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Abstract

Characteristics of electrically-conducting media are reviewed from the macroscopic
viewpoint based on the mean-field magnetohydrodynamics, while being compared with
the methodology and knowledge in fluid mechanics. The themes covered in this review
range from the generation mechanism of stellar magnetic fields (dynamo) to transport
properties in fusion. The primary concemn here is to see the characteristics common 10
these apparently different phenomena, within the framework of the mean-field theory.
Owing to the intrinsic limitation of the approach, the present discussions are limited more
or less to specific aspects of phenomena. They are supplemented with the reference 10
theoretical, numerical, and observational approaches intrinsic to each theme. In the
description of dynamo phenomena, an emphasis is put on the cross-helicity dynamo.
Features common to the stellar magnetic-field generation and the rotational-motion drive
in toroidal plasmas are illustrated on this basis.
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1. Introduction

A variety of characteristics are observed ih laminar, turbulent, and transient states of
electrically-nonconducting fluid flows. Those éharaéteristics may be explained
systematically on the basis of the hydrodynamic equatidns, except some special cases
such as the inside and close vicinity of a shock wave. The advance of computer capability
1s highly advantageous to numerical methods. For geometfically simple flows, they may
often provide the information that is difficult to be detected by observations. Such typical
instances are the turbulence properties near a sohid wall, the pressure—relatéd correlation

functions, etc.

An entirely different situation is encountered in electrically-conducting media. One of
the primary ingredients causing the difference is a magnetic field. A charged particle is
trapped around a magnetic field line, while moving freely along it. This property persists
partially in the aggregation of charged particles. The gas of charged particles is subject to
a larger resistive force for the motion normal to magnetic field lines, compared with the
parallel direction. The degree of persisience of the microscopic effects differs at observed
spatial scales. Then the motion of electrically-conducting media shows highly different
appearances in accordance to spatial scales. It is quite difficult to cope with all the states
of motion, with the use of a single system of equations, resulting in the necessity of the
hierarchy of systems of equations. The number of necessary systems is dependent on the

phenomenon to be explored.

In the study of electrically-conducting media, attention is usually focused on a specific
phenomenon, and its characteristics have been explored for a wide range of scales, with
the use of the hierarchy of systems of equations. Such a typical instance is hot plasmas in
‘nuclear fusion. Many efforts have been made towards understanding of the turbulent-
transport and structure-formation processes. These achievernents have come to some level
of maturity, and quite a few characteristic features of nonlinear dynamics far from the
thermal equilibrium have been captured there. On the other hand, so much attention has
not always been paid to understanding of the properties common to entirely different
phenomena, with resort to a single system of equations. This is due to the situation that
an emphasis has been put on the elucidation of each phenomenon. A related but other area
whose physics has shown a prosperous evolution is the stellar dynamo and has a striking
analogy to the study of confined plasmas. The integration of laboratory-plasma and

stellar-dynamo theories might be a source of future progress in the research of plasmas.

In this topical review, we describe the physics of stellar dynamo by using the mean-
field magnetohydrodynamic (MHD) theory. We focus attention on delving into the

properties common to phenomena that seem entirely different in their appearance. By this
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approach, we attempt to understand, in a sysiematic manner, SOme Macroscopic
properties of stellar magnetic fields, astronomical jets, tokamak's plasmas, etc. The
characteristics captured here are limited aspects of each phenomenon, but to discuss the
common properties in a variety of phenomena is interesting from the viewpoint of

exploring the essence of the. macroscopic motion in electrically-conducting media.

We put an emphasis on the mutual interaction between the flow and magnetic-field
generation. There are couple of motivations for this approach. First, the flow generation
process in toroidal plasmas has a deep similarity to the stellar dynamo. Second, the
response of plasma properties arising from the interaction between flow and magnetic
field is common to plasma physics. Third, the structure formation in stellar magnetic

fields is understandable through the simultaneous investigation into the flow and magnetic
field.

From these motivations, the importance of the cross-helicity mechanism of dynamo is
stressed. This review provides an account complementary to those already published on
fusion and stellar dynamo with much emphasis on the helicity mechanism, and attention
is focused on the structure formation of flow and magnetic field. Their temporal evolution
is beyond the scope, and the quantitative discussion about turbulent transport coefficients
is not covered.

The present review is organized as follows. In § 2, phenomena explored in light of the
stellar dynamo are surveyed. The similarity to fusion plasmas is mentioned from a
viewpoint of seeking common aspects. In § 3, the basic equations are explained. In § 4,
the mean-filed MHD equations are given. The details of the deduction of the correlation
functions is summarized in Appendix A. The basic concepts of the &, B and y effects

are explained. Throughout this review, f§ denotes the turbulence resistivity, but not the
plasma pressure normalized by the magnetic pressure (the difference of convention is
explained when necessary). The spherical-shell dynamo 1s explained in § 5. The
difference between the geodynamo and solar dynamo is discussed in detail. In § 6, the
generation of electromagnetic flow 1s discussed with accretion disks as an example. There
the relationship with the flow-generation problem in tokamaks is also mentioned. In'§ 7,
feedback effects of the generated field on transport coefficients are illuminated, and
turbulence suppression processes in electrically-conducting media are explored. The
surnmary is given in § 8.



2. Explored Phenomena and Mean-Field Approach
2.1. Planetary magnetic fields

A variety of interesting phenomena are observed in electnically-conducting media. One
long-quested theme of them is magnetic dynamo or the generation mechanism of
planetary magnetic fields such as geomagnetic, solar, galact.ic fields, etc. Their reviews
and surveys are given in [2/1-2/9). '

Geomagnetic and solar fields are similar in the geometrical context that both emerge
from the motion of electrically-conducting media in a spherical-shell region. Their
properties, however, are very different each other, as will be explained below. To clarify
the difference is expected to contribute to understanding of the essence of the spherical-

shell dynamo. Here attention wil) be focused on the global properties of those fields.

Earth Jupitor . Saturn o Uranus Nepfune 7

| o | Qp . Oy B
jn’ .
J v
to Sun . , Or /
Mo | M | }

Fig. 2.1. Dipole magnetic fields of plénets. '

2.1.1. Dipole fields of planets

It is known well that many planets are accompanied by magnetic fields. The magnetic
field of a large planet is characterized by distinct spatial structures represented by the
dipole field. Figure 2.1 illustrates the relationship between the rotation axis and magnetic
dipole moment in the earth, Jupiter, Saturn, Uranus and Neptune, respectively [2/10,
2/11]. Mercury-has also a noticeable dipole magnetic field, but the magnetic fields of
Venus and Mars are weak. The cénier of magnetic moment i$ often close to the center of -
mass of a planet. In some cases, however, there is a large deviation between these two
centers [2/12].
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Fig. 2.2. Interior of the earth.

The spatial structure of the geomagnetic field is prototypical for those of other planets.
The interior of the earth is roughly divided into three regions, the inner core (solid iron),
the outer core (melted iron), and the mantle (silicon), as is depicted in Fig. 2.2 (the radius
is about 6300 km). The geomagnetic field arises from the motion of melted iron in the
outer core [2/13, 2/14]. For the motion, two driving forces are considered. One is the
thermal buoyancy force due to the te.mpera{ure difference between the inner core and the
mantle. The other is the compositional buoyancy force due to the mass difference between

the melted iron and the silicon in it.

The toroidal component (the component in the azimuthal direction around the rotation
axis) of the geomagnetic field is not observable at the surface, owing to the electrically-
nonconducting mantle. The primary part of the poloidal field observable is the dipole
component, whose present axis is nearly antiparallel to the direction of the earth's rotation
axis. Its strength is a few gauss (G) at the surface. The toroidal field is inferred to be
O(10) times the dipole field from other observational data.

The polarity of the dipole field changes in a nonperiodic manner. The change of the
magnetic polarity is much faster, compared with the staying time in the quasi-stationary
state. The period of the same polarity persists for 0(10*)— 0(10°) years [2/14]. In the
study of geodynamo, the earth’s polarity change has attracted much attention for this
strange behavior.

2.1.2. Solar magnetic field



The sun consists of hydrogen (90 %) and helium (10 %), and its interior is divided
into the core, the radiative zone, and the convective zone, as in Fig. 2.3 (the solar radius
is about 700000 k). The solar magnétic field is generated in the convective zone, and
the energy source is the thermonuclear fusion in the core [2/15-2/17]. The convective
zone is the outermost region. As a result, the solar magﬁ_etic properties ranging from
global to fine scales are observable, and the observational information on the field is

much richer, compared with the geomagnetic field.
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Fig. 2.3. Interior of the sun.

The primary global component of the Solar'magnetic field is the toroidal field. Its
evidence is sunspots, which are illustrated in Fig. 2.4. Their origin is the magnetic-flux
tube that is generated in the convective zone. The tube rises up owing to the magnetic
buoyancy force and breaks through the photosphere adjacent to the outer surface of the
convective zone. Sunspots represent the cross sections of the tube and are observed in
pairs of different magnetic polarity, as in Fig. 2.4. The intensity of a large-sunspdt field
1s a few kG, and the toroidal field with the intensity stronger by one order 1s inferred to
be generated at the bottom of the convective zone. The poloidal component is much
weaker, compared with the toroidal component. Specifically, it'is a few G in the pole
region. The striking difference between the toroidal- and poloidal-component relationship
of geomagnetic and solar fields is considered to be linked with the essence of the

spherical-shell dynamo.
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Fig. 2.4. Sunspot and their polarity rule.
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Fig. 2.5. Changes of latitude (upper) and number (lower}) of sunspots [2/18].

The spatial shape of the observed solar magnetic field seems complicated and random,
but the temporal evolution of global properties makes an ordered variation (see Fig. 2.5).
The sunspots occur in the low- to middle-latitude region, and their number is a
representative indicator of the solar-activity strength. The solar magnetic polarity varies so
regularly, namely, in about | 1 years, for instance, from the left to right in Fig. 2.4 [2/15]
(as a whole, the solar magnetic field has the period of about 22 years). The polarity and
resulting sunspot-number changes indicate the variation of solar magnetic activity,
exerting a big influence on the earth. Concerning the polarity change, the sun makes a
sharp contrast with the earth. '

2.1.3. Comparison of geomagnetic field and solar magnetic field

The difference among stellar magnetic fields should have an origin in those of the
structures and dynamics of planets. As a representative case, the earth and the sun are

compared in Table 2.1.



Table 2.1. Characteristics of the earth and the sun. In the outer core,

| G corresponds to 10 ms™ [see Eq. (5.19)].

Earth Sun
Radius e =6X106 m I =7x[08 m
Rotation period 1day 26 days
Rotation velocity at _ _
the equator 4x10° ms™ 2x10° ms™
Typical differential velocity 0(10*) ms™ 0(10*) ms™'
Typical length scale of
differential motion 0(107™") r; 0(107") ry
Typical turnover time of
differential motion (#,,qver) 0(10°) years - - O(1) days
Typical pericd of polarity
variation (7 pousy) 0(10%) — 0(10°) years 22 years
tpnlarity jttumover 0(102) - 0(1 04) 0(1 01)
Poloidal magnetic field o) G oG
Toroidal magnetic field 0(10)- 0(10*) G o(1) - 0(10) kG

The prominent geometrical difference is the relative magnitude of the fluid region

generating a magnetic field to the inner region without a fluid flow. In the earth, the ratio

of the outer-core width to the inner-core radius is about 2, whereas the solar counterpart

is about 0.4. The outer core of the earth is a thick shell, while the convective zone of the

sun is a thin shell.

Observations show that the temporal changes of the geomagnetic and solar magnetic

field are entirely different. One of the characteristic time scales in stellar objects is the

inverse of the angular velocity of rotation. The time scale of the rotation of the earth and

the sun, however, is not helpful to understanding of the polarity change, as is mentioned

below. A strong similarity between them may be seen in the eddy turnover time of an

electrically-conducting fluid.



The earth rotates once in about one day, whereas the sun does in about 26 days. The
rotation time scale is shorter in the earth. The relative magnitude of the foregoing same-
polarity period is in a situation opposite to the angular velocity. In this context, the
geomagnetic profile may be regarded as much more stable than the solar counterpart.

The fluid velocity in the outer core of the earth is inferred to be 0(10™*) ms™' [2/13,
2/14). The solar counterpart in the convective zone is estimated from the velocity related
to the differential angular velocity. At the solar equatorial plane, the angular velocity at the
bottom of the convective zone is smaller by about 10 percent than the upper-surface
counterpart [2/18, 2/19]. This difference corresponds to 200 m s~'. With each shell
width as a reference length, the time scale related to the fluid motion in the earth is
0(10%) times its solar counterpart. Such a situation is consistent with the difference

between the polariiy-reversal time scales of the earth and the sun.
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Fig. 2.6. Solar rotation rate {2/18].
2.2. Spontaneous magnetic-field generation in toroidal plasmas

In reversed-field pinches of plasmas (RFPs} [2/20, 2/21], the poloidal magnetic field
B, is nearly comparable to the toroidal field B;. The RFP state is characterized by

g<<1, 2.1

where the safety factor g is defined by

B

Y/ Sttl
=R B (2.2)

where R and a are the major and minor radii, respectively (see Fig. 2.7). The direction
of the toroidal magnetic field is opposite at the center and edge. The reversal of the
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Fig. 2.7. Toroidal and poloidal directions in a torus.

toroidal magnetic field is realized as a result of the evolution of large-scale MHD

turbulence owing to a large current density.

In tokamaks, their magnetic properties are characterized by the safety factor [2/22,
2/23] '

g>1. (2.3)

The spontaneous generation of the poloidal magnetic field occurs owing to the diffusion
driven current called the bootstrap current [2/24, 2/25]. In this case, turbulence plays no
important role, and the microscopic length governing the diffusion process is related to
the banana width. ' ‘

-
2.3. Electromagnetic flow generation and accretion disks

In addition to the generation of magnetic fields by turbulence, the flow can also be
generated by them. In general, magnetic fields and flow must be investigated
simultaneously. Under these circumstances, the so-called kinematic approach [2/26, 2/27)
to the study of the generation of magnetic fields under a preécribed velocity field ceases to
be valid. An entirely different viewpoint for the magnetic-field generation mechanism is
necessary. Such a new viewpoint has emerged.in relation to the study of accretion disks.
The importance of the flow generation has also been recognized strongly in toroidal

plasmas.
2.3.1. Accretion disk'

‘Astronomical high-mass objects such as active galactic nuclei, protostar, cataclysric



variables, neutron stars, etc. are surrounded by gases in the form of a disk [2/28-2/30)
(see Fig. 2.8). In such circumstances, the magnetic field may be observed, as in Fig. 2.9
[2/31, 2/32]. The gases accrete onto the central object, while rotating. The release of the

gravitational energy provides the source for the activities of the object.

Y.

Jet
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object

Accretion disk

Fig. 2.8. Accretion disk and bipolar jets.
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Fig. 2.9. Magnetic fields of Hydra A cluster by Faraday rotation measurement [2/32]: Magnetic field
derived from the Faraday rotation is 33 mG with total energy 0(10°) ergs.



The angular momentum of gases needs to be released for the continuation of gas
accretion leading to the reduction in the total gravitational potential energy. At present,
two mechanisms are presented for the angular-momentum release [2/28-2/30, 2/33-2/35].
One is the transport by turbulent motion towards the outer part of the disk through
enhanced viscous diffusion. The other is the release by the bipolar jets that are observed
ubiquitously around high-mass objects. Such jets may carry away the angular momentum
from the disk as long as they are swirling jets, that is, they perform a helical motion. In

either event, the magnetic field is generated together with the global flow.

The driving force for the jets is under an intensive study. One of the most promisihg
candidates is the magnetic force arising from the Lorentz force. There attention is focused
on the generation of flow by the distortion of magnetic field lines. In this sense, the
mechanism may be called the flow dynamo in contrast to the magnetic dynamo with a

primary attention placed on the magnetic-field generation by flow.

A prominent feature of bipolar jets is the high collimation [2/28, 2/33]. They keep a
straight shape in a long distance with an einemely small growth of jet width. A candidate
of the high-collimation mechanism is the confinement of ionized gases by a magnetic
field, specifically, its toroidal component. The jet speed is O(10) ~ 0(10°) km s™' for
protosfars and several ten percent of the ]igﬁt speed for active galactic nucler. In the latter,

relativistic effects are essential, which are beyond the scope of this review.

Table 2.2. Some analogy between accretion disk and toroidal plasmas.

Accretion disk RFP " Tokamak
Spontaneous current *  Turbulent dynamo « Diffusion-driven
generation mechanism : (bootstrap) current
Characteristic length Turbulence « Banana width

' correlation length

Transportation of Energy-containing & Diffusion
magnetic flux turbulent motion
Resulting global Axial jet (ejection Reversal of Current depletion near
structure by magnetic toroidal field .  axis (e.g., current

pressure) hole)
Relevant turbulence Coefficients o, 8 — Turbulent transport

-related parameters

and y in Eq. (2.11)

coefficients v; and y-
in Eqgs. (2.12) and
(2.13)




The spontaneous generation of a toroidal magnetic field in an accretion disk leads to
the formation of a distinct structure. The occurrence of a characteristic structure due to the
spontaneous poloidal magnetic field may be observed in tokamaks. Some analogy in light

of the role of a spontaneous magnetic field is illustrated in Table 2.2.
2.3.2. Transport barriers in tokamaks

The generation of flow is an important theme in nuclear fusion. The discovery of high-
confinement (H) modes [2/36] has opened a new area of the study of plasma turbulence
and structure formation. In the H modes, the transports of heat and particles are
suppressed in a thin region near the plasma edge, i.e., at an edge transport barrier. This

barrier region is characterized by the simultaneous occurrence of the radial electric field
( E.) and the poloidal plasma rotation [2/37-2/40].

H modes were followed by the improved-confinernent modes that have different
transport barriers. There the transport barriers of heat and particles are formed in the core
and are named internal transport barriers [2/41]. Examples include the reversed-shear
(RS), negative-central-shear, enhanced-reversed-shear modes, etc. [2/42, 2/43] (hereafter
these shear-felated modes will be generally called RS modes). The barriers are also
cl]aracteriied by the radial electric field and the poloidal plasma rotation. In addition to
these characteristics, RS modes are often associated with the minimum of the safety factor
g off the axis [2/44]. Readers may consult [2/8, 2/37, 2/41, 2/45-2/48] for a

comprehensive review of theories for the improved confinement.

To clarify the driving mechanism of the poloidal plasma rotation is indispensable for
understanding of the barrier formation in RS modes as well as H modes. A mechanism of
plasma flow driven in tokamaks may be also called the flow .dynamo, as in the case of
bipolar jets. Readers may consult [2/49] for the detailed review of zonal flows in toroidal
plasmas. The occurrence of a radial electric field and plasma rotation is one central theme
in the study of tokamaks. At the same time, how they affect and suppress the transports
of heat and particles is the other important theme. The relationship of the turbulent
transports with the radial electric field and the plasma rotation is now under an intensive
study.

2.4. Stellar dynamo and structure formation in toroidal plasmas

The foregoing surveys show a remarkable analogy between the dynamo in stars and
the flow generation mechanism in toroidal plasmas. The further resemblance may be seen
between them and some problems in fluid dynamics and plasma physics. Common
features are stated as follows. -



Table 2.3. Comparison between dynamo, electromagnetic (EM) flow generation
. and flow structure formation (Navier-Stokes equation is abbreviated as NS eq.).

Main Generated Equations in Coverage
Name of Name small-scale  global Examples fluid limit and by this
Concept fluctuations  structure fundamental drive  review
Dynamo  Fluid motion Magnetic field  Geodynamo MHD eq. Yes
(thermal Solar dynamo  Thermal convection
convection) Coriolis force
Magnetic
dynamo  Magnetic Magnetic Magnetic field  RFP torus MHD eq. Yes
structure  flucinations External toroidal
formation (kink, tearing) current
MHD flow EM Magnetized MHD eq. Yes
dynamo  and flow flow Bipolar jets Gravitational force
Electro- fluctuations _ Coriolis force
magnetic
flow ExB flow EM and Zonal flow MHD eq. Partly
dynamo dynamo  pressure Ex B tlow in toroidal Plasma response
fluctuations plasmas Pressure gradient
{drift waves)
Neutral ~ Small-scale  Zonal flow Jobian spot Navier-Stokeseq.  No
flow thermal ’ : Tidal current Thermal convection
Flow dynamo convection Jet stream, etc.  Conolis force
dynamo
Flow Small-scale  Structured Swirling flow, Navier-Stokeseq.  No
structure  convection  flow Asymmetry in  Drive of axiat flow
formation : pipe flow

First, in both cases, large-scale axial vector fields such as the magnetic field B and the
vorticity @ (= V x u) are sustained against the dissipation (u is the velocity). The energy
source is the inhomogeneity of a scalar field. One representative example is the
temperature gradient in stellar dynamo and toroidal plasmas, and the other is the gradient

of the gravitational potential in accretion disks.

Second, turbulence plays a central role. When the symmetry of field holds and no
microscale length exists, the flow of a vector field cannot be driven by the gradient of a
scalar field (Curie's principle).AIn the context of stellar dynamo, Cowling's anti-dynamo
theorem is famous. In the dynamo, turbulence induces the transport of magnetic flux that
generates the magnetic field. It 1s also known that the fluxes of momentum and angular
momentum are induced by turbulence, establishing a large-scale vortex. The

correspondence between

Aou Boow (2.4)



might hold in the magnetic and flow dynamos, where A is the vector potential.

Third, a generated field has a definite feedback effect on the turbulence that induces the
magnetic and flow dynamos. Fourth, turbulence in some circumstances has a long
correlation length that is comparable to the system size. These analogies are summarized
in Table 2.3. The areas covered by this topical review are also indicated there.

2.5. Mean-field magnetohydrodynamic approach

Attempts to understand the macroscopic aspects of magnetic dynamo, flow dynamo,
and turbulent transports have been developed on the basis of the mean-field MHD. As
was described above, the dynamics at a large scale is governed by the presence of micro
turbulence. We denote the former scale length by ¢, .., and the latter by ¢, and
assume the intermediate length for averaging or coarse graining, 7_, that obeys

¢ << U, <<l - (2.5)

micre

In the thermodynamical equilibrium, the fluctuations are in the range of micro-
molecular dissipation length. Ohm's law and the heat-flux equation for macroscopic
phenomena in classical thermodynamics are written as [2/50]

E+uxB=nj+aV8+RBx j+NBx Vo, (2.6)

q-¢j=abi-«kVo+NOBx j+LBx V0, 2.7)

where E is the electric field, & is the temperature, and q is the heat flux. Some fluxes
.are perpéndicular to the magnetic field and the temperature gradient. The term RB X j is
called the Hall‘term, NB x V8 is thc Nernst effect, NGB x J is the Ettingshausen effect,
and LB x V0 is the Leduc-Righi effect. Effects of microscopic thermal fluctuations are
included in the transport coefficients. The common coefficients a and N in Eqs. (2.6)

and (2.7) reflect the Onsager symmetry of transport matrix.

In the study of dynamo, ¢ is taken 1n the range of plasma turbulence. We denote

micro

the averaging over the scale ¢, by the overbar or (). The mean-field version of the one-

fluid constant-density MHD equations is as follows. The equation of motion is

1 2 -
R o) KU RS

J

~Vx(uxB+E; )~ Vx{(nj+aV8+RBx j+ NBx V), (2.9)



and the energy equation is

Do - ' |

=— =V-(-Hy)+ x,V70. (2.10)
Dt

In the one-fluid description, the last term on the right hand side of Eq. (2.9) is usually
replaced by anﬁ._The turbulent electromotive force E,, the Reynolds stress of MHD

flow, R,-j, and the turbulent heat flux Hy are written as [2/8]

E, = (uxB)=oB - fj+1®, (2.11)

2 _ —_
R, = (u,.' uj'>—<Bi' BJ,.‘) = 5Kﬁéi,.j — VS + vy My, (2.12)
H,=(0u)=-x,V0, (2.13)

with (vr.vy) =(7/5)(B8,7), where primed quantities denote fluctuations, and §; and
1\7,-]- are the mean velocity- and magnetic-strain tensors, respectively [see Eqgs. (4.13) and

(4.40}].

The terms with coefficients &, ff and y are callf_:d o, B and y effects, respectively.
Coefficients ar, 8, ¥, K, vy and v,, are related to fluctuation amplitudes. The mean-
field approach is to investigate into the structures of the coarse-grained magnetic field and
flow by solving Eqgs. (2.8)-(2.10) with the help of a turbulence theory that determines o,
B, v, etc.

The detailed explanation of the foregoing mean-field MHD system of equations is
given in § 4. There the system is also compared with the so-called kinematic dynamo
theory. In the history of the magnetic-dynamo study, much attention has been paid to the
generation of magnetic fields by fluid motion. In reality, the study started from the
kinematic approach [2/26, 2/27]. There the generation mechanism is sought under a
prescribed velocity field. At present, it is keenly recognized that the self-consistent
determination of magnetic field and flow is necessary for understanding of steilar and
flow dynamos. The deduction of structures in the magnetic field and flow based on Egs.

(2.8)-(2.13) is reviewed in the following sections.

In this article, special attention will be paid to the turbulent cross helicity or the
correlation function between magnetic and velocity fluctuations, whose effects occur
through the coefficients y and v,,. The introduction of this concept will be shown to
pave the way for a systematic description of various dynamo phenomena. The essence of
those results is summarized in Table 2.4, whose physical implications will be clarified in

subsequent explanations.
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Many important properties of hot plasmas linked with fusion are beyond the scope of
the MHD approach. The turbulent transports of heat and particles, however, are often
caused by energetic fluctuations or the energy-containing fluctuations. Then the mean-
field approach may be expected to shed light on macroscopic properties responsible for
the transports that are common to a variety of phenomena in electrically-conducting
media. In the following accounts, attention will be paid to the theoretical (analytical)
understanding of phenomena. It will be supplemented with the findings by computer
simulations and observations, although their coverage is limited.
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3. Magnetohydrodynamic Equations

We start from the magnetohydrodynamic equations for ion and electron gases, and

give their simplified version.
3.1. Two-fluid equations

Subscript § denotes [ (ion) or E (electron). The equations for the number density
and the momentum are (2/22]

Fs 1+ V- (ngvs) = O, (3.1)
ot
—HgMgVg + —— NgMVe Vg = —a—psi+nses(E+vs xB). + Fg, (3.2)
o o B ' :

where ng is the number density, m; is the mass, v is the gas velocity, E is the electric
field, B is the magnetic field, and e; is the electric charge given by

ep=—e, e, =2Ze - (3.3)

(Z is the charge nﬁmbe'r). In Eq. (3.2), Ps;j €Xpresses the stress arising from the

collision among ions or electrons themselves and is decomposed into the isotropic

(pressure) and anisotropic (viscosity) parts,
| ' Ps; = ~psd; + Mg, :' (3.4)
For the pressure pg, we adopt the perfect-gas relation
ps = kgnsGs, ‘ (3.5)

where kg is the Boltzmann constant, and 6 is the temperature. The last term F.¢ in Eq.

(3.2) is the force arising from the collision between electron and ion, which is written as
Fop=-F;=-ngmgv.(ve- vl)’ (3.6)
with v, as the collision frequency.

The equations for the electric and magnetic fields are

. 10E
VX.B=ﬂ0J+?§, (3.7



JB
VXE =-—, 3.8
X > (3.8)

VB=0, 39

v.E=f (3.10)
=)

where Uy 1s the magnetic permeability, g, 1s the dielectric constant, ¢ (= 1/.\(eody ) is
the light speed, and p, is the net charge density given by

p. =e{Zn; - ng). (3.11)

For closing the above fluid and'e]ectromagﬁetic system of equations, we need the
equations for the thermal energy or 8, which is omitted here.

3.2. One-fluid equations
3.2.1. Variable-density flow

We introduce the mass density p, the velocity w, and the pressure p as

p=ngmg+nm, . - (3.12)
u = eV e MY, 3.13)
P
P=Ppetp; (3.14)
We assurne the electrical neutrality
p.=0. . (3.15)
From Egs. (3.1), (3.2), and (3.15), we have
%ﬂv-(pu):o, (3.16)
g‘t-,pu,- +_a%pu,-uj =-%+(jx3)f+axijpsﬁ, (3.17)
where
i=nge(v,-ve), | | | .(3-i8.)



_au" au.

and the simplest representation based on the isotropic viscosity u was adopted for I7 ;.

For a perfect gas, p and internal energy ¢ are given as
p=(r-1pf. ¢=0C8, (3.20)

where y is the ratio of the specific heat at constant pressure, Cp, t0 ils constant-volume
counterpart C,.

Under Eq. (3.15), Eq. (3.2) with § = E results in Ohm's law
j=0,(E+uxB) , : (3.21)

with the Hall and Vp_-related terms discarded, where the electric conductivity is given by

2

_ nge (3.22)
meVe
We combine Eq. (3.21) and the Ampere law
VB = p,j (3.23)
with Eq. (3.8), and have
%zw(uxn)mvln, (3.24)
where the magnetic diffusivity i is given by
] ‘
n= . - (3:25)
Coldg
The internal energy ¢ obeys
d
§p§+-v-(p§u)=V-(KV6)—pViu+¢D,_ (3.26)

where ¢, 1s the dissipation function expressing the conversion of kinetic and magnetic to
thermal energies, and is written as

. 1.
¢p = ps; =L +—J°. (327



Equations (3.16), (3.17), (3.24), and (3.26) constitute the one-fluid MHD system of
equations. In the study of stellar mégnetic ﬁélds, this system is supplemented by the
Coriolis force, the buoyancy force, etc., providing a useful mathematical tool. In fusion
plasmas, however, the one-fluid MHD system 1s quite limited [2/22, 3/1]. First, the
dynamical characteristics of electron and 1on differ, owing to the large mass difference.
Many important characteristics arising from this difference are lost in the reduction to the
one-fluid system. Second, charged particles behave entirely differently in the directions
normal and paralle] to a magnetic field. This feature is excluded from the isotropic
representation for f1;; leading to the last term on the right-hand side of Eq. (3.17). Third,
the assumption about the electrical neutrality, Eq. (3.15), expels the explicit treatment of
E. At the transport barriers in tokamaks, however, the radial electric field is tightly linked
with the suppression of the heat and particle transports, as was mentioned in § 2.3.2, and

its explicit treatment is indispensable for the study of their suppression mechanism.,
3.2.2. Constant-density flow

In the study of stellar magnetic-field generation and flow drive, the variation of the
mass density p becomes impoﬁant in relation to self-gravity and buoyancy effects.
Some important processes of magnetic-field generation are often examined under the
assumption of constant density, except the inclusion of the buoyancy force due to the
Boussinesq approximation. This pbint is related to the fact that the magnetic induction
equation (3.24) is not dependent explicitly on @. The assumption about the constancy of
p greatly alleviates the mathematical complexity ih the investigation into dynamo effects

by ;urbu]ence theories.

In the case of constant fluid density, the use of Alfven-velocity units leads to a concise
form of fundamental equations. In the units, B/./pit, has the dimension of velocity. We

make use of this fact and make the replacement

E-Zp. (3.28)

B - B J = j _E -
JoHo iy T g
Under this replacement, Eq. (3.17) is rewritten as

i (AR

with the solenoidal condition V-u = 0 where v( u/l p) is'the kmematlc v1scosuy In

this case, Eq (3.26) is reduced to the equatlon for the ternpcrature



24 (0) = 7,7, (3.30)

where y, [= K /(Cpp)] is the thermal diffusivity.
3.3. Electrohydrodynamics

In the one-fluid MHD equations, the electric field E occurs implicitly through the
Ohm's law, Eq. (3.21). As was noted in § 2.3.2, E is one of the key quantities
characterizing the transport barriers in tokamaks. For treating E explicitly, we need to
abandon the Ohm's law based on Eq. (3.15). This situation makes the simultaneous
treatment of both E and B effects quite complicated.

In the context of the transport barriers in tokamaks, we retain the variable-density and
E or nonvanishing p_ effects and write

d d dp d
—pu, +—puu, =——+p E +—Us.., 3.31
&-puf axJ PH,MJ 3x‘. P L axj Hsr] | . ( . )
in place of Eq. (3.17). The pressure p obeys
i+V’-(pu)=—()f—l)pV-u+V- VL . (3.32)
ot Cvp)

from Eqgs. (3.20) and (3:26), where ¢, was discarded.
The relation between p,. and E is given by Eq. (3.10). In order to close this sy.stem,

we need the equation for p_, which is given by

LV (pu) =V (33

from Eqgs. (3.1) and (3.11), where s, is defined by

. = enEn,(m, _ZmE)(vé—v,)‘ (3.34)

‘ o

The advection term on the left-hand-side of Eq. (3.33). may generate E effects on the
transport of heat, through the evolution of p.. The right-hand side represents the

evolution due to the velocity difference between ion and electron gases, which is beyond

the scope of the one-fluid system. Hereafter, attention will be focused on the advection
term. ‘ '



4. Mean-Field Magnetohydrodynamics .

The primary concern of this review is a turbulent state of electrically-conducting fluids.
A theoretical method for investigating into global properties of such a state, specifically,
the turbulent transports of momentum and scalars like heat is the mean-field MHD based
on the ensemble-averaging procedure. We start from giving a brief explanation of the
essence of the mean-field hydrodynamics and proceed to its MHD counterpart.

4.1. Constant-density hydrodynamic equations

As the simplest case, we consider the motion of a constant-density electrically-

nonconducting fluid. From Eq. (3.17), the motion is described by

%+£;uiu}- =¥%+vvzuf, | (4.1)

]

with V-u = 0. We use the ensemble averaging (-) and make the decomposition

u=u+uv,u=W)y; p=p+p,p={p). (4.2)

The mean parts obey
D, (d _ o). dp 0 o '
E=(§+u-v)u,=—-a;+gj(-1'q_j)+vv i, (4.3)

where the Reynolds stress R; is given by
R; = (u'u}), (4.4)
and expresses the transport of the momentum per unit mass by fluctuations.

4.1.1. Turbulent-viscosity representation

In order to close Eq. (4.3), we need to relate R; to the mean parts. The former is

governed by [4/1]

DR, 7R 7} M o o’ o
— Y -_p O _Rp 4 N L (Y oy L
Dr ok, T, +<P ( o o, ]> "(axf o, >
a V f‘ t 1 ] ‘ | aRr. -
+£(—(ulf Mj' u,'>+(P u,’ )5jf +(p uj )517 + V?}X_:] (45)



A representative quantity characterizing the strength of velocity fluctuation is the turbulent

energy
-K=<lu-2> ‘ @.6)
2 ’ T
It obeys
H, o Y
%=-Rf.—"-v —L +V-<—(lu'?+p')u'+vVK>. 4.7)
Dt ! o, o, 2

We integrate Eq. (4.7) over a whole fluid region V and have

Busaetfon B3] o
%js(—Kﬁ+<—(%u'2+;§')u' +vVK>]-ndS, A (4-3)

where § is the surface of V, and n is the outward unit vector normal to S. The last part.
in Eq. (4.8) represents the energy flux across S. In the absence of such a flux, K
inevitably decays so long as the shear of u does not exist. Then the first term on the
right-hand side of Eq. (4.7), that is, o

ol
_R'jg’

= 4.9y
is called the production term and usually plays the role of generating or sustaining

velocity fluctuation by draining the energy from u. As a result, the spatial profile of X
may be estimated qualitatively from that of P, [4/1, 4/2].

The mathematical resemblance exists between Eq. (4.5) and Eq. (4.7), except the

third term on the right-hand side of the former. Asa result, the situation quite similar to
the relationship between K and Fy holds between R; and the first two terms in its

equation. We denote the time scale charactenzmg the turbulent transport of momentum by
7, and write ' :

2 H;
R =—K5 C , 4.10
R-; 3 + er[ ~ Ry ', :ID (4.10)

where C, is a positive constant, and



4], =4, —%Aﬁa,.j. 4.11)

In Eq. (4.10), we use the first or isotropic term and estimate the second term, having

(4.12)

where C isa positive constant, and 5; 18 the mean velocity-Strain tensor defined by

_33817

5 = ax ax (4.13)

Equation (4.12) is the well-known turbulent- or eddy-viscosity representation for the
Reynolds stress, and the coefficient : '

vy = (;,Kr_f . (4.14)

is the turbulent or eddy viscosity. It is reduced to a variety of expressmns according to the
choice of 7. Its simplest choice is

T, ==, (4.15)
' £

where € is the dissipation rate of K that is given by the second term on the right-hand

E = V d . (4.16)

Equation (4.14) based on Eq. (4.15) results in the K — & model, which is the prototype

of all the turbulence models used in the calculatibn of engineering turbulent flows [4/3-
4/5]. |

4.1.2. Nonlinear algebraic representatioﬁ

The turbulent- wscosny represenlatlon Eq (4 12) is useful in the study of enhanced
diffusion effects by turbulence, but it often suffers from crmcal deficiencies. We consider
the situation

u = (#(y),0,0), u'=(u',v,w), | (4.17)

as in a turbulent flow between two parailel walls parallel to the x axis. From Eq. (4.12),
we have



R.=R,=R.=>K, (4.18)

Experiments show that
R.>R.>R,. (4.19)

Namely, the velocity fluctuation normat to the wall is highly suppressed. This property
.cannot be described by Eq. (4.12).

The foregoing deficiency arising from the intrinsic property of isotropic diffusion
manifests itself more seriously in the treatment of the structure formation by turbulent
flows. Its representative instance is a turbulent flow in a square duct. The most prominent
property of the flow is the occurrence of secondary flows in the cross section, as in Fig.

4.1 (the x is along the axis of the duct) [4/6]. There we may write
u = (#(y,2),7(3,2). W(5.2)). (4.20)

From Eq. (4.12), we have

R, =R.. - 4.21)

¥y

It may be shown that the secondary flows are driven by the anisotropy of velocity
fluctuations, that is, ' ‘ -

R,—R. 0. ' (4.22)

R —— o —— e ————— — — ——

<2

Fig. 4.1. Secondary flows in a turbulent square-duct flow (one-fourth of the cross section).



The occurrence of the foregoing secondary flows indicates that coherent structures
may survive in turbulent motion, through the competition of diffusion and anti-diffusion
effects. In order to seek the latter effect, we use Eq. (4.12) and estimate the second term
in Eq. (4.10). We write ' '

oy, 1, _\

i

where the mean vorticity tensor @;; is defined by

A
.= o 424
= o o (4.24)
and is related to the mean vorticity @ (= V x11) as
B, = £, (4.25)

Then we have

2 - ) _ R C

where C,, and C,, positive constants [4/5, 4/7, 4/8]. In this estimate, we have
C,, = 2C,,, but this constraint is not necessary when the contribution from the third term
on the right-hand side of Eq. (4.5) is taken into account. The third and fourth terms in
Eq. (4.26) lead to Eq. (4.22). They compete the diffusion effect arising from the second

term, resulting in the occurrence of the secondary flows in a square duct [4/8, 4/9].
4.1.3. Turbulent heat flux

The mean temperature obeys

22 v (-,)+ 1,V8, | (4.27)

from Eq. (3.30), where Hj, is the turbulent heat flux given by
H,=(0u). | (4.28)

On the basis of the equation for Hy, its algeblraic expression may be derived in an éntirely
similar manner {0 the case of R;. Then we have [4/5, 4/10]

20 _ .

Hy = =CoKT =+ KT, (Copi; + ngzw,.j)g, (4.29)

' J



where G, Cy,,, and C,,, are posiuve constants. The first term is the familiar turbulent-

_ diffusivity representation.

We consider the heat diffusion in the mean flow with a nonvanishing shear,

8 =08(x), 1 =(0,v(x).0). (4.30)
From Eq. (4.29), we have
de
H, =-C, Kt-—, 4.31a
x o Tc— ( )
dv d@
Hy =0. (4.31¢)

We should note that the heat is transported in the direction normal to the mean temperature
gradient, as 1s consistent with the observations [4/11]. This property is beyond the reach
of the usual diffusivity representation.

4.2. One-fluid constant-density magnetohydrodynamic equations
We apply the ensemble averaging to Eq. (3.29) and héve_

=L+ ;= ‘—Vii[;‘) + <B'Tz>] + (] X E); + axi (—R,-_,-) + VViE,-, (4.32)

=

9
O ox ) ok ]

T

where R; is the Reynolds stress of MHD flow defined by

R; =(u;u;)— (B’ B;). 43y

Symbol R; has already been used in Eq. (4.4). We extend it to the MHD case and use the

same symbol. The mean temperature 0 obeys the same equation as Eq. (4.27) with Eq.
(4.28) as the turbulent heat flux H,.

The magnetic-field counterpart of Eqs. (4.32) is

9B _

5 V_x(ﬁx§+ET)+nvzﬁ, L @3

from Eq. (3.24), where E; is called the turbulent electromotive force [2/1-2/6] and is
defined by



E, = (u'xB). (4.35)

The physical meaning of E; becomes clear in light of Ohm's law. From Eq. (3.21) and
replacement (3.28), we have '

]:%(E+E.,-+ﬁ><§). (4.36)

Then E. is the electric field generated by fluctuations, which has played a critical role in a

long history of the investigation into stellar magnetic fields.

4.2.1. Algebraic representations for turbulent fluxes

In order to close Eqgs. (4.32) and (4.34), we need to know the dependence of R, and
E; on the mean field. Their mathematical expressions may be obtained with resort to the
procedures in § 4.1.1. In what follows, we give them in the same degree of

approximation as the turbulent-viscosity representation, Eq. (4.12). The details of
derivation are explained in Appendix A.l.

The turbulent fluxes are written as

E =aB-fji+m@, = - (4.37)
2 . —
R, = EKR&}. — V3, VM, @38)
with

K —<—'—u‘2>-<iB'2> (439)
R\2 2 /. '

— JB. OB

A (4.40)

7oy ox

and Eq. (4.13) as 5; (Kg 1s named the turbulent residual energy). Dimensional

coefficients & etc. are written as

a=G61,H, N (4.41)

| ‘B: Cyt, K, | ‘ (4.42)
y=Cu,W. _' - o | (4.43)
vp=CuB, " (4.44)



Vi = Cip?, (4.45)

in terms of the time scale characterizing the turbulent transport of momentum in MHD
flow, 7,,, where C, etc. are positive constants, and

H=—{u-o)+(Bj), (4.46)
K=<lu'2>+<lB'2> (4.47)
2 2/
W= (uB). | (4.48)

Equations (4.46)-(4.48) are called the turbulent residual helicity, the wrbulent MHD
energy, and the turbulent cross helicity, respectively.

For the numerical coefficients, we may show |
7
Cu=Ca=7 B (4.49a)
Cﬁ =C,, (4.49b)

by using an inhomogeneous-turbulence theory [4/12] and the numerical simulation

[4/13], respectively.

The simplest choice of 7,, is

T,=— (4.50)

" r

£

in correspondence to Eq. (4.15), where £ is the dissipation rate of K defined by

e [24) ) o[22 (4.51)
e ) /Mo |
[noté that Eqs. (4.47) and (4.51) are the MHD extension of Eqgs. (4.6) and (4.16),

respectively].

The physical meaning of Eqs. (4.39) and (4.47) are clear. Specifically, the former
represents the deviation from the equipartition of kinetic and magnetic energies. Equation
(4.46) expresses the helical properties of flow and electric current, and Eq. (4.48) is an
indicator of the degree of correlation between flow and magnetic field. We should note

that the latter two are pseudoscalars.



The turbulent heat flux Hy 1s given by - .

H, = —C, 7,,(K+K,)V8, (4.52)

in the same degree of approximation as Eqs. (4.37) and (4.38), which corresponds to-the
first term in Eq. (4.29).-No effect of the mean-magnetic field appears there. We include
the terms corresponding to the second part'in Eq. (4.29), and have

i 0. S 06
Hy = _Cmfm(K"'KR)g*Tmz(K"'KR)(Cszls + Cop@; )8x
3 7
o8
7,2W(Dyy M, + Dy, )ax_ (4.53)

J

where D,,, and D,,, are constants, and J.',-j is the mé;gnetic counterpart of @, a),J, which is
defined by
_ B B -
=L L= . (4.54)
i ifts¥ .
axj ox j ' o
We should note that the magnetic effects on Hy, appear in the last part of Eq. (4.53). °

4.2.2. Heuristic explanation for o, B and y effects

The turbulent induction term or electromotive force E, is written as Eq. (4.37). Tt is
noticeable that it is linear with respect to B and ®. The nonlinear dependence on the
latter may occur through coefficients o, 8 and ¥.

A heuristic explanation about this apparent linearity may be explained as follows [2/9].

From Eq.(3.24), the fluctuation component of the magnetic field obeys

B = 2
— =Vx[u' xB}+nV°'B +G, 4.55
> x(ux ) n (4.55)

where
- G=Vx (u' xB —ET), ' (4.56)

in the absence of u. If the cffect of G is negllglble B is linear in B for prescnbed u.
Then E; is expanded as

ZauB +zﬁ,ﬂ nC AN (4.57)
ox, .



When the turbulence spectrum is close to isotropic, we have
Er=aB-fVXB+--. (4.58)

The current diffusion effect appears in the terms dependent on higher-order derivatives.
Since the electric field and current density are polar vectors, whereas the magnetic field is
an axial vector, Then & is a pseudo scalar, and S is a scalar.

This argument can be extended to the case in the presence of u. Neglecting G again,
we have

% =Vx(axB)+nV'B, (4.59)

instead of Eq. (4.57). We use the formal solution of Eq. (4.59),

-1 .
B'=[%—nvz) Vx(@xB), (4.60)

and have a formal expression

E, =<u‘ x((%—nvz)-le(ﬁ xB‘))>. | (4.61)

For prescribed u' and B', Eq. (4.61) is aslo linear in U and is the origin of the y effect.
4.2.3. Physical implications of turbulent-flux effects

The turbulence effect on the B equation, E,, may be seen clearly in light of the mean
Ohm's law, Eq. (4.36). From Eq: (4.37), it is written as

|
J=
n+p

(E+uxB+aB+®). (4.62)

From the combination 1+ B, the physical meaning of § [Eq. (4.42)] is clear. It is the
magnetic counterpart of the turbulent viscosity v, and signifies the turbulent or

anomalous magnetic diffusivity (simply called the turbulent resistivity) due to velocity and
magnetic-field fluctuations [note on the dependence of § on K].

The & -related term is called the alpha effect or @ dynamo [2/1-2/7], and its p_hysiéal
implication has been investigated in detail since the pioneering work by Parker [4/14].
The numerical analysis of Eq. (4.34) with the alpha and turbulent- reﬂstmty effects
embedded has been a central theme in the study of the kinematic dynamo.



%r (u'w)>0

Fig. 4.2, Alpha or helicity dynamo.

- From Eq. (4.62), the alpha effect generates j aligned with B. This process makes a
sharp contrast with the original process through @ x B that results in j perpendicular to
B. The alpha effect arising from the turbulent kinetic helicity (u' @) in H [Eq. (4.46)]

is usually shown by Fig. 4.2. Such a simple illustrative explanation has not been given to
the alpha effect by the turbulent current helicity (B'j). The & dynamo consists of the

contributions from these two helicities [4/15]. Which of these two helicity effects is
dominant is highly dependent on phenomena concerned. In this context, we should recall
the turbulent magnetic helicity {(A'-B'), that is, the other quantity expressing a helical

property of magnetic fields, where the vector potential A' is related to' B’ as B =V x A",

The y-related part in Eq. (4.62), which may be called the cross-helicity or }'
dynamo, has been long missing in the dynamo study [2/8, 4/12, 4/16]. There j aligned
with @ occurs in the presenlée of W. This fact is equivalent to the occurrence of B
aligned with u as long as the spatial variation of y is neglected. The situation is

illustrated in Fig. 4.3. In the transformation to the frame rotating with the angular velocity

®;, ® is subject to the transformation
0 - 0+20p, (4.63)
which reduces Eq. (4.37) to | |
E, =a§—ﬁj+y(6+2mjp). (4.64)

Equation (4.64) indicates that the ¥ dynamo is sensitive to the frame rotation, In stellar
magnetic fields, frame rotation is one of the ingredients strongly affecting their generation
processes. In § 5.3.2.1, it will be discussed that this effect is closely related to the
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Fig. 4.3. Cross-helicity dynamo.

generation of the dipole component of the geomagnetic field aligned with the rotation

axis. Then it is significant to pay attention to the effect. We substitute Eq. (4.38) into Eq.
(4.32), and have

'99|§f.

o __ - /B2\ 2 .
+ax.—juiuj=—g[ <T>+§KR}+(‘]XB)‘

i

d _ — 2
+§j(vrs,-j —vy, M)+ Wi (4.65)

In order to grasp the essence of the turbulence effects on the mean MHD, we discard the
spatial variation of v, and v,,. Equation (4.65} is reduced to

Jd __ d{_ [B?\ 2 -
+-§-x:uiuj=—£~[p+<7>+§KRJ+(JXB)'_

+Hv+ v, V5, — v, V’B. (4.66)

v
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Fig. 4.4. Force by a distorted magnetic-field line.



In light of feedback effects of magnetic fields on fluid motion, we should note the
following two points. One is that the alpha effect does not appear explicitly in jxB. The

cross-helicity term in j may generate nonvanishing jxB, as is clear from Eq. (4.62).
The other is that the distortion of magnetic-field lines exerts force to the surrounding fluid
through the last term related to the curvature of the lines. This situation is illustrated in
Fig. 4.4. 1t suggests that the electric current with some specific spatial profile may drive
plasmas from the relation '

VB =-Vxj. (4.67)

This point will be later discussed in light of the onset of the plasma rotation at an internal

transport barrier that was referred to in § 2.3.2.
4.2.4. Turbulence equations for determining dynamo coefficients

In § 4.2.3, Egs. (4.46)-(4.48) play an important role as the quantities characterizing a
turbulent state of MHD flow. The last two, that is, K and W, obey the same form of

equations
%:PZ—SZ+V-TZ (Z=K or W), (4.68)
f .

where
s _ |

P.=—R.— _E -J, 4.69
K 4] axi T -’ ( . )
g =€, - (4.70)

12 B ‘
v Vv = 4.71
w5 w1

Py = —R,.j;’— E; ®, (4.72)
gy =(v+ )au %) (4.73)
w n o Bx,- ) .



+W{(B-V)u') + n{(u’-V)B'), (4.74)

with @ =p+ (B2/2). Here Eqs. (4.69) and (4.72) correspond to Eq. (4.9), and play the
role of generating X and W by draining the energy and cross helicity from the mean
field.

The turbulent residual helicity H does not obey a mathematically well-defined
equation comparable to Eq. (4.68). This difference arises from the fact that the total
amounts of MHD energy and cross helicity,

2 2
j‘,%v, [,u-BdV,

are conserved in the absence of molecular viscosity and resistivity, whereas the residual-
helicity counterpart is not.

An important relationship between K and W is

id]

<l1. 4.75
X (4.75)

Here the left-hand side is proportional to |y|/ 8 from Eqs. (4.42) and (4.43). This fact

will later be quite instrumental to the estimate of the relative intensity of the generated
magnetic field to the velocity of a flow.

4-.2.5. Classification of mean-field dynamos

In the analytical investigation into the dynamo, statistical theories have been applied
to the derivation of the turbulent electromotive force E; [2/1, 2/3, 2/5, 2/6], unlike the

heuristic method in § 4.2.1 and Appendix A.l, with little attention paid to the Reynolds
stress R, [2/8, 4/3]. From the theoretical viewpoint, the magnetic dynamo may be

classified into three categories, as in Table 4.1.

The mean-field dynamo started from the kinematic dynamo and stil] attracts much
attention in the context of astronomical magnetic fields. There U and the statistics of v’
are prescribed, and generated B' gives rise to E;, on the basis of which the growth and

sustainment of B are examined. This approach will be explained in § 5.3.1.2.

In the counterkinematic dynamo, B and the statistics of B' are prescribed. Resulting
w' generates R, determining u through Eq. (4.32). Little attention, however, has been

paid to such a process in the study of the mean-field dynamo. This dynamo is parts of the
flow dynamo that will be discussed in § 6.



averaging procedure appropriate for the variable-density case is the mass-weighted or
Favre averaging [4/17]. There the mean of a quantity f is defined by

f=(7f>z{f},w, fr=f-f. (4.76)
We make the decomposition

p=p+p, u=ua+u", p=p+p. 4.77)

We perform the ensemble averaging of Eqgs. (3.16) and (3.31)-(3.33), and have

X2 5i =0, 4.78
PR @79
9. . P = F = J
. gpuﬁgjpujuj=-§i+peEJ+gj(—pRMu) I}(usu) (4.79)
F d_. 0 o\ o/ @ p -
2 L pa=—(-PY)-(y =D p=L Y+ — (K ——="1}, 4.80
5 o Pl = g TR P N T “-80)
o_ d_. 0
Pt eu,-=g(_—4f), N CX 1))

with

Ry = = — u"u (4.82)
"o p P

P =(pu)—pu, (4.83)

A={pu)-p,a. (4.84)

Here Ryy; 1s the mass-weighted Reynolds stress, and P is equivalent to the turbulent heat

flux in the sense of mass-weighted averaging since

P

Moo =00 he =G s

(4.85)

from Eq. (3.20). In Eq. (4.81), we focused attention on the evolution of the charge

delisity due to flow .;'md discarded effects of the velocity difference between ion and
electron g-ases. _

— 42—



Table 4.1. Classification of dynamos.

Typical dynamos Physical processes

Kinematic dynamo GivenBand B = o = R;
= u through Eq. (4.32)

Counterkinematic dynamo Given Band B = u = R;
= u through Eq. (4.32)

MHD dynamo Given u, u', B, B = Feedback to u' and B
= E;and R; = Feedback to u and B through

Etgs. (4. 32) and (4.34) that affect the sustainment
of a MHD turbulent state through Eq. (4.68)

The combination of the kinematic and counterkinematic dynamos leads to a closed loop
of dynamo processes. The MHD dynamo corresponds to such combination and will be
discussed in § 5.3.2. There Eq. (4.68) for the quantities characterizing MHD turbulence
plays an important role.

4.3. Variable-density electrohydrodynamic equations

In the one-fluid MHD, the force due to the interaction between the magnetic field and
the flow of charged particles was abstracted partially from the original two-fluid MHD.
The electric field arising from the electrical nonneutrality is totally discarded there. In
tokamaks, the electric field is linked with plasma rotation and plays a critical role in the
suppression of heat and particle transpbrts, as was noted in § 2.3.2. Then such an
approximation is a big stumbling block in the study of transport barriers. The mass-
density variation was also neglected in the one-fluid mean-field MHD given in § 4.2. In
the confinement of fusion plasmas, however, the variation of mass density is closely
associated with that of the pressure or the pressure gradient. The inclusion of mass-
density variation is indispensable for the application of the mean-field method to the study

of transport barriers.
4.3.1. Mass-weighted averaging

In order to supplement the one-fluid mean-field MHD, we consider the
electrohydrodynamic (EHD) equations given in § 3.3. There electric-field and variable-
density effects are ekplicitly taken into account, whereas magnetic-field effects are
dropped. In a variable-density flow, the mean of the velocity u itself is physically less
significant, and the momentum pu is a quantity much more intrinsic to fluid motion. The



As a quantity characterizing the intensity of turbulence, we consider the turbulent

energy
I 2
KM={—u' } . (4.86)
2 u
It obeys
- . . Wy —F . W
EPKM +§XTPKM“1 PRMqZ_“ ox, ——+(p,'u;")E,
d _[1 ., } o
= aduat {22, 4.87
Bxip{Zu i, ; <u, 3x,.> (4.87)

Here the electric-field fluctuation and the molecular viscous effect were discarded since

they are not necessary in subsequent discussions.

The primary difference between Eq. (4.87) and its constant-density counterpart, Eq. |
(4.7), lies in the second term on the right-hand side of the former. In the confinement of
plasmas, the mean pressure gradient Vp is one of the key macroscopic quantities. Its
effect on K, occurs in the combination of u”, and the latter is a quantity intrinsic to a
variable-density turbulent flow. Then the second term deserves special attention in light of

the importance of the density and pressure gradients in tokamak plasmas.
4.3.2. Algebraic representations for turbulent fluxes

In the mean-field MHD, we derived the algebraic representations for some important
turbulent fluxes by an intuitive approach, as in Appendix A.l. In the mean-field EHD, the
turbulent fluxes are the third-order correlation function like Eq. (4.82) or are composed of
two parts like Eqgs. (4.83) and (4.84). As a result, such an intuitive approach is too
complicated to abstract their expressions in a clear form. Then we derive algebraic
representations for the turbulent fluxes with resort to a theory of inhemogeneous

turbulence [4/18, 4/19]. Its procedures are given briefly in Appendix A.2.

We summarize the results used in subsequent discussions. They are given by

2 e aﬁe aﬁe
Ry = EKM‘SU = CriTKyS; — Cpa T, ( axj - E i s, (4.88)
P Di



+r,3KM(CP4 %@ ~C,,s i@] P (4.89)

P axi 162 axi &X‘,—
W = CpT Ky = VP + CpyT. K, —5 (4.90)
5 Ve 5 D
(p€’| ll" = -CATPKMVEP’ (4.9 1)

where 7, is the time scale characterizing the turbulent transports in EHD flow, K, is the

density variance

K,={p?}, (4.92)

and C,, etc. are positive constants. Of these constants, we may show the relation

Cpy = Cpyy Cpy = Cps. (4.93)

From Eqs. (4.89) and (4.93), we may rewrite Eq. (4.85) as

~

. 6 Da 1 — B, 90
H,p =-Cp T, KyVO+CpiT K, T, ?E"L (:,,ngM EEXZ-' (4.94)



5. Spherical-Shell Dynamo

a

In a long history of dynamo study, the generation mechanism of magnetic fields in a
spherical-shell region has been a central theme. Its typical instances are geomagnetic and
solar fields. Both the fields occur through the motion of electrically-conducting fluids in a
spherical-shell region, but their global behavior is quite different ‘each_ other, as was noted
in § 2.1.

5.1. One-fluid MHD model of stellar dynamo

The study of a spherical-shell dynamo started from the mean-field magnetic induction
equation (4.34) under a prescribed velocity, which is combined with Eq. (4.37) (the
cross-helicity effect is discarded). With the advance of a computer capability, the
computer experiment based on the full one-fluid MHD equations has made a remarkable
progress. Such an é-xperiment was initiated for clarifying the characteristics of the solar
magnetic field, as was represented by the works of Gilman [5/1, 5/2] and Glatzmaier
[5/3}. Recently, much attention have been paid to understanding of the geodynamo since
the works by Glatzmaier and Roberts [5/4, 5/5]..

5.1.1. Fundamental equations

In the simulations of both the geodynamo and the solar dynamo, the thermal buoyancy
force is a primary driver of the motion of fluids in the outer core and the convective zone.
In the former, the temperature and velocity are much lower. In the current computer
experiméms mimicking the geodynamo, the buoyancy effect is often taken into account
through the Boussinesq approximation (the density variation otherwise is neglected). This
approximation is not sufficient for the simulation of the solar dynamo subject to large

density and temperature changes.

The primary purpdse of this section is to show some typical findings by the computer
simulation of the geodynamo. We adopt the foregoing simplest approximation. Readers
may consult the review by Roberts [5/6] for the works dealing with a non-Boussinesq
approximation, a compositional buoyancy effect, a nonuniform heat-flux effect between
the core and mantle, etc. The fundamental equations in the frame rotating with the angular
velocity @ are | | o

Vu=0, : B . (5.1)

%Jr- -é-i-;-ujuj = ;%+ W +(jx B), + 2(ux @), —ng(e—aR)g;, (5.2)

S
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—+V-(6u) = x,V?9, 5.3
4 V- (6u) = q 53)
%?-:Vx(u:;(B)+nV2B, (5.4)

from Egs. (3.24), (3.29), and (3.30). Here u denotes the velocity in the rotating frame
and should be distinguished from u in the inertial frame. Moreover, p is the sum of the

deviation from the static pressure and the centrifugal-force effect, ¢ is the thermal-
expansion coefficient, 8, is the reference temperature, and g is the gravitational-

acceleration vector.
5.1.2. Nondimensional parameters characterizing MHD flows

The importance of each term in Egs. (5.2)-(5.4) changes greatly from one
phenomenon to another. Various differences between the global properties of
geomagnetic and solar fields arise from this situation. Representative nondimensional
parameters are summarized in Table 5.1. There £y 18 the reference length, ug is the
reference velocity, A8, is the reference temperature difference, and By is the reference
magnetic field, respectively [2/14, 2/15, 5/7].

We are in a position to simply see the physical meanings of those nondimensional
pararneters By {f} ¢.7» We denote the magnitude of f that is esumatcd usmg quantities &

and 7. The Reynolds number signifies

Table 5.1 Nondimensional parameters

Symbol - Definition
Reynolds number R, Crtig IV
Taylor number T (2w 1v)
Rayleigh number R, QrgABRL e 1(VAy)
Prandtl number P vixe
Magnetic Prandtl number P, vin
Magnetic Reynolds number R, {pupin
Peclet number P Cattn ! Xo
Elsasser number E, B /{28 qupo F)




R =— " "'kt (5.5)

The Taylor number T, comes from

2
r B {2ume}uR

“7 W ©o
{Vou}

fp.lig
In short, it is the square of the Reynolds number based on velocity €, and length E’_R.'

The physical meaning of the Rayleigh number R, may be explained as follows. We
estimate the reference velocity u, generated by the buoyancy force due to the temperature
difference A8, by

{(w v}, | ={or(6-6i)e}, . (5.7)

which gives

g = AU gAO . (5.8)

The Reynolds number related to this velocity is

A8 L E :
R = OET8AUR R (5.9)

€ v

In the heat—transfér equation (5.3), the countérpart of R, is called the Peclet number F,,
which is defined by ,
{(w-v)e}

P=———r ' (5.10)
{xBVZQ}fR |

We may rewrite R, as
R, =RP =R’P, (5.11)

where P. is the Prandtl number. In a flow subject to no thermal buoyancy force, the
importance of the inertia term may be measured in the comparison with the viscous term.

In a thermally buoyant flow, attention needs to be first paid to the temperature equation,
where the relative importance of the inertia to diffusion terms is given by P,. Afterwards,

the relative importance of the inertia to viscous terms in the fluid equation is estimated by
R, . Their combination is expressed-by the first relation in Eq. (5.11).



The magnetic Reynolds number R,,, and the Elsasser number E, are defined by

{Vx(u)(B)}IF .
eM = TavB)] £=E = R Py, (5.12)
’R
ixB
1ixBl,, s, (5.13)

- {2ume}uR '

The importance of the magnetic Prandtl number P, will be discussed in light of the

relative magnitude of the magnetic to kinetic energies in the geodynamo.

A nondimensional version of Egs. (5.2)-(5.4) is helpful to understanding of the degree
of importance of each term in various situations. It is given in Appendix B [see Eq.
(B.4)].

For the outer core of the earth, we adopt [2/13]
b = 0(106) m, v= ()(10"5‘)'m2 s, up = 0(10'4) ms™,
A =0(10°)m?s™, Ay =0() m*s". (5.14)

The nondimensional parameters corresponding to Eq. (5.14) are summarized in Table
5.2, with their counterparts for the sun.

Table 5.2. Magnitude of nondimensional parameters in the earth and sun.

Ra o | T;.r R‘M Re R ReM
Earth 0(10') o(107)  0(107) o(10*) o 0(10%)
Sun  0(10%)  o(16®)  o(10*)  o@10") oi*)  of10°)

From Table 5.2, the fluid motion in the outer core is highly turbulent, but the magnetic
fieldis in a much more resistive state. From this fact, we are apt to consider that the
energy of the magnetic field induced by the fluid motion is far smaller than the kinetic
counterpart. Such a conjecture has been discussed in [5/8]. The real situation, however,
is opposite, as may be seen from Table 2.1. This fact is one of the most mysterious
properties of the geomagnetic field to be elucidated. Its understanding is one of the
primary purposes in the present discussion about the geodynamo.



In the sun, the counterparts of Eq. (5.14) are highly dependent on a location in the
convective zone and take a wide range of values. A typical set of parameters is shown in
Table 5.2 [2/15, 5/9]. A prominent difference between the earth and sun indicates that the

Coriolis force plays a much greater role in the motion of the earth's outer core.
5.1.3. Taylor-Proudman theorem and Busse column

When the Coriolis force is more influential than the thermal convection, there arises a
characteristic structure. In Eq. (5.2), the dominance of 7,'? over R, leads to

2uxm, = Vp (5.15)

Isee Eq. (B.4)]. We take the curl of Eq. (5.15), and have

(0f-Viu=0. (5.16)
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Fig. 5.1. Convection columns in a rotating spherical-shell region,

Equation (5.16) signifies that the fluid motion does not change along the axis of frame
rotation. This finding is called the Taylor-Proudman theorem [5/7]. It brings quite
interesting properties to the spherical-shell dynamo. There fluid is driven from the inner
to outer parts of the outer core by the buoyancy force. From the theorem, a fluid blob
rises or sinks along the rotation axis under the strong frame-rotation effect, as is
tllustrated in Fig. 5.1 (this point will be further referred to in § 5.2.2). Each vertical flow
structure is called the convection column, and its formation mechanism has attracted much
attention since the pioneering work by Busse [5/10] (see also [5/11] and the works cited
therein).



5.2. Representative findings by computer experiments

The computer experiment of a spherical dynamo started for the solar magnetic field
[5/1-5/3]'. In subsequent works, however, more attention has been paid to the
geodynamo, as was noted above [5/6, 5/12]. Then we shall mainly refer to some
representative findings associated with the geodynamo.

5.2.1. Typical parameters for simulation

In the study of an electrically-nonconducting turbulent flow, the numerical simulation

resolving all the spatial scales is named direct numerical simulation (DNS) [5/13, 5/14].
The finest scale in the constant-density case is the energy dissipation scale €, which is

related to the reference scale ¢ as [2/8, 4/4]
-€—2=R;-"4, (5.17)
lr

apart from a numerical factor, where R, is defined in Table 5.1. For the DNS of a three-

dimensional viscous flow, we need the number of grids

3 ’ -
N=O[{&-].]=O(Re9”). (5.18)
p ) s

Then a flow with R‘,'>, 0(10”) is beyond the reach of a.computer available at present

even for geometrically simple flows such as channel turbulence.

In the strict sense of the DNS, R, or R, in the outer core is too large for the computer
experiment. In the works done up to now, much smaller R, and 7, are adopted with

attention paid to their relative magnitude. The instances of R,, T, and P, are

summarized in Table 5.3.

A prominent difference between the nondimensional parameters of the earth and those
adopted in the geodynamo simulation lies in the magnetic Prandtl number P,,, as is seen
in Tables 5.2 and 5.3. The number in the outer core is far smaller than 1; namely, the
magnetic field is much more diffusive than the momentum. In the geodynamo simulation,
such small P,, gives rise to a strong magnetic diffusion, and magnetic fields cannot be

sustained stationarly.

The geodynamo simulation has been done with different sets of parameters, as is seen
in Table 5.3. Then the details of findings differ from one to another, but some common
features have been detected [5/6]. We shall mention some of such findings and discuss



Table 5.3. Magnitude of nondimensional parameters in computer experiments. -

Authors _ R, T, Py ' Ref

Glatzmaier and Roberts ~ O(10’ 10‘2) 500 [5/5]

Kageyama and Sato 0 0(10)-0(10°)  [5/15]

Olson et al O lor2 [5/17]

(107) o
i) ofio)
Katayama ef al ~o10Y)  of10%) 3 » t5/16]
(0?)  0(0?)
(10°)  o10)

Ishihara and Kida o(10* 10 (5118

them from the viewpoint of the mean-field theory.
5.2.2. Convection column and magnetic field

One of the most prominent flow structures in a spherical-shell region is the occurrence
of convection columns, as is depicted in Fig. 5.1. The number of columns is dependent
on the nondimensional parameters adopted in the simulation. The columns occurs in pair.
In one column, the fluid rotates in the same direction as the rotating shell and sinks from
the column ends towards the equatorial plane. In the other, the fluid rises from the
equatorial plane towards the ends, while rotating in the opposite direction. In both the
columns, the kinetic helicity is negative in the northern hemisphere and positive in the
southern hemisphere. Then the flow properties outside of the cylinder tahgentiél to the
ihner core differ from those inside it. The poloidal field whose primary part is the dipole
component is specifically strong near the location of each column. This fact indicates the
close relationship between the helicity generation and the occurrence of the poloidal field

aligned with the axis of the column in Fig. 5.1.

Here we should note the relationship of the convection columns with the mean-field
theory. In the latter, we consider the quantities averaged in the ensemble sense, which are
essentially equivalent to those averaged around the rotation axis. Then each column
cannot be treated by the approach; namely, the motion related to each column is included
in the velocity fluctuation u'. What is really detectable by the theory is the resultant
properties such as the wrbulent helicity and the mean magnetic field. As has been
confirmed by the computer simulation of the geomagnetic field, there 1s a high correlation
between the polloidal field and the convection column. This fact indicates that the primary

-~



component of the poloidal field, that is, the dipole field, can be abstracted through the
averaging around the rotation axis.

The findings about the generation mechanism of the toroidal field are different among
the computer experiments. The difference is highly dependent on the magnitude of 7, and

R, (for instance, see [5/17]). The former characterizing the occurrence of a column-like
structure gives a preferred direction to a flow. The latter, on the other hand, is an
indicator of the generation of velocity fluctuation. For increasing 7, with fixed R,, the
toroidal field tends to be generated by the convection columns. For decreasing T,, it tends
to arise from the poloidal field through the interaction with the axisymmetric differential
rotation of flow.

5.2.3. Partitiqn of energy

An interesting property common to almost all the geodynamo simulations is that the
magnetic energy surpasses the kinetic energy of the fluid motion that is the generator of
the former (see Table 2.1). This property is consistent with the geomagneiic field. In
Alfven-velocity units, we have [2/13]

Ims™ =10 G, | (5.19)

for the physical parameters
p=0.8x10* kg m™ (iron), (5.20a)
to =1.3x107 henry m™' (vacuum). (S.éOb)'

The velocity in the outer core is inferred to be 010 ) ms™,

which corresponds to
0(10 "YG. Then the energy of the toroidal magnetic field with the mferred strength

O(lO) G is 0(10*) times the kinetic energy of fluid motion.

The findings by the computer experiments about the energy ratio should be viewed
with some caution. In the geomagnetic field, the magnetic Prandtl number- P,, is far
smaller than 1, as in Table 5.2. Then the magnetic field is much more dissipative than the
velocity. Nevertheless, the magnetic energy much larger than the kinetic energy is stored
in the outer core. This situation is qi.lite mysterious as well as the reversal of magnetic
polarity, as was noted in § 5.1.2. In the computer experiments, P,, needs to be larger

than 1, for the sustainment of the generated maénetic field. For instance, the magnetic
field grows for P,, > 10 in [5/15]. Then the magnetic field is less dissipative (P, is
smallest in [5/17]). In the present computer ability, we cannot adopt T, so large to ensure

the sustainment of magnetic field for P,, << 1. Whether the foregoing conclusion about



the energy ratio is insensitive to the magnitude of P,,, or not is left for a very interesting

future work.
5.2.4. Reversal of polarity

The reversal of magnetic polarity was first reproduced in the simulation by Glatzmaier
and Roberts [5/4], followed by several studies such as [5/19]. Its occurrence is highly
dependent on MHD models, the magnitude of nondimensional parameters, the heat flux
imposed over the core-mantle boundary, etc. (for instance, see [5/20]). This theme is

under an intensive study.
5.2.5. Other prominent features

As a mathematical property observable in various simulaﬁons, we may mention the
relative magnitude of the Lorentz to Coriolis forces,.which 15 called the local Elsasser
number. In a spherical-shell region, the Coriolis force gives a preferred direction along
the rotation axis to the flow. On the other hand, the Lorentz force arising from the
geherated field is not along this direction in general and tends to break the directional
constraint due to the Coriolis force. In the actual simulations, the two forces often balance
each other {5/6]. In other words, the magnetic and flow structures possessing the local

Elsasser number close to one is stable in a MHD sense.

Th' solar dynamo is the other representative spherical-shell dynamo, but its MHD
computer experiments are much less, compared with the geodynamo (the simulation
based on the mean-field dynamo will be mentioned later). In § 2.1, we have already noted

that the prominent differences between the solar convective zone and the earth's outer
core are the relative width of the shell to the inner zones as well as the magnitude of T,

and R,. The relative width of the shell region is much narrower in the sun, suggesting the

decrease in the importance of a convection-column flow structure. In addition, smaller
T,'"% I R, enhances this sitvation.

A primary interest of the solar dynamo is the temporal behavior of the toroidal field
that is the origin of sunspots, and the resulting magnetic-field cycle. Most of sunspots are
confined to the belts between the equator and latitude £35° [2/15]. In the polarity cycle,
the number of sunspots decreases from the maximum to minimum, and then increases to
the maximum. This temporal evolution constitutes the so- called butterﬂy dlagram of

sunspots as is shown in Flg 2 5 [2/18]

The pioneering computer experlments based on the MHD equations were made by
Gilman [58/1, 5/2] and Glatzmaier [5/3] These works clarified the important role of

differential rotation around the rotation axis in the generation process of the toroidal



magnetic field and in the relationship with the solar cycle. The details of the magnetic field
and flow are not in agreement with observations. The recent developments in the
helioseismology provide a detailed information about the flow field such as the radial
profile of the angular velocity (2/18, 2/19, 5/21], as is shown in Fig. 2.6. It is difficult to
perform the computer experiment with large R, and R,,, shown in Table 5.2 and
reproduce the results consistent with those observations. This is considered to be one of
the reasons why few computer experiments have recently been done for the solar dynamo
in spite of the recent advance of a computable capability.

5.3. Mean-field dynamo

We are in a position to discuss on the relationship of the mean-field MHD with
computer experiments and observations. The fundamental equations are given by Egs.

(4.34), (4.37), (4.38), and (4.66) (the spatial variation of the coefficients was discarded
in the last). In the frame rotating with the angular velocity @, they are writien as

%:Vx(ﬁx§+a§¥ﬂ]fy(6+2ﬁf)), (5.21)
%-kiﬁﬁ -—-?—- p+ B—z +3K
I LAY A
+2(ux ), +(jx ﬁ): +v, Vi, -v,V’B, (5.22)

where the molecular viscous and resistive effects were dropped, and the centrifugal force
was included in p.

uxB
aB
/ - Y0
a

Fig. 5.2. Three terms of induction.

A global magnetic-field generation may be described by a stationary solution of Egs.
(5.21) and (5.22). The élalionary balance in Eq. (5.21) may occur under

fi=uxB+oB+y(@+20;). (5.23)



That is, the enhanced Ohmic dissipation term i balances with some or all of U x B, oB
and y(® + 2@, ). These induction terms are illustrated in Fig. 5.2. '

The state where the Hall effect U x B is dominant has been studied in conjunction with
the direct electricity conversion from plasma flow. The state with dominant oB is called
the Woltejar state or Taylor state. The state with dominant y» may be called the rotation-
dominant state. First, the former state will be explained under the name of alpha or «
dynamo. The latter is then explained under the name of cross-helicity or ¥ dynamo. It is
shown a posteriori that the @ x B induction term is not effective in the steady-state
solution of the mean-field MHD dynamo since there is a tendency for B to be aligned
with u.

5.3.1. Alpha dynamo

We neglect the cross-helicity effect in Eq. (5.21), and have

@=Vx(ﬁx§+cx§—ﬁj). - (5.24)

We consider the situation that the turbulent- hellcaty effect is so dominant to balance with -

the turbulent resistivity effect. There the quasi-stationary state of B obeys

- o=
i=—B. . (5.25)
B .

This is a typical magnetic-field generation process of the & dynamo and is depicted
schematically in Fig. 4.2,

5.3.1.1. Two typical dynamo processes

In the coordinate system illustrated in Fig. 5.3, we make the decomposition into the

toroidal and poloidal components

U =ige,+1, (5.26)
B =B, +B;, . (5.27)

with



ﬁp = Erer +EBEG ¥ (5.28)
B, = Be, + Bye, = Vx(Ase,), (5.29)

where e,, e,, and e, are three unit vectors in the spherical coordinates, and Zo is the

toroidal component of the mean vector potential A .

]

Fig. 5.3. Spherical and cylindrical coordinate systems.

From Eq. (5.24), we have [2/15]

JB, _ B, _ - & 1 \—

Srro(®, V)2 =a(VxE,) +ofB, V)2 + V- LB, (530)
cﬁ‘a 1. — — , 1)Y)=
—+E(uP-V)(GA¢)=aB¢+B(V -7 A (5.31)

On the right-hand side of Eq. (5.30), we have two terms generating §¢. The first term

expresses the combination of the & dynamo and the Ampere law. In the second term,
ity / 0 is the angular velocity. Then the term represents the generation of B, from By,
owing to the differential rotation or spatially varying &#,/c . In Eq. (5.31), the first term
or the & dynamo on the right-hand side is the sole generator of Z¢, that is, ﬁp [see Eq.
(5.29)). This fact confirms the computer-experiment result showing the close relationship
between the poloidal field and a column-like structure generating helicity effects. 7

According to the relative importance of the two terms in Eq. (5.30), we have two
typical magnetic-field generation mechanisms [2/1-2/6, 2/15]:



Alpha-Alpha ( a*) dynamo

B, — B, (Ampere law and alpha effect )
- ﬁp (alpha effect and Ampere law); (5.32)

Alpha-Omega ( o — @) dynamo

B, - §¢ (differential rotation)
— B, (alpha effect and Ampere law); | (5.33)
Equation (5.25) is the most typical manifestation of the o’ dynamo.
5.3.1.2. Examination of kinematic dynamo

The approach based on Eq. (5.24) with prescribed U is called the kinematic dynamo
that was simply referred to in § 4.2.5. In the context of stellar dynamo, it was applied to
the study of the solar cycle and the butterfly diagram of sunspots. Some of their primary

characteristics were reproduced successfully with a proper choice of u [2/26, 2/27].

In the computer experiments in § 5.2, increasing T, with fixed R, leads to a distinct
column-like structure, signifying the increase in the importance of helicity effects. This
situation corresponds to the dominance of the first over second terms on the right-hand
side of Eq. (5.30). There the generation of global magnetic fields may be interpreted with
the aid of the &® dynamo. On the other hand, with increasing R,, the computer
experiments suggest the increase in the importance of the differential rotation. Such a state
is attributed to the & — @ dynamo.

A shortfall of the kinematic dynamo is that the magnitude of B cannot be determined
within the framework of Eq. (5.24) linear in B. For resolving this shortfall, we have two
approaches. One approach is the inclusion of a nonlinear effect on the «-dynamo
coefficient so that

a=a(B)>0 as [B)— . (5.34)

The effect is calle.d the alpha quenching [5/22] (see § 7.1.1 for more details), and its
theoretical derivation is one of the i'mpc)rtari‘t ther:nes in the study of kinematic dynar_n_o
[5/23-5/26]. To incorporate the Hall term proponiénal to j>< B into Ohm's law was also
proposed for bringing the nonlinearity to the mzigqet_ic—induction equation (3.24) [5/27].



The cross-helicity effect may be interpreted as the contribution of the mean velocity,
specifically, its vorticity @, to E; that cannot be described explicitly in terms of the alpha
effect. The contribution of the mean velocity shear was also presented, and its effect on

the instability of the mean field was examined {5/28].

The computer experiments mimicking the geodynamo show two typical features, as
has already been noted. One is that the local Elsasser number or the ratio of the Lorentz to
Coriolis forces is close to 1, and the other is that the energy of generated magnetic field is
much larger than the Kinetic energy. At present, it is not known whether the inclusion of
the quenching effect really leads to the reproduction of these features, specifically, the
former, since it is not dependent explicitly on the frame-rotation effect.

The other approach to the determination of the magnitude of B is the combination with
the mean-velocity equation (5.22) with the cross-helicity effect dropped. It is proper in
light of discussing the relationship with the Elsasser number. The alpha effect is
characterized by Eq. (5.25), which results in vanishing of the Lorentz force, namely,

JxB=0. (5.35)

The field expressed by Eq. (5.25) is called the force-free field. It plays an important role
in the study of relaxation processes of plasmas such as reversed-field pinches in fusion
[2/20, 2/21, 5/29]. Owing to this‘pfoperty, the alpha effect on the mean-flow equation
(5.22) is weak. Then to explain the finding by the éomputer experiments about the local
Elsasser number is an important theme of the & dynamo.

5.3.2. Alpha/cross-helicity dynamo

We retain the cross-helicity effects in Eqgs. (5.21) and (5.22), and discuss about the
mean-field dynamo.

5.3.2.1. Relevance to geodynamo
5.3.2.1.A. Why is the primary poloidal field the dipole component?

With the stationary property of the geodynamo in mind, we examine Eq. (5.23). We
pay attention to the finding by the computer experiments about the local Elsasser number,
and consider that three effects, that is, the helicity, turbulent-resistivity, and cross-helicity
effects, balance one another [2/8, 5/30]. Then a stationary state is attained by

- U= ¥ ,— = .7
i=—B+L(®@+20;)=—=B+2-0; . (5.36)

™



Here we have attached more importance to the frame-rotation effect than to the mean
vorticity. The drop of u x B will be guaranteed by the subsequent discussion. Equation

(5.36) gives

jxﬁ:—'z%ﬁxm,,. - - (5.37)

We substitute Eq. (5.37) into Eq. (5.22), and have .

£+iﬁi =—~2— p+ B—2 +2K
a ok, T TP\ TR

7 i

+2(ﬁxmp),-.—2%(§xmp),-+vTV'-’a,.—vTV2(%§,). . (5.38)

On the right-hand side, the third term comes from the Lorentz force or Eq. (5.37), and
v;V*U represents the enhancement of the momentum diffusion by fluctuations. Such

diffusion is detrimental to the duration of an ordered structure of magnetic fields. Their
tension of magnetic field lines tends to resist against the deformation by fluid motion, as

i1s seen from Eq. (4.67). The last term corresponds to this action.

We consider that a specific ordered magnetic-field profile is sustained in a spherical-
shell region. For the duration of this profile, the diffusion effect due to VTVZG needs to

be canceled out or weakened by some other effect. Its candidate is the last term in Eq.

(5.38); namely, we put

B="m, (5.39)

= |

which guarantees vanishing of U x B dropped previously.r

The curl of Eq. (5.38) gives

?: Vx[z(ﬁ—Eﬁjme+vTV2(ﬁ—%§D. (5.40)

=~

From Eq. (5.39), we have

— =0, (5.41)



which shows that the velocity field is also in the stationary state. Then Eq. (5.39) is a
simple but relevant form of the stationary solution of the dynamical equation for the
velocity field.

Equation (5.37) together with Eq. (5.39) gives an interesting suggestion to the
structure of the geomagnetic field within the framework of the mean-field MHD. Equation
(5.39) provides the relation @ = (y/f8)j. From its combination with the first relation in

Eq. (5.36), the equation that describes the magnetic field is expressed as

2
Y = 0= Y
|-~ |VxB-—B=2=-,. 5.42
[ ﬁz] B BYr 42

Equation (5.42) shows that the strong solid-body rotation acts as a drive for the
magnetic-field structure formation. There the magnetic field is apt to be aligned with @.

Coefficients o and y are pseudo scalars. Then the main part of B could have the same
up-down symmetry with @,. Such symmetry property allows the occurrence of a dipole-
field component. This result is an answer by the mean-field theory to the question: Why
is the primary poloidal field the dipole component?

We should note that the coefficient 1— 87 is positive definite since the inequality
|W|/K <1 leads to ¥’ <1 from Eqs. (4.42), (4.43) and (4.49b). In the case of
¥2B? << 1, Eq. (5.42) is simplified as

VxB-—B=2"a,. (5.43)
B B

Equation (5.43) shows that the sustained magnetic field is described by the

superimposition of the inhomogeneous solution linearly dependent on @, and a

homogeneous solution. From Eqs. (5.39) and (5.43), we may perform an order estimate
as

Bl-———<¢ _To, (5.44a)
| | L+ 2.2 (a/B) |B i
i1 Y :
[a] = < (—} g, (5.44b)
1+¢2(a/ )’ NP ’

where £ is a characteristic length of fluctuations such as the radius of a convection

column.



According to the balance of the left hand side of Eq. (5.43), we are led to an estimate
of £ =|B/a|. The proposition that the differential flow velocity is much smaller than the

solid-body rotation velocity, |u] << |€Cm F|, is attributed to the condition

2 i
Y )
= | <<l. 545
(B) o .

For the dipole magnetic field, the inhomogeneous solutton gives an estimate

(e
a outer ‘

denote the volume average over the outer core.

[Bpore| = : | (5.46)

where ()

outer

The global value of (y/ Ot)omer is determined from turbulent fluctuations. Let us make

a further conjecture about the relation between (y! (x) and the local value y/oa. We

outer
may consider that ¥/ has a constant value in one column, but that it has a different
constant vatue in the other column. The number of columns, N, are estimated as
N= (rolﬂc)z, where 1, is the width of the outer core. In case that each column has a

completely independent value of ¥/« the lower bound of (y/¢)  for large N may

ouler

el

from the law of large numbers. This might provide a lower bound of the dipole magnetic

be estimated as

field. At the present stage of geodynamo study, the relationship between N and the
nondimensional parameters such as R, and 7, is not known at all. Once this relationship

1s obtained, the foregofng finding paves the way for estimating the relationship between

the dipole-field strength and the nondimensional parameters.

It is noteworthy that Eq. (5.39) shows the balance between the Coriolis and Lorentz
forces in Eq. (5.38), that is,

local E, (Elsasser number) = 1. (5.48)

This result is answer to the question presented by the computer expenments [5/6] Why

do Ihe Loreniz and Conohs forces tend to balance each other?

5.3.2.1.B. Why does the magnetic energy surpass the kinetic energy?



We are now in a position to refer to the other important finding by the computer
experiments, that is, the ratio of the magnetic to kinetic energies. From Eqs. (4.42) and
(4.43), we may write

B2/2 (K)Z
= ==, 5.49
W2 o \w (549)

where use has been made of Eq. (5.39) as well as the estimate by the numerical
simulation of the MHD equations that C; = C, [#/13].

For |W|/ K, we have an important constraint, that is, inequality (4.75). This quantity

is an indicator of the strength of the correlation between magnetic field and velocity. The
inequality |W]/ K <1 gives

g2l (5.50)

In the system of the alpha/cross-helicity or @ —y dynamo, the magnetic energy is
predicted to be larger than the kinetic energy of fluid motion. For instance, we have

. _
%:0.1 = rp =107, . (5.51)

In the outer core, the magnetic Prandtl number P,, is far smaller than 1, as is shown
in Table 5.2, suggesting that the correlation is not so strong. Then it is highly probable
that r. becomes much larger than 1, as is consistent with the computer experiments. This
is an answer by the mean-ficld theory to the question: Why does the magnetic energy

surpass the kinetic energy?
5.3.2.2. Relevance to solar dynamo

In light of the width relative to the inner region with no fluid motion, the solar
convective zone is much narrower than the earth's outer core (see Figs. 2.2 and 2.3),
leading to the decrease in the role of convection columns along the rotation axis.
Moreover, T,'/2/ R, is smaller in the zone, as is seen from Table 5.2 [see also Eq.
(B.4)]. These two facts suggest a smaller role of helicity effects in the-convective zone,
compared with the outer core.

With these situations taken into account, we assume that the turbulent-resistivity and
cross-helicity effects are dominant in Eq. (5.23), and also drop u X B (this point will be
mentioned below) [2/8, 5/31]. Then we have

i=Z(@+2a.), (5.52)

To =



According to the balance of the left hand side of Eq. (5.43), we are led to an estimate
of ¢, = |B/a|. The proposition that the differential flow velocity is much smaller than the

solid-body rotation velocity, [u] << |[£ @], is attributed to the condition

2 .
14 i
—| <<1. (5.45)
[ﬁ) -

For the dipole magnetic field, the inhomogeneous solution gives an estimate .

()0
O/ quter

denote the volume average over the outer core.

= , (5.46)
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where ()

outer

The global value of {y/ a) 1o 15 determined from turbulent fluctuations. Let us make

a further conjecture about the relation between (y/ a) and the local value y/o. We

outer
may consider that ¥ /o has a constant value in one column, but that it has a different
constant value in the other column. The number of columns, N, are estimated as
N =(r,/¢.)*, where r, is the width of the outer core. In case that each column has a

completely independent value of ¥/a, the lower bound of (y/a)  for large N may

outer

< > \ \ ' (5.47)
outer .

from the law of large numbers. This might provide a lower bound of the dipole magnetic

be estimated as

field. At the present stage of geodynamo study, the relationship between N and the
nondimensional parameters such as R, and T, is not known at all. Once this relationship

is obtained, the foregomg finding paves the way for estimating the relationship between

the dipole-field strength and the nondimensional parameters.

It is noteworthy‘tﬁat Eq. (5.39) shows the balance between the Coriolis and Lorentz
forces in Eq. (5.38), that is,

local E, (Elsasser number) = 1. (5.48)

This result is answer to the question presented by the computer expeuments [5/6]: Why

do the Lorentz and Corzolts forces tend to balance each other?

5.3.2.1.B. Why does the magnetic energy surpass the kinetic energy?



0(103 2) m™ in the core,
n= v 3. (5.59)
0(10' ) m " in the photosphere.

The inequality (5.58) for the lower limit of plasma density is satisfied in the intenior of the
sun.

With n=0(10"?) m™, Eq. (5.57) requires |W|/K 2 0(107™). In the convective
zone, hydrogen gases are highly ionized, and both the Reynolds and Magnetic Reynolds
numbers are large. These circumstances indicate that the correlation between velocity and
magnetic field is high. If we adopt an order estimate

L.
= 0(10 '), (5.60)

Eq. (5.56) gives

n= 0(1028) fn‘3, (5.61)

which is a reasonable estimate of the number density of hydrogen in the convective zone
in light of Eq. (5.59).

In the above discussions, the bulk velocity plays a key role, and no explicit effect of
the differential rotation occurs. This point seems to contradict the importance of the
differential rotation in the solar dynamo. This is not the case. In the ¥ dynamo, W is

critically important. Its sustainment or generation is made by the production term in Eq.
(4.68), B, which is defined by Eq. (4.72). In the present case, it is given by

OB,
Py = —R,;,--éx—f—ET-(ﬁ+2mF). (5.62)

Under Eq. (5.52) with the alpha effect dropped, E; vanishes [see Eq. (4.64)], leading to

N AN FEEA M LA
By = Bvr[l [ﬁ) ][6(30 0') J_ ﬁvr(o{ao_ c] } {5.63)

from Eqgs. (4.38) and (5.53). Equation (5.63) does not vanish in the presence of the
differential rotation or nonvanishing 0(i,/¢)/do. Namely the differential rotation is

closely related to the generation of W . In short, the toroidal field in the y dynamo is

generated by the combination of the bulk and differential rotation. The relevance to the
solar polarity change may be discussed with the aid of the & — ¥ dynamo [5/30].



5.3.2.3. Selection of structure

From the considerations on the geodynamo and the solar dynamo, the differences
between established magnetic fields may be stated as follows. First of all, the solid-body
rotation in the earth is dominant over the differential rotation. Then the uniform angular
velocity @ plays a distinctive role in sustaining the dipole magnetic field. In the sun, the
differential velocity cannot be neglected, compared with the mean rotation velocity, and
the dynamics of flow is not separable from @;. As a result, the local helical structures of

the magnetic field and flow dominate, and the magnetic field does not simply point to the
direction of @ .These results are summarized in Fig. 5.4.

d/or =0 —
Induction Eq. |——» VxB- 8B8=3 (@ + 20

Eq. for
turbulence ‘“| |[WB|<<1 b— il -l |vB|<1 '

__’_Y_— e
Eq. of motion | —P» "'BB “=EB
dlot=0
O~ O
\ 4
p_ap_2Y VxB-2B=Y(m+2 ¥ .

VxB—BB_ 5O B B( + 20 lﬂ?VxB—%Bzﬂ
Earth Sun, Accretion disk Jet in accretion disk

Fig. 5.4. Equations that describe the magnetic fields in the earth, sun

and accretion disk (accretion disk is explained in § 6).

With the foregoing logic advanced one step further, the differential flow must be
determined self-consistently within the framework of the mean-field theory. In this
aspect, the governing parameter is the coefficient ratio y /3. In the case of small y/f,
the differential-rotation velocity is much smaller than the solid-body counterpart. For
v/ B closer to unity, on the other hand, the differential-rotation velocity is comparable to
the mean velocity. The global structure of an established magnetic field is dictated by the
ratio y/ 3, which is nearly equal to W/ K. These points are also shown in Table 2.4.



It is considered that a large difference between F, and P, keep the magnetic-field and
flow fluctuations, B’ and u', from being in phase. Then the ratioc W/ KX is considered io
be small in the earth (see Table 5.2). In the sun, the difference between F, and F,, is
about hundred times smaller than the difference in the earth, and hydrogen gases are
highly ionized. This situation is favorable for a higher correlation between B' and u' or a
larger value of W/ K. This may give a partial answer to the question: Why do the global
properties of magnetic fields differ so much in the earth and the sun? '

A key factor in the quest for the structure formation in the magnetic dynamo is, as a -
whole, the mechanism that determines the ratio ¥/ 8 or W/ K. This fact points to one

direction of the future dynamo research: the simultaneous pursuit of magneto-flow
structures and turbulence properties.



6. Flow Generation by Electromagnetic Effects

The primary interest in the dynamo study lies in clarifying how coherent magnetic-
field structures are generated by turbulent motion, irrespective of the computer experiment
based on the full MHD equations or the mean-field method. It 1s needles to say that the
proper treatment of the mutual interaction between magnetic field and flow is necessary
for understanding of the generation processes. In some phenomena, more attention is
paid to how a coherent flow is driven by electromagnetic effects. The mechanism of flow
generation may be called the flow dynamo in contrast to the magnetic dynamo or the
dynamo with stress on the magnetic-field generation. In this section, we shall discuss

about the former.
6.1. Accretion disks

In accretion disks, the magnetic dynamo plays muitiplc roles. The key issue in
accretion disks is the transportation of angular momentum. If the angular momentum of a
part of disk is conserved, this part continues to perform the Keplerian motion. There the
gravitational potential is bounded by the lower and upper boundaries, depending on the
initial condition of the orbit, and the gravitational potential cannot be released. When the
angular momentum can be exchanged between different parts of the disk, the accretion is

allowed to go on and the gravitational energy 1s released.

The angular momentum is considered 1o be transported in two ways. One is based on
the anomalous viscosity. This makes the rotation closer to the rigid rotation, allowing a
release of gravitational.energy. In this process, the ori gih of turbulence that generates the
anomalous viscosity is considered to be magneto-rotational instability [6/1, 6/2]. A brief
account of the instability is given in Appendix C. In the other process, the angular
momentum is lost through a formation of jet. The generation of the jet is due to the
magnetic field at the disk. In either cases, magnetic and flow dynamos are the key for the

evolution of an accretion disk.
We first survey the jet formation and then refer to the effect of anomalous viscosity.
6.1.1. Computer simulation of bipolar jets

The computer experiment of bipolar jets based on the full MHD equations was started
from the pioneering works by Uchida and Shibata [6/3-6/6], being followed by the works
with boundary conditions improved, resistivity effects explicitly included, etc. [6/6-6/9].
A comprehensive review about linear and nonlinear phenomena in accretion disks is given
in [6/10].



A standard tool for the jet-formation mechanism is a system of compressible MHD

equations,
dp
—+V. =0, 6.1
~ +V-(pu) (6.1)
5P“i+£;f’“i“j=“%+(jxm;+% , (6.2)
3—B=Vx(uxB)+nVEB, (6.3)
2 ¢+ V-(plu)=-— Vout (6.4)
X p P p o, F .
where @ is the gravitational potential
=M (6.5)

r

(G and M are the gravitationgil constant and the mass of a central object, respectively),
and the intemnal energy { is related to p as Eq'. (3.20).

In most of the jet simulations, the viscosity is not included cxplicitly- in Eq. (6.2), and
its effects occur through the numerical dissipation in a computational scheme. On the
other hand, more attention is paid to resistivity effects. This point is closely related to the
reconnection of magnetic field lines that is a cause of the deriving force for jets, as will be
later réferred to. The jet simulation is computationally heavy. Then the dependence of a
quantity on the azimuthal or ¢ coordinate (see Fig. 5.3} is often dropped, although the ¢
component of a vector is kept. Such a simulation is called a 2.5-dimensional simulation.
An example of the computer simulation is given in Fig. 6.1. ' -

The fundamental idea for the jet formation is the sweeping magnetic twist mechanism
advocated by Uchida and Shibata [6/3- 6/5]. There the p0101dal magnetic field threading
through the equatorlal plane of a disk is regarded as prlmordlal Under the gravitational
force expressed by the last term in Eq. (6.2), gases accrete onto the central object, while
rotating. Then magnetic field lines are carried into the inner part of the disk and, at the
same time, are twisted owing to the differential rotation, leading to.the generation of the
toroidal component of the magnetic field. This process corresponds to the generation of
the toroidal field in the @ — @ dynamo in § 5.3.1.1.

The reconnection of magnetic-field lines due to the differential rotation drives gases in
the directions normal to the disk. This fact means that the magnitude of the resistivity has
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Fig. 6.1. Helix generated by the dynamo in the disk [2/31]: (a) Footprints of the external quadruple field
lines; (b) Surface of the disk; (c) Force-free helix.

a big influence on the reconnection processes through the spatial scale of reconnection. It
was confirmed by the simulation [6/11] that the jet occurrence is quasi-stationary at a low
magnetic Reynolds number R,,,, but that it becomes intermittent with increasing R,,,. In
the sweeping magnetic twist mechanism, the poloidal field generating the toroidal field
through the reconnection is presumed to be primordial. It is interesting to clarify whether
the primordial poloidal field is sufficient or the regeneration of the poloidal field is

necessary for the continuation of jet formation.

In the current computer experiments, less attention is focused on the collimation of jets
that is the other striking structural feature, compared with the jet formation. This situation
is due to the shortage of the capability of a computer available now. We need a large
computational domain for the simultaneous treatment of the near and far regions of a disk
and the resulting long computing time. The current simulation indicates that the magnetic
field of a helical profile exerts influence on the collimation of jets near the disk.

The jet-collimation mechanism has been long examined by analytical methods. Readers
may consult [2/33] for a detailed survey of their developments. There much attention is
not paid to turbulence effects enhancing the growth of jet width. One of the most familiar

models for the collimation mechanism is the jet confinement by the global strong toroidal



or azimuthal field. An elongated plasma flow, however, is vulnerable to MHD kink

instability, and its overcoming mechanism needs to be clarified.
6.1.2. Mean-field approach to jet formation and collimation
6.1.2.1. Accretion-disk magnetic field

The toroidal-field generation by the differential rotation of a disk is critical in the
sweeping magnetic twist mechanism. From the importance of rotational motion, the

generation mechanism of the toroidal field resembles that in the solar field discussed in §
5.3.2.2. There the toroidal field §¢ in the non-rotating frame is given by

B, =i, (6.6)

o™=

from Eq. (5.53), as is depicted schematically in Fig. 6.2 (see Fig. 5.3 for the coordinate
system). The disk is geometrically symmetric with respect to the equatorial plane. Then

B, is antisymmetric since the turbulent cross helicity W in ¥ is a pseudoscalar‘ and
antisymmetric.
4>
J
[,
o™ Ko L B
Jo
B,
J:

Fig. 6.2. Toroidal field and radial current in a disk.
6.1.2.2. Ejection of jets

We investigate a jet-occurrence mechanism on the basis of Eq. (6.6). Antisymmetric
B, generates the radial current j_ towards the center of the disk. We denote the radius

and width of the disk by R, and #,,, respectively. From the Ampere law, we have

47R,B,(Rp) = Jp, = 27R,hy, o (Rp). (6.7)



As long as this current goes near the center and then flows along the rotation axis, we

have
ey . JD ’
27[0'B¢(0') = ?, (68)
at location ¢, which results in
B,(c}) R
_*’( ) =B (6.9)
B,(R,) © :

Equation (6.9) signifies that §¢ is highly enhanced near the center of the disk. In case

that this magnetic energy is dominant over the gravitational energy, the gases may

overcome the gravitational force and escape from the disk. The location at which two
energies are balanced, 0, is determined by

B,(0,) = ®(c,). (6.10)

The jet speed may be estimated on the basis of Eqs. (6.6), (6.9), and (6.10) [6/12, 6/13].

An elongated plasma flow such as a jet is vulnerable to MHD kink instability. The
confinement mechanism of a jet was discussed in light of the suppression of the
instability due to a small-scale toroidal field [6/14]. There the stress due to the tanglcd

magnetic fields exerts an inward force, contributing to the jet confinement.

The recent observation [6/15] confirms that the magnetic field inside a jet is of a helical
form, indicating.that the jet itself is in helical motion, that is, it flows while rotating. In
the sense of an elongated helical flow structure, the jet is quite similar to one of the
convection columns in the outer core that have been examined in depth by the computer
experiment of the geomagnetic field. In the column, the helicity effects become imporfant
in the poloidal-field generation, as was noted in § 5.2.2. This fact suggests the relevance
of the poloidal field to the jet collimation.

We now refer to the jet-collimation mechanism from the mean-field viewpoint. There
we put an emphasis on a poloidal field or the field along the jet [2/8, 6/16]. In the first
relation of Eq. (5.36), we drop the @ -related term, and have

]=E§+%E. | (6.11)

B

Equation (6.11) is founded on vanishing of @ x B that will be guaranteed later.



The equation of motion gives another relation that describes the state subject to the
generated magnetic field. We rewrite Eq. (4.66) as

Ju _ 1_, [B?\ 2
5 = —V[p-i—-illz +<—é—>+'§KR]

+ax®+ jxB+v,Vi-v,V'B, (6.12)

and substitute Eq. (6.11) into Eq. (6.12). We take the curl of the resulting equation, and

have

g‘-ﬁ-:Vx[[ﬁ—lﬁ)xﬁJ+vTVx[Vzﬁ—Vz(lﬁ]). (6.13)
or B B

The turbulent diffusion effect arising from the VZa-related part in Eq. (6.12) is a
primary ingredient causing the growth of jet width. Its vanishing is necessary for the jet
“collimation. This condition on Eq. (6.13) is the same as Eq. (5.39), that is,

- Y= \
u=-~_B, : (6.14)
B

which also guarantees vanishing of the first part on the right-hand side and u X B, and

leads to

— =0, (6.15)

Equation (6.14) together with Eq. (6.11) leads to a stationary state for both the magnetic
field and vorticity.

We substitute Eq. (6.14) into Eq. (6:11), and have the screened-alpha dynamo

- 1 o

- =
j=——=—=B=-—B. (6.16)
I-(y/B) B B
An approximation
- o —
i=—B
B

may be obtained from Eqs. (4.42) and (4.43) as well as W]/ K < 1. The solution of Eq.
(6.16) in the cylindrical configuration is known well in the context of the RFP torus
[2/20, 2/21]. Equation (6.16) with Eq. (6.14) constitutes a system of homogenous



differential equations. The magnitude of the magnetic field and flow is determined by

external conditions such as the specified total éngular—momentum and mass fluxes.

In short, the magnetic field and flow obeying Egs. (6.14) and (6.16) are free from the
diffusion effects in both the magnetic and flow equations. In the jet, the flow component
along it is primary, although it is swirling. Equation (6.14) signifies that the poloidal field
is the main component of the magnetic field inside the jet. This field resists against the
bending of the jet and cohtributcs to keeping a straight shape. These processes are an
explanation of the jet-collimation mechanism by the o — ¥ dynamo and are summarized in
Table 2.4.

The presence of a magnetic field allows instability to occur, as is explained in
Appendix C. In !ight of the instability, the present picture signifies that the magneto-
rotational instability and magnetic field in the accretion disk are self-sustaining. The disk
subject to the Keplerian motion is stable against various kinds of hydrodynamic
perturbations. Once the magnetic field exists, the magneto-rotational instability can grow,
generating turbulence that is an origin of the dynamo. The disk magnetic field is sustained
by the dynamo action. When the generated magnetic field becomes strong enoﬁgh,
plasmas are ejected in the direction of the rotation axis, resulting in bipolar jets. In the
jets, the magnetic field together with the flow field obeys the structure described by the

Taylor relaxation state.
6.1.3. Anomalous diffusion of angular momentum

The magnetic field due to the dynamo plays an important role in sustaining the
turbulent viscosity that transports the angular momentum in the radial direction [2/35,
6/10, 6/17]. The research in this direction has been flourishing and is briefly surveyed
[6/18].

By dimensional consideration, the turbulent viscosity was proposed by Shakura and

Sunyaev [2/34] in the form

Csz

where ¢ is the sound speed, @ is the rotation frequency of the disk, and g is a

nondimensional coefficient. In the accretion disk, the motion in the equatorial plane is
dominated by the centrifugal force, ie., ¢g << @0 (see Fig..6.2 for the coordinate

systenﬁ). Equation (6.17) has a resemblance to the Bohm diffusion



2
LS (6.18)

v = —
Boh ’
16 wg

where @, is the ion cyclotron frequency in the presence of confining magnetic fields.

Once the turbulence viscosity is prescribed, the transport rate of angular momentum

may be calculated. The time of angular-momentum loss, i.e., the confinement time of
angular momentum, is evaluated as 7,,,”' = VTO"E. By use of Eq. (6.17), we have

1 wo?
Tom = — . 6.19
T o o ( )

The rotation number @1, ,,, which denotes the number of rotation around the gravitational

am?*

center before the accretion, is given by

2.2
Otz —2 % | (6.20)

Qgg Cg

Then @1, >>1 represents the situation that plasma elements circumnavigate the

gravitational center many times before the accretion. We consider that the motion in a
portion of disk is close to the Keplerian motion

o<oc'?, (6.21)

Equation (6.20) gives @7, o o, which may becomes large with decreasing 0. At

such o, the gases are subject to a slow inward motion through the loss of angular
momentum.

The shape of the disk is influenced by the anomalous viscosity and the generated
magnetic field. We can evaluate the thickness (height) of the disk, 4,,, on the basis of the
pressure balance. In the vertical direction, the pressure gradient induces an expansion,
whereas the generated magnetic fields induce a comi)ressidn due to the Lorentz force. The

acceleration from these two effects is given by

S
‘i_B_ﬂ

, 6.22
b hy (6.22)

in the vertical direction. It is balanced with the contraction acceleration (the combination
of gravitational and centrifugal forces) (h;,/ ¢ )ow? . From the relation

B¢ (o1

mn

™=



based on Eq. (6.6}, the balance of these two accelerations gives the disk width at location
g,

- Y
M= S O (6.23)

6.2. Rotation drive of fusion plasmas

In highly-improved confinement modes of tokamaks, we have two types of transport
barriers of heat and particles, as was noted in § 2.3.2. One is an edge transport barrier
(ETB) observed in high-confinement (H) modes. The other is an internal transport barrier
(ITB) in reversed-shear (RS) modes. The properties of these two transport barriers are
reviewed in [2/37-2/39, 2/42, 2/48]. In what follows, we consider these bhrfier_s in light
of flow dynamo. In this context, we express the cylindrical coordinates by (r,#,z),

unlike Fig. 5.3, where @ and z are the poloidal and toroidal coordinates, respectively.

H modes as well as RS modes are characterized by the concurrence of the radial
electric field and plasma rotation. These two factors are connected each other through the
momentum equation for ion gases. In Eq. (3.2), we keep only the pressure and Lorentz

forces, and have

1
——Vp,+E+v,xB=0. (6.24)
e, '
‘From Eq. (6.24), we have
1 1 B-v
v,=—ExB- Vp, xB+ 'B. 6.25)
g ne; 7 YPr B’ . (

Here the retention of only the first term leads to the so-called E X B process, that is, the
generation of the poloidal flow through the radial electric field and the toroidal magnetic
field. In what follows, we shall adopt the cylindrical approximation to a torus.

The description of the bifurcation processes in toroidal plasmas is totally beyond the
scope of the one-fluid MHD equations. The consideration of appropriate plasma
responses is inevitable for it (the Ex B zonal-flow dynamo is reviewed in detail in
[2/49]). Nevertheless, the mean-field MHD approach can provide an il]urnin.ating
understanding of the flow generation in toroidal plasmas. We here briefly link the flow-
generation problems in plasmas with the mean-field MHD .approach. Effects of the
resultant radial electric field and plasma rotation on the turbulent transport of heat are

discussed in § 7.



6.2.1. Flows in H modes and plasma responses

The transition from low-confinement (L) to H modes was pointed out to be a
bifurcation process through the pioneering works by lioh and Itoh [6/19] and by Shaing
and Crume [6/20). In the work by Itoh and ltoh, attention is focused on the bifurcation of
E, . Tt was investigated through the temporal-evolution equation for E,,

OE, _
E Jre

(6.26)

The radial current j, is related to effects of particle losses and nonlinearity in the loss of
turbulence wave momentum across the plasma surface. This approach has recently been
extended so as to include other effects such as the anomalous-viscosity current, the

neoclassical bulk-viscosity current, etc. [6/21].

In the approach by Shaing and Crume, the poloidal plasma velocity up was chosen as

the fundamental variable (note that the ion velocity is essentially the same as the plasma
velocity, owing to the mass difference between ion and electron). The bifurcation of u,

was examined through the poloidal momentum balance equation,

d d
= p{Boup)+ P p(Bpitpu;) =¥, (6.27)
where the bracket denotes the flux-surface average. Equivalence of Eqs. (6.26) and
(6.27) is explained in [2/40]. Effects of the particle flux due to the ion orbit loss, the loss
of turbulence wave momentum across the plasma surface, the poloidal viscosity, etc. are
incorporated into ¥ .

The poloidal-rotation generation was studied by Hinton et al. {6/22] using the
neoclassical theory. There the theory was extended to include the orbit-squeezing effect
that gives rise to the reduction of the ion banana width, ]eading to the estimate of the ion
poloidal flow [2/37, 2/40]. '

6.2.2. Mean-field MHD picture
6.2.2.1. Zonal flow of semi-micro scales

The drive of plasma rotation by turbulence is an important phenomenon in light of
structure formation. In § 4.1.2, it was mentioned that the vortical flow in the cross
section of a square duct is induced by the anisotropy of the Reynolds stress. A generation
mechanism of the poloidal rotation due to electromagnetic effects was sought by Diamond



and Kim [6/23] and was applied to the discussion on the L- to H-mode transition [6/24,
6/251. There the poloidal plasma flow obeys

dy D, |
71? - —£<u§ Ma.>. (628)
Here the Reynolds stress (“a' “a') is calculated in terms of the drift waves arising from

the number-density and electron-temperature gradients. This effect is fed back to the
calculation of the drift waves.

The analysis of (uﬂ' uc,') shows that the turbulent viscosity v, could be negative when
the plasma response is included. The conditions on v, <0 is discussed in [6/25]. For
vy < 0, this mechanism is called the zonal-flow drive. In the mean-field MHD picture,
such a mechanism may be discussed on the basis of the vorticity equation (6.13), that is,

% = Vx([ﬁ—%ﬁ)xﬁ)+ v, Vo - v, V4. (6.29)

Here the spatial dependence of v and v,, is neglected for the transparency of argument.
6.2.2.2. Interference of flow with magnetic field

One of the advantages of the mean-field approach is a systematic deduction of
turbulence properties, allowing the study of various kinds of interference. We shall
discuss the generation of the poloidal plasma rotation by the concave plasma current [2/8,
6/27].

Equation (6.29) is suitable for the study about effects of magnetic-field structure on the

poloidal flow. With attention focused on the last or current term, it is rewritten as

dw. 5C, - |

— =-——T, WV j +R,, 6.30)

o 7 M Jo T By ( |
where R, denotes the remaining contribution. In Eq. (6.30), V)y was expressed in

terms of W by use of Eq. (4.43).

The equation for W is given by Eq. (4.68). Specifically, W 1s generated by F, [Eq.
(4.72)]. We retain the Jf‘,.-related term in Eqs. (4.37) and (4.72), and have

4 - +—
%—- = fj.w, + Ry = Cy74Kj. 0, + Ry, (6.31)



in correspondence to Eq. (6.30), where Eq. (4.42) was used. We eliminate W from Eqs.
(6.30) and (6.31). Here we focus attention on the temporal growth of W, and neglect the
temporal change of }:, K, and 7. As aresult, we have

'@, (. 5C4C,
o 7

7,Kj.V?]. )a =R,,, (6.32)

where R, expresses all the remaining contributions not discussed here. Equation (6.32)

indicates that @. may grow through the interference with the magnetic field under the

condition
2 SCﬁCy R 4
2 =- - TyKji.V°j.>0. (6._33)
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Fig. 6.3. Current density in the RS mode of JT-60U (units: j, MA m_z) (left), and j:VZj; {right), .-

Let us see where €2 is real and largest, that is, where the poloidal rotation or @, is
expected to start. The plasma-current profile is hollow, as is reported in experiments
[2/33, 6/28]. Its corresponding profile of ]’sz]’z 1s shown in Fig. 6.3. Large negative
j.V?j, lies just at the location of minimum ¢ or at p, = 0.6 with the normalized minor
radius p, = r/a. As a result, the poloidal rotation is likely to occur at the minimum
region of the ¢ value, which corresponds to the location of ITB that is hatched in Fig.

6.3.
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7. Electromagnetic Effects on Turbulent Transports: Towards Consistency

An accurate estimate of the heat transfer is one of the central themes in the study of
electrically-nonconducting turbulent flows in engineering and meteorological fields. In
magnetic and flow dynamos, transport coefficients o, f, ¥, Vv, etc. need to be
determined simultaneously with the established magnetic field and plasma flow, B and
u. The influences of the generated structures of B and © on the transport coefficients
must be clarified for their self-consistent determination. In this section, those feedback

effects of the generated structures are discussed.
7.1. Effects of generated magnetic field on dynamo coefficients

The effects of the magnetic field on the coefficient & were mentioned in § 5.3.1.2.
These effects are considered to arise from a modification of the time scale if @, B and y
are affected in a similar way. If some of them may be selectively influenced, the feedback
process is decisively important for the selection of a dynamo mechanism in the process of
structure formation. Such a research is on-going, and there are a couple of disputes.

Some of the central issues are illustrated here with special reference to [2/9].
7.1.1. Suppression of a by generated magnetic field

The coefficient & may deviate from the estimate by the kinematic approach with the

statistics of u' and the correlation time prescribed. We introduces a characteristic value of
the magnetic field, B,,, which obeys the equipartition .of the energy, Bc,q,2 =u°. The

effect of the generated field B on & may be expressed as a function of (B/ B, )*. The *

quadratic dependence comes from the fact thai the sign of the field does not affect the
quench, based on the symmetry consideration. Then the effect is postulated as

% (7.1)

a% 1+R,"(B/B,)

where «, is the estimate by the kinematic approach in the presence of a weak mean
magnetic field, R,,, is the magnetic Reynolds number, and the power index m denotes
the strength of suppression. Some theories support m << 1, whereas other theories and
direct numerical simulations support m = 1. It is likely that the suppression with m =1

is applicable in wider circumstances, although the further confirmation is necessary (see
[2/9] and references therein).

The mechanism that gives m =1 is considered to be the memory effect due to the

generated magnetic field. The turbulent velocity and vorticity become more and more out



of phase so as to reduce a. Gruzinov and Diamond [5/22, 7/1] discussed the
conservation property of magnetic helicity in the three-dimensional (3-D) case. There o
in the high-conductivity limit is given by

(8 3)
BZ

a=-7n , (7.2)

where B' and j include the entire small-scale fields, that is, both the prescribed turbulent
fluctuations and small-scale dynamo fields. This is a large- R,,, limit of Eq. (7.1) with

m=1.
7.1.2. Suppression of B by generated magnetic field

The reduction of the coefficient § was clarified within the framework of a 2-D MHD
theory. The squared magnetic potential

H,={A%dV (7.3)

is conserved in the ideal limit. In the high-conductivity limit, it is quasi-conserved. This
property yields the relation

2
B_(B)
= 5 (7.4)
n (B
(Zéldovich theorem [7/2]). Along this line of thought, we have
= P - 3 (7.5)
1+R,(B/B,)

where f3, is the value obtained from the kinematic approach.

In a 3-D MHD flow, it is shown that the relation 8 = f3, holds in the case that an
applied magnetic field is weak [5/22]. In the ideal limit, what is conserved is the magnetic
helicity

H_=]A BdV, (7.6)

but not H,. Then H,, is quasi-conserved in the high-conductivity limit. Moreover o is a

pseudoscalar, unlike . These differences were pointed out as a possible cause of the
disparity between & and 8 [2/9]. To what extent the relation 8 = f§; holds is yet an open

question, and an intensive study is on-going.



Equations (7.2) and (7.4) denote the balance between the average flux (w'-B') and the
dissipation. It is worth while noting that such balance holds in the wide area of plasma

dynamics. For instance, the cross-field plasma transport shows the balance of the cross-
field flux and the Ohmic dissipation [2/40, 2/49).

7.1.3. Note on v dynamo

The suppression due to feedback effects, if it applies selectively to @, leads to the
increase in the importance of the y -dynamo process in the generation of magnetic fields.
So far, no clear assessment has been made on the suppression of the coefficient ¥ by the

generated magnetic field. A few comment could be noted here. The cross helicity
H=fju-Bav | (1.7)

is conserved in the ideal MHD case. Then H,- is quasi-conserved in a weakly dissipative
system. This situation impﬁes that the ¥ dynamo is weakened by the generated magnetic
field, as is in the suppression of o and . There could be, however, a difference. The
dynamo coefficient y is given in terms of the correlation of the perturbed magnetic field
and velocity field, (u'-B'). Alfven effects occur when electromagnetic effects become
important in magnetized plasmas. There perturbed magnetic and velocity fields tend to be
aligned each other. Then a different dependence of Y on the generated magnetic field is
possible. This point will be a key issue for the structure formation of magnetic fields and

demands a future study.
7.2. Suppression of turbulent transport by generated flows

The primary concern in fusion is to suppress heat and particle transports and keep
plasma in a high-temperature state. There the suppression of heat and particles by a radial
electric field and a plasma flow has been discussed through the concept of turbulent
diffusivity. In this approach, attention is focused on a diffusivity-type representation for a

turbulent flux.
7.2.1. Increase in nonlinear damping by sheared flow

In the study of transport suppression, much attention has been focused on shear
effects of radial electric field (E,) and poloidal velocity (u,). These two quantities are
tightly linked with each other through the E X B mechanism. It is widely accepted'that the
Ex B shear suppresses both the turbulence and tranSports of heat and particles.
Observational results about the shear effects are reviewed in [2/38, 2/39, 2/45]. In this
section, the cylindrical coordinates are also written as (r, $,2).



We now refer to the basic concepts in some theoretical works (readers may consult
[2/37, 2/40, 7/3] for their more comprehensive survey). A fundamental concept for
suppressing the transports is the destruction of coherent structures of plasma turbulence.

In the work by Biglari er al. [7/4], the two-point correlation function
Ce(r) = (§(x)é(x +1)) (7.8)

was introduced, and the relationship between the characteristic correlation length E’é and
the poloidal-velocity shear du,/dr was examined, where & is a fluctuation such as

temperature fluctuation. The decrease in é’g due to duy/dr, that is, the decorrelation,

signifies the destruction of large energetic fluctuations governing the turbulent transport
of &, resulting in the transport suppression.

A more direct linkage between the radial electric field and diffusivities was sought in
the works by Itoh et al. [2/8, 7/5] and Ware et al. [7/6]. In the former, the renormalized
diffusivities of heat and current was investigated for current diffusive ballooning modes.

Those diffusivities are written in the form

D _ i
D, 1+Gog’+Gwg,*

(7.9)

In Eq. (7.9), D, is the diffusivity in L modes, G, and G, are nondimensional
coefficients, and @, and @, are related to the shear and curvature of E,, respectively,

as

, 7.10
E srB, dr ¢ 2)
o,, = S &k, (7.10b)
£ ssz dar’’ '

where 7,, is the Alfven-velocity time based on By, and s is the magnetic shear defined
by

s=l% (7.11)
q dr

In the absence of E,, D tends to the diffusivity in L modes, D,. The transition to H
modes is characterized by the magnitude of @y, and @p,.

In the work by Ware ef al., the electric-field shear was dealt with through the Ex B
shear. With its effect on nonlinear phase shifts in mind, the turbulent transports due to the



resistive pressure-gradient driven turbulence were examined on the basis of a two-field
model for the density and vorticity fluctuations. In the case of a weak shear, the turbulent

diffusivity for the density is expressed in the form

D dk, 2
_=1_&_(w0 -%], (7.12)

where D, is the diffusivity in the absence of the shear, k, is the poloidal-mode
wavenumber, ¥, is the linear growth rate, W, is the radial-mode width in the absence of
the shear, and C,, is a numerical factor. Equation (7.12) shows the close relationship of

the transport supprcssidn with the radial shear, as is similar to Eq. (7.9).
7.2.2. Reduction of turbulence production within the framework of mean-field MHD

Some influences of a generated flow on the turbulent transport can be described within
the framework of the mean-field MHD equations [7/7, 7/8]. These processes are briefly
explained. We keep the ETB or ITB of tokamaks in mind, and write

i = (0,i24(r).0), E=(E,(r).0.E,). (7.13)
under the cylindrical approximatidn ( Ey 1s constant).

7.2.2.1. Suppression of velocity fluctuations

The intensity of turbulence is determined by the balance between the pump and the
nonlinear damping. The intensity in a turbulent variable-density flow is expressed by the
turbulent energy K, [Eq. (4.86)], which obeys Eq. (4.87). On the right-hand side of
Eq. (4.87), the first three terms dependent on the mean field may be called the production
terms, which play the role of transferring the kinetic energy between the mean and
fluctuating parts, as was noted in § 4.1.1. Of the terms, the first is the same as its
counterpart on the right-hand side of Eq. (4.7). The second is the effect intrinsic to a
variable-density flow, owing to the occurrence of u". We have already referred to the
importance of this term in light of the combination with Vp (note that p is a primary
parameter in the plasma confinement). The third is the direct effect of E that is combined
with the plasma nonneutrality. The effects of E and plasma rotation on the production
term may be studied on the basis of the results in § 4.3.2.

From Eq. (7.13), the three terms may be rewritten as

o LY LAY o
= Cwlna[r_‘f_u_ﬁ)l = n!]!"_)rz(-l— duﬂ _u—g) ’ ' (714)
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K1 PRy o -



Rz 1 dp dp 1 iy* dp
P = g = _ ) :__+ »—5 —_—, 7.15
k2 ' ok, P odrdr PRt orodr (7.13)
Py ={p, u")E; = ~Co&oT (7.16)
with
y— _
r=lf€','d"_’*'=E,‘dE2 3‘,‘1—-%5 (7.17)
g dr dr r = dr
where use has been made of Eqgs. (4.90) and (4.91), and the relation
o 2
(2“-) __by (7.18)
Dt J, r

The contribution by Dii/ Dt effects does not occur in a slab model that is frequently used
in the study of plasma properties in tokamaks.

In Equation (7.15), both the terms are negative. Specifically, the plasma rotation
contributes to negative Fy,, that is, the suppression of velocity fluctuation. From the
observations of E, in H modes, the second and third terms on the right-hand side of Eq.
(7.17) may be confirmed to be negligibly small, compared with the first term. In the case
of JFT-2M tokamaks, I" becomes negative in the region near the edge ( p, > 0.95) and
reaches —10% V cm™. That is, we may see

'sz <0, (7.19)

in the edge region, also contributing to the suppression of velocity fluctuation. These
facts signify that the curvature of E, as well as its magnitude is associated with the

suppression.

We should stress that the foregoing findings based on the mean-field MHD do not
lower the importance of the results in the current works of tokamaks about the £x B
shear effects. They provide a complementary understanding. The arguments in § 7.2.1
were developed under the situation that the coherence length of turbulence is much
shorter than the system size, while the present MHD modelling is useful in the case that
the coherence length is comparable. It was reported [7/9] that drift- and flute-mode
instabilities in the GAMMA 10 tandem mirror are dependent on both the shear and
magnitude of the radial electric field. With fixed |d E /drzl leads to

that in |a'E,/dr|. In the study on mirror plasmas [7/10], fluctuations with long radial

correlation lengths were investigated. The narrowness of the region with large E, is



-

reflected on d’E, /dr® but not on dE, / dr. The curvature effect on turbulent diffusivities
has already been pointed out by Itoh er al. [7/5] in Eq. (7.9). It is significant to further
investigate into each role of E,, dE,/dr and dzfrl dr® and clarify the degree of

contribution to the transport suppression.
7.2.2.2. Heat-flux suppression and countergradient diffusion
Under Eq. (7.13), we may rewrite Eq. (4.94) as

dé 6 i’ £ ~dé
HMrz_CP]H_r— Pzt Cpy I —

i 7.20
por. p dr ( )

The first term is the familiar gradient diffusion effect and is positive due to d6/dr<0. 1t
expresses the enhancement of heat transport towards the outer part of plasmas by
turbulent motion. There the rise in the temperature contributes to a larger heat flux. The
second term expresses the combination of centripetal-force and density-fluctuation
effects, as is quite similar to the second term in the second relation of Eq. (7.15). Tt tends
to cancel the first term. Originally, the centripetal force comes from Du/ Dt. This fact
suggests that the turbulent heat flux in one direction is sensitive to the acceleration of flow

in the direction.

It 1s emphasized again that the mean-field MHD approach shows the reduction in the
production term of turbulence by the radial electric field and plasma rotation. Both the
enhanced nonlinear damping process in § 7.2.1 and the reduction in the production term

contribute to the reduction in the turbulent energy transport.

As is seen from the discussion about Eq. (7.20), one of the great interests in fusion
research is the reduction in the gradient diffusion of scalars such as heat and particles by
turbulent motion. The extreme case of the gradient-diffusion suppression is
_ countergradient diffusion in turbulent combustion. There scalars are transported by
turbulence in the direction of the mean scalar gradient. This phenomenon seems curious
to fusion researchers struggling for the suppression of gradient diffusion, but it is

familiar to those of turbulent combustion [7/11].

It has recently been pointed out [7/12] that the countergradient diffusion is closely
refated to the acceleration effect arising from the thermal e);pansion by chemical reaction.
This property is very similar to the acceleration effect represented by the second term in
Eq. (7.20), and the physical resemblance may be observed between the transport
suppression in fusion and the countergradient diffusion in turbulent combustion. A

mechanism of the countergradient-diffusion is discussed briefly in Appendix D.



7.3. Magnetic-field effects on off-diagonal elements of heat-transport matrix

In engineering researches, the heat transport is intentionally enhanced for the rapid
release of heat through the generation of turbulent motion. In § 4.1.3, we referred to the
heat transport normal to the temperature gradient that is caused by a mean-velocity shear.
Equation (4.31a) shows that no mean-flow effect appears on the heat flux in the x
direction, whereas the heat flow in the mean-flow or y direction occurs newly, as is seen
from Eq. (4.31b). A magnetic-field effect on the heat flux was discussed in § 4.2.1.
There the heat flux is expressed by Eq. (4.53) with the turbulent-diffusivity
representation as the leéding part. With the heat transport in tokamaks in mind, we adopt
the slab approximation, and denote the radial and poloidal directions by the x and y

directions, respeg:tive'ly. In the slab geometry, we write

8 =6(x), u=0, B=(0,B,(x),B.(x)}. (7.21)

From Eq. (4.53), we have

Har = _CGI(K+ KR)T," c:f_e, ’ (7.223)
- x
dB, d6
H, = W1, (D, = Dyop ) —=—, 7.22b
& m( 921 322) T dx ( )
: dB, d@ - :
H, =Wt ?(D,, — D,, b . 7.22¢
74 m ( 021 8-2) dx dx ( )

Equation (7.22a) representing the radial transport is not affected explicitly by B. On
the other hand, the heat flow normal to the temperature gradient may be induced by B, as
in Egs. (7.22b) and (7.22¢). This result is essentially the same as the heat flux in an
electrically-nonconducting flow with the mean-velocity shear, as is seen from Eqs. (4.30)
and (4.31). Equations (7.22b) and (7.22c) represent the off-diagonal elements of the heat
flux and are an extension of Eq. (2.7) to turbulent cases. Here the new term depends on
the turbulent cross helicity W as well as the gradient of B.

7.4. On variational principles

A properly-constructed variational principle is a powerful method for investigating into
structure forrnétion. The governing equations of the magnetic and velocity fields, e.g.,
Eqs. (6.14) and (6.16), may reproduce structures that have been derived by the
vanational-principle approach to large-scale MHD turbulence. Here this issue is revisited

in conjunction with dynamo problems.



The variational principle has been successful when the dissipation rates of two
quantities have different time scales. For instance, the magnetic helicity defined by Eq.
(7.6) and the flow helicity

H, =[u-adV, (7.23)

are quasi-conserved in highly conducting media. The cross helicity defined by Eq. (7.7)
is also quasi-conserved (see, e.g., [7/13]). On the other hand, the magnetic energy
B2

K, = J?JV _ (7.24)

dissipates much faster than H .

From these facts, the Taylor relaxation state was derived under the condition that K,

is minimized for constant H,,; namely, we have

VxB=uB, - (7.25)

with g related to the Lagrange multiplier. The essence of Taylor's argument is that MHD

turbulence is strong enough to have a correlation length comparable to the system size.
This condition allows us to choose g as a common value in the entire region of plasmas.
As aresult, g is determined by the global parameters such as the toroidal magnetic flux

and the total plasma current. In fluid dynamics, the enstrophy
K, =@V, (1.26)

to which the dissipation rate is proportional, decays faster than H,. The minimum-

enstrophy state under the quasi-conserved flow helicity satisfies [7/14]
Vxm= uw. - (7.27)

The foregoing discussions may give useful insights to understanding of the magnetic
dynamo. When a large-scale turbulence exists, that is, the turbulence has a long
correlation length, the coefficient ratios such as a/ 8 may be taken to be constant in the
wide region that a mixing length of turbulence covers. Once a/ f is taken to be constant,
the resultant structure can be deduced by solving the equation of the mean filed, which is
a linear differential equation, as is given in Eq. (7.25). As a result, o/ 8 could be
rewritten in terms of boundary conditions or global quantities.
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In turbulent plasmas, the coupling between the flow and field is essential. The
importance of the cross-helicity effect has been stressed in this review. One method for
incorporating such an effect is to minimize the total energy

2 2
K, = j%v, (7.28)

under the conservation of the cross helicity H [7/15]. With this variational principle, we

have
u=uB and B = pu, {(7.29)
resulting in y = +1.

The alignment between u and B was pointed out for the cross-helicity dynamo, as is
described by Eq. (5.39) and others. The complete identity between u and B like Eq.

(7.29), however, holds only for Alfven waves. Then Eq. (7.29) is too stringent to
describe the dynamo state. This result might be owing to the fact that only H, is

considered with H,, and H, ignored.

The variational principle has been extended to the two-fluid MHD framework [7/16,

7/17]. There the enstrophies of electron and ion fluids are minimized under constant
electron and ion helicities as well as constant X,. Then we have

(Vx=-u (Vx—p,)u=0, ' (7.30)

B = t;(u- 1, VxB), (7.31)
where coefficients p, (n = 1—4) are related to Lagrange multipliers.

How to choose minimizers and constraints in an appropriate manner is still an on-
going subject. It is worth while recalling that Lagrange multipliers can be considered to
be constant within the range of a coherence turbulence length. In many examples
associated with the flow dynamo in toroidal plasmas, structures such as transport barriers
appear owing to the steep spatial variation of turbulence properties. The improved-
confinement states are usually assoctated with the reduced correlation length of
turbulence, as is discussed in § 7.2.1. This fact imiplies that different approaches other
than, e.g., Egs. (7.25) and (7.27), are necessary for examining improved conﬁnerr_lents

in the form of variational principle.



8. Summary

In this article, we presented a review of the mean-field approaches to electrically
conducting turbulent flows. For the turbulent fluxes playing a central role there, the
heuristic explanation was preferred to the statistical method based on turbulence theories.

With the full use of those fluxes, we discussed on the following three themes:

(1) Magnetic dynamo or magnetic-field generation mechanism with spccial attention to a
spherical-shell dynamo;

(i) Fiow dynamo or flow generation mechanism by electromagnetic forces;
(iii) Electromagnetic effects on turbulent transports.

In the first, the fundamental processes of magnetic-field generation were discussed in
light of some macroscopic features of the geomagnetic and solar fields. In the second,
flow generation was discussed through the investigations into the generation of bipolar
jets from an accretion disk and into the occurrence of plasr'na rotation in the improved-
confinement modes of ‘tokamaks. In the third, thc'suppreésion of turbulence and
tra'nsports-wds discussed in close relation to the improved-confinement modes of
tokamaks. Dynamo problems were reviewed from the Viewpoint of structure formation;

but the temporal variation of ficld polarity was not addressed.

In this article, the structure formation by the dynamo mechanism was discussed with
an emphasis on the self-consistent determination of the mean-field flow. This point first
became possible through the introduction of the turbulent cross-helicity effect. Examples
are the geomagnetic field, solar magnetic field and magnetic fields associated with

accretion disks. The primary results are summarized in Table 2.4.

The governing equation of the mean magnetic field depends strongly on the magnitude
of the coefficient ratio ¥/ 3. In light of this parameter, it might be possible to characterize
the form of established magnetic fields through the self-consistent treatment of the
associated flow structure. The final goal of the mean-field approach should be the
simultaneous determination of the turbulent transport coefficients and established
structures as functions of nondimensional parameters such as R,, T,, R,, etc. as well as
geometrical parameters. This task is a future direction of research in understanding of the

dynamo phenomena in nature.

In the present discussions, we also gave a brief review of the other analytical and

numerical methods intrinsic to each phenomenon and attempted to elucidate the features



of the mean-field method as well as its theoretical limitation. We showed that by the
inclusion of proper turbulence effects into turbulent fluxes, the mean-field method can

capture some of macroscopic properties common to apparently different phenomena.

In short, we attempted to illustrate that the progress of plasma physics leads to the
further development in understanding of evolution in nature.
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Appendix A: Derivation of Corrglation Functions
I Constant Magnetohydrodynamic Flows.
1.1. Turbulent electromotive force
| We write the turbulent electromotive forcfe E, [Eq. (4.35)] as
Ep = €,m{u, B,') (A.1)

(£ 18 the alternating tensor). Then we have

E(u:n' .Bn') = _‘(uf‘ Bn'> ax

B '\ du,' 9B’
_<uf'um|"5;:_>+<um' Bf' &:>—(V+A’B)< a;] ax >

9 O o8\
— B A gt . . A2
+3x’ {v< ’ axf >+ B<um ax, >J ( )

In the first two terms on the right-hand side, we assume the isotropy of the correlation
between u' and B, and write

w§.., (A.3)

4

(1)

where W is the turbulent cross helicity defined by Eq. (4.48). There the two terms are

reduced to
o,
—(u!’ B |) axf ( m' Bf " = v{ m __mJ (A4)

In the third and fourth terms of E(i. (A.2), we similarly make the isbtfopic

12 |

approximation

(i u) = %mj, (A.5)



) 1] ._2
where K, and K, are the kinetic and magnetic energies defined by
K —<1u'2) (A.7)
u 2 ) .
1 .2
KB=<—-B' > (A.B)
2 .
Then those two terms are rewritten as
dB JB, 2 JdB 2 OB
B'B'Y——{(u_'u')—2=——K —L+—K,—". A9
e L e L v L0 (A.9)
In the fifth term of Eq. (A.2), we rewrite
du, 1{ou' ou’ 1{Ju, Ju i 1{ o, oJu,
o= R +— 4+ =—g, 0, +— —+— |, (A.10
ox, 2(33:? ax,,) Z(Bx, ax,,] 2 2(Bx, ox, (A10)
oB' 1 1{JB' JB,'
—L == = ==+ A.ll
&, 2" 2[&, ax,,] AAD

We assume the isotropy of the correlations between u' and @ and between B and J';
namely, we write '

(A.12)

(A.13)

it

(B'J})= %H,_,a

where H, and Hj are called the turbulent kinetic and current helicities, respectively,

which are defined by -
H, =(uw), (A.14)
H;=(B.J). o (A.15)

From Egs. (A.12) and (A.13), the fifth term is reduced to

3B, H\)s 1 .
[<B"'79§'f‘>+<“’"' x >)B’=g(”u€r~m+Hasf,,,,,)Bf. L




Here we discarded

8"— o B 9By B\ (A.17)
X, | o, x )

in comparison with H, and Hy.

We summarize Eqs (A.4), (A.9), and (A.16), and combine them with Eq. (A 1). The
final result is glven by Eq. (4.37). -

1.2, Reynolds stress

The primary mathematical feature of the Reynolds stress R; is derived in entirely the
same manner for E;. The equation for Ry is '

{8y B) 2 (877 52

L N
(o2
{3 a2

+axi(_<u,-' u;' ”f!) +(uf’ B/ Bf) +{@ u)o + (ar'“f'>6"’

f

d g, d inn,
+V~a:-<u',- uj)—/'lgg(B,- B, )]

£ ) g f

! | ) B.‘ i ! !
+<uj' B, aaxi>+ <u;_B,‘ %>- <Bj' B, %u;)— <B,-' B/ %> . (A.18)
4 ‘

The first four terms on the right-hand side of Eq.' (A.18) are wyi;ten.as
' ' ' 1 8"_‘.! ' ' ' ' 31'7

_((u{. u)+(B; B, ))_gf—((fl,. u')+(B'B, ))3;

¢

({0 B+ (uy sz))gx_ﬁ'ar(('u; B+ B) S

f



= -3 K5 + S W, - (A.19)
where the mean magnetic-field-strain tensor my; is defined by
dB; JB,
my = —>+ % (A.20)
ox;

i Jj

We substitute Eq. (A.10) into the fifth term linearly dependent on B. The contribution
from (B -@') vanishes identically owing to the symmetry condition. We assume that the

(o
B'| —+— . - (A2]
< ) (&t; + axi J> ( . )

is small, compared with Eqgs. (A.3), (A.5), (A.6), (A.12) and (A.13). We discard it, as
is for expression (A.17). Then the fifth term in Eq. (A.18) does not contributes to R;.

physical importance of

We summarize the above findings and havéEq. (4.38).
2. Nonneutral variable-density flows

In electrically—conductiﬁg constant—-density flows, the correlation functions represented
by the Reynolds stress have been modelled with the aid of two methods. One is the
heuristic methed in § 4.1 [4]5, 4/8, A/‘]]. The other is the theoretical method based on the
extension of isot’rdpic to inhomogéneous turbulence theories [4/3, 417, A/2-A/4], These
two methods supplement each other and contribute to the enlargement of the applicability
of mathematical expressions or models for the Reynolds stress etc.

The equation for the turbulent flux P [Eq. (4.83)] linked with the turbulent heat flux
H,,, [Eq. (4.85)] is complicated, compared with Egs. (4.4) and (4.28) in the constant-
density case. It 1s difficult to abstract a definite information about the mathematical
structure of P with the aid of the heuristic method in § 4.1. Then we examine Eqgs.
(4.82)-(4.84) by using the turbulence theory based on the mass-weighted averaging
[4/18, 4/19]. |

2.1. Introduction of mass-weighted fluctuations

The essence of the mass-weighted velocity is the use of the momentum as the
definition of the mean velocity. This fact indicates that the use of the momentum-related
velocity fluctuation is more proper than u" itself. Then we introduce the mass-weighted

velocity fluctuation by



=P (A.22)
p .

It should be noted that this new velocity fluctuation obeys (v') = 0, as for the constant

dénsity case. Ffom Eq (A.22), u" is expressed as

u =

: P : | '
—_— v =|l-=+ V. (A23)
I+(p'/p) ( p ] | |

On the other hand, the decomposition based on the ensemble averaging is applied to p
and p,. As aresult, we adopt the following decomposition:

f=F+f, ‘ (A.24)

where

f=(pw.p.p,). F=(p.6.5.P.), f‘=(p',%v‘,p',p;]- (A25)

In the use of Eq. (A.23), Eq. (4.82) is written as
) 1) ] | 1 1 L} L] ) ) '
Ry ={u'v) )‘5(‘0 vy )= (), (A.26)

where the correlation of the second order based on v’ was retained preferentially. The

other correlation functions may be written as

P=(pv)-=(pVv), | (A.27)

ol |l

n' = -%(p‘ v'). _ o (A.28)

A system of equations for the fluctuations is given by

Dp  _ oV p I,
—_ —l f——p L, A29
D P T e P 429
ﬂ+_a_vi- V}-+_l_§!i__vj-_f+p;?f_ptpi—v; vj'éﬁ, (A.30)
Dt o p ok : PP Dt p ok;
Dp' ap v _ o & i,
— v — P+ —L = v —— - —, A3l
Dt VJ axi }p &(i }pax, vr axi }p xl ( )



Dp, 3 N' P %
DP9 i Do P P A.32
Dr ol P g T T TP (A-32)

i i i

One prominent feature of this system lies in the mathematical simplicity comparable to the
constant-density case. It is entirely due to the use of the mass-weighted fluctuations,
which paves the way for the straightforward application of a constant-density turbulence
theory, for instance, the two-scale direct-interaction theory (TSDIA) [4/3, 4/7], 1o the
vanable-density case.

2.2. Two-scale direct-interaction approximation

The key mathematical procedures of the TSDIA may be summarized as follows. We

first introduce a small-scale parameter & for distinguishing the fast spatial and temporal
variation of the fluctuation f* from the slow variation of the mean field F, as

E(=x),7(=txX(=&).T(=&), . (A.33)
and wﬁte |
F=F(XT), f=r(EX1T). (A.34)

We use Egs. (A.33) and (A.34) and rewrite Eqs. (A.29)-(A.32). For instance., Eq.
(A.29) is reduced to '

: A.35
P pr P (A.33)

1

pr P "X,

E.,__ﬂ:a(_ _'E_p'ﬂ_D_p__@i],

where D/Dt =3d/dt+iu,d/dE and D/ DT =3/dT+i,d/dX;. We should note that

effects of spatial and temporal inhomogeneity occur in the combination of the parameter
d, as is seen from the right-hand side. ' ' ' '

For the fast spatial variation due to &, we adopt the Fourier representation
FEX0.T) = [ f (kX:7,T)exp(—ik-(§ - 47))dk. (A.36)
We apply Eq.'(A.36) to Eq. (A.35) etc. and perform the scale-parameter expansion

FRXTT)= 36 f (kX T). (A.37)
n=0



As a result, the lowest-order part f,' obeys the equation of the same form as for

homogeneous turbulence. There the inhomogeneity of field occurs implicitly through the
dependence on the slow spatial variable X.

The higher-order parts f,' (n 2 1) are expressed in terms of f'. Then any correlation

functions such as Eqs. (A.27), (A.28), etc. may be evaluated with the aid of the statistical
properties concemning f,'. As the specifically important properties, we adopt

(vor & X.T. Ty, (K X, 7. T)) = 0

vif

(k,X,7,7,T)5(k +K), (A.38)
(P kX, 1,T)p (K. X,7.T) = 0,(kX,7,7.T)k+K). (A.39)

The equations for the lowest-order part f,' explicitly contain no mean-field gradients that

are the primary generators of statistical anisotropy, as is understood from Eq. (A.35).
Then it is plausible to assume the isotropy of Eqs. (A.38) and (A.39) with the implicit

inhomogeneity expressed through X; namely, we write

0,;(k.X,7,7,T) = D(k)Qs(k.X, 7,7, T) + IT;(K)Q,c (k. X, 7,7, T), (A.40)

0,k X, 1.7.T)= 0, (kX,7.7.T), (A.41)
where
kk; kk.
D,(k) =6, —k—;, 1,(k) = k;, (A.42)

and subscripts § and C denote solenoidal and compressible parts of the v,' energy

spectrum. From the isotropy of the lowest-order part, the transport of scalars does not

occur; namely, we may write

{w(k.T,)vy' (K,7) =0, (A.43)
with w' = (pg', py', Peg’ )-

In the evaluations of correlation functions, we retain the contributions up to the first
order in the scale parameter & in general. The effects of the mean electric field E on the
turbulent heat flux, however, occur as the terms of the second order in é. They are

specifically retained in light of their importance in investigating into the transport effects
' in nonneutral plasmas. The scale parameter & disappears automatically through the

replacement X - dx and T — & .



From the foregoing procedures, the correlation functions such as Eqgs. (4.83), (4.84),

etc. may be expressed in terms of Eqs. {A.40) and (A.41) characterizing the lowest-order
properties of inhomogeneous turbulence. We introduce the characteristic time scale 7,

and simplify the two-time representations, obtaining Eqgs. (4.88)-(4.91).
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Appendix B. Nondimensional form of Magnetohydrodynamic Equations

As a typical instance of MHD equations, we consider Egs. (5.2)-(5.4) with a spherical

shell kept in mind. We put

g= F= —+
gl ||
We take the reference length and the velocity
X
ER ._—h d, uR = 79 .

where d denotes the shell thickness.

We use Eq. (B.2), and make the nondimensionalization

.X : t u
— X, 57— 21, —u, — B,
d . d /y Xold “Xeld
"—J—z—)J, ' p‘ 5> P G.—BR—>
Xo!d (Zefd) - A8
Then Eqs. (5.2)-(5.4) are converted to |
du, d 9p 2 . 172 ~ ~
=4 —uu =—-—+PVu +(jxB) + AT “(uxog) - KR,
00

= +V-(6u)= V0.
o

%}?:Vx(uxBH—Pﬁ-VZB.

M

(B.1)

(B.2)

(B.3)

(B.4)

(B.5):

(B.6)

From Eq. (B.4), we may see that the relative importance of the buoyancy to Coriolis

effects is measured by R, /T2,
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Appendix C. Magneto-Rotational Instability

Both the dynamo magnetic field and the anomalous viscosity arise from some kind of
turbulence. At this moment, a plausible candidate that induces the turbulence in an
accretion disk 1s the magneto-rotational instability {2/30, 2/35, 6/1, 6/2, 6/10]. A brief

description is given here.

When disk plasmas are magnetized, the plasmas on the same magnetic field line rotate
with the same angular frequency. When the radial displacement 6f piasmas takes plééé
~ along the field line, plasmas at different radii on a magnetic field line move with the same
angu]ar frequency since the elements on the same field line are connected each other.

Then the motion deviates from the Keplerian motion, resulting in the release of energy.

We denote the radius and the rotation frequency by ¢ and @, respectively. When a
small volume of plasmas is on an equilibrium orbit with ¢, and @,, it is subject to the

balance between the gravitational attraction and the centrifugal force. The former changes
as ¢ and the latter as @c. We consider the change of energy associated with the

deviation of radial location, Ao . If the angular momentum is conserved, as in the case
without any interaction, the centrifugal force behaves @,’6, 6. The sum of the

gravitational and centrifugal forces gives
E, =@, Ao, L C

which shows that the net force is against the displacement. In contrast, the centrifugal
force behaves as 53'020' in the case of constant & . Then the net force in the direction of

the displacement is
F, =3m, 4Ac. (C.2)

A part of this force is compensated to enhance the kinetic energy os rotation, but resultant
force is in the direction to increase the displacement Ac. This displacement is associated
with the bending of the magnetic field line. The restoring force associated with the field-
line bending is S

F, , =~V Ac, (C.3)

where V, is the Alfven velocity, and &, is the wavenumber in the direction of B. From

this consideration, we are led to an instability in the presence of the magnetic field
obeying
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Table C.1. Analogy of magneto-rotational instability (eg: sound velocity, L, and’ -

L,,: gradient scale lengths of pressure and magnetic field, respectively). )

Magneto-rotational - Interchange

condition

instability instability
Energy source  Motion in the direction of — V& Motion in the direction of — Vp
Constrain.t' Constant @ . — ' | Magnetic flux conserved
Stabilization Bending of magnetic field line -
Instability 0<V, < czié,,-' . _ VY, <cg [(hy Ly Loy )

Table C.1 shows an analogy between the magneto-rotational instability and the
interchange instability in toroidal plasmas.

We express the temporal dependence of linear modes inthe form exp{-iAs). The

quantitative investigation into the dispersion relation shows that the growth rate of the
instability can be as large as

Yup = ImA =3 (C.5)
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Appendix D. Countergradient Diffusion in Turbulent Combustion

The problem of burning could be important with the improvement of plasma
confinement. There fuel mixing is a central issue. In this context, we refer to the turbulent
transport in the interface of burning.

We consider the diffusion of chemical reactants in a turbulent premixed flame
illustrated in Fig. D1. We adopt the coordinate system with a flame region fixed. There
fresh (unburned) gases come into the region, and burned gases go out from it. The
instantaneous surface of the flame is very thin, but it highly fluctuates in time and space.
In the statistical sense based on the ensemble averaging, the flame region characterized by
0 < ¥ < 1 becomes much thicker than the width of the instantaneous flame, where Y

denotes the concentration of chemical reactants.

A A
u, U
— Y
A ' - A
v=1  |. | ¥=0

Fig. D.1. Flame region in a turbulent premixed flame.

In a turbulent premixed flame, we often encounter the situation that the reactants are
transported from the low-concentration to high-concentration regions {7/11, D/1]. The
elucidation of this countergradient-diffusion mechanism has long been one of the central

themes in the study of turbulent combustion. The comprehensive reviews are given in
[D/2, D/3].

The countergradient diffusion may be explained as follows. The turbulent flux of
reactants is expressed by the familiar gradient-diffusion term and some other ingredient(s)
opposing it. Then the countergradient diffusion arises from the dominance of the latter
over the former.

We make full use of the statistical method detailed in § 4.3 and Appendix A.2, and

investigate into a mechanism of the countergradient diffusion. In Fig. D.1, the mean field
(p;u,p, Y ) may be expressed as
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a = (#(x),0,0), p=p(x), p=p(x),¥=F(x). (D.1)
The flame zone where the countergradient diffusion may occur is characterized by

>0,—<O,@ dy
dx dx

<0, <o, D.2
T ®2)

resulting in

Pi:ﬁﬂ>0,'ﬂ=ﬁ£<0. (D.3)
Dt dx Dt dx _

Under Eq. (D.1), the turbulent reactant flux may be expressed as [7/12]

¥ . K, Di DY
I, ={¥"u}, =-CrKyTco—+ Crilco’ = — —, D4
ve = {7}y, rifimteo =+ Cm o 57 Dr Di (D.4)
where u" is the velocity fluctuation in the x direction, Cr; and Cr2 are positive

numerical coefficients, and T, is the time scale characterizing the transport in turbulent

combustion.

In the gradient-diffusion model given by the first term in Eq. (D 4), Iy, is always

positive. From the computer expenments of countergradient dlffl]SlOl‘l [D/4, D/5],

however, Iy, becomes negative under a favorable pressure gradient (dp/dx <0), and
the usual gradient-diffusion model breaks down completely. The second term is the.
combination of the Lagrange acceleration and the streamwise Y variation. From the
situation (D.3)‘, this term is negative and contributes to the turbulent transport of ¥" inthe
negative x direction, which paves the way for the countergradient transport. The
magnitude of Dii/ Dt is an indicator of the strength of thermal-expansion effects due to

the heat released by the chemical reaction.

The conclusion here is that the acceleration in the direction of a mean-scalar gradient
may affect the turbulent flux in such a direction. This mechanism is quite similar to the
suppression mechanism of the turbulent heat-flux due to the poloidal plasma rotation that
is discussed in § 7.2.2.2. ' |
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