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Electromagnetlc microinstabilities in helical systems

H. Sugama and T.-H. Watanabe
National Institute for Fusion Science, Graduate University fo;" Advanced Studiés
Toki 509-5292, Japan
(Dated: January 22, 2004)

Electromagnetic microinstabilities in helical systems.are studied by numerically solving inte-
gral eigenmode equations, which are derived from the ion gyrokinetic equation, the quasineu-
trality equation, the Ampére's law, and the massless electron approximation. The stellarator
expansion technique is used to evaluate finite-beta effects on the guiding-center drift in the heli-
cal configuration, where the toroidal plasma shift and the magnetic shear strongly influence the
magnetic curvature and accordingly -the stability of both magnetohydrodynamics (MHD) and
kinetic modes. The kinetic integral equations are shown to reduce to the ideal MHD ballooning
mode equation in the fluid limit, from which the Mercier criterion is obtained. For helical geom-
"etry like the Large Helical Device (LHDY}, it is confirmed that, when increasing the beta value,
the ion temperature gradient (ITG} mode is stabilized while the kinetic ballooning mode (KBM)
is destabilized due to the unfavorable geodesic curvature resulting from the negative magnetic
shear combined with the toroidal plasma shift. Also; dependencies of these kinetic-mode prop-
erties on the poloidal wave number and the magnetic shear are investigated. It is found that the
KBM-unstable parameter region is narrower than the Mercier-unstable region in the LHD-like
conﬁguration;
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L INTRODUCTION

Microinstabilities in magnetically confined plasmas have been studied extenswely as a key
mechanism for producing plasma turbulence and resultant anomalous transport (1). Above all,
ion temperature gradient (ITG) modes and turbulence driven by them are most actively inves-
tigated by numerous theoriés and simulations. in recent years [2]. The ITG mode is essentially
an electrostatic 1nstab1hty, which is more unstable for lower-beta plasmas and electromagnetlc
microinstabilities such as the kinetic ballooning mode (KBM) [3] are anticipated to become an
active source of turbulence and transport in high-beta regimes. For the. ITG mode, electrous are -
often assumed to adiabatically respond to electrostatic fluctuations while, in the electromagnetic
case, 1t 1s nécessa.ry to include more complicated nonadiabatic electron dynamics due to magnetic
fluctuations. So far, for helical systems, theoretical studies of microinstabilities have also been
concerned with electrostatic modes mainly [4-6] and those of eleciromagnetic-modes have riot
been done sufficiently compared with tokamak cases. Since, recently, helical systems such as the

'Large Helical Device (LHD) [7] have succeeded in producing high-beta plasmas, understanding

the physical mechanism of their anomalous transport requires electromagnetic-microinstability
analyses. Also, electromagnetic microinstabilities are deeply related to the ideal magnetohydro-
dynamics (MHD) interchange and ballooning modes with short wave lengths. In the LHD, a
large pressure gradient is observed even in the Mercier-unstable region (7, 8]. Therefore, it is
interesting to examine how the stability criterion based on the ideal MHD is modified by the
microinstability analysis, which takes account of kinetic effects such as the Landau damping and
the finite gyroradii. 7

In the present work, we investigate electromagnetic microinstabilities in helical systems with
the LHD-like magnetic configuration. Recently, the kinetic ballooning mode in the LHD was
also studied by Yamagishi et ol {9] using the ordinary differential eigenmode equation derived
by Tang et el [3], in which the poloidal wave length is assumed to be much larger than the
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ion thermal gyroradius. Here, in order to fully take account of the finite-gyroradius effect on
the electromagnetic mode, we use the kinetic integral eigenmode equations similar to those by
Dong et al. for tokamaks [10], which are derived from. the ion gyrokinetic equation [11, 12],
the quasineutrality condition, the Ampere s law, and the massless electron approximation. Qur
numerical solution to the klnetlc integral eigenmode equations utilizes procedures by Sugama [13]
for proper analytic continuation of the dispersion relation in the complex frequency plane, by
which we can calculate both positive and negative growth rates so as to accurately determine
the critical condition for the marginal stability.

Helical ripples and safety-factor profiles in the LHD-like configuration present a striking con-
trast to those in tokamaks. The ideal MHD ballooning mode in tokamaks is stable for the
negative magnetic shear dg/dr < 0 (¢: the safety factor, 7: the minor radius) while, as shown: by
Nakajima [14], the unfavorable geodesic curvature resulting. from the negative shear combined
with a toroidal (Shafranov) shift of the finite-beta helical plasma destabilizes the ballooning mode
in the LHD configuration. Here, we employ the stellarator expansion method [15] to evaluate
the finite-beta toroidal shift, which critically affects local magnetic shear, magnetic curvature,
guiding-center drift, and resultantly stability of both MHD and kinetic modes. The kinetic
eigenmode equations are shown to reduce to the ideal MHD ballooning equation in the fluid
limit, from which the Mercier criterion for the helical plasma is obtained. Then, we can make a
comparison between kinetic results from the microinstability analysis and the Mercier criterion.

The rest of this paper is organized as follows. In Sec. II, equilibria of helical plasmas are treated
by the stellarator expansion technique to derive useful formulas for evaluation of the toroidal
plasma shift and the magnetic drift for the finite-beta case. The kinetic integral eigenmode
equations for electromagnetic microinstabilities are derived in Sec. III. A and the ideal MHD
ballooning equation is obtained from them in the fluid limit in Sec. III. B, where we also derive
the Mercier criterion which takes account of the finite-beta helical conﬁgura.tlon by using the
formulas in Sec. IT. In Sec. IV, the kinetic integral eigenmode equations are numerically solved to
investigate dependencies of electromagnetic-mode properties on the plasma beta, the magnetic
shear, and the poloidal wave number. There, the relation of the kinetic results to the Mercier
parameter is also examined. Finally, conclusions are given in Sec. V.

II. EQUILIBRIA OF HELICAL PLASMAS

Here, we use the toroidal coordinates (r,9,¢), where r, 8, and { denote the minor. radius,
the poloidal angle, and the toroidal angle, reSpectwely, and they are related to the conventional
cylindrical coordinates (R, ¢, Z) with

R=FRo+A(r)+rcosf, ¢=—( Z=rsing. | (1)

Here the point deﬁnecl by R = Ry and Z-= 0 represents the geometncal center of the poloidal
cross section of the wall boundary (or the external helical coils), and A(r} is defined later.

In the stellarator expansion [15], the lowest-order poloidal flux function ¥ =
—(4m%Ry)™' [ B - V4V is independent of ¢, and is written as-4 = A + ¢,. Here A is the
toroidal () component of the magnetic vector potential associated with the plasma current and
1y, represents the contribution from the external helical fields. The function A is determined by

Vid= -mz—d) +G(), o | | (2)

where Vz denotes the two—dlmensmnal Laplacran in the plane perpendlcular to the toroxdal
dlrectlon the equ111br1um pressure p(y) and G(z) are flux functions and ) is given by

_2AR-Ry)
0==—p

Here, Q is assoc1ated with the contnbumon of the helical field to the averaged magnetic cur-
vature. Hereafter, we assume that there is-no net torojdal current and that ), = p (7o) and
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Q= Qj(rg) are functions of ry = [(R — Rp)? + Z3Y2.~ 7 + A(r)cos @ only, Where To is the
minor radius measured from the center (or magnetic axis) of the vacuum helical field. Now, we
take 9 = 1(r) so that the poloidal cross section labeled by 1 is a circle with the radius r, the
cénter of which is shlfted from R RO by A(r) (<< r). I\eglectmg small terms ~ (A/r)

(2) is rewritten as L :

Vi [w(r) =4hp(r) = A(r)v,b;l(r-) cos 8] ~ —4 Z,((T)) [— cos6' + Qh(r)] + G(r), 7 (4)
where /"= d/dr and the pressure gradient p' is regarded as a small quantity of'(.f)(é‘./r). We
obtaint G(r) = 47Qx(r)p'(r)/4¥'(r) from’the no net toroidal current condition, (V3 A) = 0, where
{) denoctes the flux surface average Then, separatmg Eq. (4) into the 6- averaged part and the
§-dependent part, we find 9¥(r) = ¥4 (r) and

" (A¢) Ay por '
W2V Y _ygt S
| (B = "R )
respectively. Defining the safety factor q(r) —rBy/(Ro/(r)) and the local' plasma beta value
B(r) = 8mp(r )/Bg, and usmg Eq (5) yield ' ' B
T")/—‘-(0')

A(r) = Rog(r ] /yq{y)ﬁ yy + L2 2(0)

where the tormdal Shlft A(O) of the magnetic axis can experimentally be controlled by the
external vertical field. [Equatlon (6) is equlvalent to Eq. (7.112) in Freidberg [16]).] From Eq.
(6); we can-show: -~ .. - R o

(6)

Tl A }.2",?3” I xgq('m)ﬂ'(m)dfs+§(r)4§’")ﬁ @
and S : o | : N o
A = —alr) £ [25(r) — BA'() + 28(r) — () + rgf(r)]_?,‘ | )

whére the magnetic shear parameter §(ry=rq (r)]q(r) and a(r) = —Rog?(r)3'(r) are defined.
The toroidal force balance for the finite-beta case causes the toroidal axis shift and the poloidal
field compression; which are taken into account by Eqgs: (6)-(8). In the well-known s-a model,
|A") > |A|fr ~ |A]/r? is used and only the fifst term —a on the right-hand side of Eq. (8)
is 'Tetained by assuming that the pressiire profile has a steep gradient only around the surface
considered [see Sec. 10.5.5 in Freidberg [16]] This term is responsible for the second stabilization
of the ballociifig fode in high beta regimes:” However, it was pointed out by Nakajima [14]
following the hlgh beta model by Coppi et al. [17] that, in-the helical system, the second group
of terms [25(r) - 3]A’(r) on-the right-hand side should also be kept and combined with the
geodesic curvature in order to explain the destabilization mechanism of the balloonmg mode
for the case of the negative magnetic shear § < 0. Using the expression for A” in Eq. (8), we
can naturally unify the conventional s-a model based on the assumption of the steep pressure
gradient and the hlgh beta model by Copp1 et al. {17] and Nakajlma 114] who used the 1 near—ams
expansion.

In the balloomng répresentation [18, 19] we treat the fuctuation which varies rapidly across
the field lines and has the wave number vector perpendicular to b = B/B denoted by

ki =k Vr +kber_ (9)

Mo ||

In the present case, the component k; tangential to the flux surface is e.pproxiniately equal to
the poloidal wave number, k, =~ kg = ng(r)/r, where n is the toroidal mode number. The ratio
¥ of the normal component k, to the tangential one k; is written as

kn -

z:_-é- §O- 00+ A1 8 +rAsing, L. L(10)



where O(A’) terms are neglected except for the term A’(1 + §)sin# that srgmﬁcantly affects the
ballooning mode stablhhy From Egs. (9) and (10), we have Ca _

CRL=RL+Eyo T

When evaluatmg the gmdlng—center drift which is responsible for balloonmg-type instabilities,
we take into account effects of helical ripples in the magnetic field strength by using B =
Bo{l — eoo(r) — €{r) cos 8§ — en(r) cos(LO — M()], where L and M are the poloidal and toroidal
period numbers of the helical fields, respectively (L = 2 and M = 10 for the LHD). Here,
€& = r/Ry and eh( ) (o TL) represent the toroidicity and helicity parameters, respectively,
and eqp(r) = $[(Q) + B(r)] is associated with the averaged normal magnetic curvature and
the diamagnetic effect. Then, the magnetic drift frequency for the particle species a with the
mass mq and the charge e, is given by

wp = 2¢ wm(vn + 5 /252G, (8) (12)

where €, = L,/ Ry is the ratio of the density gradient scale length L, = —(dlnng/dlnr)™! to
the major radius Ry, w., = —kgcT /(€aLr) is the diamagnetic frequency, v (v) is the paralle]
(perpendicular) velocity, and vr, = (27,/m,)'/? is the thermal velocity. Also, the dimensionless
curvature factor G¢(0) is defined along the field line labeled with g = ¢ — g8 by

G.(0) = RO[(b Vib x b]- (k. /k) -
(Q) /24 cos® + Liey/e;)cos{(L — Mq)d — Mao}
6)[sin6 + L(ex/e) sin{(L'~ Mq) — Mao}] L 13y
Unfavorable (favorable) curvature is indicated by G, > 0 (< 0). On the rrght hand side of Eq:
(13), the first term is derived from the averaged normal curvature, the second and third terms
correspond to the normal curvature due to the toroidicity and the helicity while the fourth and

fifth terms with the coefficient ¥ contain effects of the toroidal and helical geodesic curvature,
respectively. From Eqs. (1) and (3), the averaged normal curvature.term (€)' is written as

)y —Q’(r)+%(ﬂ+rc089) | S 1(14)

Here from Ref 20 the averaged helical curvature is expressed in terms of q and s as o :
M (r*/q M r .

W= TR F T e (15)‘

The: contrlbutron of the torordal plasma shift to. the normal curvature is represented by CL
2 A gy EPAY Y1 } AN
—,A+rcos€'-.———.————.=—— afr +23A' 28— §° +r _ 16
ot reosty = CRHL = 2 oty asnt o ) a9

where Eqs.(6)-(8) and (-} ~ § - ( + A cosH dB/(27r) are used. We see from Eqs (8),-(10), (13),-
(14), and (16) that a > 0 included in A” reduces G, and accordingly contributes to stabilization
by entering both the averaged normal curvature term ()’ and the I term combined with the .
geodesic curvature. In helical systems with negative magnetic shear § < 0, destabilization occurs
from an increase in G, due to A’ > 0 that also appears in both {Q)’ and .

In the next section, the gyrokinetic analysis of electromagnetic microinstabilities in helrcal‘
plasmas is carried out based on the geometrical expressions shown in this section.

III. EIGENMODE EQUATIONS
"A. EIGENMODE EQUATIONS

The distribution function in the (x, v) phase space for the species @ = i (ion) or e (electron)
is divided into the equilibrium and perturbation parts as f, = ngFy, + 6f, where ng is the
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equilibrium density and Fy, = 7~ %2v53 exp(—v?/v2,) is the Maxwellian distribution function.
In the magnetic field B, the perturbatlon part & f, with the perpendlcular wave number vector
k| is written as

§fa= ;¢n0FMQ + hae L Pa, ' (17)

" _

where & represents the electrostatic potential, p, = b x v/Q, denotes the gyroradius vector,
and Q, = e,B/(mqc) is the gyrofrequency. Here, the first and second terms on the right-hand
side of Eq. (17) represent the adiabatic and nonadiabatic parts, respectively. The nonadiabatic
distribution function A, is independent of the gyrophase and is described in the collisionless
linear electromagnetic case by the gyrokinetic equation [11, 12],

—_——— z’(w_— wpa)] hg = —i(w — wora) nOFMaJO(kJ-pa)_ (¢ = EI'IAII) (18)

where Ay = dA - b is the parallel component of the vector potential for the magnetic field
perturbation, wp, is given by Eq. (12) and

e = Wea |1 ( Y )2 3L 19

'W*Ta—_w*a T+ Cvurg ) ) - . E ()

Here, J; is the Bessel function of order zero and 1, = dIn T, /d Inng is the ratio of the temperature
gradient to the density gradient. In Eq. (18), we have neglected the parallel magnetic field
perturbation and used the ballooning representation to regard the poloidal angle & as'a coordinate
along the magnetic field line which forms the so-called covering space (—oo < 8 < +o0) [18, 19).
Throughout this work, following Dong et al. [10], effects of magnetic geometry in helical
systems are considered 0111y through the magnetic drift and the perpendicular wave number
vector described in the previdus section. Trapped particle effects and variation in the parallel
velocity vy along the field line are neglected because such instabilities as the ITG mode and the

ballooning made treated here are driven by passing particles mainly. Then, the solution of Eq.
(18) with the boundary conditions limp_4o0 ha(8) = 0 is given by

—i J°__ d'(Roa/ o)) (w — w,r,)
X noFyraJo(K.pa)e (¢~ 24y) | for y >0

ha = . {20
[ 8 ag oy e 00 (5 — 7 0
% noFMaJo(kipa)—l (qb —LA") for v).<0,
where k', is given by Eq. (32) and -
9 o . . z B Y- .
G(0.0) = [ a0 (Roa/fu)l - woul@)]. (21)

In the ballooning representation, the boundary conditions limg_.4e $(6) = limg_400 Ay(6) = 0
are also employed. Using the solution given by Eq. (20), we can calculate the density perturba-
tion, dn, = [d*v 0f, = —ngead/ Ty + [ dPvdy(k1pe)h,, and the parallel ‘current perturbation,
81 = Damie €a J v Jo(k1pa)havy.

In the same way as in Dong et al. [10] we here take the limit of the small electron—non mass
ratio, m,/m; — +0. Then, we'see that; in-Eq. (18) for electrons (d'= €), the terms proportional
fo the parallel velocity (v" ~ Ur,) are dominant and their balance yields the constraint for the
lowest order of A in the (m./m;)!/?-expansion,

/ " gk Aj(k) = 0, | (22)

[o <

where k = |3kg|(#—68y) is used as an mdependent variable instead of 8. Equation {22) implies that
the electric field integrated along the field line [ "Eydl-= ( (w/c) f A,dl should vanish in order to



forbid unlimited acceleration of massless electrons.. The quasmeutrahty cond1t10n Zaﬂ : eaénﬂ =
0.is rewritten as - . . , .
(1 + 7)g(k)
e [K; (k, K)p(k) + {K (k k) + Kok, i)} 224 (k’)] (23)
\/_ 11 12 ] ¢ I 1 )

wilere Te = Te/T,-. From the Amp‘ere’e,law kiA” = 47r5J||/c, we obtain-

3 2 UTi

a +°° kr r ’ i ' n YT
( j__[{Kélkk +K21kk }d)k +{K22kk)+K2(k k)} A||(k: ])
(24)

When using the Ampére’s law to determine the lowest order of A" in the (me/m;)!/?-expansion,
there simultaneously appear terms including an unknown low-order part of Ay which are not
negligible. However, these terms are independent of k so that, in Eq. (24), they are eliminated
by taking dlfferentlal with respect to &.

In Eqs.(23) and (24), the integral kernels due to ions are defined by

Kil(ka k’) Ki2(kl k’) :, = —3 f+m w*gd,r \/iei“”' e;(k—k')z/‘l)\l'wo(kl’kl)
0

Kk, k) Kinlk, k) | NAGET)
' ' ' w 3 mlk — k')?
X [w,.eTe_+ L=gm+ da)’

L (L KBk REARAYE
- (1+a) 21+ a)r, (1+a)r. Iy

1 _ (k= : :
X [g(k—k’) _Ei%k/f—é’)"' ] ; (25)
Te 2vVah Te  dak- o .

and those due to electrons are given by

e VT /Teq (k=K
Kk k) = & B, (w,.c 1) k¥

Kgl (k, k’) = _ész(k, k')

K3 (k, k) = ﬂ.4‘/\/__ (&_n) Ik — k|

o —w"_w__. ' -". Ld__ (k k’) .ﬂ v b
X [ o (w..e ‘:1) + 2|8kg|en (w*eu 1- ) T k'|/ d8"G.(6 )}.

Here followmg Dong et al. [10] we have used varlables defined by
7= Ral8 - 8')/|ul, . o (27)
2 ~ 2
P (fe,;) W2, (28)
Te@ \ g
- 2ieqwat [¢ Foes '
=1 e Lo M de" G (6" )
a + (9_9f) _/;r df Gc( )} . - C (29)
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k= 18kel(6 — 0k), K =[3Kkel(6' —6k), .~ - (30)

o kuk) k3 + k72 _
F°(’“l?’”*)f_{°(re(1+a)') exp( 2l +a)) - ey
K2.= K21+ 22(0)), K7 = KJ[1+ 538 (32)

In Eqgs. {23)-(32), the wave numbers kq, k1, and k are normalized by p7! with p, = /2T, /m;/<;,
and [, is the modified Bessel function of order n. The integral parameter 7 in Egs. (25) and
(29) has the opposite sign to that in Dong et al. [10] Equations {22)-(24) form coupled integral
eigenmode equations which determine the dispersion relation and the mode structure of the
electromagnetic instabilities in helical systems. Instead of using the second integral eigenmode
equation by Dong et al. [see Eq. (13)in Ref. 10], we have employed its derivative with respect to k
and the constraint given by Eqs. (24) and (22), respectively, although their eigenmode equations
and ours both give the same result for ; = 0 because A4 for the most unstable mode is an odd
function of & for the unstable mode as shown later. [There seems to be typos in Eqs. (16) and
" (17) of Dong et al, too.} Also, it is shown in Sec.IIL.B that, in the fluid limit, the ideal MHD
ballooning mode equation is naturally derived from Egs. (22)-(24), which indicates the validity

of our eigenmode equations. : '

B. IDEAL MHD BALLOONING MODE EQUATION

Here, we consider the fluid limit of Eqs. (22)—(24), in which |kjvri/w| ~ [(vr:/Roquw)(8/80)| <«
1, k2 p%; < 1, and |wp;/w| < 1. It can be shown that, in the fluid limit, the integrals including
the ion kernels are approximately written by

[ ki)
o~ [ra + w; - (1 +(1+ z)w"’) (% + 26nGcwwe + %ﬁ@%)] ¢ (33
" jEK;Z(k k) A (k') = ( +(1+ l)w“‘) 22’;;%, (34)
"~ jﬂf{m(k K)(k') ~ '(1 +(1+ ,)“’“) 2%:;;} Z‘g, E (35)
| +mjikﬂkmmm) -(1raemEs) S, @
Using Eqgs. (33)-(36), we can rewrite Egs. (23) and {24) as ordinary differential equations,
(1 - “:e) ( - iR;gw /’+°° dgfﬁg z:l)A”(B’)) -
+ (1 + (1+ m):;) [(% + zenGC?‘e) o+ 21??)5;?% (étq%%_ z'u—;A")] - 0, ‘
(37)
and T .
(o)« (o2 S5 (7 - 54
-+iﬁf'+f(‘1.— w‘e) (¢— ng/ d9'(|z g:?ﬁ|l(9')) o o
- zgﬁccﬁ"—zf’ﬁﬁ (1-@+n)=2) R;Z“’ / | de'(,g zl) A(8) =0, (38)



respectively. Multiplying Eq. (38) with iteur;/(8; Rogw) and adding it to Eq. (37), we obtain

Wae k% w;g Ui d {1 ,oup
(1+(1+T] ew) ( 2 + 26,G, )05 ﬂ, qwd9 (27_&]{2 A"
. Wee . Wye Rﬂqw +eo ¢ (8 3!) ’
— il — A8 = 0.
2ienGe (1 (1+me) w) o f_ dff 701 (@ =0, . o (39)

For low beta. 6. < (k“'UT,/u))2 we ﬁnd from Eq. (39) that |wA/c| < |6¢/69[/(R0q) Then, in
this electrostatic case, terms with A are neglected in Eq..(37), and we have :

Tl i 1 @ _!i | Wae w.; -1 G
zm)qw2dg (Roqu) + [ 5 +2€nGc w ( v ) (1 +(1 +nl) e(‘.u) ¢— 0, (40)

which gives the dispersion relation in the fluid limit for electrostatlc modes such as the slab and
toroidal I'TG modes and the electron drift wave. :

Next, let us consider the electromagnetic high-beta case. It is found from Eq: (40) that, in
the electrostatic fluid limit, (1 — wee/w)/(1 + (1 + 7)w.e/ (Tew)) is as small as terms of first order
in (kjvr/w)?, ki, and |wp/w|. For the electromagnetic case, in which the above electrostatic
condition for the eigenfrequency is not satlsﬁed the lowest-order relation between ¢ and A is
obtained from Eq. (37) as '

' Rogw / (8-8) - |
d - . (41
¢ v =0~ e 00 6-0] A||(9) 0 L ;(_4_-1)
where ¥y = i(Roqw/2c) f_“:: de’ Ay (0')(0 — 6)/16 — '} is defined [¢f shciuld not be confused with
the poloidal flux function % in Sec. II]. Taking the derivative of Eq. (41) with respect to k yields

1 d(¢— 1 d¢p w, . .
T (¢d8¢") _ Roqd_?_z%m — 0, | (42)

which represents zero parallel electric field Ej) = 0.as in the ideal MHD We also note that,
because of the boundary conditions limgse #(f) = 0 and limszo, ¥j(6) = 0-derived from Eq.
(22), the relation in Eq. (41) is also derived. from integrating Eq. (42) without an arbitrary
integral constant. , Thus, the conditions written in Egs. (41) and (42) are equivalent to each
other. We now use these conditions to ellmmate Aj in Eq. (39) and 'obt'a,in' '

d

22

[0 9%) B s my s e mnfno) oG] 6. @
08 dd v% R
where we have defined the Alfvén velocity vy =" By/ (47rn0m,)1/ 2 and used Eq:-(11) and the
normalized pressure gradient parameter & = —Rog°d3/dr with 8 =3 + 8. = 8mno(T; +'T.)/ B2
In Eq. (43), w.i(1 +7:) = —{(wse/7)(1 +m:) represents the diamagnetic frequency associated w1th
the ion pressure gradlent If the magnitude of the eigenmode’ frequency is much larger than this
ion diamagnetic frequency, Eq. (43) reduces to"

9 [(1+>:2 } [qug 2(1+5%) + aG.| 4. (44)

which coincides with the ideal MHD ballooning inode equation.’ :

So far, we have confirmed how the ideal MHD ballooning mode equation shown in Eq. (44) is
derived from the kinetic integral eigenmode equations in the fluid limit. Then, the interchange
stability criterion, namely, the Mercier criterion can be derived from examining the asymptotic
behavior of the solution to Eq. (44) for the case of w = 0 [see Sec. 10.5.4 in Freidberg [16]]. When
deriving the Mercier criterion for equilibria of helical plasmas described in the previous section,

_8_



we adopt detailed expressions of £ and G, given by Eqs. (10) and (13) with help of Eqs (8),
(14), and (16). The resultant Mercier stability criterion is written as

_afR, Len/e:) . . |
DM_§2[2Qh 2(1+A[q—L + 23 1)A + (28 s-}-'rs)ﬂr <7 (45)

In Eq. (45), the term proportional to L/(Mgq — L){« 1) may be ignored as a higher-order
term in the stellarator expansion. The well-known stabilization due to the magnetic shear is
recognized in the denominator of Dy;. The normal curvature term Roﬂh /2 associated with the
external helical field is a main source of the interchange instability in the helical system. We
find that the term proportional to o = —Ryq°d3/dr is stabilizing because the Shafranov shift
caused by increasing « acts favorably on both normal and-geodesic curvatures as seen in the
previous section. {It should be noted that the Mercier criterion shown in Eq. (45) contains both
normal and geodesic curvature effects.] Also, for typical g profiles in the helical system, we have
25— 352 +r§ < 0 and therefore the term proportional to A leads to more stability for larger A. On
the other hand, for negative magnetic shear § = (r/q)(dg/dr) < 0, the term (33 — 1)A’ becomes
positive due to the Shafranov shift (A’ < 0) and thus causes destabilization, which is because
3A" > 0 acts unfavorably on both normal and geodesic curvatures [see Eqgs. (8), (10), (13), (14),
and (16)]. These qualitative properties described by Eq. (45) agree well with results from more
accurate numerical calculations of the Mercier cntenon based on the three~d1men51onal MHD
equilibria [21].

IV. NUMERICAL RESULTS

In this section, the coupled integral eigenmode equations shown in Eqs. (22)—(24) are numer-
ically solved to obtain linear growth rates, real frequencies, and mode structures of electromag-
netic microinstabilities in a helical system. Employing procedures by Sugama [13] for proper
analytic continuation of the dispersion relation in the complex frequency plane, our numeri-
cal code can calculate both positive and negative growth rates, which is useful for accurately
determining the CI'lthB.l condition for the marginal stability.

Following the study of electrostatic ITG modes by Kuroda, et al. [4] we consider a system
like the LHD a.nduse»L‘ 2, M = 10, ,q-\2 §=-1,0,=0ap=0, =1 = 35
€n = LRy =03, 7. = Te/T,- =1, and € /¢, = 1 as standard parameters. Here, .€5/¢, = 1
corresponds to the magnetic surface r/a ~ 0.6. Also, using ny' =1, = 3.5 and €, = 0.3 combined
with By = 3.6 m and a.= 0.6 m gives the density- and temperature gradient scale ]engths as
Ly —108ma.ndLT,—LTe—036m :

Here, we investigate especially how the plasma beta and the magnetlc shear affect hnear prop--
erties of the microinstabilities through geometrical variation of the helical plasma equilibrium..
In the LHD, by applying the vertical field, the vacuum magnetic axis is shifted inward in order to
realize good particle confinement. In-the presence of the pressure gradient, the Shafranov shift.
works so as to cancel the inward shift by the vertical field. In the present study, we put A(r) = 0
for simplicity, which represents that, because of the counterbalance between the effects of the
vertical field and the pressure gradient, the central axis of the magnetic surface considered coin-
cides with that of the external helical coils. We should note that effects of the toroidal -plasma:
shift due to finite beta are still retained through including A’(r) and A”{r). The pressure profile
inside the flux surface r is necessary in order to evaluate A’(r) as shown in Eq. (7) although,
in numerical calculations here, we follow Coppi et al. [17] and Nakajima [14] to use a simple
expression 7 ‘

Sip--a )
which is a good approximation to Eq. (7) with A(r) = 0 especially for small . The normalized
pressure gradient- parameter is rewritten as a = ~Roq?8 = (¢°8i/en)[(1 + m) + 7e(1'+ 7))

- The normalized real frequency w,/w.. and growth rate w;/w,, obtained by numerical calcu-
lations using the standard parameters described above are plotted as a function of 8-in Fig. 1.
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Figures 1 (a) and (b) correspond to the ITG mode for kppy; = 0.5 and the KBM for kspor; = 0.35,
respectively. Here, kypr; = 0.5 and kgpr; = 0.35 are the normalized poloidal wave numbers for
which the growth rates of the ITG mode and KBM become almost maximum, respectively.
Stabilization of the ITG mode and destabilization of the KBM by increasing ﬁ are seen in the
helical system in the same way as observed in the ‘tokamak case [10] in spite of the opposiie
sign of the magnetic. shear. The eigenfunctions ¢(#) and 4(8) of the ITG mode for 8 = 0:008
and the KBM for § = 0.04 are shown in Figs. 2.(a} and (b), respectively. We see that the ITG
mode is essentially electrostatic (|#] >>.|9|} while the KBM approximately. samsﬁes ¢ = ) and
accordmgly the ideal MHD condition £y = 0.

- For reference, the averaged normal curvature Rq(S2)’ / 2 and the I\Iermer parameter Dy —1 / 4
are shown. as a function of 8 in Figs. 3 (a) and (b), respectively. Here, we should note that, in
Figs. 1 and 3, the magnetic configuration are fixed by the standard parameters. In this case, as 8
increases, the averaged normal curvature Ry {Q?)’/2 monotonically decreases although the Mercier
parameter Dy —1/4, which includes effects of both normal and geodesic curvatures as well as the
magnetic shear, monotonically increases. It is confirmed in this helical system that the beta value
for the marginal stability of the KBM (3 ~ 0.01) is larger than that for the Mercier marginal
stability (3 ~ 0.006). We also numerically verified that.the KBM is completely stabilized for
B = 0.17 (not shown in Fig. 1) where the helical system is still Mercier-unstable. Thus, in the
present case, the KBM-unstable region is narrower than the Mercier-unstable region. This. is
a contrast to the tokamak case that is generally Mercier-stable even when the KBM becomes
unstable.

Figure 4 shows the normalized real frequency w,kgpri/w.. and growth rate w‘gkgp'n Jwee are
plotted as a function of the normalized poloidal wave number kzpr;. Here, we employ the
wie/(kopr:) as the normalization unit in order to remove the wave number dependence from the
unit. Figures 4 {a) and (b) correspond the ITG modé for § = 0 and the KBM for 8 = 0.02,
0.04,"and 0.08, respectively. ‘It is seen that the KBM can have much larger growth rates and
real frequencies and wider unstable wave number regions than those of the ITG. Therefore, the
KMB is considered to be a candidate which causes anomalous transport for high beta values.

' Figure 5 (a) shows the normalized real frequency wy./w,. and growth rate w; /i, of the KBM as
a function of the magnetic shear parameter 3 for kgpr: = 0.35 and 3 = 0.01, 0.02; 0.04, and 0.08.
For reference, the averaged normal curvature Ro(§2)'/2 and the Mercier parameter Dy — 1/4
are shown as a function of § in Figs. 5 (b) and (c), respectively. As seen in Figs. 5 (b) and (c),
the stronger negative magnetic shear gives the larger normal curvature but it also leads to the
Mercier stability for the low-beta case (3 = 0.01) by-the field-line-bending stabilization of the
ideal -interchange mode. For the high-beta case (3 = 0.08), the Mercier stability is obtained in
the weak magnetic shear region (§ 2 —0.3), where both normal and geodesic curvatures become
favorable. We find from Fig. 5 (a) that the stronger magnetic shear brings about stabilization
of the the electromagnetic microinstability for the lower-beta case, where the mode structure is
closer to that of the interchange mode. On the other hand, for hlgher beta values, the ballooning
structure of the kinetic mode becomes more striking and the stronger (negative) magnetic shear-
enhances destabilization. Thus, low magnetic shear is expected to be favorable for the high-beéta
plasma confinement. Comparison between Figs. 5 (a) and (¢} shows some correlation between
the stability of the kinetic mode and the Mercier criterion although' we ﬁnd again that the
KBM- unstable reglon is narrower than the Merc1er—unstable region '

V. CONCLUSIONS

In the present paper, collisionless electromagnetic microinstabilities in helical systems are in-
vestigated by using the kinetic integral eigenmode equations derived from the ion gyrokinetic
equation, the quasineutrality equation, the Ampére’s law, and the massless electron approxi-
mation: Finite-beta effects on the toroidal force balance in the helical systems are taken into
account by the stellarator expansion method. The ideal MHD ballooning mode equation is shown
to be derived from the kinetic eigenmode equation in the fluid limit. Also, the Mercier criterion



obtained from the ideal MHD- ballooning equation confirms that, in the helical systems, the
negative magnetic shear combined with the Shafranov shift has a destablhzmg effect by maklng
both normal and geodesic curvatures unfavorable. ‘ :

The kinetic integral eigenmode equations are numerically solved to obtain: the real frequency
the growth rate, and.the mdde structure of the electromagnetic- microinstability at the core
region (r/a ~ 0.6) in the LHD-like configuration with no net current. Their dependences on the
plasma beta 3, the poloidal wave number kg, and the magnetic shear parameter 3 are clarified.
Stabilization of the ITG mode and destabilization of the KBM by increasing 3 are verified. The
KBM at the high beta (8 2 0.02) has larger growth rates and wider unstable wave number
regions than the ITG at the low beta (§ < 0.01). Therefore, the KBM is expected to cause the
anomalous transport in the high-beta case. In the low-beta case (8 < 0.03}, the KBM is stabilized
by the strong (negative) magnetic shear while, in the high-beta case (8 > 0.03), it is stabilized
by the weak magnetic shear. These tendencies also correlate with the Mercier parameter, which
contains effects of the field-line bending and the normal and geodesic curvatures. It is found
under the present conditions that the KBM-unstable regions in § and § are narrower than
the Mercier-unstable regions. Thus, kinetic effects such as the Landau damping and the finite
gyroradii are considered to play a role of stabilization of the electromagnetic modes so that, for
short wave lengths, their stability. is better than predicted from the Mercier criterion based on
the ideal MHD. This is consistent with the experimental result of the LHD plasma confinement in
the Mercier-unstable region. However, the LHD experiment shows a better confinement for the
inward magnetic axis shift with unfavorable magnetic curvature [7, 8], which cannot be explained
by the present linear analysis. Also, effects of trapped particles, collisions, and more complete
magnetic geometry are not considered here. These remain as future problems.
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FIG. 1: Normalized growth rate w;/w,. and real frequency w./w.. as a-function of 3 for the. ITG'
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FIG. 2: Eigenfunctions $(6) and 1;(6) of the ITG mode for § = 0.008 (a) and of the KBM for 8 = 0.04
(b). Other parameters used here are the same as in Fig. 1.
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for the KBM are used. Other Parameters are the same as in Fig. 1.

FIG. 5: Normalized real frequency w,/w,., and growth rate w;/w.. of the KBM for kgpr; = 0.35 (a),
averaged normal curvature Rp{Q)’/2 (b), and Mercier parameter Dy — 1/4 (c) as 4 function of the’
magnetic shear parameter 8. Here, 8 = 0.01, 0.02, 0.04, and 0.08 are used. Other Parameters are the
same as in Fig. 1.
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