =5 in W7-AS and Wendelstein 7-X!?). However, we should
note that Fig. 1 does not show the gap width, which can be considerable. In addition, it
does not take into account that in reality the gaps can be shifted up or down because of
the mutual influence and the large magnitudes of coupling parameters. The mentioned
effect can be significant in the periphery region of LHD plasmas, see Sec. IV,

A frequency gap around w, is located at r,, and in this sense this is a “local” gap.
It is of importance that w, does not depend explicitly on the mode numbers m, n but
depends on them through r, determined by Eq. (5). Because of this, for given (u, v), no
continuum branches can approach w,, which implies that there is an empty space around
wi(ry), ie., a “global” gap formed as an envelop of the infinite number of the local gaps
located at various r,.

Formally, a gap mode consists of the infinite number of Fourier harmonics. However,
in practice, there are only several considerable harmonics. Furthermore, in some cases,
(for instance, in Wendelstein 7-X and a Helias reactor) only a pair of coupled harmonics
dominate.%10

It is of interest to know the conditions of when the structure of a gap mode is multi-
harmonic. Below we obtain them, assuming that there is only one dominant pair of
coupling numbers {u, ). Then the radial profile of a corresponding eigenmode will have
maxima at the points satisfying Eq. (5). Let us calculate the distance between the maxima.
With this purpose we consider a pair of harmonics with the mode numbers my, ny and

my, n1, such that their normalized longitudinal wave numbers are ko = mgt — ng and



ki =myt—ny = ko+ A with A = gt — vN. The condition ky + &, = 0 defines ¢ given by
Eq. (5) with m = mg, n = ny. In this point kg = —A/2 and k; = A/2 = k*. Similarly, we
can consider the pair my, n; and mg, na, ete. In general, for the pair m,, n, and mgy 1, Nopr

(s an integer) we obtain k, = —k**(1,), where ¢, = (n, + ¥N/2)/(m, + p/2). This leads

to
_my+(s+0.5)uN ©)
* T me+(s+05)’
and
vNm, — un,
top1 — g = . 7
= T a2) e + 372) @
Equation {7) can be written as follows:
lgt1 — s — (VNms - l’Jﬁ'rl's)"-'s+1 (8)
Ly (ms + vN/2){(n, + 3uN/2)
In order to analyze Eq. {8), we consider separately two cases, v = 0 and v # 0.
At first, we take v = 0. Then
lg by
7 LB (9)

bs s
In weak-shear systems (Wendelstein 7-X, a Helias reactor) with ¢ ~ 1, [¢(a) —¢(0)]/¢(0) <
1, where a is the plasma radius, the left-hand side of Eq. (9) is much less than unity,
whereas the right-hand side is not small for n ~ 1, ¢t ~ 1. Therefore, in such systems a
gap mode with n ~ 1, v = 0 consists of a single pair of wave harmonics. Let us assume
that |r,41 — rs| < 5. Then, writing t51 — ¢t = —3t5(rs41 — 75)/7s and using Eq. (9), we

obtain;

Ts — Ty Lg
07T Bl o (10)
T ng, 5

As expected, Eq. (10) requires a significant shear, especially, for n ~ 1 modes. It can
be most easily satisfied for low ¢ (high safety factor), which is typical for tokamaks and
many stellarators (in particular, for core plasmas in LHD). However, Eq. (10) represents
a necessary but not sufficient condition for the multi-component structure of the mode.

Another important condition is that, at least, several local frequency gaps for different s
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must overlap, which implies that w, must be approximately constant in the region where
the mode is localized. This is often the case in tokamaks but not in stellarators, where
¢ typically increases with the radius [the made statement becomes clear il we take into
account that w, o ¢(r,}/y/ni(r.) with n; the ion density]. We conclude from here that
a multi-component ¥ = 0 AE (for instance, a TAE mode, which sometimes is called a
“global” TAE because it occupies a significant region in a plasma) typically cannot exist
in stellarators. As an example, we consider the n = 2 TAE gap in LHD shot #24512, see
Fig. 2. We observe that the local gap frequencies considerably grow with the radius even
in the region where the plasma density is almost homogeneous. As a result, the “global”
gap is closed, i.e., any straight line inside a local gap strikes AC in the vicinity of the local
maximum located to the right.

Now we proceed to the case of ¥ # 0. It follows from Egs. {(7) and (8) that the

condition |rey; —re| <€ 7, is satisfied for

VNms - “n,g
(ms + 1.5p)(ns + 0.50N) |

§> (11)

Equation (11) requires unrealistically large shear unless n > vN. On the other hand,
the condition w, =~ const is well satisfied in a wide region for MAEs and HAEs unless
the plasma density strongly changes in this region. Therefore, multi-component “global”
MAEs and HAEs are possible when the mode numbers are very high. When n < N, a
mode with v # 0 consists of only one pair of dominant harmonics.

The presence of several considerable coupling parameters () with [ the integer),
as we have already mentioned, shifts the gaps in AC and, thus, affects the eigenfrequen-
cies. In addition, it complicates the harmonic structure of AEs in stellarators, leading
to “compound modes”.'® However, the dominant Fourier harmonics are those associated
with the particular coupling parameter responsible for the gap. This was shown in Ref.!3
by considering the influence of the largest coupling parameter [the helical parameter (2]
on MAE modes in a Helias reactor. Therefore, one can say that the compound modes

consist of main harmonics and satellite harmonics.



B. Resonant circulating particles

The particle magnetic drift motion in stellarators, in contrast to tokamaks, is deter-
mined by many Fourier harmonics of the magnetic field strength. Therefore, in general,
there are many groups of the resonant energetic ions that drive Alfvén instabilities in
stellarators. In current experiments on stellarators with the neutral beam injection, the
population of the energetic ions consists mainly of circulating particles. Therefore, below
we restrict ourselves to these particles. Then the resonance condition can be written as

follows:9:1¢

w = [(my + p)e(r) — (no £ v, NI, (12)

where w is the mode frequency; m, and n, are the mode numbers defined in Sec. II A;
v is the longitudinal resonant velocity; u, and v, r = 1, 2, 3,.. ., are the “resonance”
coupling numbers, i.e., the numbers characterizing Fourier harmonics of the magnetic field.
Each equation corresponding to a given subscript “r” represenis a resonance associated
with one of the harmonics of B.

The m.agnitude of w for a gap mode depends on the location of a corresponding gap
in the Alfvén continuum. Let us assume that the mode consists of several considerable
Fourier harmonics coupled by the only set of the coupling numbers, {u,v). Then the
mode amplitude will have maxima located at r, determined by Eq. (5). In these maxima

Eq. (12) can be written as
w = [=k*(rs) £ 2k, (rs)]v™, ' (13)

where k, = (prt—v.N)/(2Ry), ¥ = (ue—vN)}/(28y). Note that when obtaining Eq. (13),
we have taken into account that myt; — veN = —(ue, — ¥N}/2. We assume that the gap
is narrow. Then there is a point ry where one of the maxima of the mode amplitude is
located and where w = |k*(ry)|va(rp). Combining this equation with Eq. (13), we obtain

the resonant velocity as

k() ] [k (ro)| (14)

’Ul’ies = —va(ro) [1 + ka(rs) K (r,)




Note that in the particular case of a well-localized TAE mode in an axisymmetric
plasma, Eq. (14) yields a well-known result, [v;*| = v4 and |v]%| = v4/3. It follows from
Eq. (14) that TAEs with a multi-harmonic structure can considerably interact also with
particles having the resonant velocities larger/smaller than v4 and v4/3 by a factor of
to/ts [when k,(rs) = k™ (r,)].

Equation (14) describes the influence of the finite width of the region where a mode
is localized, Ar,04., On the resonant velocities. Below we show that finite Ar,,.q. can
be important even when the mode consists of a single pair of Fourier harmonics. With
this purpose, let us consider a well-localized TAE mode and assume that the maximum
velocity of the energetic ions, g, is less than Alfvén velocity. Taking w = |miey —n|vas/ Ro,

we obtain from Eq. (12):

gres —__ Uas e, — n|
I 14 258(r)] [me(r) —n]’

(15)

where 4(r) = F0.5:/(mt — n) — 1. One can see that there exist the mode numbers m,n
for which 8(r,) = 0 and [v}*(r,)| = vas > vp. This implies that there are no resonant
particles at r = r, for these mode numbers. However, 4(r,) # 0 when r # 7., which can

provide the fulfillment of the resonance condition in the case of 4(r) > 0 in the region

inside Arpode. For instance, ¢, = 0.4 for the TAE mode with m = -3, -2 and n = 1.
The counter-propagating beam particles (v < 0) can interact with the m = —2 harmonic
at r = r, only through the resonance v*° = —va. Therefore, when vy < v4, no interaction

at r = r, occurs, whereas an interaction is possible in the region where 0.4 < ¢ < 0.5.
Such an interaction plays an important role in an LHD shot considered in Sec. IV.
It is of interest to determine the velocities resonant to various gap modes (in particular,

TAE, EAE, and HAE,; modes) in LHD. We consider the case when the dominant Fourier

(10} (21)  _(31)
B B

harmonics of B are the toroidal harmonic [e y €3

] and three helical harmonics [e
egl)]. We restrict ourselves to the consideration of the “local” resonance [assuming that
|k*(rg)| = |k (7,)|]. The obtained dependencies of the resonance velocities on the pitch-
angle parameter A = i, B/€ (i, is the particle magnetic moment, £ is the particle energy)

are shown in Fig. 3. We conclude from this figure that the torodicity-induced resonance

determines the destabilization of the low-frequency instabilities (TAE, EAE) because the

9



resonant, velocities associated with helicity are very low {which is explained by large N

in LHD). However, “non-axisymmetric resonances” associated with egl) dominate the

interaction of the energetic ions and the high-frequency AEs provided that egl) is the

largest Fourier harmonic of the magnetic field.

III. GENERAL EXPRESSION FOR THE GROWTH RATE OF ALFVEN

INSTABILITIES

The instability growth rate, «y, is determined by the competition between the drive
produced by energetic ions and various damping mechanisms. In the linear perturbative
theory the drive and the damping are represented by additive terms in 4. Due to this
fact, it is possible to treat the drive and the damping independently. Below we calculate
the driving part of the growth rate, v,.

It is known that the ideal-lMHD AEs are marginally stable, which implies that
J Bz E-jMID — 0, where jM¥P is the bulk plasma current induced by the waves, the
tilde labels the perturbed quantities, and the integral is taken over the plasma volume.
On the other hand, the electric field of the Alfvén waves of interest (characterized by
ky < k.) is approximately potential, E ~ —V® with ® the scalar potential. For such
waves, as follows from the equation VxB = 4re™ 1_]T (j is the total electric current density),
the scalar product of B and ] also vanishes provided that the radiation from the plasma

is negligible:
| fd%if:-j':o. (16)

Therefore, when the influence of energetic ions on AEs is small, the instability growth
rate can be calculated perturbatively by using Eq. (16). Writing w = wp + dw (wp is the
eigenfrequency in the absence of the energetic ions, dw < wp) and taking j = jM#P ¢+ jo
(the superscript “a” labels the energetic ion quantities) we obtain from Eq. (16), cf. Ref.%:

B [dBzj* B 2w [z -E
J B3z (BMED [duy) - B ¢ Vo [ BT 0,° [I(I>’m,n|2 + (m2/r2)|¢’m,n|2] ’

where @, . = 39, /Or with 7 defined in Sec. Il A, ©4 = B/+/dwn;M; with n; and M;

dw =

(17)

are the ion density and mass, respectively. Note that when obtaining the denominator

10



in Eq. (17), we used Eq. (1) and an equation for the ideal- MHD Alfvén eigenmodes in
stellarators.%9
Alfvén instabilities are usually driven by the spatial inhomogeneity of energetic ions,
but the velocity anisotropy can play an important role, too. Thus, we need to know
both spatial and velocity distributions of the energetic ions. The equilibrium distribution
function of the energetic ions, fq, depends on the constants of motion: Fy = Fo(E, pp, J, 0),
where o = v /lvy|, pp is the particle magnetic moment (drift invariant), and J is the
invariant depending on the magnetic configuration. We have to specify J. When the
number of the field periods, N, is large, the drift invariant of the motion of circulating
particles can be obtained by averaging the drift toroidal angular momentum over the
field modulation, which yields'® J#¢ = ¢#° —4n 15 B; \/’W@E(n; )/@p, where
the superscript “gc” means that a quantity is taken at the particle guiding center, ¥,
is the poloidal magnetic flux, B; is a covariant component of B, wg = eB/(Mc), wg =
wg(B), Kk, is the particle trapping parameter. For the well circulating particles :cf, =Y
M Ryvit [ (4711, By), which leads to J% = 2° — Byvy/@p. Now we note that ¢¥2° = 9 +
t(v x b)! fwp with b = By/ By, the superscript “1” denoting a contravariant component
of the vector. Then we obtain J = ¢, — v3B/wg. Thus, the motion of the well circulating
particles in stellarators with the large number of the field periods can be described by the
toroidal angular momentum, as in the case of axisymmetric magnetic configurations.
In Eq. (17) _]7“ = {d% v , where I is the distribution function of the energetic ions.

In order to find F , we proceed from the following linearized collisionless kinetic equation:

£+v-?£+i(vag)-a—F

at dgr  Mc ov

= —% (E” + %(vxﬁ)i) (Mvic?aiﬂ + gﬁf giz - %gsi%) ,

where the subscript “0” labels the quantities in the unperturbed state. It is convenient to

(18)

use Lagrangean coordinates, in which case dr/dt = v and dv/dt = v x Boe/(Mc¢). Then

we can write:

v=v|+Vvp+Vp (19)
—_ —_ ax .
X(r) = X(rge) + ﬁﬁrﬂ (20)

11



where vp is the particle drift velocity, v, = vz (e, cosa + e, sin a) is the velocity of the
Larmor rotation, ¢ is the phase of the rotation, e, and e, are the unit vectors along the
normal and binormal to the field line, respectively, r; = wg'bxv is the vector Larmor
radius. Using Eqs. (19), (20) and the fact that £y = 0 for the ideal MHD waves, we write
Eq. (18) in the form:

d - OFRB, c8F- S o
Ma (F + upﬂﬁ + a—a"fEs = — (BVD -E — WNpBII) 11y, (21)
lg_08 em9 (22)

In Eq. (21) the terms describing the Larmor oscillations are omitted. However, the fi-
nite Larmor radius is taken into account: The term proportional E" has arisen from
virid-E/or, = (—iw/wp)(v})B)/(2c), where () = § da(. ..) is averaging over Larmor
rotation.
Now we integrate Eq. (21). Keeping only the terms responsible for the resonant wave-
particle interaction, we have:
- 1 - t - .
F=——IF f_ dr (evp - B —iwpmBy), (23)

o0

Below we will show that due to the presence of the term proportional to E’", the integrand
in Eq. (23) can be expressed through the vector product of two equilibrium quantities,
the field line carvature x and b. With this purpose, we eliminate fast magnetoacoustic

waves from the consideration by using the following equation:
Bt Byl ~ 0 (24)
D A o ~ U,

where p is the plasma pressure. This equation implies that the Alfvén waves weakly
disturb the total pressure of the plasma and the magnetic field, which was shown for
stellarator plasmas in Ref.!®. Then we assume that the plasma is incompressible, which
leads to = —¢i1, - Vpp/w (1L = ¢By '[Exb] is the plasma hydrodynamic velocity) and
obtain 5’“ from Eq. (24) as

4ri ¢

12




Using Eq. (25) and vp = wg'b x (vﬁn +,uPVBg/M), Kk = Bg?V,(B2/2 + 4mpy), we
obtain:

v-E=vp-E—ielwp,B) = wp' (v} +0.502)(bxx) - E. (26)
Now we put Eq. (26) into Eq. (23), which yields:
. _%fIFg ]0 T dt wgt (o 4 0.502) [b x ()] - B(r) e e @7
The energy exchange between the energetic ions and the waves is given by
/d%’j'- E- e/stc Powg (v +0502)(b x ) - E F. (28)

When writing Eq. (28), we have taken j = e Jd@uvF and used the average value of
v - E given by Eq. (26). We neglect the variation of the particle velocities during orbital
motion. Then the spatially dependent part of the integrand in Eq. {28) can be presented
as a product of F and K - E with X = (b x x)/B. We expand the quantities in this
product into a Fourier series according to Eq. (1). Then the angle averaging enables us

to write:
[ PP By=Y / Bz Fpn(K - E)L . (29)
mn
To determine {XC - E)m,n, we expand the field line curvature in a Fourier series as follows:
K = Kpa(r)etr e, (30)
s
where p and s are integers. Then, using Egs. (1) and (30), we find

K- Emn=3 Kps Epnrs (31)

p.8
We have to specify the particle orbits in order to calculate f’m,n. As in Ref?, we
neglect effects of the orbit width and assume that #(r) = 9 + wer and p(7) = ¢ + w,7,

where wy = const and w, = const are the frequencies of the poloidal and toreidal rotation,

respectively. Then Eq. (27) yields:

xp,s ) Em—p,n+s
i(w — Ty + nwy )

Fon=2¢ (Uﬁ + O.Svi) ﬁFg Z

pls

(32)
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Finally, combining Eqs. (17), (28), (31), and (32), we obtain the desired growth rate

as follows:
. zﬁMZ""“ Jdrr fd®v (v} + 0.50 IRy T 1Ky s - Ern o *0(05, (33)
" S [ A 1732 [ @ ol + (2 /1) @ nl?] ’
where
P =w— (m+plws + (n — s)wy, (34)

and the velocity integral should be taken over the region corresponding to circulating
particles.

The operator I1 in the variables £, p, and J is given by Eq. (22). When the par-
ticle energy well exceeds &, ~ (M;/M.)!/3T., where T, is the electron temperature, the
Coulomb collisions change the particle magnetic moment, but A = ,u.pB/ £ is weakly af-
fected. Therefore, it is convenient to use A instead of yp. In addition, because the orbit
width of circulating particles is small, ¢ can be used instead of J. Then £y = Fp(€, A, ¢).

In these variables, the velocity anisotropy gives rise to an additional term in il:

a a Miao nB @8
M=Mzr % ' wap by (35)

The expression in the integrand of Eq. (33) can be simplified when Nr?/R? < 1 and
N < 1, which is typically fulfilled in stellarators. In this case the terms proportional to
Bs(1)) dominate K - E; therefore, K - E = x,E; — k2F), which leads to

B 2
9 o + mePrmpl (36)

|Kp,s ) Em,n'2 w2 iﬁ:II

1
232
where £; = Ky, ps, KII = Ko;p,s, Kr and Ky are covariant components of the p, s harmonics
of the curvature.

The curvature harmonics can be expressed through the harmonics of the magnetic
field strength, except for the harmonic k,.gp. Therefore, it is convenient to write K in a
form that corresponds to B given by Eq. (2):

1 o0
= 2, Z Ky explipd — ivNo). (37)
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On the other hand, the main Fourier harmonics of the magnetic field strength are pro-
portional to cos(ud — vNy), ie., €& in Eq. (2) are real and €)= ¢,* ). In this case
Eq. (2) is reduced to

B=B[l+elr)+ Y ¢ (r) cos(ud — vN )}, (38)

20

where ep(r) = €®/2, and the sign of p is fixed (we will assume g > 0). Then x; =
0.53,, Ky pdiun, o and k=054, pe%‘")éiy,péim,*s. Taking this into account
and using Eq. (34), we can approximate the quantity 3", [Kps - Emn|?0(027,) in Eq. (33)
as

2

10 an
Z Kp,s - B |*6(020,) = ZTBE Z I (ﬂ ) By Mebir; o Prm

x4 (Q‘“’ )| (39}

p=ju, s=—jvN '
where j = £1.

Let us consider the energetic ions consisting only of beam particles and characterized
by very anisotropic pressure, py > poy1, (the subscript “b” labels the beam particles),
so that we can define 3, as 3, = 8mpy/B} = 8xM, [ d®v vj 2Fy/ B2 We assume that
Fy = Fy(r,v,x) with x* =1 — A = (v)/v)®. Then, basing on Egs. {33)-(39), we can write

the growth rate in a form convenient for the practical use as follows:

_ 7 3(0)v%(0)
32a%w 2ommn f(}l dpp [‘ o+ (m2/92)|¢’m,n|2] ni(p)/n:(0)
Y [ i — ik (10)

F R NTRR
where p = r/a, a the plasma radius, ), ,, = 0Pmn/0p, Kppuy = 86(“")/6;) for u # 0,
v#0,

-1

. 1
_ 4 2 _
= [2[0 du i j:ldxx Fo(?"—O,%X)]

WIVETF L, (1-x3) @ Wap
% [w] /|wa du (u? + w?)? [Bu PR b Rl o), (41)

u = vfvy with 7o a characteristic velocity of injected ioms, w = v{**(p) fvo, v*(p) =
w/(kmn + 2jk*), X, = w/u is the resonance pitch angle, w,, = nv§(wper)'dIn(FK)/or,

€.5s is determined from the condition that the particle trapping parameter equals unity.
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For the parallel neutral injection in plasmas with a large aspect ratio, most energetic ions
typically have pitch angles close to unity, in which case Q does not depend on €.5.

The term proportional to the pitch-angle derivative in Eq. (41) is minimum when
x2 — 1, but it can play a considerable destabilizing role for smaller pitch angles. For
instance, the drive produced by the velocity anisotropy overrides the damping caused
by the negative velocity derivative (8F,/0v < 0) when Fy o« v=33(x — xo)n(vp — v)
(p(x) = f*_0{y)dy is a step function) and w < |xe| < 0.77.2° More realistic beam
distributions have weaker velocity dependence, which increases the interval of the particle
pitch angles for which the anisotropy drive exceeds the damping. The effect is the largest
for instabilities driven through the resonances involving the beam particles with velocities

v <« vg. A simple example of a more realistic distribution is

np(r
Fo = sb( )3
v 4 v

3(x — xo)n(vo — v), (42)

where 7, is the beam density, v, = (1.33Men, " 325 i 22/ M3 vy, with vre = /2T./ M.,

Z; is the charge number. Then we obtain for |xp| # 1:

'I.U? Wah 1 2
- 2l =+1) w?
°=7 X3+ udxd/w®) | w \xb T

1 3 2 3 xo || 7(p)
e |- S -5+ 2 [+ 222 2 , 43
t v a2 [x% 375 “c(x%““ X“)w]}mm) 43)

where |w] < 1, xow > 0, u, = vo/vg, I = 2 fy duw/ (v +4?), I ~ 1 for v < 1. When
|lw| > 1 or xpw < 0, @ = 0 because in this case the resonant particles are absent. We
observe that the second term proportional to u? is destabilizing, as expected.

For the special case of xo = 1 we get:

B dw? we o 2—uifw\ ne(p)
Q= I(1+ ud/w3) ( w T 1+ug/w3) ny(0) (44)

Note that when a mode consists of a pair of Fourier harmonics equally contributing
to the denominator of Eq. (40), and both harmonics are strongly localized, Eq. (40) for

the growth rate is reduced to

7 o5 2
— . 45
Yiocal 64r2w j!#’”.u' |€B | Q ( )
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IV. NUMERICAL SIMULATION OF ALFVEN INSTABILITIES IN A

PARTICULAR LHD SHOT
A. Experimental data, equilibrium characteristics, and Alfvén continuum

In this section we consider low-mode-number Alfvén instabilities observed during Neu-
tral Beam Injection (NBI) in the LHID shot #24512. We concentrate on the instabilities
with the frequencies in the range of 50 — 80 kHz and the mode numbers |n| = 1,2 and
im| = 2, 3, see Fig. 4. These instabilities were first reported in Refs.!>!7. In the mentioned
works, a detailed description of the observations was presented, and the Alfvén continua
were calculated. It was found that the frequencies of the observed modes correspond-
to the region of the TAE gap. On this ground, the instabilities were identified as TAE
instabilities. In addition, a guess was made through careful comparison with experimen-
tal observations®?! in CHS (Compact Helical System??) that the observed n = 1 modes
were core-localized even and odd TAEs, whereas the n = 2 modes were global TAEs,
although no eigenmode calculations were carried out. In this work, we further investigate
the instabilities: We solve the eigenvalue problem, analyze the mode interaction with the
energetic ions, and calculate the growth rates of the instabilities.

The instabilities were driven by ions produced by NBI. Hydrogen ions were injected
tangentially with the particle energy & =~ 150keV into a helium plasma. The major
radius of the torus in the mentioned experiment was Ry = 3.6 m, which was favourable
for the confinement of various groups of the particles.? Equilibrium parameters, such as
the electron density, temperature, and the rotational transform, at the moment { = 1.8s
(when the instabilities were observed) are shown in Fig. 5. In these figures, in addition, 3
(B = 8mpo/ B2) and f3, are presented. It follows from Fig. 5 that the beam ion pressure was
very large; it exceeded the plasma pressure in the near-axis region. In addition, it was very
peaked. The shown equilibrium characteristics were calculated with the eode described in
Refs. 2 The finite particle orbit width and possible diffusion of fast ions were neglected
in the calculation of F,. Therefore, one can expect that in reality the pressure profile of

the energetic ions will be somewhat wider and the central 3, somewhat lower. Figure 5
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shows, in addition, the beam velocity distribution calculated with the same code. We can
conclude from here that (i) the beam consists only from the well circulating particles, and
(ii) the most energetic ions are located in the plasma core; therefore, the beam can hardly
lead to edge-localized instabilities.

In order to calculate AC, we need Fourier harmonics of the equilibrium magnetic field
and the metric tensor component g¥¥. The dominant harmonics of these magnitudes are
shown in Fig. 6. We observe that ") is very large at the periphery, which leads to a very
wide HAE,, gap in AC and strongly shifts down all the gaps at the plasma periphery,
see Fig. 7. On the other hand, the average TAE gap frequency [the gap is rather narrow,
A, <€ w, with w, given by Eq. (4)] grows with the radius even at the periphery [although
it is not proportional to ¢, as predicted by Eq. (4)]. In addition, we observe that the
characteristic frequencies determined simply by crossing two cylindrical branches of AC
lie inside the gap for r/a < 0.55. Therefore, we conclude that the toroidal coupling (i.e.,
coupling with v # 0) has a considerable influence only on those TAE modes which are
localized close to the plasma edge (but it is not clear whether such modes exist).

The continuum shown in Fig. 7 is calculated by the code COBRA {COntinuum
BRanches of Alfvén waves).% It was assumed that the helium plasma is homogeneous
and has n; = 5 x 102cm™3. The latter, as it follows from Fig. 5, can be considered as a
characteristic density when n; = n./2. Below we assume that the plasma consists only of
helium (i.e. we neglect the effect of the injected hydrogen and impurities on the Alfvén
velocity). Then the picture of AC taking into account the spatial inhomogeneity of the
plasma can be easily obtained from that presented in Fig. 7 by multiplying the shown AC
by \/m with n.(r) given by Fig. 5.

The considered non-monotonic profile of the plasma density with ne(r) having a max-
imum at r/a = 0.6 is a favourable factor for minimizing the continuum damping in the
region r/a S 0.6 (it “helps” to avoid the crossing of the AC in the plasma core with
the horizontal line representing a TAE eigenfrequency). Therefore, core-localized AEs
have more chances to exist a realistic plasma than in a plasma with homogeneous density.

However, this effect competes with the increase of the TAE gap frequency caused by the
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¢{r) increase. Therefore, only a direct calculation of the radial structure of AE can give

an answer to the question of whether core-localized TAE modes do exist.

B. Eigenmode analysis and the calculation of growth rates of the instabilities

Although the knowledge of AC is important, the calculation of AC is only the first
step on the way to the identification of the observed instabilities. The next step is to
clarify whether Alfvén eigenmodes exist. If they exist, we have to compare the calculated
eigenfrequencies and the mode numbers with experimental data. With this purpose we

use the following ideal MHD equations:®

a 2 OE,.
—3 (:—2 - kiln) "2 4 QmnFmn

or 2 or
3 4 [w? t-guv) ) ¥ OEqm, N
R —_ _— 2 ad - kmn T 4 = “,n-H/
+§8rr ﬁg( g B nhim st =g or
3 w2 E(W) ” E(Iw) aEm— n—vN
+ Z Erﬁ [% (QT — 26(5 g km,nkm*#,ﬂfVN g2 3‘; =0, (46)
b

where Fpp = ®ppn/r,
Qun=r (g—; — k?,m) (1-m?)+ 1‘2;; (‘iﬁ’g) : (47)
Equation {46) is actually an infinite set of second-order equations for the wave ampli-
tudes. However, as follows from the above analysis of AC, the toroidal coupling plays a
minor role for the TAE modes of interest. For this reason, we neglect it. In addition, using
Fig. 2, Fig. 7 and the analysis in Sec. 2, we conclude that a TAE mode in the considered
case (if it exists) consists of only few harmonics. This conclusion agrees with the experi-
mental data where the poloidal mode number for the [n| = 1 instability was determined
t0 be |m| = 2, whereas the poloidal mode number |m| = 3 was determined for the |n| = 2
instability. Therefore, it seems reasonable to restrict ourselves to four equations coupled
by égﬂ) and ¢{!?. To solve these equations, we use the code BOA (Branches Of Alfvén
modes).®
We should note the following. The equation for the ideal-MHD Alfvén waves has a

singularity at the point of the local Alfvén resonance, r,.s (determined by the equation
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W = Wa(Tres), where wy(r) is a continuum branch). Therefore, strictly speaking, it has
solutions only for completely open gaps in AC, when such a resonance is absent (the
problem of existence of Alfvén eigenmodes in an inhomogeneous plasma was considered in,
e.g., Ref.%). Nevertheless, when the resonance is located in the “tail” of the eigenfunction,
i.e., at a radius where the mode amplitude is much less than its maximum magnitude,
this resonance has only a minor influence on the solution. One can say that in this case
the AE exists. In other words, the continuum damping rate is small when the resonance
point is located far in the tail of the radial distribution of the amplitude. When the ideal
MHD equations are solved numerically, a sharp maximum appears at the point of the local
Alfvén resonance. Therefore, a problem of selecting weakly damped modes arises. In order
to solve this problem without a special calculation of the continuum damping, one should
change the mesh. Then the “good” solutions representing weakly damped modes will
persist, whereas the damped solutions will disappear and new damped solutions appear.

Assuming that the dependence of perturbations on the angular coordinates is given
by Eq. (1)}, we consider the modes with m,n < 0 because only they can be destabilized
by the spatial inhomogeneity of the beam ions, see Eq. (40). Note that the modes with
positive mode numbers can be destabilized when the velocity anisotropy of the beam ions
is the main driving factor. However, the considered shot was characterized by the large
pressure gradient of the beam ions, w. > w; therefore, the velocity anisotropy played a
minor role. One can see that when n < 0, the mode rotates in the clockwise direction,
which agrees with the experiment.!”

We have made calculations for both n = —1 and n = —2 modes observed experimen-
tally. The solutions showing the existence of two TAE modes with n = —1 (which we refer
to as the n = 1 mode) were obtained. However, no discrete modes with n = —2 were found
in the framework of the used equilibrium and the used equations. The calculated n = —1
modes are localized around the radius r/a ~ 1/3 and have the dominant modes numbers
m = —2, —3. Their eigenfrequencies and the radial structures are shown in Fig. 8. These
eigensolutions were obtained for various meshes, the number of points varying from 100

to 500. Therefore, the obtained solutions indeed describe discrete modes. We observe
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that the TAE mode with lower w consists of harmonics with different phases (i.e., this
is an “even” TAE), whereas the higher mode consists of harmonics with the same phase
{an “odd” TAE). This result confirms the guess made in Ref.!". Furthermore, the ratio
of frequencies of these modes agrees with the experimental data. Note that the code
calculates normalized frequencies, & = wRy/v4. If we assume that the plasma consisted
only of helium, we obtain that the calculated frequencies are somewhat less than those
observed experimentally. On the other hand, considering a hydrogen plasma we obtain
the frequencies exceeding the experimental magnitudes (the ratio of Alfvén velocity in a
hydrogen plasma to that in a helium plasma is v/2). The best agreement between the
calculated frequencies and the experimental frequencies is reached for a plasma consisting
of a mixture of heliu_m and hydrogen, which was the case in the experiment: A simple
estirnate shows that the fraction of hydrogen in the core was rather large. In order to
make this estimate, one should take into account that two hydrogen beams with the total
power 3MW were injected for At ~ 1.5s before the instability and that the slowing down
time of beam ions was much less than At, which resulted in the production of a so signifi-
cant number of thermal protons that their density would exceed the helium density unless
the hydrogen diffusion were strong. Moreover, a numerical simulation with the code®2®
shows that even the partly-thermalized hydrogen ions constitute a considerable fraction
of the plasma ions in the plasma core.

Now we proceed to a study of the destabilization of the n = 1 even and odd TAE modes
by the beam ijons. Because each mode consists only of a pair of the dominant Fourier
harmonics, we can use Fig. 3 showing the resonant velocities for this case. It follows from
Fig. 3 that the modes are affected by the energetic ions only through the toroidicity-
induced resonance. Another conclusion is that [vj®*| ~ v4/3, which is considerably less
than the beam velocity vy. However, Fig. 3 ignores the finite radial width of the mode,
Arpoge. Because vy is only a little bit less than vy, the finite magnitude of Arpeg. can
provide the interaction between the modes and the particles with £ < 150keV, as was
shown in Sec. IIB [see Eq. (15) and a discuésion after it]. In order to clarify whether

this is indeed the case, we have calculated the resonant velocities in the region where the
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modes are localized, see Fig. 9. We observe that |w| ~ 1 at r/a ~ 0.32 for the even mode
and r/a ~ 0.36 for the odd mode. Because the even mode amplitude is considerable and
its radial derivative is large at r/a ~ 0.32, one can expect that the finite radial width of
the mode will strongly enhance the growth rate [by a factor of (3ve/v4)* because, roughly
speaking, ¥, oc w?]. The enhancement of the growth rate of the odd mode should be much
weaker because for this mode both the mode amplitude and its derivative are much less
in the region where |w| ~ 1. Direct calculations based on the use of Eqs. (40), (43) have
confirmed these conclusion. It was found that v,/w =~ 203,(0) for the even mode and
Yo/ w &2 23,(0) for the odd mode.

In the caleulations we took the beam density distribution in the following two forms:
ns(r) o (1—72/a?)? and ny(r) o exp{—(r—ro)?/ L] with L, = 0.5a, 79 = 0.17a, a = 70cm.
Both these expressions resulted in the same growth rate. They describe density profiles
peaked less than those shown in Fig. 5. These distributibns were chosen because the
experimentaﬂy observed n = 2 instability with the frequency about 80 kHz indicates
that ny{r) was more broad than that shown in Fig. 5. The matter is that the mentioned
instability was, probably, localized at r/a ~ 0.6 (this follows from the fact that the n =2
TAE gap with the frequencies ~ 80kHz is located at r/a ~ 0.6, see Fig. 2), which is
hardly consistent with Fig. 5, where d3/dr|r—060 < d8/dr|r—0.30- This implies that there
is a mechanism leading to some broadening of ny(r), which was not taken into account
in the calculation of ng(r). On the other hand, the energies of all the resonant particles,
including the particles interacting with the modes through the |v| = v4/3 resonance,
exceed the energy E.; thus, all the resonant particles were well anisotropic (see Fig. 3),

which justifies the use of Eq. {43).

V. SUMMARY AND CONCLUSIONS

The work carried out contributes to the general theory of fast-ion-driven Alfvén insta-
bilities in helical plasmas and contains specific examples and calculations relevant, first
of all, to LHD. The results of the work can be summarized as follows.

We have shown that “conventional” resonances, i.e., the same resonances that exist
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in tokamaks, determine the interaction of the energetic ions and low-frequency modes in
LHD plasmas (e.g., TAE modes). On the other hand, “non-axisymmetric” resonances®
are important for the high-frequency modes {various HAE modes and TAEs), especially,
for the modes localized in the plasma periphery.

It is predicted that finite radial width of an Alfvén mode can strongly enhance the
instability providing the interaction of the mode and most energetic particles in the case
when such an interaction is not possible in the local approximation.

Because of a significant shear, the gaps in the low-frequency part of AC of LHD plasmas
(in particular, the TAE gap) are characterized by a multi-harmonic structure, like in
tokamaks. With such a structure of the gap, the multiple-harmonic TAE modes ( “global”
TAEs) usually exist in tokamaks with monotonic safety factor profiles. In contrast to
tokamaks, the shear in LHD and other stellarators is usually negative. For this reason,
AEs residing in such gaps typically consist only of a pair of dominant harmonics.

This conclusion, drawn from a qualitative consideration, was confirmed by numerical
calculations carried out for the LHD shot #24512. In the mentioned shot an Alfvénic
activity was observed with the frequencies in the range of 50 — 80 kHz during tangential
NBIL!617 The eigenmode calculations carried out with the BOA code® have shown that
there are two discrete n = 1 TAE modes, the ratio of their frequencies being 1.2, which
agrees with the experimental data. The magnitudes of the calculated frequencies (but not
their ratio) depend on the composition of the plasma. In the considered shot a hydrogen
beam was injected into a helium plasma. According to the estimates made, the fraction of
hydrogen was significant in the plasma core. The assumption that the hydrogen fraction
was about the helium fraction leads to the frequencies corresponding to the experiment.
The lower calculated mode represents the “even” TAE, and the “upper” mode is the “odd”
one, as in tokamaks, which corresponds to a guess made in Ref.'”. Note that the “odd”
mode was observed only recently in tokamaks, in experiments on JET (Joint European
Torus®"). %

The obtained radial structure of the n = 1 TAE modes enabled us to calculate the

growth rate of the instabilities driven by energetic ions. It was found that the growth
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rate of the even mode instability exceeds that of the odd mode by a factor of 10. The
enhancement is associated with the finite radial width of the mode, which “switches on”
the interaction of the mode and the particles with £ < 150keV.

The growth rate of the mentioned n = 1 instability was calculated with the use of a
general expression obtained in the work. This expression takes into account the finite mag-
nitude of the perturbed longitudinal magnetic field (thus, it generalizes a corresponding
expression of Ref.?) and has a form convenient for direct calculations.

Note that we have not calculated the mode damping rate, which should be done in
order to obtain the threshold density of the energetic ions.

In addition to the described n = 1 mode, an n = 2 mode was observed in the same
LHD shot. However, we failed to find discrete eigenmodes with |n| = 2 in the TAE gap.
This may mean that the equilibrium model we used is not sufficiently good at the plasma
periphery. A crucial factor, which affects the existence of TAE modes with the mode
numbers |n| = 2, |m| = 3 and 4, is the radial dependence of ¢(r) at r/a < 0.5. Smaller

shear in this region would facilitate the existence of the eigenmode.
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FIG. 1. Characteristic frequencies of gap modes in LHD determined by Eq. (4). Notations:

subscripts at “HAE” denote the mode coupling numbers, ¢ and v,
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HAE21 modes.
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