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Rooted tree analysis of Runge-Kutta methods
with exact treatment of linear terms

S. Koikari

Theory and Computer Simulation Cenier, National Institute for Fusion Science,
Oroshi-cho 322-6, Toki-shi 509-5292, Japun

Abstract

We investigate a class of time discretization schemes called “ETD Runge-Kutta
methods,” where the linear terms of an ordinary differential equation are treated
rigorously, while the other terms are numerically integrated by a one-step method.
These schemes, proposed by previous authors, can be regarded as modified Runge-
Kutta methods whose coefficients are matrices instead of scholars. From this view-
point, we reexamine the notion of consistency, convergence and order to provide a
mathematical foundation for new methods. Applying the rooted tree analysis, ex-
pansion theorems of both the strict and numerical solutions are. proved, and two
types of order conditions are defined. Several.classes of formulas with up to four
stages that satisfy the conditions are derived, and it is shown that the power series
of matrices, employed as their coefficients, are well characterized by the requirement
of the stage order.

Key words: ETD Runge-Kutta methods; Exact treatment of linear part; Rooted
tree analysis; Integrating factor methods; Spectral methods

1 Introduction

When we numerically solve an advection-diffusion equation such as the Navier—
Stokes equations by spectral methods [4,9], the partial differential equation,
which describes the spatiotemporal structure of vector fields, is decomposed
by a set of basis functions which are orthogonal and complete on the spatial
domain considered. The resultant equations are simultaneous ordinary differ-
ential equations for the mode amplitudes and can be written in a general form
as :

y'(x) = Ay(x) + fy(z) . (1)
where z is time, y{x) is an N dimensional vector, the elements of which are
the mode amplitudes, A y(z) is a linear term and f(y(x)) is a nonlinear term.
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The matrix A is typically the representation of a spatial operator such as the
Laplacian V2 and is a source of stiffness in most cases of spectral simulations.
To circumvent this difficulty and enable efficient and stable calculations, the
semi-implicit scheme has widely been used, where the linear term is integrated
by the Crank-Nicolson formula (implicit) and the other terms are treated by
the Adams-Bashforth formula (explicit). Although the semi-implicit scheme
has been applied successfully to a certain range of problems, it is also known
that some limitations exist. For example, schemes of this type with third and
higher order accuracy have usually been avoided, since they are essentially

linear multistep methods. '

Recently, new methods have been proposed as viable alternatives to this con-
ventional one by G. Beylkin et al. (3], B. Alpert et al. [1] and S. M. Cox and
P. C. Matthews [10,11], where linear terms are treated rigorously without a
conversion of the dependent variable. To accomplish this task, they transform
‘the differential equation (1) to an integral equation by multiplying =% from
the left and integrating it from z,, to Z,4+i. The transformed equation is

Yonss) = e y() + & [ 6N fylo + TN (g =t h) . (2)

The concept of the new methods is that the exponential function and the
integral in eq. (2) are treated rigorously as far as possible, while the function
f(y(zn—+7)) is approximated by a polynomial of 7. There are two possible ways
of approximating f(¢(%n+7)). The first is to use linear multistep methods and
the second is to use one-step methods, i.e., Runge-Kutta methods. The former
is called “exact treatment of linear part” (“ELP”) {1,3] or “exponential time
differencing” (“ETD”) {10,11] by previous authors; therefore, we denote it as
“ELP/ETD” in this paper. The latter is named “ETD Runge-Kutta™ by the
authors [10,11] and we adopt the same name in the present paper. One of the
reasons why these new methods are promising is, in addition to the possibility
of higher order schemes, that they have some.affinity with the semi-implicit -
method. There exists no essential difference between the semi-implicit method
and the two-step ELP/ETD method except the order of approximation of the
exponential function. This point is clarified in Section 2.

The basic theory of ELP/ETD methods has already been established [3,10];
however, the counterpart’ of ETD Runge-Kutta methods does not exist in
the literature yet. The main purpose of this paper is to provide a mathemat-
ical foundation of ETD Runge-Kutta methods through a theoretical inves-
tigation. As the preparation for mathematical treatment, we represent ETD
Runge-Kutta methods by Butcher tableaux {7] whose elements themselves
are matrices instead of scalars (Section 3). This representation enables us to
clearly understand and rigorously define what the new methods are. By apply-
ing the rooted tree analysis [5,7] to the methods, we establish the expansion
theorems for both the strict and numerical solutions (Section 4). Using these
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expansion theorems, we define two types of order condition, the strong one
and the weak one. Finally, in Section 5, we derive several classes of formulas
with up to four stages that fulfil the order conditions. It is shown that power
series of matrices used as their weights are well characterized by additional
conditions for the stage order. :

2 ELP/ETD methods and the semi-implicit scheme

In this section, we show that the semi-implicit scheme can be derived from
an ELP/ETD method when it is combmed with Padé apprommants to the
exponential function.

If the function f(y(zn + 7)) is approximated by a first-order polynomial

fn—

Fy@n + 7)) ~ o+ =—"—7  (fu:= fly(za))), (3)

eq. (2) can be integrated to give
Y(@ns1) ~ Qo(Ah)y(zn) + RQUAN fu + hQo(AR) (fo — faur) s -~ (4)
where (o , @, and @, are

| ghh .I o o eA’; ~1 — Ah
AL end @2(Ah) iy T e (5)

Qo(Ah) == e, Ql(Ah)
respectively. The approximation (4) defines a two-step ELP/ETD formula -

Yat1 = Qo(AR)yn + hQU(AR) fr + hQ2(AR)(fo — farr) - (6)

If the exponential function in eq. (6) is approximated by the Padé approximant
with second-order accuracy [2], i.e.,

= Qo(Ah) ~ (I - %) (I + %’E) , (7)

Q1(Ah)-and Q,(Ah) are consistently approximated as

Qi(AR) ~ (I _ %) and  Q(Ah) ~ = (1 - %) L ®)

Substituting these expressions into eq. (6}, we obtain the semi-implicit scheme
Ah Ah 31 o
yn-i—l (I - _2") {(I + "5") yﬁ"» + h (é'fn - §fn—.l)} . (9)
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From the above derivation, we can see that the semi-implicit scheime (9) and
the two-step ELP/ETD method (6) have no essentlal difference except the
order of approximation of the exponential function et

Instead of the rigorous calculation as in ELP / ETD methods, it may be possible
to approximate e by A-acceptable 2pth order Padé approximants {(p > 1).
. Such approximants can be derived from Runge-Kutta methods as their sta-
bility functions; therefore, in such a scheme, the Dahlquist second barrier does
not exist as far as the linear term is concerned. It can be interpreted as a com-
bined scheme, where the linear term is integrated by an implicit Runge-Kutta
method and the nonlinear term is integrated by an explicit linear multistep
method. If an exp11c1t Runge-Kutta method is employed for the nonlinear
term, a semi-implicit Runge-Kutta method is obtained. From this viewpoint,
ETD Runge-Kutta methods are regarded as semi-implicit Runge-Kutta meth-
ods whose implicit part has the infinite-order accuracy.

3 Power series of matrices and Butcher tableaux
3.1 Power series of matrices

ETD Runge—Kutta formulas with up to four stages were proposed and evalu-
ated by previous authors (10,1 1]. A two-stage formula with second-order accu-
racy is denoted by “ETD2RK” and is derived in their paper as follows. First,
by substituting the Oth order approximation f(y(z, + 7)) ~ fa In eq. (2) and
integrating it, we obtain a stage value as

ehh _J
. &2 = e/,\h Yn t+ T’fn . . (10)

After evaluating f(&), we can construct a first-order approximation

T~ Ty,
f bt BT fE) — fa) 01
‘Then, thé integration of eq. (2) with the improved approximation (11) yields
: eM —T — Ah
Yntr = &+~ (&) — fa}- (12)

‘We use notations that are slightly different from those in their paper so as
to explicitly indicate that A and e** are matrices. A three-stage formula with
third-order accuracy “ETD3RK” and a four-stage formula with fourth-order
accuracy “ETD4RK” are also given. "
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A common feature of these formulas, i.e., ETD2RK; ETD3RK and ETD4RK,
is that their weights used in calculations of the stage values {£;} and the final
result y,41 are linear combinations of power series of matrices,

RN AN (- A (Y S -
Q"(Z)'_Z(Hn)! - “z_ﬂg?:!‘ h ﬁ(e —ZF)’ (13)

k=0 k=0

where Z is an arbitrary N x N matrix. This class of power series was first in-
troduced by G. Beylkin et al. [3] in their theoretical investigation of ELP/ETD
methods. Qo(Z) is e and Qx(Z) for an arbitrary k € N is also an absolutely’
convergent power series without negative powers. Since limzy~o Qx(Z) =
1/(k!), @i(Z) can be considered to be an O(1) quantity in the context of the.
asymptotic analysis h — 0.

Using the power series defined above, ETD2RK is written as

gl Un . . . (143')
§2 = Qo(Ah) yn + hQi{(Ah) f(&1) ' . {14b)
Ynr1 = Qo(Ah) yn + R{Q1(AR) — Q2(AR)} f(&) + th(Ah)f(fz) . {14¢).

ETD3RK and ETD4RK can be‘—represe'nted in a similar way. This fact leads
us to introduce Butcher tableaux into ETD Runge-Kutta methods.

. 3.2 Butcher tableauz

The s-stage non—ETD Runge-Kutta method to solve an ordinary differential
equation

u(z) =g(z,u(z) (15)
is specified by column’ vectors b, ¢ and a matrix A = (a;;). The set (4, b, ¢)
of an-explicit scheme defines a procedure K C '

i—1

Gi=un+h)d a;9(+ch, &) (i=1,2---,5), (16a)

=1
un+1:—un+hzbg:c+c,h &), - (16b)
i=1
cl| A
and is usually written in the tabular form b" ., which is called a “Butcher

tableau.”

To represent ETD Runge-Kutta methods in the same tabular form, we rede-
fine A and b as a matrix and a vector, the elements of which are themselves



0 -
1| QuAR)
‘Ql‘*Qz Q2
0 - |
3 | 3@u(AR/2) _
1] —Q1(AR) . 2Gh(AR) _
| Qi —3Qx+4Qs 4Q2—8Qs —Q+40s
. ; .
3 1 3@1(AR/2) _
110 %Ql(Ah/2)
1| Qu(AR) —@i(AR/2) O . Gi(AR/2) |
Q8@+ 105 2Q:-4Qs 2Q:—4Q: Q2 +4Q

. Fig. 1. ETD2RK, ETD3RK and ETD4RK represented by Butcher tableaux.
Q. without an argument means Qx(AR)} and O is a zero matrix.

matrices, a;; and B;, given by power series as

o = 3 o (Ach)* (¥ eR), (17a)
k=0 X

B=3 AP (AR (89 e R, (17b)
k=0 .

where the superscripts (k) on a;; and 3; -are merely indices and do not signify
the power or derivative. We denote the redefined mattix (c;;} and the vector

(3;} by A and B, respectively. The set (A, B, c) of an explicit scheme defines
a procedure,

& :=eACihyn+hiaij f(g.‘.') (z: 1:21"' ,S) + (188‘)
=1 '
Yn+t1 = Ch Yn + hZﬁlf(gt) ? (18b)
=1

and can be written in the same tabular form as in non-ETD Runge—Kutta
methods. Using modified Butcher tableaux, ETD2RK, ETD3RK and ETD4RK
can be written as shown in Fig. 1. :

For a suecinct description, we introduce several symbols here to represent the
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coefficients of lower order terms by

(0)

Qi =0y = (Aclii'{)n_’o aj (19a)
. Q5 — Q45
Yij = ag) = lim 29T % , (19b)

(Acih)—»0  Ach
Qg — ai; — ’W/ijAC,'h

(19¢) |

b = ey = oo (Acih)? ’
=40 = :
b, .= (Ak)rllo gi. - (19d)

In the following sections, we assume that oy; and f; are arbitrary power series
defined by egs. (17a) and (17b). Additional assumptions such as that they are
linear combinations of Qx are not made a priori as far as possible.

4 Rooted tree analysis and order conditions

To derive the order conditions of Runge-Kutta methods, we must expand both
the strict. and numerical solutions in terms of step width k and compare their
lower order terms. The rooted tree analysis is a common device for conducting
such operations systematically in non-ETD Runge-Kutta methods [7]. We
apply the tree analysis to ETD Runge-Kutta methods in this section.

4.1 Consistency

Before examining the order conditions, we require the consistency, i:e., the
stage values {{;} and the final result y,,, are rigorously calculated-when

f(y(z)} in eq. (1) is a constant vector f,. In such a case, the integral equation
(2) becomes :

t
Yzt 1) = ylz) +e et dr 1. (20)
This can be integrated to give
y(zn +he) = QBy(iL‘n) + hCiQifc ) (21a)
Y(@n +h )= Qoylzn) + A fo ~ (21b)

. where Qi = Qi(Ach). On the other hand, an s-stage ETD Rungé—Kutta
method, when applied to eq. (20), gives

i1 ' _ i-1 ,
&= Qoyn+h D i f(&) = Qiyn + h (Z aij) fe (22a)
Jj=1 . 1

j:



i=1

tos = Qoum + b S B (€) :Qoyn+h(i @) . (22
i=1

By comparing these expressions, we see that
i—1] ] 5
>e;=aQ) and Y Bi=Q (23)
i=1 i=1

are sufficient conditions for consistency. Note that a consistent method can
solve eq. (20) exactly even if A= O.

We assume throughout this paper that the consistency is always satisfied.
4.2 Elementary differentials

In this section, we represent the kth derivative of f(y(x)) with respect to x
by a weighted sum of the elementary differentials over a set of rooted trees.

If the right-hand side of the differential equation (1) is interpreted as a function

g(y(x)) == Ay(z) + f(y(x)), the equation takes a general form /' = g(y(x)).
The formula for the kth derivative of this g(y(z)) is already known [7] and is
written as

. L= T alCOwE) 0<vkeD), (24)

t€Tk41

where T4 is a set of all rooted trees with k + 1 vertices, a(t) is a function
over the set of trees defined by

alt) = '}-r(tgil(t) (r(t) - order, y(t) : density, o(t) : symrnetry) . (25)

and G(t) is a map from the set of trees to the elementary differentials defined
in terms of the Fréchet derivatives U™ as

G()(y) :== gly) (7 being a tree with one vertex) , (26a)
G([ty, - ) (W) = g™ W)(G(t) (1), Clt2)(y), -, GlEm) () - (26D)

This definition is used recursively. The lower order Fréchet derivatives, g,
g, ¢® and g, are also denoted by ¢', ¢, ¢ and g"", respectively.

Let us introduce a subset of T4y by

Tirr = {{t] ; t € Tk}, @D
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where [ ] is an operation to add a new root to the original tree ¢, i.e., to add
a new vertex as a root’ connected to the original root by an additional edge.
We denote the inverse of [] by { } which is applicable only to the elements of
Tis1. The equality a(t) = a({t}) holds for all trees in T, because

_ (r({t}) + 1)! - B (13) R
a(t)_(T({t})-I-l)'y({t})l!a({t})l T el T ({th. (28)

Theorem 1 Define a map Fy from the set of rooted lrees to the elementary
differentials of f(y) as

f (t el &t= r)
Fo(t) == { G(2) (t € Tigr — Tipr , k€N), _ (29)
G(t) - AG({t}) (t € Tk+1 , ke N),

then the kth derivative of f(y(z)) with respect to x is writlen as .

k
— @) = 30 a®)FA(t)(y(z)) . . (30)

" t€Ti4

Proof. When-k = 0, the theorem is obvious from the definitions; therefore,
we consider the case where k£ > 1. Differentiating k times the both sides of.
the equation g(y(z)) = Ay(:c) + f(y(x)) , we obtain :

k ' x gk
S 6@ = a(y@) ~ Ay
dk' dk—l
= E&;—kg(y(x)) - Amg(y(ﬂ) - (31)
Substitution of eq. (24) into this equation leads to ‘
k
) = ¥ alCnu@) -4 Y a@o0wE) . (62

t€Ty 4y LT,

The summation in the first term on the right-hand side can be divided into
two parts. The first is over the subset T4y — Tk+1 and the second is over the
subset Tiy1. After this division and a few calculations using a(t) = a({t}),
the right-hand side may be rewritten as

> aWGE(y@) + 2. o) (G®) - AG({t})) (y(=)) . - (33)

€Tk 1—Thyq tGTk+1

This is the definition of Fy. O

The map Fy can be described as an algorithm:



o

-

. g g
: g g9
15 9949 g 1=
g 9« rg [A \}A il
. f 1' Vfﬂ ff fm' 1 fl

Flg . Trees with up to four vertices in the map Fj

Algorithm 1 (calculatidn of Fy) .

Attach fU to the root if it has m children.

Attach g = Ay + f to leaves.

Attach A = A + f' = ¢’ to vertices with one child.
Attach f™ to vertices with m (two or more) children.

These items must be executed sequentially from the top of this list, and once
something is attached to a vertex, nothing more should be reattached to it in
the subsequent steps.- If we utilize the map G, a more simple description is
possible. '

Algorithm 2 (calculation of Fj using G)

e Attach the Fréchet derivatives of ¢ to vertices usmg the map G.
¢ -Replace g attached to the T with f.
o Replace'g’ = A+ [’ attached to the root with f’

The last item of this list corresponds to the calculation G(t) — AG({t}) in the
theorem. In other words, G (t)—AG({t}) removes A that is attached to the root.
In Fig. 2, we show the trees with up to four vertices to which the elementary
differentials.are attached by the map Fj. By regarding a child as an argument
of its parent, we can construct the compositions of multilinear mappings from

these trees. The compositions are £ fg, f'(g,9) f’Ag, f"(g,9,9), f”(g,Ag)
f'f'{g,g) and f'AAg from the left.

From the Theorem 1 proved and described here, we see that the Taylor ex-
pansion of the function f(y(z, + 7)) around 7 =0 is

. m—1 Tk
Fly(aa + 1)) = Z = TE a(t)Fa(t)(y(za)) -+ O(™) . (34)
=0 " €Tk

Substituting this expansion into eq. (2) and integrating it term by term, we
obtain the expansion of the strict solution as

Y(Tny1) — M ylan) = mij WQ i (AR) Y alt}Fa(t)(y(za)) + O(R™ ) .
k=0 €T 1

(35)



4.8 Ezxpansion of numerical solution

In non-ETD Runge-Kutta methods, the scalar weights {a;} commute with
the Fréchet derivatives {g"™}. This fact enables separate definitions of ele-
mentary differentials and elementary weights. On the other hand, the weight
matrices {a;;} do not commute with the Fréchet derivatives { f(_’")} in ETD
Runge-Kutta methods; therefore, it is impossible to define elementary differ-
entials and weights separately and a combined definition becomes necessary.
We provide such a definition here.

Definition 2 (welghted elementary differentials)
“Weighted elementary differentials” WD(t) WS(t) and WE(t) for ¥Vt € T
and 1 <V: < s are defined by

Wi =e@e, (36a)
Wo(r) = f ,' O - (36h)
W ([trtz - - Zav t t2 m]) ) K (36c)
WP ([tite - - tw]) = f(m)(WS(tl) Ws(t2) - W (tm) ,“ (36d)
WE(E) = EﬂIWD(t " (36¢)

These expressions are used recursively.

The expansion theorem of the numerical solution can be formulated by these
maps, WP, W5 and WE.

Theorem 3 An s- stage explicit ETD Runge-Kutta fonnula that satzsﬁes the
consistency conditions i e:cpanded as

(1)
E=tut B W) + O™, (372)
- tElgm . .
r{t) .
JOESS Z(t) )+ O™+ | (37b)
' tETqm
yn;;:e"_"m 5 B e ) + o) O (370)

tETSm d(t)
(1€Vi<s, Tcm={teT; r(t) <m}) .

Proof. Equation (37¢) becomes trivial once the expansion (37b) is proved;
therefore, we prove egs. (37a) and (37b) for all < (1 < Vi < s) by mathematical
induction. .



First, we consider the case i = 1. W3(¢) is O for all t € T because ¢, = 0 and
ay; = O. WP(t) is f when t = 7 and is O for the other t € T, since Wy (1)
in the definition of W is O. Thus, eqs. (37a) and (37b) give the expressions

£y = yu + O(h™F1) and hf(&1) = hf + O(R™H1), which are consistent with the-
definitions £, = vy, and hf(£) = hf. ‘

Suppose that egs. (37a} and (37b) are valid for 1,2,--- ,i € N.

The stage value &1 then becomes’

€i+l : eAc‘-+1h Yn + Zat-kl,Jh’f(gJ) |
j=
t) i

=My, + 3 t)Zﬂzm yn)+0(h"‘“)

t€T<
= Iyn + hCi+1Q1 Ayn + h-Ci+1Q‘1+1f+

hT(®
Z - .

i t)Wii].(t)(yn) + O(h™) (. consistency)
tG(T>2 anm)

= Yo+ ; Wi (®)(ym) + O(A™)
te <m
(v 9= At £, WD) = cnaQig) - (38)

Therefore, the expansion (37a) of the stage value &, is proved.

As for the the expansion (37b) of the stage difference h f(£;11), we must expand
the expressuon

' 7(t) , | ,
hf (yn+ > Z—@Wil(t)(ynHO(hm))- (%)

teTcm—1

Let M be the cardinal number of the set T<pym_1, then T¢,,—1 can be written
as {ti,t3,---,tym} by numbering all trees from 1 to M. Since the Fréchet
derivatives are multilinear mappings and their images are independent of the:
.order of their arguments, the above equation can be written as

m—1 _ h1+2i1 kjr{t;)
> >

X
M .
k=0 (kls"',kM)EMk I-[j=1 kb'o’(tj.)ki‘

.

f(k) (Wiﬁ-l(tl)'n B Ty W‘iil(tl)lt T aPVi‘il(tM)) : ‘s Wfi-l(tM)J) + O(hm-{—l) ’ (39)

v

k1 ) kym
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A

"

where My is a subset of ZM := Z x Z x --- X Z defined by

M
M= {(k],"',k}\,f) 1<VJ<M O<A EZ Zk ml\.} (40)

j=1
Let ¢ be a tree constructed from ty,12, - ,tp as

t_[tﬁlt = [t t; ot . .. (41)

kg

Then, it can be seen that the Fréchet derivative f*) in the summation of
the expression (39) is W}, (t). From the definitions of the order r(t) and the
symmetry o(t), it is obvious that

M u | o
L+ 3 kjr(t;) =7(t) and H-(kj!a(tj)kf)zo(t). (42)

Since the set of rooted trees defined by -

[TSm—I] = {[t?lt?-” tﬁ?] ;(klak%' SR kM) € My ’
0SESm=1,tty ety € Temon) (43)

contains all the elements of T<m and the terms that correspond to the trees
in [Tem1] — Tem are O(R™H), the summation over the set Uit My in eq.
(39) can be replaced by the summation over the set T<m when the O(h™+1)
terms can be neglected. Then the expression (39) becomes

r(t) S
TSRO + O (44)
t€Te,, T . S ‘

which validates eq. (37b). O

The weighted elementary differentials deﬁned above can be calculated by the
followmg algorlthm

Algorithm 3 (weighted elementary differentials) -

o Attach indices i,5,k,1,--- to each verter of a rooted tree t. The index i
should be attached to the root. . k

e Attach ay; to the edge [, j] = [g , i to the edge [j,k] =

o Attach the Fréchet derivative f™ to vertices that have m chzfdren (1 <m).

» Attach g to leaves of a tree t # 7 and attach f to the root of T.

e Construct a composition of (multi)linear mappings, so that the edges be the
arguments of the parent and that the child be the argument of the edge.



g 9

I m
i . (a3%) Cf},‘m-' ‘ga'kz C:"Ikm'
< =
: Qg ai& Q5 a',-’;c

fH fH
Fig. 3. Calculation of a welghted elementary differential
g
Jo R I o7
B o /
\} \) \}*f N a\}*f
fﬂ fH

Fig. 4 Another example of a weigfltéd elemehtary 'd.ifferentia_l

e Sum this composition over each indez ezcept 1, z €y Lorml Lok=1 ij:'l e
The resulting sum is WP (t).
o Caleulate T2, BWP(E) = WE(2).

This algorithm is executed on a tree as shown in Fig. 3. The composition
constructed from-this tree corresponds to f”(0i;g, auf"(crg , cemy))- The
summation over each index leads to

WD(t) = E ZZ Z F (039 atkf (amg, Qmg))

j=1k=11l=1 m=1

=Y (@i, aik-_f"(ckag, c@%g)) (. consistency) ,  (450)

i=1 k=1

WE) = 3OS A (cQig, ol (alle, aQbe) - (45h)

By expanding the power series 53, @1, QF and oy in the last equa,tlon and
neglecting the ﬁrst and higher order terms, we obtain

(Zszmkck) 9. f"9,90) - | (46)

=1 k=

The coefficient part is an elementary weight ®(t) and the composition part cor-
responds to an elementary differential F(t) in the theory of non-ETD Runge-
Kutta methods [7]

Reexpansion of the power series in the expression of WD (t) gives its complete

expansion. For example, applying the algorithm to the tree [r]r]] as depicted
in Fig. 4, we can calculate W, (t) as

5

W)= 323 g0, ol o) = 32 1ol ol 6dfa) - (47)



If we choose the m;th order termn in Qin the moth order terny in dik and the
msth order term in Q% i.e.,

(Aeh)™ . (Agh)™s
— Aah ™ and e _ , 48
R (s 1 11 (48)
respectively, we can see that the term ’
_— aig I composed lmJear mappings

my +metm C; mg (M2} Cr.
h1+ 2+ 35: Ty N

* (1 + 1)!6‘ Gik (m3 + 1)!
'—\,—.—J

e} ) . Qf

}-H(Amlg ; Amz frAmgg)‘ (49)

is included in the complete expansion of WP(t). By adding terms over all pos-

sible and necessary sets (m;, mg, m3), we obtain the truly truncated expansion
of W,-D(t_).

4.4 Onrder conditions

Now that the expansions of the strict and numerical solutions are established -
we can define order conditions by comparing their lower order terms. In the
following; the terms up to pth order of a power series S (h) are denoted by
[S(h)]<p and the pth order terms are denoted by [S(h}|—,. The equality y(z,,) =
Yn 1S assumed.

Definition 4 (strong pth order conditions) -
If the terms up to pth order of the difference y(xny1) — eM y(z,) ,

Y EAR T aWEGOGE),  (50)
k=0 .

teT}

and those of the dzﬁerence Ynt1 — ey calculated by an ETD Runge-Kutta
formula , ‘ : ' o
hr(t) g ) D
D> ()za[w, }ym)]
iET<
coincide with each other.-term-by-term, the formula is said to have strong pth
order accuracy.

| 6

<p-r(t)

In this definition, @ in eq. (50) and §; in eq. (51} are not expanded and
are treated as O(1) quantities, while the weighted elementary differentials
wpP (t)(yn), 1., hf(&), are completely expanded. :

Definition 5 (weak pth order condltlons) o
Suppose that an ETD Runge-Kutta formula satisfies the st'rong (p—1)th order



conditions. If the reexpanded and truncated pth order terms of the numencal
solution ,

Rt
E; ) 2 Z B0 (WP O], (52)
and those of the strict solution , '
- RIQp(AR 2 @) Fa(t)(y(n)) o (53)

tET,

coincide with each other term—by—‘tem', the formula is seid to have weak pth
order accuracy.

Note that @, and §; in the pth order terms are expanded and their first and
higher order terms are neglected in the definition of the weak order condition.

In terms of these conditions, ETD2RK has the strong second-order accu-l
racy, ETD3RK has the weak third-order accuracy and ETD4RK has the weak
fourth-order accuracy {Section 5).

When an ETD Runge-Kutta formula satisfies the weak pth order conditions,
it converges to the corresponding non-ETD Runge-Kutta formula with the
same order accuracy in the limit (Ah) — O. This means that in the case
where the matrix A is O or negligible, the numerical solution is calculated by
a standard non-ETD Runge-Kutta formula or its neighbors.

4.5 Convergence

Convergence of a time discretization scheme is usually defined as follows:
! . . . )

Definition 6 (convergence)

Suppose thal a numerical integration is performed over a-time interval [a, b]
by a scheme using a step width h = (b — a)/N. Let e, be an error vector at
the nth step (x = a+ nh) and assume that the initial value has no error, i.e.,
eo = 0. If the error vectors {e.} convérge to 0 in the limit of infinitesimal
step width, i.e.,

o<V N, h}im lenll =0 ', (54)

then the scheme is said to be convergent.

We check the convergence of ETD Runge-Kutta methods in this section. The
proof for non-ETD Runge-Kutta methods [12] is slightly modified and applied
to ETD methods. We assume that the functions f(y), y(z) and ay;(h) are
continuously differentiable at least p-times with respect to their arguments,
and that {a;;} and {;} are bounded operators.



When an ETD Runge-Kutta formula satisfies the strong pth order-conditions, -
the error. £,,;(h) defined, in terms of the strict solutlon Un = y(z,) and

Ynt1 — Y(Tni1}, 'DY o o |
& = Q4in + hfa-ﬁf(é}) (=125, (55
Yns1 = Qo+ b ;ﬁ; (&) + En+1(h) (55b)
is an O(RPT) quantity, i.e.,-
0<3ho, 3GER, 0<Vh < hy, [[Enpall < GHPH . (56)

Let e, be the difference y, — ¥, and assume that the initial value is correct,

L.e,, €9 = 0. By subtracting the numerical solution from eq. (55b), we can see
that

lentall < ||Qo||||€nﬂ +RLYCNBING - &Il + GRP (0 <Vh <ho), (57)
i=1 :

where L is the Lipschitz constant of the Lipschitz continuous function f

Following is the proof for two-stage formulas with the strong second-order
accuracy. No essential difference exists in the. proof for three or more stage
formulas with higher order accuracy. Substituting the evaluations,

I &l =teal, - (ssa)
2 = &Il < (IQRN + KL lamlleall ;- (58b)

into the lnequallty (57) we obtain .
lensall < {NQoll + RLAUBT + 1B1IQBN) + K2 L2 Ballltar Y Hlerll + GR?

— 01 2r2 d2 3 ]
= ||QD|| (I+hL”QU” + R IIQOII) Ilen||+Gh (59)

where §; and 62 are pCSltwe constants independent of h € (0,hp). By a Su1table
choice of hy(< ho), this can be rewritten as - -

lenall < I1Qoll(1 +AL)enll + GH®. (0 < VA < hy) (60)

where L' is a constant multiple of the Lipschitz constant L. Repeateclly ap-
plying this inequality to itself, we obtain

n—1 ) o ’ n—1 '
leall < 37 HQol™(I'+ ALY"GR® < NAINI ST (1 4 RLY™ GRS

m=0 m=0

< eNh||A||'enhy__1 Ehz < e(|;A'|]+Lf)_(b_a)‘£h2 0 < Vﬁ '< N _ 61



Convergence - : L : . _
0<VYn <N 'lim lleall =0 _ “(62)

follows from the inequality (61) since the coefﬁment of h? is independent of

h € (0,h).

5 Derivation of formulas
1 - Two-stage formulas

Two-stage ETD Runge-Kutta methods can be represented by a tableau as

0
c2 | o

S

To satisfy the consistency conchtlon a1 must be 02Q2 The expansmn of the
difference yn+1 — Qo Yn becomes

h(Br + Ba) f + h*Bacaf'g | ,_
+RLBAI Ry + W B 0,9)~ B3BAL o+ 00, (63)

where A := A + f'. Comparing these expressions with the expansion of the
strict solution,

Y(@ni1) = €' y(2a) + RQUAR)f + R Qa(AR) f'g+
- B°Qs(AR) f'Rg + K Qa(AR)f(9,9) -+ ORY) , (64)

we obtain the strong second-order conditions as

B+ Bo=@ and [Bacr=Qs. (65)

These equations can be solved to give

fr=Qi-—Q: and fi=—Qa. o (66)

Therefore, the two-stage formula with the strong second-order accuracy is
represented by a Butcher tableau as



G
Ca CzQ?
1 1
— 5@ Qe

A choice of the parameter ¢; := 1 yields ETD2RK.

From the above derivation, we can see that the power series a9, -'ﬁl and 0
are well characterized by the consistency and order conditions. L

The difference in.the third-order terms between the nurﬁerical.and strict so-
lutions is

B {(20:- @) (FRg+ 0.0) - Zaus'ss} - (6

By neglecting the first and hlgher order terms in the power series (J; and Qs,
we obtain

h? { (Z - —) (FAg+ (g, 9)) ———2f’f’ } (68)

When ¢, = 2/3, the first term in the brace braokets vanishes and the rest
becomes —(h*/6) f'f'g.

5.2 Three-stage formulas

Three-stage ETD Runge-Kutta methods can be represented by 5 tableau as -

0

]
Ca | a2
C3 | @31 (Qaz

B B B

If we require the consistency conditions,
Q) ='Cfo and oz + g = Ce.Q? ) (69)
the difference yny1 — Qo y» can be expanded as

O+ S + R (Bica + Bscs) g
+ h3 (ﬁzcz + ﬁscs) (fAg+ f'(g,9)) + h®Baanca f'f'g + or'y. (70)

The strong third-order conditions for-the numerical result y,4, are derived
from the comparison between the expansion of the numerical solution (70)



and that of the strict solution {64), and can be written as

Bt Bet Bs=Ch, (71a)
Pace + Bacs = Q2 , (71b})
ﬁzcg + facs = 2Qs , (Tlc)

Baazace = Qa . : (71d)

Three-stage formulas that satisfy all these equations simultaneously do not .
exist: therefore, we replace the last condition with its constant term bzaszco =
1/6. This means that the relaxed condition is imposed on the term h*f’f'g
which is proportional to A, while the more stringent ones are imposed as before
on the terms A3 f’Ag and h® f7(g, g) which are proportional to A%. Suppose that
¢z # ca, then the upper three equations, (71a), (71b) and (71c), can be solved
to give o :

. . Ca+ C3 2 ) .
B =Ch v Q2 + CzC3Q3 , | (72a)
C3 2
.)82 Cz(Ca — Cz) 2 Ca (C3 - Cg) 3 . ( )
Ba= —— 2 Qo+ ;Q ’ (72¢)
: ca(ca — ¢2) 2 ca(cs — 02) P ' A
and the constant bs becomes
_ 2 — 3¢, '
b= | = —_— 73
3 (Ai!)n—]»o Ps 6es(cs — o) (73)
Substitution of bs into the equation bsasscs = 1 / 6 leads to
cales — ¢z} .
= 74
aaz 62(2 — 362) ( )

5.2.1 A class including ETDSRK

In the preceding section, the power series ag) is completely determined by the
consistency condition, while as; and aa, are not. The expression of a3y, derived
from one of the weak third-order conditions, specifies only the constant term
‘of the power series aaz. - ) '

If arg is required to be a constant multiple of Q3 from some other considera-
tions, then a3, and a3 are completely determined as

gs = 0.3‘2@% an‘d Qg = (Ca - agg)Q? . . (75)
This defines a class of schemes parameterized by ¢, and cs. A choice of these

parameters (cg, ¢3) := (1/2,1) gives ETD3RK. .



5.2.2 A class derwved from the stage order conditions

In this section, we consider the case where the stage value &; is required to
have the strong second-order accuracy. This requirement can be written as

(¥aoCy = CgQg . (76)
This equation with the consistency condition can be solved to give

c | c
Cap = C—3Q3 and o = Q] — C—ng - : (77)
2 2

Although the parameters ¢, and c3 are still arbitrary, forms of the power series
a3y and as; are almost characterized. To be consistent with ag; already derlved
from the weak third order conditions, the relation

< _ csles— )

- 78
2¢y a2 = 62(2-—362) (78)

must be satisfied, namely, cy = 2/3. Thus, we obtain a class of schemes pa-
rameterized by ;.

5.8 Fouf—stage foﬁnulas

Four-stage ETD Runge-Kutta methods define the numerical procedure,

: i1
£i = eAC‘.h Yn -+ h Z aijf(gj) (1 = 1?2) 3: 4) ) (798’)
j 1
s = ey + hZﬂ: €. (79b)

Since it is impossible to satisfy the strong fourth-order conditions by the four-
stage methods, we consider the weak fourth-order conditions in this section.

The expansion of the difference y,11 — Qo of a consistent method with four
stages is shown in Fig. 5 and the weak fourth-order conditions derived from
this expansion are shown in Fig. 6. The equation including sz, 742 and 43
has no counterpart in the fourth-order conditions of non-ETD Runge-Kutta
methods. Therefore, the weak fourth-order conditions cannot be satisfied by
a simple replacement of a;; in the non-ETD formula with a;; := a;QY.

5.3.1 A class including ETD4RK

The class of formulas that satisfy the weak fourth-order conditions includes
ETD4RK. In addition to the order conditions, we require that as; = g =



first-order : h(0i + Bo + O+ O4) f
second-order :  h2(Baca + facs + Baca) f'g
thirdorder : h*L(Bad + ok + Buck) (g, 9) +

h33(6205 + Bach + fach) f'Ag+
h3(Bsaszce + Batuacs + Baaascs) ' f'g

fourth-order  :  A*1(Gach + Bacd + facd) f'A2g+
h3(B2c} + Baci + Baci) (g, Ag)+
PAL(Bach + foch + uch) (9,9, 9)+
'3 (Baassch + Baaanch + Paancd) ' FAg+
h'5 (Bsasac + Paaaacs + Paassci)}f (g, 9)+
h4(ﬁ303’}f$2€2 + Bacayazca + Bacavascs) fA flg+
h*(Bscaasecy + BiCstancs + ﬁ404a4303)f-."(9a f'9)+
h'Baaasazzcaf' f'f'g

Fig. 5. Expansion of the difference of a four-stage formula

) = CZQ%
(consistency ) j - (a3 + Qzp = CSQ?
L Q1 + s + g = Q)

BrBatfatfs=
Baca + Baca + Prca = Qa
Pacl + Bach + Pact = 2Qs

| Baancy + Biagce + fadascs = Qs

- {strong third) <

bgc-% -+ bacg + 5463 =
| baazaca + baagacs + byagsci =
(weak fourth } ¢ bycayseca + bacavasCe + baCqvascs =
bicsaszcy + baCaarca + bycqaascs =

byasaazacy =

ﬁlr—- 00— 'ﬁl;—- 5'»—- o =

“

Fig. 6. Weak fourth-order conditions




O and that the scheme converges to the classical four-stage Runge-Kutta
formula with fourth-order accuracy in the limit (Ah) — O. These requirements
determine the matrices oy, oz and {f;; 1 <1< 4} as

o h e
0‘21=O’32=‘2‘Q1 (Aa), ) (805‘)

= —3Q2+4Q3, Bo=0=20:—-4Qs, Bi=-~Q>+4Qs. (80b).
The weights {a4; ; 7 = 1,3} for the fourth stage are not determmed yet. The
COIldlthI’lS for the fourth stage are given by
1 .
Qg = Qi(Ah) —aag , a3=1 and yu= =71 (81)
Only the constant and first-order terms of ays are specified, while the other
terms remain arbitrary. Some other conditions are necessary for a better char-

acterization. If we deﬁne a43 = Ql(Ah/ 2) then we can obtam ETD4RK

5.3.2 A c!ass denved from the stage orde'r condatzons

In addltlon to the consistency and the weak fourth-order conditions, we require .
that {3 and €, have the strong second-order accuracy and that the strong third-
order conditions are partially satisfied by €,. The second item means that
among the third order terms, h*f"(g,g), h3f'Ag and R*f'f'g , the strong
order conditions for the first and second terms are satisfied. These additlona,l
conditions can be written as ' '

(i3aCo = C%Qg ) (823)
Qi4oCa + 4303 = C‘%Qg ) (82b)
(4aCh + ag3ch = 2c3Q5 . o - (82¢)

All these conditions, i.e., the consistency, the weak fourth order and the addi-
tional ones mentloned in this section, can be solved to give a unlque formula
when ¢; # ¢3 and c3 # ¢4. The followmg is the formula

0

ol B

5 | 3@% - 203 203

1] QF-5Q4+ 1203 9Q4— 3601 —4Q% + 240
Q1—-3Q2+4Q: O 402 — 8Qs —C2 +4Q;

The limit scheme limapy—o(A, B,¢) = (A, b, e) satisfies the fourth-order con-
ditions of non-ETD Runge-Kutta methods. :



6 Concluding remarks

We have investigated ETD Runge-Kutta methods proposed by previous au-
thors. The main purpose of the present study is to provide a mathematical
foundation of the new methods.

First, we have shown that the new schemes can be represented by Butcher
tableaux whose elements are themselves matrices instead of scalars. Each ele-
ment of a tableau is defined by a power series of the matrix A that appears in
the linear term of a differential equation ¥ = Ay + f(y(x)). This representa-
tion enables us to view the new methods from a perspective of the theory of
Runge-Kutta methods.

To establish the order conditions, we have applied the rooted tree analysis
to the new methods. The essential difference from the conventional Runge-
Kutta theory resides in the fact that the coefficient matrices of a scheme, ie.,
{a;} and {8;}, do not commute with the Frechét derivatives f™ . From thlS
fact, separate definitions of elementary differentials and weights, as in the con-
ventional theory, becomes impossible. Therefore, we have provided combined
definitions, i.e., weighted elementary differentials. In terms of these differen-
tials, the expansion theorems and the order conditions have been established.
Convergence of a scheme that satisfies the order conditions was also confirmed.
Furthermore, we saw that an ETD Runge-Kutta formula with the weak pth
order accuracy is a conventional Runge-Kutta formula with the same order
accuracy in the limit A — O.

Finally, with regard to the derivation of the new ETD Runge-Kutta formulas,
we saw that one of the difficulties is the characterization of the power series
a;; and 3 without arbitrary assumptions. It was shown that imposing the
stage order conditions is one of the ways to overcome this difficulty.

The concept of ETD Runge-Kutta methods may be combined with other
time discretization schemes, e.g., general linear methods [6,7], pseudo Runge-
Kutta methods [8,13], two-step Runge-Kutta methods [14] and so on. We will
continue to study such composite schemes in the future.
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