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Abstract

Stochastic trigger by microturbulence for neoclassical tearing mode (NTM) is studied.
NTM induces topological change of magnetic structure and has subcritical nature. It is
found that the NTM can be excited regardless of the presence of seed islands. Transition
rate of, probability density function for and statistically-averaged amplitude of NTM are

~ obtained. Boundary in the phase diagram is determined as the statistical long time
average of the transition conditions. NTM can be excited by crossing this boundary even
in the absence of other global instabilities. The boundary is expressed in terms of the
poloidal beta value. Its dependence on the ratio between the ion banana width and radius
of the rational surface, p/r , is found to vary in the range of py/r; and (p b/rs)z ,

depending on the linear stability of the tearing mode.
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I. Introduction

Magnetized plasmas are non-uniform and far from thermal equilibrium.
Consequently, various kinds of bifurcations can appear [1,2] producing an abrupt change
of the topological structure of the magnetic field. In tokamak and in other laboratory
plasmas, such a process appears as a magnetohydrodynamic (MHD) instability named
tearing mode [3,4]. It is associated with magnetic field reconnection. Global
perturbations with wave vectors perpendicular to the magnetic field are unstable and, due
to the plasma resistivity, they can develop radial components that break the field lines.
An important problem is now investigated: the possibility of appearing such magnetic
surface breaking in linearly stable, low resistivity plasmas.

One possible mechanism is a nonlinear instability, the neoclassical tearing mode
(NTM) [5-7]. This is a subcritically excited tearing mode under the influence of the
pressure gradient. The experiments have shown that such perturbations with finite
amplitude become unstable even for parameters corresponding to linearly stable ones [8-
10} and that they can be triggered by other global MHD instability (as the sawtooth)
[10,11]. Nevertheless, in some experiments, the excitation of this instability occurred in
the absence of the above triggers [11,12]. The onset conditions of the NTM are not yet
clarified, although the suppression of this instability is necessary for stationary operation
of high temperature plasma [13]. The NTM can be stochastically triggered in these
conditions. The rate of stochastic transition was determined at thermal equilibrium by
evaluating the potential barrier crossing induced by thermal fluctuations [14]. It is
expected that in nonequilibrium and turbulent plasmas the transition is triggered by the
turbulence noise but there is no theoretical prediction for the excitation rate of the NTM.

In this article, we formulate a Langevin equation for the NTM as a stochastic
equation in the presence of noise source induced by background fluctuations. The
statistical properties of NTM amplitude, such as the probability density function (PDF),
the rate of excitation, the average of amplitude, the boimdary in the phase diagram and its

expression, are derived. We show that the stochastic excitation of NTM is possible to
occur without a seed island if B, > B, » holds. (B, is the plasma pressure normalized to

the poloidal magnetic field pressure, and Bp * is the boundary of the phase.) The
dependence of B p* On the ratic between the ion banana width and radius of the rational
surface, pp/7s , is studied. It is found that the relation of B p* to pp/rs varies in the rage

between py/rs and ( Py TS)2 , depending on the linear stability condition of the tearing

mode.

We note that this mechanism is rather general. For instance, in fluid dynamics it
explains the transition of a linearly stable system in a larinar state (flow in a pipe) to a
self-sustained turbulent state [15]. The transition is triggered by random disturbances

such as inlet conditions.




II. Model
2.1 Neoclassical tearing mode
2.1.1 Description of instability growth rate

The nonlinear instability of the NTM has been discussed, and a dynamical
equation of Ohm's law was formulated for the evolution of the amplitude as a
deterministic variable

%%A+A[A]A=O, (1)

where

A=A.q?RIBriq )

is the normalized amplitude of the (m, n) -Fourier component of helical vector potential

perturbation A« at the mode rational surface, r =r, , and — A is the nonlinear growth
rate (— A >0 if unstable). The safety factor g =rB/B,R as a topological index satisfies

the condition q(rs) =min atr=r,. B is the main magnetic field strength, r and R are
minor and major radii of torus, ¢’ =dg/dr |, and m and » are poloidal and toroidal mode

numbers, respectively. The time is normalized to poloidal Alfven transit time,

Tap =GRV, (3)

(v4 : Alfven velocity) and the length to 7; . The magnetic island width w , being

normalized to 7 , is expressed as

w=A" @)
The coefficient 7} is the inverse of resistive diffusion time

n=nmglrs iy = Ry, &)

where N, stands for a parallel resistivity, and Ry is the Lundquist number (magnetic

Reynolds number).
An explicit form of the growth rate is given by

C, C,

_ e
—A=2A'A WA WA

(6)



within the neoclassical transport theory, where the first, second and third terms of RHS

stand for the effects of current density gradient, polarization drift and bootstrap current,
respectively. The term W, represents the cut-off due to the banana orbit effect [16], and

we choose a simple model,
Wy =ppr;?. (7

W, represents the cut-off determined by the cross-field energy transport and is given as
[17],

x 1/2
Wz=(ﬁ) . @)

where X | and X are thermal diffusivities perpendicular to and parallel to the magnetic
field line, € is the inverse aspect ratio, # is the toroidal mode number and s = r g’/ g.

(When the effect of the perpendicular diffusion is not effective, (x L’X.") Y2en < p,z,r; Z,
W, is evaluated as Wy = p#r; 2 [18].) Coefficient C; and C, are given as

C) =2ay B £"Pppry 2212 (92)

and
Cy=2ay,f gL L] (b)

for the limit of small collisions [7,19-23], pj is the banana width, Lq and L p arethe

gradient scale lengths of safety factor and pressure, respectively, and @y is a numerical
constant. (The coefficient C5 includes weak dependence on collisionality. However, it is

not included here.) In addition, the stabilization effect of good curvature of tokamaks is
known [24], but is not kept in Eq.(6) explicitly. For a convenience to compare with the

experimental results, above coefficients are rewritten as follows:

C2=Bp/ﬁpn (10a)

with the normalizing poloidal beta value of

Bpn=L2a,e2L, (10b)

and



CWilcs'=b=(pgrs 2w 'L, L;! (i1)

The parameler & is of the order of unity if one uses the condition W, = pgr; 2 . Bpn is

also of the order unity.
The parameter A  controls the linear stability criterion of tearing mode when

induced by the current density gradient [3,4]. The tearing mode is linearly unstable (in
the limit opr =0)if

A'>0 (12)

holds. Analyses on the nonlinear stabilization process have shown that the parameter A’

decreases as the perturbation amplitude, A, grows. A simple formula
N=NAy-hA (13)

has been found useful, and the coefficients A"y and % are determined by the current

profile [25]. In the preceding article [26], this nonlinear stabilization term is neglected,
for the simplicity of the argument. We here generalize the analysis for the case of h #0 |

2.1.2 Nonlinear instability

In the absence of the pressure gradient effects, the tearing mode is linearly
unstable if A’y >0 holds, and the growth rate becomes smaller as the amplitude A

becomes larger. The marginal stability condition A’ =0 gives
VA=h"1N,. (14)

This shows a supercritical excitation of tearing mode across the critical condition
A’O = 0 .
The neoclassical tearing mode, for which the plasma pressure gradient has both

the stabilizing and destabilizing effects, can be nonlinearly unstable even if it is linearly
stable. When the amplitude A takes finite values, — A can be positive even if

A'<0, (15)

since C; and C, can be positive. Figure 1 illustrates the growth rate as a function of A
for the case of A’g <0 . The marginal stability condition A =0 can have three solutions

at
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Fig.1 Normalized growth rate multiplied by amplitude, YA =— AA/C5 , is shown by solid

line. Zeros indicate the nonlinear marginal stability conditions for the deterministic model.

(Parameters are: W, = W, ,C,2C,W, =1 k=0 and A'oW{%Cy=-0.0922 )

A=Ag=0 A=A, andA =4, (16)
(A <Ag)if the parameter C5 is large enough. In the range of amplitude

AL,<A<Ag, (17

the solution is not stable. Thatis, A, and A are the threshold and saturation amplitudes

of nonlinear instability, respectively.

2.1.3 Cusp catastrophe and subcritical excitation

The cusp catastrophe of the perturbation amplitude in the stationary state is
expected in the deterministic model, because the marginal stability condition can have
multiple solutions. The structure of the cusp is studied in this subsection.

From Eqgs.(6) and (13), the marginal stability condition is rewritten as

No=mE+¥E_C1___JA _C2 (18)

Near the linear stability boundary, A’g=0, A, and A, are estimated as follows. The
balance between the second and third terms in the RHS of Eq.(18) gives an estimate of
A, as

Ap=CC3 1 =bW, (19a)

and that between the first and third terms determines A as
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Fig.2 Marginal stability solutions A =A; and A=A, . They are shown as a function of

the linear MHD stability parameter A’y for fixed value of ﬁp/ B pn =2 in (a). The limit of
Bp=0 is also shown by the dotted line. (b) shows A=A, and A=A_, as a function of ﬁp
for fixed value of A" . The solid line shows the case of A’g =0 , and the dashed line

indicates the linearly unstable case A"gW{2=0.1 A, in the linearly unstable case is not
drawn in (b). (Other parameters are: W) = Wy ,C/2C,W =1, and hW{ =1/20 )

A=t c,. (19b)

Figure 2 illustrates the marginal stability condition. Amplitude A is shown as a
function of A’ for the fixed value of B p in Fig.2(a). In the presence of the pressure

gradient (solid line), the subcritical excitation of the tearing mode is possible to occur.
The dotted line is the result in the absence of the pressure gradient, B p= 0, and the

supercritical excitation takes place as is given as Eq.(14). Figure 2(b) shows the
amplitude A,, and A, as a function of 8, for the fixed value of A’y . In Fig.2(b), the

solid line shows the case of A’y =0 , and the dashed line indicates the linearly unstable
case A'gW; =0.1 | Subcritical excitation appears in the linearly stable case.
Figure 2(a) shows that the equation A =0 has multiple solutions in an

intermediate parameter region,
Ao <&g<dg (20)

for given Bp . The cusp catastrophe of Fig.2(a) defines two ridge points, A’;; and
Ay . A’ and A’y are given by the local maximum and minimum of Eq.(18),

respectively. One obtains an approximate estimate for asymptotic relations, by neglecting

h, as

1 Bp

%)
A’ = — = -
V=T373b yW,  3W3b W, Bpn (21a)




and

A =314 3b_ V3 W, 1
9=

c 21b
A AL (210)

This result demonstrates that the critical value of the stability parameter A’y is in
proportion to B, . The relation for the cusp ridge, Eq.(21a), is rewritten as that of B,

for the fixed value of A’ . From Eq.(21a), the relation A'g = A" can be written as

Bo=B,c =335 By yWr (&) . @2)

for fixed negative value of A’ . The ridge at ﬁp = ﬂp ¢ is denoted in Fig.2(b).
Owing to the nonlinear stabilization effect, the ridges of cusp, A"¢; and LY
move forward the direction for increasing A’q -value if 2 #0 . (The coefficient # denotes |
the magnitude of nonlinear stabilization effect of tearing mode as is defined Eq.(13).)
Figure 3 illustrates the ridges of cusp, A’y and A"¢; , on the plane of (A'O, Bp) . The

case of AW, = 1/40 is drawn by the solid line in Fig.3(a). The case of #=0 is also
shown by the dotted line, which shows the linear relations between A’ and ﬁp as is

expected from Eq.(21). The expanded view at the lower pressure gradient is illustrated in
Fig.3(b). A critical point of the cusp appears in the low pressure gradient region. Below
this critical point, the mode is subject to the supercritical excitation.

2
h=0" ) hW =1/40
BB | ' Multiple 1 |
p pn v 1o o
1) states
1 v 1
Stable Unstable
0 1
0.5 0 AW o

01 (a) (b)

Fig.3 Ridge of cusp A’c; and A’¢p on the plane of [A'O, ﬁp) . (a) illustrates the case

of hW, = 1/40 (solid line), being compared with the case of A =0 (dashed line). In the
domain of "multiple states", the marginal stability condition has multiple soluttons. (b) is
the expanded view near the critical point of the cusp, AW = 1/40 . Dotted line is the
boundary for the supercritical excitation. (Other parameters are: Wy = W, and
C/2C, W =1)



2.2 Influence of microscopic fluctuations

The helical perturbation is subject to a random excitation from the micro turbulent
noise. The level of noise is evaluated from the Lagrangian nonlinearity terms, and a
stochastic equation is obtained instead of the deterministic equation (1)

;%A +NAA =s2—§[¢h, AAh]k—s[q)h,Ah]k—s%z—z[Ah, AAh]k , (23)

where 0 =c/®,, is the collisionless skin depth. 9, is the stream function (normalized to
Ba’t 7\1} )y and A, is the vector potential of the microscopic turbulence [27]. The suffix h
stands for the high mode numbers. The Poisson bracket [u, U] is defined as

(Vu X Vv)-b ,andb=B/B [ : ] , indicates the Fourier component that matches to the
test macro mode, and & is the wave number for the macro mode.

We employ the following hierarchical approach. The microscopic turbulence has
much shorter autocorrelation time T,. than that of the global perturbation. Both of micro

and macro perturbations are statistically independent, and the adiabatic approximation is

taken. Micro one is induced by plasma pressure gradient, and is considered to be in the
nonlinearly marginal state {28]. The saturation levels ¢, and A, can dependon A . We

do not include such dependence here, but it can be introduced in the model.

2.2.1 Influence of coherent part

The RHS of Eq.(23) has two components. One is a coherent part, which has a
fixed phase with respect to the global perturbation A . The coherent part is renormalized

to turbulence-driven transport coefficients such as turbulent resistivity and viscosity.
They would modify N , C, and C, [21-23]. For instance, 1} | in Eq.(5) is affected to be

Ny =Nje+ny+87; 2, (243)

where N fle is the collisional resistivity, 1 y is the turbulent resistivity, and UL, is the
electron viscosity owing to the turbulent diffusion. Turbulent viscosity H and turbulent

thermal diffusivity Xy are also obtained by the similar renormalization procedure [1] and

the global viscosity and thermal diffusivity are modified as
H=W .+Hy and X=X:+An- (24b)

The effect of polarization current may be modified. The stabilization term in Eq.(6) is
evaluated as



. G1C°g(‘9*p - cog)(co - m*p) A G, 0)2(“’ - m*p)z B PaLy (25)
a (0) — Wy — mg)mzp " (0) — Oxp mg)zmzp i L?)

where ® is the rotation frequency of the island in the plasma frame, ©s;, is the drift
frequency defined by pressure gradient scale length, ., =T/reBL ,, ®, is the curvature
drift frequency, w, = T/reBL )y, (L s : scale length of magnetic field inhomogeneity) and
G, and G, are numerical coefficients of the order unity [23]. The rotation frequency

is determined by the turbulent viscosity and turbulent thermal conductivity. We note that
the sign of C, and C, can change through this renormalization, Eq.(25). The electric

induction by microfluctuations has been studied in conjunction with dynamo. The 0,
B- and ¥ dynamo have been known [1]. (Note that the first term in the parenthesis of

Eq.(25) is related to the stabilizing term pointed out by Glasser et al. [29]. The magnetic '
well effect changes the linear stability boundary as well. This does not modify the

qualitative feature of the cusp.) In this article, however, we use Eq.(6) and leave the
other effects on A for future studies.

2.2.2 Influence of incoherent part
An incoherent part of RHS of Eq.(23), whose relative phase to A changes rapidly

in time, contributes to the noise term. It is approximated to be random, i.e.,
Ht)=5 1) , (26)
where g is the magnitude and f&{t ] indicates white-noise.

2.3 Noise by microscopic turbulence
The noise term J#) has a quadratic form of ¢, and 4, , and the local

instantaneous amplitude of Xt) is estimated as
| 3(0)| = k3 C AR 27)

where numerical constant
C=—sf(52r;2 + ky, 2) + s,/BmiImeﬁzrs‘z (28a)

with



f=o,/A, (28b)
is introduced. Estimations are made as

AL, =-KGA, and|VA,|=k,A, (29)

for microscopic turbulence, and as

|VA|=kA (30)

for macro test mode. &, is the typical mode number of the micro fluctuations, the inverse

of which is separated from the coherence length of macro mode. (For a case of
ballooning mode turbulence in tokamaks, f is evaluated in ref.21 and is of the order

unity.)
The statistical average (g 2) is related to | 3 | by the law of large numbers.
Within the coherent area of global test mode, k! , a large number

N = k20! G1)

of independent kicks contribute to :ﬁ(t) . (¢ : radial scale length of the macro mode. N is

evaluated by noting a quasi-two-dimensional feature of fluctuations.) The average
y/ (g 2} is N times smaller than the instantaneous local value of l 3 1 . The magnitude
£ is evaluated as

g2 =k k™0 | 3 1, = 07 KK CP A T (32)
4 .
having a dependence like g2 o< (3 ,-,hIBg) T,c . Experimental magnitude is explained later.

III. Statistical solution

3.1 Stochastic equation and probability density function
The dynamical equation of NTM amplitude A , Eq.(23), is rewritten as a

stochastic equation
d
SFA+NAA=g 1), (33)

and A is now a stochastic variable.




The statistical property of the NTM amplitude A is studied. A schematic

description of the solution of this stochastic equation is illustrated in Fig.4. The
deterministic part of Eq.(33), AA , allows multiple metastable states. The random kick

by the noise induces the barrier crossing, realizing the excitation and decay of the mode.
In the long run, the most probable state is realized as a statistical average. It is
worthwhile to compare it with Kramers' idea for thermal equilibrium [14]. In Eq.(33),
there is a nonlinear force but no Einstein drag term common in Brownian theory; the

fluctuations from turbulence are decidedly non thermal unlike standard Langevin theory.
The Fokker-Planck equation of P(A) is deduced from Eq. (33) as

d 0 1,49 =
37P+8A(nA+2gaA )P 0. (34)

The sfationary solution of the PDF P, (A) is expressed as
P (A)<g 'exp (— S(A)) (35)
by use of a nonlinear dissipation function as

S(A)=] 2nA(A)g-24"dA" (36)

which is proportional to the entropy production rate near the thermal equilibrium [1].
Using Eqs.(6) and (32), we have

_ 4 a2 142, ] A2 A
s(a)=T ~-3&gAY +hA +§Cﬂ“(1+W—12)‘C2(A“W21“(1+‘W§)) (37)

L A A L A .
5
Linearly .
L stable decay] | excite |
s)lution

’ B
p
Fig.4 Schematic drawing that shows the excitation and decay of NTM perturbations owing
to the turbulent noise.



with
I=2Ry! tk 3k, -2 A% . (38)

The coefficient I" shows a characteristic value of the ratio between the dissipation for

crossing over the barrier and excitation by turbulence noise. Its magnitude and the
parameter dependence are discussed at the end of this article.

Substituting Eq.(37) into Eq.(35), the PDF is given as
-TC,W,
) (39)

2 W2

4 3 2 a2\ TR 4
PegA) < exp{T 3 A A -T hA +1"CZA)(1+W—1) (1+—

The PDF has a stretched non-Gaussian exponential form with power-law dependence if
h =0 . The exponential term is determined by the damping by current density gradient -

and the drive by bootstrap current. The power-law decay is mainly due to the polarization
drift effect. The minimum of S(A) , 1.e., zero of A, predicts the peak of PDF and the

probable value of A .

3.2 Probable solutions

For the case of a bistable state, Eq.(20), two metastable states are allowed. The
transition between them takes place, and the long time average describes the selection and
partition rule between metastable states. The nonlinear potential § (A) is shown in Fig.5

for the case of bistable state. Parameters are chosen in the linearly stable region,
A'y<0, and S(A) has two minima at

A=0 andA=A,, _ . (402)
F T F LJ
S(A) | Dominant sofution P
2 w beta rd
- . .
L4
- ”,
N N - B
o
- Dominant sofution B
High beta
.2 & 1 1I0 I 2L0
AW

1

Fig.5 Nonlinear potential S(A) (in the unit of W/ ) as a function of the perturbation
amplitude for various values of beta: B /B pn=1.2 for dashed line, and B /By, =1.6 for
solid line. (Other parameters are: AgW 2 =—0.05 AW, = 1/40 W =W, , and
C1/2C2W1 = 1 )
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Fig.6 Typical examples of the PDI(JC)in the stationary state. The cases of (a) BPIBPC =1.35
(NTM is not excited as an average), (b) Bp/ch =1.4 (near marginal condition), and (c)
ﬁplﬁpc =1.51 (most unstable, and NTM is excited), are shown. (Other parameters are:
W, =W, C/2C,W;=1 hW ;=0 and TC,W;=5 )

separated by a local maximum at

A=A,. (40b)

Statistical transitions take place between these solutions. The dominant (i.e., the most

probable) state is determined by the balance between the transition for excitation (from
A=0 to A=A,)and the decay (from A=A, to A=0). The long time average, i.e.,

the statistical average (A} , is calculated from the PDF.

Figure 6 illustrates examples of the PDF for various cases. Fig.6(a) is the low
beta case where the NTM perturbation is rarely excited and the amplitude A ~0 holds as

a statistical average. Figure 6(b) shows the intermediate case. In this case, intermittent
excitation of perturbation takes place from A =0 to A = A, . Figure 6(c) indicates the
high beta case that the state with the amplitude A=A is the dominant solution. They are
summarized in Fig.7. In the low beta case (a), the mode amplitude is low. In the case of
(b), the states of A=0 and A = A are equally realized. In the high beta case (c), the
state A = A, is realized as an average.

P.[A) hasapeak at A =0 . A noise level where the NTM is not excited is

evaluated from a local average of A near A =0 , being given as

(Ag)~05(-T &)

(4D
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Fig.7 Schematic drawing of the long time average. a, b and c correspond to those in Fig.6,
respectively.

0

3.3 Transition probability
Transitions between A =0 and A = A occur as is illustrated in Fig.4 owing to

the random kick by noise. Calculating a flux of probability density from Fokker-Planck

equation (34) [1, 30-33], the frequencies of transitions are obtained. The frequency of
excitation (from A =0 to A=A ) and that for decay (fromA=A; toA=0 )are

expressed as

cX

r., = N/AoAm exp( (Am)) s (42a)

AAL
rae= TV exp (5(4,) - S(An)). (420)
respectively, where the time rates A p,, ¢ are given as

Aps=2A|0M0A| atA=A, andA=A,. (43)

and
Ao=A{A)) . (44)

Note that Ay ,, s are normalized, being of the order unity [30).
Figure 8(a) illustrates the barrier heights S(A m) and S(A m) - S(A s) as a function

of plasma pressure for the fixed value of A”g . The coefficients €xp (— S(A m)) and
exp (S(A S) - S(A m)) , which play dominant role in determining the transition rates in

Eq.(42), are shown in Fig.8(b) as a function of the pressure gradient for the fixed value
of A’y . In the case of low pressure regime, the rate of back transition, r4q,, is much

larger than the excitation rate r.,. When the pressure gradient becomes higher, the state
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Fig.8 (a): Variation of the barrier height S(A m) and the local minimum S(A S) is shown

(in the unit of TW, ) as a function of plasma pressure for fixed value of A’y . (b): the

change of the excitation rate and decay rate for I W; =2 . r., and Fg.. are normalized to
N yAGA /2% and N VA A /2%, respectively. (Parameters are: A'g =0, AW =1/40,
W, = Wz ,C1/2C2W1 =1 )

A=A, tumns to be a strong attractor. The excitation rate remains to be a weakly varying

function in this parameter regime.

3.4 Long time average
The inverse of the transition frequency indicates the staying time. The life time
being in the state A =0 is given by ol ,and that in the state A = A is given as rge. .

The long time average of multiple state is given as

Agiral +Agrgl
(a)=! OEE:L = (450)
i.e.,
(A) = (A lex ¥ (A O)r dec)(r ex T 7 dec)— : . (45b)

<A> approaches to A if 7oy > rgec holds. It reduces to (A 0) , if 7oy <7 gec holds.

Figure 9 shows the statistical average (A) as a long time average, together with
threshold and saturation amplitudes (A, and A, ), as a function of Bp . Solid line shows
the statistical average (A) . A thin dotted line indicates the threshold A, and saturation
amplitude A from the deterministic model. (A) drastically changes across the condition
B p= B p* , an approximate formula of which is derived in the next subsection.
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Fig.9 Amplitude of NTM as a function of the plasma pressure for fixed value of A'g .

Solid line shows the statistical average (A) . A thin dotted line indicates the threshold A
and saturation amplitude A of the deterministic model. Normalized Bp is given by
Eq.(10b). (Parameters are: A'3=0 AW, =1/40 W, =W, C;2C,W;=1 TW ;=5 )

It is noted that the inverse of the transition frequencies, rgxf and rae}: , denote the
characteristic time scale by which the PDF is relaxed to Peq(A) .

It must also be noted that the long time average in Fig.9 is a monotonous curve
while the deterministic model (dotted line) predicts a multiple-valued curve. Whether a

hysteresis is observed or not depends on the competition between the life time of
transitions, 7z,! and r3.. , and the characteristic time for variation of the global
parameters Tgiohy - Details have been discussed in [32]. When the change of the global

parameters is slow and the relation Tyjona >> rgxl, rgelc holds, the value of long time

average is realized. And the monotonous dependence of (A) is observed. In contrast, if

the global change is fast, Tgiobal ~ 7ex'» "der - the hysteresis characteristics are observed.

3.5 Phase boundary
The phase boundary for the statistical average is determined by the condition

Fex = Tdec - (46)

From Eq.(42), Eq.(46) can be written as

A
S(Ag)+ -;,lz In (A—;) =9 47)

Apart from a logarithmic dependence, the condition is approximately given by

S(Ag)=0. (48)



This provides the condition that global parameters must satisfy at the phase boundary.
Equation (48) is investigated for two limiting cases of # =0 and A’y =~ 0 in the following

subsections.

3.5.1 The limit where MﬁD nonlinear term is ineffective
When one studies the case of fairly strong linear stability, A’g <0 , the MHD

nonlinear stability term (with £ ) may be unimportant in the nonlinear potential S(A S) . In
this case, the condition S(A s) =0 is approximated from Eq.(37) as

~ANGA_CA O (AT )+ CWoln (144 W7 =0 (49

where A >> W, is assumed. In the limit of # =0, we use an approximate estimate of
Ay from Eq.(18) as

A =CYaN'3 (50)

Substituting Eq.(50) into the first and second terms of Eq.(49), Eq.(49) is rewritten as

— N W,
—OCZ— =M (51a)

where

M= 1 (51b)

\/12(bln(ASW1‘1)+W2W1‘11n(1+ASW2‘1))

is a slowly varying function. Combining Eqgs.(50) and (51a), one eliminates A", from
Eq.(50) and has a relation

W
Ag=1=1 (52)

oS

Substitution of Eq.(52) into Eq.(51b) gives an equation that determines the coefficient M

as

] 1 W, LA
——==3bIn|—=|+3w=In|l+ —=5].
am? (4M2) W, ( W, 4M2) (53a)



By successive substitution, one has an estimate of the solution of Eq.(53a) as

1 L) L4 .
A= In{361n(3 b)) + 3 - In (1 + 7 3 1n(3 b)) ,ooe, (53b)

and the coefficient M is approximately given as

M= 1 . (53¢0)
12| b1n (35 In3b) + W, W7 'In (1 + W, W; n (3b ln3b))

Figure 10 shows M (the solution of Eq.(53a)) and the approximate formula Eq.(53c).

From Eq.(51a) we have the relation of the phase boundary for the statistical
average as

No=N,=-MW72C, (54)

where dominant terms are retained. The boundary A’, is negative and of the order unity.

Equation (54) is rewritten as

1 By
Na=A,=—M — 55
0 Wi Bpn ©>)

by the help of Eq.(10a).
The phase boundary Eq.(55) is reformulated in a form of a critical pressure as

Bo=B,+=M"1yW, B, (-4%), (56)

=" approximation |

0 1 1 1 i
3 5
0 ! 2 CWC
1 1 2

Fig.10 Coefficient M . Numerical solution (solid line) and approximate formula Eq.(53c)
(dashed line) for the case of W =W .



or more explicitly,

L
=1L _"p (1 A \Pp
Boe=% mbselszq( No)it. 57)

3

Critical condition for the onset of statistical average of the perturbation follows this
formula. It is found that the condition for the phase boundary P p* has the same

parameter dependence on the cusp point p p¢ » Eq.(22). The numerical solution of
Eq.(48) gives that B, »_is larger than B, . by a factor which is close to unity (~ 1.5 ).

3.5.2 Near marginal MHD stability condition

Near the marginal stability condition of linear stability, A’g =0, the balance
between the second, third and fourth terms in the RHS of Eq.(37) determines the
nonlinear potential. We have an estimate from Eq.(18) as

C,

AS’:'_ZW

Wi+--- (58)
By substituting Eq.(58) into Eq.(37), one has an estimate of S(AS) as

5(4s) G
TC, W, 4hW,

+(2p+1)mn( 2] (59)

The condition S(A S) =0 gives the relation

Cy=(8b+4) W hin (-%%) . | (60)

Because the logarithmic function In (C 2/2h) is a slowly varying function, a successive

substitution gives an approximate form

Cy=4(8b+4)In (4 +2)W,h , (61)
as the condition that satisfies S (A S) =0 . This equation (61) can be rewritten as
Bp=Bp«=4(8b+4)in(46+2)np , W, . (62)

Equation (62) shows that the critical poloidal beta value for transition B « is in
proportion to W , i.e.,

_'20_



Bpxocpgry 2. (63a)

This must be compared to the relation for the case of strong linear stability, Eq.(57),
where the scaling relation

Bpxosppryl (63b)
holds. We may observe both p,r; ! and pgr; 2 dependencies as the phase boundary.

3.5.3 Phase boundary for the onset of NTM
Equation (48) is numerically solved, and the boundary of phase that satisfies
Eq.(48) is obtained. Figure 11 shows the phase boundary B, « on the (A'O, Bp) plane

by the solid line. Thin dashed lines in Fig.11 show the ridge points of the cusp, B pc» 10

the deterministic model. Away from the critical point of the cusp, which is denoted by
"C" in Fig.11, the boundary of phase is approximated as a straight line. Combining two
limiting formulas, Egs.(57) and (62), an-analytic expression of the fitting formula of the

boundary in phase space is obtained as

Bos=(M1(- A’O)%+4(8b+ 4)1n(4b+2)h2—§ Bon - (64)

for the case of A’y <0 . The first and second terms in the parenthesis of Eq.(64) have
dependencies o« p 7y I and o< pgr; Z, respectively. The phase boundary for stochastic
excitation of NTM is dependent on the MHD parameters A" and / as is illustrated by

Eq.(64). If the linear tearing mode is strongly stable,

B/B & .
M, .
PPRTG Excited
..
1 e 4
-\
‘\
“
L Quenched ~ i
‘i
-
- .
1] L 1 c ﬂ-'."
0.1 [ AWM 0.1

(LI
Fig.11 Phase diagram of the statistical average of NTM amplitude. In the region of
"excited”, the NTM is found excited after statistical average. In the region "quenched”,
NTM is not excited as an average. Thin dashed line is the boundary of the cusp in the
deterministic model, which is shown in Fig.3(a). Symbol "C" denotes the critical point of

the cusp. (Other parameters are: AW, = 1/40 W, =W, and C|/2C,W;=1)



-4y 1 Py
ho4(8b+ 4)1n(4b + 2) Mor (652)

one has the linear dependence ﬁp »oc Pp/ro . On the contrary, the linear stability is weak,

- A'
<220 1 <Po (65b)

b 4(sb+ 4)1n(4b + 2) M rg’

one obtains the quadratic dependence as B » = p§/r? .

It must also be noted that the boundary in the phase diagram does not depend on
the absolute value of I' . In other words, the boundary does not depend on the level of

back-ground fluctuations.

3.6 Frequency of excitation of NTM

3.6.1 Stochastic excitation frequency
The excitation frequency 7ex gives the rate at which the neoclassical tearing mode

is stochastically excited by the noise. This stochastic transition rate is important in
experiments. The NTM is expected to appear within the characteristic time of red . if the

parameters reaches the condition Eqs.(56) or (62). In other words, the plasma is not free

from NTM in a time longer than rg,! , even though the plasma condition is controlled

such that the global events, which can trigger the NTM, are suppressed.
An example of the excitation frequency is estimated in the following. The height
of the potential barrier S(A m) dominantly influences the rate of excitation. In the limit of

small amplitude, the potential S(A) is dominated by the contributions form the pressure

terms. A Taylor expansion with respect to the amplitude is made as

(€ Cla2 . C 3 (€ Calat
S(A)_(W_%_Vz)TJrﬁgA - W_‘l"+?v_2?7 =zt (66)

The potential barrier S(A m) is given by the maximum. For the case of Wy > W, , one has

a simple estimate
20,W}
S(Am)._.(l__cg_l_)ﬁ._ﬁ : (67)

by keeping the first order correction of W{/W, .



It should be noted that W must be finite even though the limit of small W is
discussed. The nonlinear potential Eq.(37) becomes divergent for W; =0 and
A’y = o, s0 that the barrier crossing is prohibited.

Substituting the barrier height Eq.(67) into Eq.(42a), one gets the excitation rate
of NTM as

JA C
Tex ="——§£ﬁ exp (—F—j). (68)

3.6.2 Example

Explicit value of the transition rate is examined for a possible micromode for
typical experimental parameters. The parameter I is the key for the transition frequency.

For the L.-mode plasmas, when one employs the current-diffusive ballooning mode as the
micro mode, one has

Ap=10sa28ir)" (69a)

0y = 1003/ 2(8/r,)? (69b)
and

Tae~ 0712, (69¢)
where

o= —g2Rdp/dr t70)

is the normalized pressure gradient [34]. Substituting Eq.(68) into the formula of I',
Eq.(38), one has

-2
=20k (__ a1 + ) + 5y/Bm; 7 me) 1074 54 o= 1172 Ry (8/1'"5)_8 ()

The argument I' C1/4 in Eq.(68) may be simplified as

2
rc,  awtLly m, ¢ Bp pprs
4 7 4x10% 122 Pm; (3q 112 Ry &8

(72)



for Bmy/m,>1 . This result shows that when the resistivity becomes so low as to satisfy

the condition

Ryp=10~4(m/Bm;) € k=30~ 112027658 3)
the relation

rc/A~1, (74)

holds. That is, the exponential term increases and becomes of the order of unity, and the
transition frequency of the order of 1 is expected.

When the plasma pressure gradient becomes large, a strong turbulence (M-mode)
has been predicted [28, 35]. In this case, A, is enhanced by the factor of

(aB ,-m;/me)”2 . One has

2
rc,  aw'Ly (m,\3 ¢ By prt (75)
4 T ax104122 \Bmi) 3als2 Ry 88
The condition for frequent transitions, I C1/4 ~ 1 | is given as
Rpg= 1074 (m/Bm;)* € k=30 152 p2r65-% (76)

This condition can be easily satisfied in a high temperature experiment of medern
tokamaks.

IV. Summary and discussions

In summary, we have developed a statistical theory for the excitation of nonlinear
NTM. The stochastic equation is formulated including the presence of subcritical
excitation mechanism of NTM. The rate of transition and the statistical average of
amplitude are derived, and the phase boundary in plasma parameter space, B, + or A”x,

is obtained. An analytic formula is given as Eq.(64). Linearly stable systems are prone
to nonlinear instability if S(A S) <0 holds. The formula is applied to either cases of micro

fluctuations or of other random MHD activities. Empirical database for the presence of
NTM must be compared with the result of phase boundary derived from the statistical

theory. The rate of stochastic transition depends on the microfluctuation level and is
evaluated for example cases. However, the boundary is given by S(A;)=0 and is

insensitive to the magnitude of micro fluctuations. It is plausible that the stochastic



transition without the trigger by large MHD events (e.g., sawtooth or fish-bone
instabilities) can be observed in high temperature tokamak plasmas if the condition

Bp > Bp + 1is satisfied. This explains observations in refs.11 and 12. The dependence of
Ppx onpy/r is found to vary in the range between py/rs and (p b/rs)z , depending on

the linear stability of the tearing mode. The empirical database has been constructed for
the critical condition of the onset of tearing mode [36]. The empirical onset condition
must be compared to the phase boundary. When the plasma beta value is smaller to that
at the critical point of the cusp (point C in Fig.3(b) or Fig.11), the supercritical excitation
of the tearing mode takes place.

From the statistical theory in this article, the observation of the hysteresis in the
relation of A(B p) is explained. Whether a hysteresis is observed or not depends on the
competition between the life times of states A=A and A =0 (r3. and rz] ,
respectively) and the characteristic time for vanation of global parameters, Tgjopa - When
global parameters change slowly, i.e., Tgigha >> Fads T3e , the long time average is
realized and the monotonous dependence on the global parameters is observed. In
contrast, if the parameter change is fast, Tgjopa ~ Teds 7w , the hysteresis is observed.

Equation (42) is a generalization of the result of thermal equilibrium, i.e.,
Eq.(496) of ref.14 that recovers Arrhenius' law, to the case of the turbulence trigger.
The turbulence amplitude is included in the denominator of S(A) that appears in
exponential term of 7., and 74, . Owing to the turbulence trigger, the transition
probability is greatly enhanced and the variation of the average (A) across B, =B+
becomes less sharp. The energy of microfluctuations is estimated in tokamak turbulence
and is about 8*r A}’ times larger than that in thermal equilibrium (§23 of ref.1). For the
thermal fluctuations, T is larger by a factor 8*72A5® and the transition is very difficult to

occur.
This article does not give a complete picture for the trigger of NTM but provides a
theoretical framework for future studies. There are effects and contributions which
should be incorporated in the nonlinear statistical theory. (Examples include: The
coherent part of RHS of Eq.(23), like dynamo term and other nonlinear drags, can
influence A so as to modify Bp » ; Excitation of large scale island, in turn, may suppress
the transport as in the case of the Snakes phenomena [37]; Semi-micro structures could
coexist as reviewed in ref.1.) The analytic formula (55) (56) and (62) could be verified
by direct solution of Eq.(33) by Monte Carlo simulation. When one performs the
quantitative comparison, the shift of linear stability boundary must be taken intc account.
The linear stabitity boundary of the tearing mode is modified as Ay’ > Aggy’, where Aggy’
is a positive number in the case of magnetic well [29]. If this effect is taken into account,
— Ay in the formula in this article is replaced by Ay — Ay, It is also noted that the
coefficient C, in Eq.(9) has a weak dependence on collisionality. If one keeps this



dependence on collisionality, the phase boundary (e.g., Eqs.(57) and (64)) has also weak
dependence on the collision frequency, which is obtained by straightforward calculation.
These are left for future studies and will give quantitative results.
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