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Abstract

A comprehensive review of zonal flow phenomena in plasmas is presented. While the
emphasis is on zonal flows in laboratory plasmas, zonal flows in nature are discussed as
well. The review presents the status of theory, numerical simulation and experiments
relevant to zonal flows. The emphasis is on developing an integrated understanding of
the dynamics of drift wave - zonal flow turbulence by combining detailed studies of the
generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift
waves, and the various feedback loops by which the system regulates and organizes
itself. The implications of zonal flow phenomena for confinement in, and the phenomena
of fusion devices are discussed. Special attention is Agiven to the comparison of
experiment with theory and to identifying directions for progress in future research.
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L. . Introduction _ )

Zonal flows, by which we mean azimuthally symmetric band-like shear flows, are
a ubiquitous phenomena in nature and the laboratory. The well-known examples of the
Jovian belts and zones, and the terrestrial atmospheric jet stream are familiar to nearly
everyone - the latter especially to travelers enduring long, bumpy airplane rides against
strong head winds. Zonal flows are also present in the Venusian atmosphere {(which
rotates faster than the planet does!) and occur in the solar tachocline, where they play a
role in the solar dynamo mechanism. In the laboratory, the importance of sheared Ex B
flows to the development of L-mode confinement, the L-to-H transition .and internal
transport barriers (ITBs) is now well and widely appreciated. ,
: .While many mechanism can act to trigger and stimulate the growth of sheared
electric fields (i.e. profile evolution and transport bifurcation, neoclassical effects,
external momentum injection, etc.) certainly one possibility is via the self-generation and
amplification of ExB flows by turbulent stresses (i.e. the turbulent transport of
momentum). Of course, this is the same mechanism as that responsible for zonal flow
generation.  However, it should be emphasized that it 1s now widely recognized and
accepted that zonal flows are a key constituent in virtually all cases and regimes of drift
wave turbulence - indeed, so much so that this classic problem is now frequently referred
to as "drift wave-zonal flow turbulence”. This paradigm shift occurred on account of the
realization that zonal flows are ubiquitous in dynamical models used for describing fusion
plasmas (i.e. ITG, TEM, ETG, resistive ballooning, and interchange, etc.) in all
geometries and regimes (i.e. core, edge, etc.), and because of the realization that zonal
flows are a critical agent of self-regulation for drift wave transport and turbulence. Both
theoretical work and numerical simulation made important contributions to this paradigm |
shift. Indeed, for the case of low collisionality plasmas, a significant portion of the
available free energy is ultimately deposited in the zonal flows. Figure 1.1 presents
energy flow charts which illustrate the classic paradigm of drift wave turbulence and the
new paradigm of drift wave - zonal flow turbulence. The study of zonal flow has had a
profound impact on fusion research. For instance, the proper treatment of the zonal flow
ﬁhysics has partly resolved the confusion concerning the prospect of burning plasma as
has been discussed by Rosenbluth and collaborators in conjunction with the design of the
International Thermonuclear Experimental Reactor (ITER). At the same time, the
understanding of the turbulence-zonal flow system has advanced the understanding of
self-organization process in nature. : _

We note here that, while zonal flows have a strong influence on the formation of
transport barriers, the dynamics of barriers and transitions involve evolutions of both the.
mean E X B flow as well as the zonal EX B flow. The topics of mean £, dynamics,
transport barriers, and confinement regime transitions are beyond the scope of this

review,



In the context of tokamak plasmas, zonal flows are n =0 electrostatic potential

fluctuations with finite radial wave number. Zonal flows are elongated, asymmetric
vortex modes, and thus have zero frequency. They are predominantly poloidally
symmetric as well, though some coupling to low-m sideband modes may occur. On
account of their symmetry, zonal flows cannot access expansion free energy stored in
temperature, density gradients, etc., and are not subject to Landau damping. These zonal

flows are driven exclusively by nonlinear interactions, which transfer energy from the
finite-n drift waves to the 7 =0 flow. Usually, such nonlinear interactions are three-

wave triad couplings between two high & drift waves and one low ¢ =4, zonal flow

excitation. In position space, this energy transfer process is simply one whereby
Reynolds work is performed on the flow by the wave stresses. Two important
consequences of this process of generation follow directly. First, since zonal flow
production is exclusively via nonlinear transfer from drift waves, zonal flows must
“eventually decay and vanish if the underlying drift wave drive is extinguished. Thus,
zonal flows differ in an important way from mean EX B flows, which can be sustained
{and are, in strong H-mode and ITB regimes) in the absence of turbulence. Second,
since zonal flows are generated by nonlinear energy transfer from drift waves, their
generation naturally acts to reduce the intensity and level of transport caused by the
primary drift wave turbulence. Thus, zonal flows necessarily act to regulate and partially

suppress drift wave turbulence and transport. This is clear from numerical simulations,

which universally show that turbulence and transport levels are reduced when the zonal -

flow generation is (properly) allowed. Since zonal flows cannot tap expansion free
energy, are generated by nonlinear coupling from drift waves, and damp primarily (but
not exclusively) by collisional processes, they constitute a significant and benign (from a
confinement viewpoint) reservoir or repository for the available free energy of the
system.

Another route to understanding the effects of zonal flow on drift waves is via the
shearing paradigm: From this standpoint, zonal flows produce a spatio-temporally
complex shearing pattern, which naturally tends to distort drift wave eddies by stretching
them, and in the process generates large k, . Of course, at smaller scales, coupling to
dissipation becomes stronger, resulting in a net stabilizing trend. The treatment of zonal
flow shearing differs from that for mean flow shearing on account of the complexity of
the flow pattern. Progress here has been facilitated by the realization that a siatistical
analysis is possible. This follows from the fact that the autocorrelation time of a drift
wave packet propagating in a zonal flow field is usually quite short, and because the drift
wave rays are chaotic. Hence, significant advances have been made on calculating the
'back reaction’ of zonal flows on the underlying drift wave field within the framework of
random shearing, using wave kinetics and quasilinear theory. Conservation of energy
between drift waves and zonal flows has been proved for the theory, at the level of a



renormalized quasilinear description. Thus, it is possible to close the 'feedback loop’ of
wave-flow interactions, allowing a self-consistent analysis of the various system states,
and enabling an understanding of the mechanisms and routes for bifurcation between
them.

From a more theoretical perspective, the drift wave-zonal flow problem 1s a
splendid example of rwo generic types of problems frequently encountered in the
dynamics of complex systems. These are the problem of nonlinear interaction between
two classes of fluctuations of disparate scale, and the problem of self-organization of

structures in turbulence. The drift wave-zonal flow problem is clearly a member of the
first class, since drift waves have high frequency and wavenumber (k 1 p;~ 1, @ ~ 4 )

in comparison to zonal flows (g,p;<<1, Q~0) Another member of this group,

familiar to most plasma physicists, is the well known problem of Langmuir turbulence,
which is concerned with the interaction between high frequency plasma waves and low
frequency ion acoustic waves. As is often the case in such problems, fluctuations on one
class of scales can be treated as "slaved” to the other, thus facilitating progress through
the use of averaging, adiabatic theory and projection operator techniques. In the case of
the drift wave-zonal flow problem, great simplification has been demonstrated via the
identification of a conserved drift wave population density (i.e. action-like invariant)
which is adiabatically modulated by the sheared flows. Indeed, though superficially
paradoxical, it seems fair to say that such disparate scale interaction problems are, in
some sense, more tractable than the naively 'simpler’ problem of Kolmogorov
turbulence, since the ratio of the typical scales of the two classes of fluctuations may be
used to constitute a small parameter, which is then exploited via adiabatic methodology.
Of course, it is patently obvious that the zonal flow problem is one of self-
organization of large structure in turbulence. Examples of other members of this class
include transport barrier and profile formation and dynamics, the origin of the solar
differential rotation, the famous magnetic dynamo problem (relevant, in quite different
limits, to the sun, earth, galaxy, and Reversed Field Pinch), and the formation of profiles
in turbulent and swirling pipe flow. Table 1.1 summarizes these related structure
formation phenomena, illustrating the objective of this review. Most of these problems
are attacked at the simplest level by considering the stability of an ensemble or 'gas’ of
ambient turbulence to a seed perturbation. For example, in the dynamo problem, one
starts by considering the stability of some state of MHD turbulence to a seed magnetic
field. In the zonal flow problem, one correspondingly considers the stability of a gas of
drift waves to a seed shear. The incidence of instability means that the initial vortex tilt
will be re-enforced, thus amplifying the seed perturbation. It should be noted that the
zonal flow formation phenomenon is related to, but not quite the same as, the well known
inverse cascade of energy in a 2D fluid, which leads to large scale vortex formation. This

is because the inverse cascade proceeds via a local coupling in wavenumber space, while



zonal flow generation occurs via nonlocal transfer of energy between small and large
- scales. Indeed, zonal shear amplification is rather like the familiar @ -effect.fromrdynamo
theory, which describes a nonlocal transfer of magnetic helicity to large scale. We also
note that the initial stage of pattern formation instability meets only a part of the challenge
to a theoretical description of structure formation, and that one must subsequently ‘close
the loop' by understanding-the mechanisms of saturation of the zonal flow instability.
The ‘saturation  of zonal flows driven by drift wave turbulence is now a subject of
intensive theoretical and computational investigation, worldwide. '

As a related phenomena, convective cells have been subject to intensive study for
a long time. The convective cell is a perturbation which is constant along the magnetic
field line but changes in the direction perpendicular to the magnetic field. Such a structure
is known to be induced by background drift wave turbulence. The zonal flow can be
considered as a particular example of an aniéotropic convective cell. However, the
convective cells of greatest interest as agents of transport are localized in'the poloidal
direction and extended radially, which is the opposite limit of anisotropy from that of the
zonal flow. Such cells are commonly referred to as streamers.

As the zonal flow problem is a member of a large class of rapidly expanding
research topics, the perspective of this review is composed as follows. First, we present
detailed explanations of the physical understanding of drift wave-zonal flow turbulence.
Second, we also stress the view that studies on toroidal plasma turbulence enhance our
understanding of turbulent structure formation in nature. In this sense, this review 1s a
companion ‘article to recent reviews on the magnetic dynamo problem which, taken
tbgether, present a unified view that addresses the mystery of structure formation in
‘turbulent. media. Third, the impact of direct nonlinear simulation (DNS) is discussed in
the context of understanding zonal flow physics, although'a survey of DNS techniques
themselves is beyond the scope of this review. It is certainly the case that DNS studies
have significantly furthered our understanding of drift wave-zonal flow turbulence. For
these reasons, examples are mainly chosen from the realm of core plasma (i.e.-drift wave)
turbulence. In order to maintain transparency and 1o be concise, this review is limited in
scope. Studies of edge turbulence and of genéral convective cell physics are not treated in
depth here. While these topics are closely related to the topic of this review, extensive
introductory discussions, which are too lengthy for this paper, are necessary. Hence,
details of these important areas are left for future reviews.

This article reviews zonal flow dyn'amics, with special emphasis on the theory of
drift wave-zonal flow turbulence and its role in plasma confinement. The remainder of
this review article is organized as follows. Chapter 2 presents a heuristic overview of the
essentials of zonal flow physics, including shearing, generation mechanisms, and
multiple states and bifurcations.  Chapter 2 is aimed at general readers and non-

specialists. Chapter 3 preseats a detailed description of the theory of drift wave-zonal



flow turbulence. Section 3.1 discusses neoclassical collisional friction damping. Section
3.2 is concerned with drive and amplification, from a number of perspectives and
approaches. In particular, both coherent and broad-band modulational stability
calculations are explained in detail, and extensions to regimes where waves are trapped in
the flows are discussed as well. Section 3.3 describes the feed back of zonal flows on
drift waves, while Section 3.4 discusses nonlinear saturation mechanisms. An emphasis
is placed upon unifying the various limiting models. Section 3.5 presents a unified; self-
consistent description of the various systems and the bifurcation transitions between
themn. Section 3.6 deals with the effect of the zonal flows on transport. Chapter 4 gives
an overview of what numerical simulations have elucidated about zonal flow dynamics in
magnetized plasmas. Chapter.5 gives an introduction to zonal flow phenomena in nature.
Special emphasis is placed upon the well known and visually compelling example of belt
and ‘band formation in the atmosphere of Jupiter. -Chapter 6 discusses advanced
extensions of the theory, including statistical and probabilistic approaches, application to
general convective cell phenomena (including "streamers") and non-Markovian models.
Ci‘napter 7 surveys the state of experimental studies of .zonal flow phenomena in
magnetically confined plasma. Chapter 8 gives a statement of conclusions, an assessment
of the current state of our understanding and presents suggestions for the future direction

of research. These structures are illustrated in the roadmap of Fig.1.2.



2. Basic Physics of Zonal Flows: A Heuristic Overview

2.1 Introduction

We present an introduction to the basic physics of zonal flows. This section is
directed toward a general audience, which may include plasma and fusion
experimentalists and other non-specialists. Some of the relevant, early work on zonal
flows can be found in [2.1-2.6]. The emphasis here is on physical reasoning and
intuition, rather than on formalism and rigorous deduction. This section begins with a
discussion of shearing [2.7-2.11] by a spectrum of zonal flows and its effect on the
primary drift wave spectrum. Considerations of energetics, specifically the conservation
of energy between drift waves and zonal flows (which is explicitly proved in Section 11I),
in the quasi-linear approximation [2.12-2.13] are then used to describe and calculate the
rate of amplification of zonal shears by turbulence. We then discuss some basic features
of the dynamical system of waves and zonal flows, and its various states. (Fig.2.1) The
final part of this section discusses aspects of experimental investigations of zonal flow
physics. Taking as an example drift wave turbulence with a spatial scale length of p;, the
basic characteristics of zonal flows are summarized in Table 2.1. This table serves as a
guide for the explanations in the following chapters. In the study of zonal flows, three
principal theoretical approaches have been applied. These are: (i) the wave kinetic and
adiabatic theory, (ii) the parametric (modulational) theory, and (iii) the envelope
formalism. In this chapter, an explahation in the spirit of wave kinetics and adiabatic
theory is given. The wave kinetic theory as well as parametric theory are described in
Chapter 3. The envelope formalism is discussed in Chapter 6.

2.2 Basic dynamics of zonal flows

The zonal flow is a toroidally symmetric electric field perturbation in a toroidal
plasma, which is constant on the magnetic surface but rapidly varies in the radial
direction, as is illustrated in Fig.2.2. The associated £ x B flow is in the poloidal
direction, and its sign changes with radius. The zonal flow corresponds to a strongly
asymmetric limit of a convective cell. The key element in the dynamics of zonal flows is
the process of shearing of turbulent eddies by flows with a larger scale (i.e., with shear
lengths L > Ax., where Ax. is the eddy scale). The fact that such shearing acts to
reduce turbulence and transport is what drives the strong current interest in zonal flows.
In the case of a smooth, mean shear flow, it is well known that shearing tilts eddies,
narrowing their radial extent and elongating them. (Fig.2.3). In some simulations,
sheared flows are observed to break up the large eddys associated with extended modes.
At the level of eikonal theory, this implies that the radial wavenumber of the turbulence
increases linearly in time, i.e.



4k, =5 (kovelr)) (2.12)
k,=k£")-kea—‘;"r{—r]: . (2.1b)

As a consequence, the eddies necessarily must increase the strength of their coupling to
small scale dissipation, thus tending to a quench of the driving process. In addition, the
increase in k, implies a decrease in Ax,, thus reducing the effective step size for turbulent
transport [2.14].

In the case of zonal flows, the physics is closely related, but different in detail,
since zonal flow shears nearly always appear as elements of a spatially complex (and
frequently temporally complex) pattern. (Fig.2.4) [2.15-2.17] This presents a significant
complication to any theoretical description. Fortunately, the problem is greatly simplified
by two observations. First, the drift wave spectrum is quite broad, encompassing a range
of spatial scales from the profile scale L, to the ion gyro-radius p,, and a range of time

-l
scales from (Da/ Li) to Li/c,. Here Dg= p.c,. In contrast, the dynamically relevant

part of the zonal flow spectrum has quite a low frequency and large extent, so that a scale
separation between the drift waves and zonal flows clearly exists. Second, the ‘rays’
along which the drift waves propagate can easily be demonstrated to be chaotic, which is
not surprising, in view of the highly turbulent state of the drift wave spectrum. Ak, the
width of the drift wave spectrum satisfies Akp;~ 1. Thus, the effective lifetime of the
instantaneous pattern ‘seen’ by a propagating drift wave group packet is |Aq,vg|_ ! .
Here, q, is the radial wave number of the zonal flow and v, is the group velocity of the
drift waves. This implies that the effective lifetime of the instantaneous shearing pattern,

. -1
as seen by the wave packet, is Ty ~ IAq ’Vgl . Note that, on account of ray chaos, no

'random phase' assumption for zonal flow shears is necessary [2.18]. For virtually any
relevant parameters, this time scale is shorter than the time scale for shearing; trapping,
etc. of the wave packet. Thus, the shearing process in a zonal flow field can be treated as
a random, diffusive process, consisting of a succession of many short kicks, which

correspond to shearing events. Thus, the mean square wavenumber increases as

(8k2) =Dy 1, (2.22)
D=3 |keVe, 0w | (2.2b)

where ( . ) represents the average, Vg , represents the g-Fourier components of the

poloidal flow velocity and T, ,, is the time of (triad) interaction between the zonal flow



and the drift wave packet. This diffusion coefficient D, is simply the mean square shear
in the flow—induced Doppler shift of the wave [weighted by the correlation time of the
wave packet element with the zonal flow shear], on the scale of zonal flow wavenumber q
[2.19]. Thus, in contrast to the case of coherent shearing for which the radial
wavenumber increaes linearly with time, the rms wavennumber increases ~ 112,
However, the basic trend toward coupling to smaller scales in the drift wave spectrum
persists. Furthermore, this evolution is adiabatic, on account of the separation in time and
space scales between drift waves and zonal flows mentioned above. The use of adiabatic
approximation methods greatly simplifies the calculations [2.20-2.22].

As noted above, much of the interest in zonal flows is driven by the fact that they
regulate turbulence via shearing. However, it is certainly true that all low-n modes in a
spectrum of drift wave turbulence will shear and strain the larger-n, smaller-scale
fluctuations. Indeed, nbn—local shearing-straining interactions are characteristic of 2D
turbulence once large scale vortices are established, as argued by Kraichnan and shown in
simulations by Borue and Orszag. This, in turn, naturally motivates the questions:
“What is so special about zonal flows (with n=0)?" and "Why aren't other low-»n modes
given equal consideration as regulators of drift wave turbulence?" There are at least three
answers to this very relevant and interesting question. These are discussed below.

First, zonal flows may be said to be the 'modes of minimal inertia’. This is
because zonal flows, with n =0 and k=0, are not screened by Boltmann electrons, as
are the usual drift-ITG modes. Hence, the potential vorticity of a zonal flow mode is
simply ¢%p° J)q, as opposed to (1 +k% pf)&;k, so that zonal flows have lower effective

inertia than standard drift waves do. The comparatively low effective inertia of zonal
flows means that large zonal flow velocities develop in response to drift wave drive,
unless damping intervenes. In this regard, it is also worthwhile to point out that in the
case of ETG turbulence, both zonal flows and ETG modes involve a Boltzmann ion
response ji;/n, = —Je|§/T., since k, p, >>1 for ETG. Hence, it is no surprise that zonal
flow effects are less dramatic for ETG turbulence then for its drift-ITG counterpart, since
for ETG, zonal flows have an effective inertia comparable to other modes. '

Second, zonal flows, with n=0 and k;=0,are modes of minimal Landau
damping. This means that the only linear dissipation acting on zonal flows for asymptotic
times (i.e., t — o) is due to collisions. In particular, no linear, time-asymptotic
dissipation acts on zonal flows in a collisionless system. '

Third, since zona! flows have n =0, they are intrinsically incapable of driving
radial £ X B flow perturbations. Thus, they cannot tap expansion free energy stored in
radial gradients. Thus, zonal flows do not cause transport or relaxation, and so constitute

a benign repository for free energy. In contrast, other low n-modes necessarily involve a

10



trade-off between shearing (a "plus" for ‘confinement) and enhanced transport (a
"minus"). B o '

Having established the physics of shearing, it'is illuminating to present a short;
‘back-of-an-envelope’ type demonstration of zonal flow instability. For other approaches,
see the cited literature [2.23-2.29]. Consider a packet of drift waves propagating in an
ensemble of quasi-stationary, random zonal flow shear layers, as shown in Fig. 2.4(b).
Take the zonal flows as slowly varying with respect to the drift waves (i.e., Q << @),
i.e., as quasi-stationary. Here, Q is the rate of the change or frequency of the zonal flow
and w; is the characteristic frequency of drift waves. The spatially complex- shearing
flow will result in an increase in (k ) the mean square radlal wave vector (i.e., consider
a random walk of k,, as described” above). In turn the drift wave frequency
a),,*/(l +kipf) must then decrease. Here, p, is the ion gyroradius at the electron
temperature. Since Q << (@, the drift wave action density N, = Z{k)/ w is conserved,
so that drift wave energy must also decrease. As the total energy of the system of waves
and flows is also conserved (i.e., Z yave + Z flow = CONst. ; as shown in-Section 3.2.2),
it thus follows that the zonal flow energy must, in turn, increase. Hence, the inital
perturbation is reinforced, suggestive of instability. Note that the simplicity and clarity of
this argument support the assertion that zonal flow generation is a robust and ubiquitous
phenomenon. _

| A'slightly larger envelope is required for a * physiéal vargumeﬁt" which is also
quantitatively predictive. Consider a drift wave packet propagating in a sheared flow
field, as shown in Fig. 2.5. Take w; > | Ve ] and ]k[> | VE /VE| so that wave action
density is conserved (i.e., N(k) = No), a constant. [V is the E x B velocity ‘and Vg is

its radial derivative.) Thus, wave energy density evolves according to:

. d - dwy : S
elk) =
d; , p‘t

“No(aa)k_l_vx_awk_l_aCUk dk)

o dx . dk dt
2k, ko P D
E(TLE%]V'EE(“' S - (2.3)

Here we have assumed stationary, isétropic turbulence and have used the eikonal
equation dk /dt = — kg 0Vg/dx. Equation (2.3) just states that the drift wave packet loses

or gains energy due to work on the mean flow via wave induced Reynolds stress [2.30].
Note that kkgZ{k)~ (V,‘i?e), the Reynolds stress produced by EXB velocity

fluctuations. Note as well that the factor & ,.kg.Z(k)VE' is rather obviously suggestive of

11



the role of triad interactions in controlling fluctuation-flow energy exchange. For zonal
flows, the shear is random and broad-band, so that Vg — Vg, N —(N)+ N and

NV — (ﬁ VE’>. Hence, Eq.(2.3) may be rewritten as:

g—:e(k) =V, ke (VL N). (2.4)

To complete the argument, the correlator (N VE’) must now be calculated. To this end,

we use the wave kinetic equation (WKE)

I 4 (Vy+ V)V N - Lo+ keVe} S

=1N - AoN2/ Ny (2.5)

and the methodology of quasi-linear theory to obtain:

ko(VieN) = D« aa(:’) (2.60)
Dx=k3) 4’|, 2R(k,q) i (2.6b)
R(k.q)= Yk/ ((q Vi) * 72). (2.6¢)

The term AwN?/N, represents drift wave non-linear damping via self-interaction of the
drift waves (i.e., inverse cascade by local interaction). Here g is the radial wavenumber

of the zonal flow, and equilibrium balance in the absence of flow has been used to relate
Aw, to y,. 7y, is the growth rate of the drift mode. The wave energy then evolves

according to:

de(k) _ 2p;Dxk, H(N)
di (141302 9k

2.7

As the total energy of the stationary wave-flow system is conserved,

d/dt[; e(k) + ;Mj =o0.

12



The zonal flow generation rate is thus determined to be:

kbp, I(n
(m)=(1+ K3 p2)e). (2.8b)

Here (n) is the mean potential enstrophy density of the drift wave turbulence, (i.e.,
2
n(k)= (1+ki p3)2|¢£| ) and may be thought of as the population density of drift wave

vortices. Note that for toroidally and poloidally symmetric shears, dkq/dt =0, so that
the conventional wave action density N(k) and the potential enstrophy density 77(k) are
identical, up to a constant factor. '

The result given above in Eq. (2.8a), obtained by transparent physical reasoning,
is identical to that derived previously by formal modulational stability arguments. Note
that 8(n)/8k,<0 {a condition which is virtually always satisfied in 2D or drift wave
turbulence) is required for zonal flow growth. In addition, the argument above reveals
that drift wave ray chaos provides the key element of irreversibility, which is crucial to
the wave-flow energy transfer dynamics. Here ray chaos requires overlap of the
Q/q =V, resonances in D, a condition easily satisfied for finite lifetime drift wave
eddies and (nearly) zero frequency zonal flows (i.e., Aw, >>£2) [2.31]. Under these
conditions a positive Lyapunov exponent is present and neighbouring drift wave rays
diverge exponentially in time. Ray chaos in turn ensures that zonal flow shearing and
wave refraction are random, thus validating the use of the stochastic methodology
employed here [2.32]. In the case where rays are not chaotic, envelope perturbation
formalism [2.33, 2.34], methods from the theory of trapping [2.35-2.37] or parametric
instability theory [2.38] must be used to calculate zonal flow generation.

2.3 Self-consistent solution and multiple states
At this point, we have identified the two principal elements of the physics of the
drift wave - zonal flow system. These are:
i) The shearing of drift wave eddies by the complex zonal flow field, resulting in a
diffusive increase in (kf) and coupling to dissipation, reduction in transport, etc.,
ii) the amplification of zonal flow shears by modulational instability of the drift
wave to a 'test’ or seed shear.
Note that i) and ii) are, to some extent, different views of the same process of energy
transfer from the short wavelength drift wave spectrum to the long wavelength zonal flow
spectrum. This process of drift wave energy depletion results in a diffusive increase in

the mean square radial wavenumber of drift waves, and a transfer of drift wave
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population density to small scale. In view of the fact that the drift wave population
density is equivalent to the potential enstrophy density, we see that the process of zonal
flow generation i1s not unlike the dual cascade phenomenon familiar from 2D
hydrodynamics. Here, the gfowth of zonal flow shears corresponds to the inverse
energy cascade, while the increase in RMS of &, is similar to the forward enstrophy
cascade [2.39]. Unlike the case of 2D hydrodynamics, zonal shear amplification is a
non-local coupling process in wavenumber space. (See Fig.2.6.)

To proceed, we now examine the coupled evolution for (N), the drift wave

quanta density, and the zonal flow spectrum. These evolve according to:

Aw '
2 (N)- a%r Dy - (N) = Y{N) - T (N2, (2.92)

<10,]%= rq[am)/ak,]

A T e [ [ e XS

Equation (2.9a) is simply the quasi-linear Boltzmann equation for (N > while Eq. (2.9b)
describes zonal flow potential growth and damping by modulational instability (the first
term - proportional to the drift wave population gradient 8(1\’)/81( .), collisional damping
(the second term - due to the friction between trapped and circulating ions) (2.40, 2.41]
and nonlinear damping of zonal flows (the third term - which schemaﬁéally represents a
number of different candidate zonal flow saturation proéesses). Note here that 7, is an
unspecified function of zonal flow intensity, and thus can represent nonlinear damping
process such as turbulent viscous damping, etc. Together, Eqs.(2.9a) and (2.9b)
constitute a simple model of the coupled evolution dynamics. This 'minimal' model

could be supplemented by transport equations which evolve the profiles used to calculate

Yy the drift wave growth rate (i.e., ¥, =Y, n~ 'dn/dr, 7= 1a7/dr, ]) [2.42]). The

minimal system has the generic structure of a 'predator-prey’ model, where the drift
waves correspond to the prey population and the zonal flows correspond to the predator
population [2.43-2.47]. As usual, the prey breeds rapidly (i.e., v is fast), and supports
the predator population as the food supply for the latter (ie., I';= l"q[<N>]). The
predators regulate the prey by feeding upon them (i.e., I' ) and D, conserve energy with

each other) and are themselves regulated by predator death (at rate y4) and predator-

predator competition (yNL“ b, lz}) Taken together, Eqs.(2.9a) and (2.9b) describe a self-

regulating system with multiple states.

The dynamics of the two population system are more easily grasped by
considering a zero-dimensional model for population N and V2, instead of the one-
dimensional model equations for <N [k)) and | ¢, ’2. The 0-D simplified mode! is this:
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a‘iN=yN—av2N—AmN2, (2.10a)
] _ ‘

9 Y2 aNV2 V7 -y V) V2 ' (2.10b)
PTG Yd TNLL - .

The states of the system are set by the fixed points of the model, and n turn are

determined by
0=y-aVi-AaN, | @l

0=0N-v4-1n(V?) o | ‘(2_llb)

There are (at least) two classes of fixed points for the system. The state with finite

fluctuations and transport, but no flow is that with
N=vho, | | |  (2.12a)
vi=o0. _ (2.12b)

This corresponds to a state where turbulence saturates by local, nonlinear interactions. A

second state, with flow, is that with
N=o" l(}'d + 'YNL(Vz))» : (2.13a)
Vi+alAwy (V) =a(y - Aey,a™). (2.13b)

Note that the general form YNL(Vz) certainly allows limit cyclc solutions. Given the
physically plausible'assumpﬁon that TNL(VZ) >0 and increases with V2 as .Vz — oo, the
POincare—Bendixon theorem implieslthat limit cycle solutions to (2.10a,b) can be
identified by the appearance of unstable centers as fixed points of ihose equations. In
general, the appeérance of such limit cycle attractors is due fo the effects of time délays in

the dynamical s'ystem of zonal flows and drift waves. For the especially simple case
where ’yNL[Vz) ~ @, V2, this system 'is reduced to:

_ yd+0t27a—1

"o+ Awoyo ! (2-142)
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v -1 . :
V2= [}’___SM_ , (2.14b)
o+aAoa

Even this highly over-simplified model contains a wealth of interesting physics.
The properties of the two states are summarized in Table 2.2, which we now discuss.
Access to the state of no flow requires only primary linear instability, i.e., y> 0, while
access to states with finite flow requires y> Awy, /0, so that the excitation of the
underlying drift waves is sufficient to amplify the flow shear against collisional damping.
In the no flow state, N ~y/Aw, consistent with the traditional picture of saturation of
turbulence and transport via the balance of linear growth with nonlinear damping. With

the presence of flow, N ~y 0~ !, which directly ties the turbulence level to the flow
damping [2.48]. This follows the fact that in the finite flow state, the turbulence level is
regulated by the shear flow, which is, in turn, itself controlled by the flow damping.
Thus, the fluctuation level is ultimately set by the flow damping! This prediction has
been confirmed by several numerical simulations [2.49]. In the finite flow state, V2 is set
by the difference between the wave growth and flow damping. Thus, the branching ratio
of the zonal flow to drift wave energy scales as Y/vyy. In particular, for y; — 0, the
dominant ultimate repository of expansion free energy are the zonal flows, whose energy
exceeds that of the drift waves. Note that the ratio y/y, is the key control parameter for
manipulating the fluctuation energy branching ratio. It is interesting to note that the rather
special 'Dimits shift' regime [2.50], which is a state very close to marginal stability in an
effectively collisionless system, corresponds to the somewhat ill-defined case where both
Y— 0 and y4— 0, i.e.,, weak flow damping and drift waves near their marginal point.
The Dimits shift was discovered by direct nonlinear simulation of ion-temperature-
gradient (ITG) mode-driven turbulence in the collisionless limit. In the Dimits shift
regime, the drift wave fluctuations are just above the linear stability threshold and nearly
quenched by zonal flow effects which are large, on account of weak flow damping at low
collisionality. The Dimits shift regime is characterized by a large imbalance between the
energy in zonal flows and in n# 0 fluctuations (with zonal flow energy much larger),
which gives the appearance of a 'shift’ (i.e., increase) in the effective threshold for ITG
turbulence and transport. Thus, it is not surprising that the Dimits shift regime merits
special attention. Detailed discussion of the Dimits shift regime is given in Chapter 3.

It is especially interesting to comment on the effects of nonlinear zonal flow
damping, for which 0., # 0. The details of this process are a subject of intense ongoing
research, and will be discussed extensively later in this review. Candidate mechanisms
include Kelvin-Helmholtz-like instabilities of the zonal flows (which could produce a
turbulent viscosity, resulting in flow damping) [2.51-2.53), drift wave trapping, etc.
Whatever the details, the effect of nonlinear flow damping is to limit the intensity of the

zonal flow spectrum. Since energy is conserved between drift waves and zonal flows
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{(within the time scales of the evolution of zonal flow), this is equivalent to enhancing the
" fluctuation levels, in comparison to the case where o, =0. This is, indeed, the case in
the RHS column of Table 2.2, where we see the effect of finite o, is to enhance N and
reduce VZ in comparison to the case where 0, =0. Thus, nonlinear flow damping may
be viewed as a "return” of expansion free energy to the drift wave 'channel’, which thus
lowers the branching ratio V2/IN.

2.4 General Comments

It should be clear that the drift wave- zonal flow problem is a particular example
of the more general problem of describing the nonlinear interaction between, and
turbulence in, two classes of phenomena of disparate-scale, and of understanding
structure formation and self-organization in such systems. Such problems are
ubiquitous, and notable examples in plasma physics are Langmuir turbulence and caviton
formation, magnetic field generation and the dynamo problem, and the formation of
ionospheric structures, just to name a few. It is interesting to note that the separation in
spatio-temporal scales often facilitates progress on such problems, via the use of adiabatic
invariants, or systematic elimination of degrees of freedom using the methodology of
Zwanzig-Mori theory, etc. Thus, such nominally "more complex” problems are often
easier than the so-called classic "simple" problems, such as homogeneous turbulence.
The general theory of turbulence in systems with multiple bands of interacting disparate
scales is reviewed in ref. [2.54]. The Langmuir turbulence and collapse problems are
reviewed in [2.55]. The theory of the dynamo problem is discussed in great detail in
[2.56-2.61].

2.5 Implications for experiments

Experimental investigation of zonal flow physics is an urgent task, because the
zonal flow has a decisive impact on the turbulent transport in confined plasmas. So far,
progress on zonal flow physics has been made primarily by theoretical or simulation
studies. The interpretation and critical tests of the theoretical findings in physical
experiments are, although ongoing, important and merit special emphasis.

Although the system of drift waves and zonal flow shows a complex behaviour
and provides a fruitful example of the complex dynamics of turbulent media, it is still
highly simplified when compéred to real experiments. For instance, noise occurs in real
plasmas and can play an important role in their dynamics, particularly near bifurcation
thresholds. A brief discussion on the role of noise in the problem of zonal flows is
presented in the later chapters. In addition, convective cells, which in general are not
constant in the poloidal direction, can be driven by a mesoscale electric field. A typical

example of such poloidally-inhomogeneous mesoscale structure is the streamer. The
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general theory of convective cells and streamers is beyond the scope of this review, but a

short discussion thereof is given in the later chapters.
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Chapter 3 Theory of Zonal Flow Dynamics

In this chapter, the theory of zonal flow dynamics is discussed in detail. As
shown in the heuristic discussion of Chapter 2, the essence of the drift wave - zonal flow
system dynamics is that several mechanisms are simultaneocusly at work. The synergy of
these mechanisms results in the (self) organization of the self-regulating state. Here, we

present-a step-by-step discussion of the theory of the basic elements, which are:
(1) linear damping (especially collistonal) of the zonal flow
(ii) mechanisms for the excitation of zonal flows by background turbulence

(1it) mechanisms by which the spectrum of zonal flow shears limits and reacts back vpon

the underlying drift wave turbulence

(iv) nonlinear damping and saturation mechanisms for zonal flow, especially in

collisionless or very low collisionality regimes

(v) the type of self-organized states which are realized from the interaction of elements (i)-

(iv)
(vi) the effect of zonal flows on turbulent transport.

Elements (i)-(vi) are discussed below. Related illustrations, tests and analyses utilizing
numerical simulation are presented in Chapter 4. '

The remainder of Chapter 3 is organized as follows. Section 3.1 presents the
theory of linear collisional damping of zonal flows - the collisional damping is a key
energy sink. Special emphasis is placed upon the key, pioneering work of Rosenbluth
and collaborators. Section 3.2 presents the theory of zonal flow generation by
modulational instability of the ambient drift wave spectrum. The theory is developed for
both the coherent (i.e., parametric modulational) and broadband, turbulent (i.e., wave
kinetic) limits. Critical time scales which quantitatively identify these regimes are
identified and discussed. The relations between, and connections (vis-a-vis energetics)
between modulational instability and shearing, k -space diffusion, etc., are discussed and
a unifying framework is proposed. Emphasis here is an electrostatic turbulence and zonal
flows, but related discussions of electromagnetic turbulence, zonal flows and GAMs
(Geodesic Acoustic Modes) are also included. The relationship between zonal magnetic
field dynamics and the classical dynamo problem is discussed. In section 3.3, the theory

of shearing and its effects on turbulence are discussed, for both mean field and random
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(i.e. zonal flow) shearing. This discussion is important in its own right (as an element in
system self-regulation) and as a foundation for understanding the impact of zonal flows
on turbulent transport, etc. In section 3.4, zonal flow saturation is discussed, with
special emphasis placed upon collisionless or low collisionality regimes. As with
generation, several different applicable models are discussed, each in the context of its
regime of relevance as defined by time scales, degrees of freedom, etc. In particular,
tertiary instability, nonlinear wave packet scattering, wave trapping and other mechanisms
are discussed. After explaining the elementary processes, a unifying classification of
various possible system states is suggested in terms of the Chirikov parameter and Kubo
number, which characterize the turbulent state. This classification scheme gives a global
perspective on the nonlinear theory of zonal flows. In section 3.5, the system dynamics
of zonal flows and turbulence are presented. In the final section 3.6, the effects of zonal
flows on turbulent transport are discussed. Special attention is given to zonal-flow-
induced modification of the cross phase and upon the scaling of the turbulent transport_

flux with zonal flow parameters, such as shear strength, flow correlation time, etc.

3.1 Linear Dynamics of Zonal Flow Modes

Zonal flows are, first and foremost, plasma eigenmodes, aibeit modes which are
linearly stable. In this subsection, we discuss the linear response of the plasma to low
frequency electric field perturbation which is constant on a magnetic surface. This
corresponds to the m =n =0 component, where 1 and » are the poloidal and toroidal
mode numbers, respé:ctively. The issue is how the toroidal effects influence the
response. Two relevant regimes are explained. One is that of the slowly varying
response, for which '8/8(1 << = Vi/gR | where @, is the ion transit frequency and
Vrh is the thermal velocity of ions, Vi = T/m; . In this case, the perturbation is
called a zonal flow, The plaéma response is incompressible, and the poloidal Ex B
velocity is associated with a toroidal return flow. The other is a fast-varying regime,
where ’ o/dt | ~ )y . In this case, the poloidal asymmetry leads to plasma compression so

as to induce an oscillation in the range of ® ~ @, . This osciliation is called the geodesic

acoustic mode (GAM). We first describe the zonal flow and then explain the geodesic
acoustic mode. The damping of these modes by collisions and ion Landau damping is
explained. In this section (and throughout the review), we use the werd ‘damping' for
the linear response mechanisms (e.g., collisional damping or collisionless damping, like
Landau damping). The nonlinear mechanisms that induce the decay of regulate the flow
are called 'saturation mechanisms' or, if necessary for clarity, 'nonlinear damping '
mechanisms'.)
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3.1.1 Zonal flow eigenmode

In drift-ITG mode (ion temperature gradient turbulence [3.1}]), zonal flows have
an electrostatic potential ¢ which is constant on a magnetic surface, and so have

m=n=0, k" =0 . Because of the vanishing ki , the electron response is no longer a

Boltzmann response, so that the relation i/n = e®/T no longer holds. The density

perturbation is usvally a small correction, in comparison with the potential perturbation.
Certain CTEM (collisionless trapped electron mode) regimes may be an exception to this.
Thus, zonal flows correspond to a highly anisotropic limit of the more general
"convective cell mode" [2.3, 3.2]. As discussed in Chapter 2, zonal flows (but not
GAMs) can be thought of as convective cells of minirﬁum inertia, minimum Landau
damping and minimum transport [3.3].

The spatial structure of the zonal flow is described here. The electrostatic

perturbation is constant on each magnetic surface. If it 1s decomposed as
$=qZ$(qr)BXP(iq,{r~ro)) (3.1.1)

where 7q is a radius of reference, each g, component has the linear dispersion relation
[2.3, 3.2]

®=0. C(3.1.2)

The-vanishing real frequency is easily understood. The electrostatic perturbation with
m=n=0 does not cause acceleration along the magnetic surface. The polarization drift

disappears, consistent with the ordering of 00 << ®, . For completeness, we note that
there arises small but finite real frequency because of collisional damping, which is

explained in §3.1.3.
The plasma produces an EX B flow,

E :
Vexg=—F - (3.1.3)

This flow is directed mainly in the poloidal direction. Because of toroidicity, this flow
component induces the compression of plasma. To maintain incompressibility, this

compression is compensated by a return flow along the field ling; so:

0
E
V=_—E’I 1 (3.1.4)
—2q cosB
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to the leading order in the inverse aspect ratio € = r/ R [2.46]. This flow pattern is

illustrated in Fig.3.1.1. On account of the secondary flow along the magnetic field line,
the zonal flow in a toroidal plasma is subject to a stronger damping rate as compared (o
those in slab plasmas.

The density perturbation remains to small correction. For the range of scales

comparable to the ion gyroradius, it can be given as:

=

~18.

P2 q2p? s

-E (3.1 :5)‘
- 3.1.2 Geodesic acoustic mode {(GAM)

The dynamics of plasma rotation are influenced by toroidal geometry. Toroidal
effects have been studied in conjunction with the neoclassical transport theory [3.4-3.12],
as reviewed in [3.13-3.15]). When one constructs an eigenmode in the regime of fast
variation, | 0/ot | ~ @y , one finds the geodesic acoustic mode (GAM) [3.5].. The GAM is
a perturbation for which the m =1 =0 electrostatic potential is linearly coupled (by
toroidal effects) to the m = 1/ n =0 sideband density perturbation. - A brief description of
GAM is presented here.

Working in the framework of standard fluid equations, one begins with, as
governing equations, the continuity equation and the equation of motion

a%ﬁ+V-nVl+_V|FnV||=S—V-F . . . (316)
nm,{aa—t V+.V-VV)=—Vp+JxB+Sm,-V, S (3.1.7)

together with the charge neutrality condition V- J =0 and Ohm's law

E+VxB=0, (3.1.8)

p=nT isthe pressure, and the temperature gradient is neglected for simplicity. The
source terms § and I represent the (equilibrium) particle source and flux, respectively.
These can induce acceleration of the zonal flow if they are not homogeneous on a
magnetic surface. The so-called Stringer spin-up [3.6] is such an acceleration
phenomenon. In this subsection, we do not describe the response to § and I" , but
restrict ourselves to the dynamics of GAM eigenmode.

The key mechanism for generating the GAM is seen in Eq.(3.1.7) [3.5, 3.16]. If
one takes the poloidal component of Eq.(3.1.7), one obtains
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BP-(nm',—(% V+TVn)=B,R_]J-.V\y _ _‘ (3.1.9)
where B, and B, denote the poloidal and toroidal magnetic fields, and VY denotes a

unit vector in the direction across the magnetic surface. Because of the charge neutrality,

the net current across the magnetic surface vanishes. Using Eq.(3.1.9), the condition

J ds - J =0 may be rewritten as:

J‘L‘R B,,-(nm.i V4 TVn)=0. _ (3.1.10)

This relation is trivial in a cylindrical plasma. However, in toroidal plasmas, toroidicity
induces coupling between the m =n =0 component of the electrostatic potential and the

m=1,n=0 component of the density perturbation. It may be convenient to use the

notation of [3.16], i.e.,
VEX g[r; t) ,: N(r, 0; t) =.ﬁ /ng and V”(r, 6; t] , (3'1.1. 1).'

where all the fields have toroidal symmetry. To leading order in € , one can rewrite

Eq.(3.1.6), the parallel component of Eq.(3.1.7), and Eq.(3.1.10) as:

N -Zsin6 Vg, p+V7)=0, | (3.1.12a)
-ad—tV"+C§V”N=O, ' , . (3.].12b')
-a%VExB+%c52(j;—g-%sin9N=0, | (3.1.12¢)

respectively. This set of equations describes two classes of oscillations. One is a
particular case for which the density perturbation has a sin @ dependence, i.e.,

R{r. ;1) =N\(r; 1) sin6 . o G.1.13)
In this case, the dispersion relation given from Eq.(3.1.12) is:

Qz—Ezi—qﬁcs=0_ ' (3.1.14)



The second term on the right hand side comes from the combination of the second terms
in Eq.(3.1.12a) and in (3.1.12¢). The third term in Eq.(3.1.14) is a contribution of the
usual parallel ion sound wave response. The resulting mode is the geodesic acoustic

mode, the frequency of which is higher than the ion acoustic wave and is given by:
0@am=2c2R"H1 +¢-22) (3.1.15)

The eigenfunction is given by the relation Ny = V2 ¢;V Ve, p from Eq.(3.1.12). The
phase of N is shifted /2 behind the phase of the radial electric field. The density

perturbation can be rewritten as

%:-(Eqrps%)sinﬁ. (3.1.16)

The normalized density perturbation is ¢, ¢ -times smaller than the normalized
electrostatic potential perturbation e®/T, . This dependence is of lower order with respect
to 4, , in comparison to that of the zonal flow Eq.(3.1.5). The higher relative density
pcrturbétion characteristic of a GAM may render it comparatively easier to detect than
pure zonal flow.

If the density perturbation has dependence other than sin® | the equation (3.1.12)

reduces to

Q%-gfc,=0,and Q=0, (3.1.17)

i.e., the conventional ion sound wave and the zonal flow. Note that if one chooses the
zonal flow branch Q = 0 | Eq.(3.1.12a) gives the parallel flow

This is the return flow along the magnetic field line given in Eq.(3.1.4).

The dispersion relation Eq.(3.1.14) was derived for general toroidal magnetic
configurations in [3.5]. The second term was given as the product of an integral of the
geodesic curvature multiplied by a relative perturbation amplitude. This is the reason that
this mode is called the geodesic acoustic mode or GAM. It can be explained pictorially as
follows. Equation (3.1.9) states that the diamagnetic current must be compensated by the
polarization drift current of the ions. The density perturbation couples to the

inhomogeneous EX B motion on the magnetic surface. The geodesic curvature is the

curvature of the magnetic field line measured on the magnetic surface. (The geodesic line



is a 'straight line' on a toroidal surface, i.e., the line connecting two points of minimum

length. See Fig.3.1.3.) If the magnetic field line (locally) coincides with the geodesic
line, the EX B flow velocity on the magnetic surface does not compress the plasma

element. However, if the field line has a finite local geodesic curvature, the £X B motion
induces compression. This local compression turns into a density perturbation, if the
frequency is in the range of ¢/gR or higher. (If ® is much smaller, the compression is
compensated by the dc asymmetric parallel flow as is shown in Eq.(3.1.18).) A
schematic drawing is given in Fig.3.1.3.

it has been noted that the dispersion relation Eq.(3.1.15) seems not to explicitly
include the effect of toroidicity. However, the GAM disappears in the cylindrical limit.
If one takes ¢+~ as the basic unit of frequency, the GAM driving term (the second
term) vanishes as € 0 . In the limit of €= 0 for a fixed value of B,/B, , the ion sound
term dominates and the GAM frequency (the second term in Eq.(3.1.14)) is negligibly
small. The physics is straightforward: in cylindrical plasma with B /B, given, the
magnetic field line is a geodesic line on a cylindrical, circular-cross-section magnetic
surface.

3.1.3 Collisional damping process

The process of collisional damping of zonal flow is now explained. In a slab
plasma, the damping rate of the zonal flow is given by p,-q,? , .., in proportion to

v;ip?q% (here I; is the ion viscosity). However, in toroidal plasmas, the damping rate
remains independent of scale. (See, e.g., for a review, [3.13-3.15].) Progress in the
theory of the H-mode, [2.30, 3.17, 3.18] has stimulated a revival of the detailed
calculation [2.30, 2.40, 3.17-3.29]. In this subsection, we first describe stationary flow
which is realized by the balance of collisional drag with pressure gradient drive. Then

relaxation processes are discussed. The case with [a/ar| << ;= vp/gR is discussed

first. The case of rapidly varying response (GAM), lalat | ~ (), is explained next.

(i) Stationary flow driven by pressure gradient
The fluid velocity in an inhomogeneous toroidal flow, projected on the poloidal
cross-section is expressed as

V9=

-EE]—V”-I"VExB‘FVd'l‘VdT (3119)

Here Ve g is the E X B drift velocity, V4 is the diamagnetic drift velocity, Vgt is the

ion-temperature-gradient drift velocity, so that

T I 1__d 1 __dyr
Va=cpr,» Yer=gpr; L, g mroad =g nti



(3.1.20)

and \7" is the average of V|| on a magnetic surface. In the absence of torques (e.g., orbit
loss, external momentum injection, etc.), €9~ ! V” is an O(Ez) correction with respect to

Vex g . (See, e.g., [3.29].) The equilibrium velocity is obtained as
Vo=Cyx Vur ' - (3.1.21)
where Cy is a numerical coefficient, shown by Hazeltine to be [3.10]
Cp=1.17 (banana), Cy= - 0.5 (plateau), Cy=~—2.1 (Pfirsch-Schluter). (3.1.22)
From Eqgs.(3.1.19) and (3.1.21), the £ X B drift velocity is given as
Vexp=(Cu-1)Var-Va, (G123
if there is no other force to drive plasma poloidal rotation. The velocity scales with the

(density and temperature) diamagnetic drift velocity. The radial electric field is easily
deduced from this relation, and is given by:

- N T T -
E,_{CH—l)a—T—eLn (3.1.24)
The radial electric field is of the order of 1on temperature gradient divided by the electron

charge, if the stationary state is governed by collisional transport processes.

(ii) Damping rate .

The deviation of radial electric field from the result given by Eq.(3.1.24) is
determined by the balance between the damping and driving torques. Here we survey the
theories of collisional damping. | ‘ | |

| Collisional damping of zonal flows is controlled by ion-ion collision processes.
The transit-time-magnetic-pumping process is explained betow.

Figure 3.1.4 illustrates the change of the phase space distribution of ions when
poloidal rotation occurs. When a small element of a phase space in the low field side
moves to the high field side, it is 'stretched' in the direction of the perpendicular velocity,
V) ,since V) increases due to the conservation of magnetic moment. On account of ion-
ion collisions, the deformed distribution tends to recover isofropy, which is shown by a
thick solid line. In this relaxation process, the thermalization of ordered poloidal motion

occurs, and the poloidal velocity is damped. From this argument, it is clear that this
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damping rate is independent of the radial structure of the flow. This is not diffusive
damping.
In the Pfirsch-Schluter regime, [3. 11]

ad-, Vo =—"Ydamp (Ve- Ch VdT) (3-1.25)

where the damping rate is given as

Ydampzmrzvi_fl . E ' - (3.1.26)

The mean free length in poloidal direction, which is determined by ion collisions, s

' 2 .
inversely proportional to V; . Note that here Ygamp = D||/(qR ) = 03,2/\/ ii 1s simply the
time for parallel diffusion of one connection length. The dependence on the toroidicity is

explained as follows. The normalization time is taken to be
o) =vpa, (3.1.27)

Uy = \/m—, .ie., the ion thermal transit rate across the minor radius, Eq.(3.1.27)
states that Ygqamp = €2q‘ 201vy; L. This explicitly shows that the damping disappears in
the limit of € — 0. In the limit of € — 0, the magnetic field is constant, and transit-time
magnetic pumping disappears.

In the banana regime, stronger damping occurs due to collisions between
transiting ions and banana i ions, because magnetlcally trapped particles do not rotate freely
in the poloidal direction. (See Flg.3.l .5.) The polmdal rotation veloc:ty, which is '
carried by the untrapped particles, is impeded by collisional friction with poloidally
stationary trapped particle bananas. The damping rate associated with this process has
been calculated by various authors. For the ordering la/a: i.<< ®, , the drift-kinetic

equation was solved by analytic methods. (The other limit of orderiﬁg, | d/dt | ~ W, , is

relevant to the other limit of the characteristic dynamics, namely the gebdesic acoustic
mode (GAM) This is dlscussed later ) Reference [3.20] found, by using an improved
evaluation of elgenfunctmns that the dampmg rate increases as the t0r01d1c1ty € becomes

small. A fitting formula was proposed as,

Yaamp= 1.5 VE(V)/ & (3.1.28)

where V{,) (U) is the energy-dependent pitch-angle scattering coefficient. In {3.22], an

evaluation of the damping rate showed that the t_:-depéhdence is much stronger than that -
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given by Eq.(3.1.28). (The numerical solution in {3.22] can be fit by Ygump/V i < €7
with = 0.85 for0.2<£<0.8 ) An alternative fit

'Ydamp'—"v,?( V)/E (3.1.29)

was proposed. Direct numerical solution of the drift kinetic equation [3.29] has
supported the conclusion that Ydamp is a decreasing function of £. The damping rate is in

the range predicted by Eqs.(3.1.28) and (3.1.29). (The discrepancy between
Eqgs.(3.1.28) and (3.1.29) becomes large in the limit of ¢ — 0. In this limit, the banana
regime reverts to the plateau regifnc and Eqgs.(3.1.28) and (3.1.29) do not apply.) It has
 also been pointed out that collisional damping induces a real part of the total oscillation
frequency for the zonal flow, so that [3.22]

w=0+ ivdamp, (3.1.30a)
(!),l."_‘.' Vi (3.1.30b)

In the plateau regime, the dissipation rate is controlled by the transit frequency ®,

and
Ydamp = @ h(E) (3.1.31)

where h(E] is weakly dependent on toroidicity. Direct numerical calculation has shown

that h(e) ~&® and a small positive parameter is observed in the range of o ~ 1/3 [3.29].

It should be noted that the damping rate in the banana regime, Eq.(3.1.28) or

(3.1.29), increases if € decreases. However, this does not contradict the requirement of
Ydamp — 0 as € - 0. In the limit of € — 0 | the banana regime metamorphosizes into

the plateau regime. In the plateau regime, one has Ygamp ~ € I+ “q" Lo, . Thus, the
damping rate vanishes explicitly as toroidicity disappears, € =0 .

Collisionless damping, if it exists, would influence poloidal rotation in the high
temperature plasmas. The damping rate vanishes in the limitof v; = 0, in quiescent
plasmas [2.40]. The drive by turbulence (zonal flow drive) and other torque (e.g., orbit
loss, external force, etc.) can balance the collisional damping. Figure 3.1.6 summarizes
the scaling trends of the collisional damping rate.

The question of what the collisional damping rate is in the limit of the high
poloidal velocity has attracted attention. It was noted that the damping rate Ygamp can

depcnd on the poloidal velocity, if Vg becomes of the order of € Vrp,/¢ . The damping
rate then becomes a decreasing function of Vg [3.18, 3.31]. This is a possible origin of



a bifurcation of the radial electric field. (Examples include [3.32).) This mechanism, and

the consequences, are explained in [2.46].
(iti) Geodesic acoustic mode (GAM)

The geodesic acoustic mode (GAM) is also subject to collisional damping. After
solving the drift kinetic equation with the ordering of | d/ot | ~ @ , the dispersion relation

has been obtained in [3.29] as

2
w?-15 4% 20, (3.1.32)

00|~J
[}
=

P

(As compared to Eq.(3.1.14), the GAM frequency is evaluated with a slightly different
numerical coefficient. This arises because the velocity moment is taken after the drift
kinetic equation is solved. It is in contrast to Eq.(3.1.14), which was derived from the
fluid equations, for which the velocity moments are calculated before solving the

dynamical equation.}) The damping rate of the GAM is estimated from Eq.(3.1.32) to be
YEAM = F v (3.1.33)

The banana ions do not explicitly play a role in damping, because the GAM frequency is

much faster than the bounce frequency of banana ions.

3.1.4. Rosenbluth-Hinton Undamped Component of Zonal Flows in
Collsionless Plasmas

Both nonlinear simulations and theories of ITG modes have shown that
turbulence-generated, axisymmetric, radially-sheared zonal flows play a dominant role in
regulating the level of turbulence and transport. Therefore, an accurate treatment of the
damping of self-generated zonal flows is an outstanding issue in predicting confinement.
Asymptotic behavior in the collisionless limit is of particular interest regarding future
devices. The adequacy of gyrofluid models for calculating the zonal flow damping, in
view of the "first principles" claim of their pessimistic prediction on ITER confinement,
has been questioned by Rosenbluth and Hinton (RH) [2.40]. Their analytic caiculation
has shown that linear collisionless kinetic mechanisms do not damp the zonal flows
completely. This prediction was verified later by various gyrokinetic codes [2.50, 3.33-
3.35] while gyrofluid models {3.36, 3.37] incorrectly predicted a total collisionless decay
of poloidal rotation. A modification of the gyrofluid approximation was attempted later,
but only a part of RH undamped flow has been recovered to date [3.38].
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As discussed at the beginning of this chapter, zonal flow can be viewed as a
superposition of GAMs with a characteristic real frequency on the order of ®, ~ Vpp/R

and with a corresponding ion Landau damping rate ®, exp (— q2/2) , and a zero

frequency component to which RH calculation applies. (An example of the time evolution
history of zonal flows which are allowed to relax in the absence of turbulence in a
collisionless toroidal plasma is shown by DNS, and is explained in Chapter 4. Its
poloidal component is damped due to the variation of B in the poloidal direction. The
damping occurs due to the transit time magnetic pumping [3.9]. One can identify the
oscillation and decay of GAMs as well as the non-zero asymptotic level of zonal flows
predicted by RH.) .

The RH calculation, which is based on the gyrokinetic equation, consists of
following the long term evolution of the zonal flow with an assigned finite initial value.
Concentrating on the long term behavior 1 >> “’E.li , RH calculates the bounce-averaged -
gyrokinetic response to an initial perturbation. The nonlinear gyrokinetic Vlasov equation
for zonal flow component with g = (q -0, 0) i.e., n=m=0 canbe written as

387*'("!%“"(1) V- Cu}ﬁq+%Fo(V|;5-V+Vd-V)¢ =Sy, (3.139)

where ¢q is the electrostatic potential of the zonal flow; f; q and Fy are the perturbed

and unperturbed distribution functions of ions, respectively; and nonlinear interactions of
ITGs withk , k" are considered as a noise source S i,q for zonal flows. -Of course,

Eq.(3.1.34) should include a response renormalization, as well as noise. The

correspondmg gyrokinetic Poisson's equation (i.e., the quasi- neutrallty condition
expressed in terms of the guiding center density #; o and polarization density) is

_nO%p?q%q)q i g=Negq, (3.1.35)

where 1, . =0, for the adiabatic electron response with zonal flows, and the long
wavelength approximation for zonal flow p?g? << have been used.

In RH, a bounce-average of Eq. (3.1.34) has been performed for a hlgh aspect
ratio circular tokamak geometry. In pamcular p,zq ;<< pa' 4F<<1 is assumed. (Pg ;

is the ion gyroradius at the poloidal magnetic field.) The detailed calculation is not
repeated here. The main result is that an initial zonal flow potential ¢q(0) will be reduced

to a level ¢q(l‘) as I — = _due to the neoclassical enhancement of polarization shielding:

0(t) - 1
0,(0) 1+ 1.6e~ 1242

(3.1.36)
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In physical terms, the usual polarization shielding associated with firiite Larmor radius
effect in a short term (after a few gyro-periods) ~ p?¢Z s replaced by the neoclassical

polarization shielding associated with the finite banana width of trapped ions at long time
(after a few bounce periods) ~&'2pg g2 ~e~2pd 4% . (P, ; is the banana width of
ions.) An accurate calculation of the coefficient 1.6 requires a kinetic calculation which
includes the contribution from passing particles, but the correct scaling can be deduced
from considering trapped ions only. -

The resuli in Eq. (3.1.36) has been useful in benchmarking various gyrokinetic
codes. For that purpose it suffices to solve Eqs. (3.1.34) and (3.1.35) with initial values
f(O) and ¢(0) . After a such test, which is explained in Chapter 4, the RH result has

turned out to be highly relevant, as indicated by numerous nonlinear simulations. *

3.1.5 Further Details of Collisional Damping of Zonal Flows

A frequently-asked question about zonal flow in toroidal geomeltry is: "why isn't
the radial electric field E, associated with zonal flow balanced by the toroidal flow,

eventually satisfying the radial force balance £, = VgB, 7"

To elucidate the relation between the RH result and this question, one shou‘fd
recall that the RH calculation is purely collisionless, and that one should consider the ion-
ion collisional effect for the longer-term behavior of zonal flows. The collisional damping
process of zonal flows has been examined in detail by Hinton and Rosenbluth (HR) in
their follow-up paper [2.41]. HR identified several temporal-asymptotic phases of zonal
flow response to an initial zonal flow potential ¢q(0) , which consist of:

i) For times longer than a few ion bounce-times, the zonal flow potential reduces to a
non-zero residual value given by Eq. (3.1 .36) due to a collisionless kinetic process which
includes the jon Landau damping of GAMs, transit time magnetic pumping, and
neoclassical enhancement of polarization shielding.

i1} For times of the order of £T;; , where T;; is the ion-ion collisional time, the potential
and poloidal flow decay due to pitch-angle scattering in a trapped-passing boundary layer.
Most of collisional poloidal flow decay occurs in this phase (as confirmed by simulation
[2.48]), and zonal flow is mostly in the poloidal direction, up to this phase.

iii) For times comparable to € /2T;; , the potential approaches a non-zero stéady state
value (Dq(t) = ¢q(0)B§B,_2 , consistent with E,= V@B, . and the poloidal flows decays
approximately exponentially. |

iv) For times longer than T;;, damping of poloidal flow is due to energetic ions with
small collisional rates, resulting in a siow non-exponential decay due to ion drag. Note

that the collisional damping of the toroidal flow is a higher order process.
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The main conclusion is that the most of collisional decay occurs on the time scale
in phase ii). Thus one can define the net effective collisional decay time of zonal flow as
1.5 et;; , following HR .

As illustrated in Appendix C, there exists a near isomorphism between ITG
turbulence and ETG turbulence. One crucial difference is that, while the adiabatic electrdn
density response due to electron thermalization along the magnetic field is zero for ITG
zonal flows (see Eq. (3.1.35), the adiabatic ion density response due to demagnetization
is non-zero for ETG zonal flows. Interesting consequences for ETG zonal flow damping,
related to this difference, have been investigated in Ref. [3.39].

3.2 Generation mechanism

The zonal flow is driven by nonlinear processes in the spectrum or wave packet
ensemble of fluctuations in the range of the drift wave frequency. In this subsection,
several elementary processes for generation of zonal flow are presented. We have
previously discussed the linear response of stable zonal flow modes. As these are
intrinsically incapable of trapping available expansion free energy since n =0 , they must
be excited by nonlinear pumping by drift waves. Here we discuss the mechanisms of
nonlinear excitation. The mechanism for zonal flow generation includes both parametric
instability of a single drift wave and modulational instability of a spectrum of dnft waves.
The modulational instability can be calculated via both eikonal theory and wave kinetics,

and by envelope formalism.

3.2.1 Generation by parametric instability _
A single drift wave (plane wave) is shown to be unstable to parametric

perturbations [2.3, 3.40]. By parametric instability, the drift wave can generate
convective cells for which the parallel wavenumber vanishes, kj=0 . The zonal flow is a

special example, corresponding to extreme anisotropy with ¢, >>gg ~ g|~ 0,0fa

convective cell. A schematic diagram of the parametric instability process which
generates the zonal flow is given in Fig.3.2.1. The structure of the wavenumbers is
illustrated in Fig.3.2.1. Note that the parametric instability process is the usual one,
familiar from weak turbulence theory, with the feature that one of the 'daughter waves'

has zero frequency. In this subsection, parametric instability of a simple drift wave
6(x, 1) =&y exp(ik q0x - imdt) +c.c.
1s discussed.

(i) Zonal flow in slab plasma
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Two possible parametric instabilities occur for a plane drift wave. (See

Fig.3.2.1.) In the study of paramelric instability in slab plasmas, we use the coordinates
(X, ¥ Z) where X is in the direction of the radius and z is in the direction of magnetic

field. One is the parametric decay instability [2.3, 3.40]. The primary drift wave,
denoted by the wavenumber k 45 and frequency Wyq , where the suffix d stands the drift
wave, can induce a pairing of a convective cell (wavenumber ¢ and frequency £2 ) and a

secondary drift wave (wavenumber k 4; and frequency ®g4; ). This process occurs if

conditions

kay+tq=ky, Wy + 2 =wyg (3.2.1)
and

ko > ki | | (3.2.2)

are satisfied. The growth rate of parametric decay instability is easily shown to be:

T kZy-k% e
Ya=cpfkanxal/ 7 ar el (3.2.3)

e

where §gq is the amplitude of the electrostatic potential perturbation associated with the

primary drift wave.
The parametric decay instability is not effective for generating zonal flow. The

beat condition requires

ka,y=kao,y and kg =kgp =9y, with @g; = Qgp , (3.2.4)

because £ ~ 0 applies as explained in §3.1. Thé dispersion relation for drift waves

Vankg,y
o= Janka, | 3.2.5
T p2ide (3.2.3)

(V4. is the diamagnetic drift velocity), together with Eq.(3.2.4) requires,

qx=2kgo, x (3.2.6a)

and

kar.x=—kqo,x . (3.2.6b)
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Parametric decay is possible if Eq.(3.2.6) is satisfied. However, for this combination of
wave vectors, the relation kﬁro =k 31 is forced, so the growth rate of parametric decay
vanishes. Thus, the zonal flow is not driven by the parametric decay instability.

The other possible parametric process is the modulational instability [2.23, 3.41].-
In this case, the primary drift wave {denoted by & 4o and Wy ) couples to the

(modulating) zonal flow (g and 2 ) and so induces two secondary drift waves. The two

induced drift waves are denoted by d+ and d-, and have wavenumbers
kd+=kd0+q, and kd_=q—kd0. (327)

The modulational instability means that the radial structure of the wave function primary
drift wave is modified when the zonal flow is excited. As in the case of the parametric -
decay process, we study the growth rate of the parametric modulational instability starting
from a reduced set of equations. We employ a potential vorticity conservation equation
{ala the Chammey-Hasegawa-Mima equation)

g?(n—A_L¢)+[¢,(n—Al¢)]+%¢=0 o (3.2.8)

where [¢', 3] = (5 xV L‘D) Vg (l; : unit vector in the direction of the magnetic field)
represents the advective nonlinear term, and the normalizations of space in unit of p; and
time in units of L,c5 !, together with

t~
|5
t

Rl

nof)?’q’

n = (3.2.9)

e s

=~

are employed for simplicity. In the case of co-existing drift waves and zonal flows,
¢=0q+0zr andn=ny+ny,

Eq.(3.2.8) is then separated into the vorticity equation for drift waves

9 (ng—8,06)+ (0, (n - Alq:)] - < [q», (n +Al¢)]> + % 9=0 - (3.2.10)

and that of the zonal flow

' aa—,(”ZF‘ A.L¢’ZF) + <[¢ (" - Al¢)]> =0, G.2.11)
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where ( - ) denotes the average over the maghetic surface. The density response is

given by the Boltzmann relation for drift waves

ng=9q. o | (32.12)
For zonal flows, the continuity equation holds, so that

$ ngp+{(0.n])=0. BN P RE)

Equations (3.2.10), (3.2.11),1(3.2.12) and (3.2.11) govern how the set of perturbations
(zonal flow and secondary drift waves) grow in the presence of the primary plane drift
wave. Writing the temporal evolution of these secondary modes as exp (— iQt) ,and’

linearizing Eqs.(3.2.10)-(3.2.13) with respect to the amp]itudes. of the seconaary m.odé
implies

ngr =0 | (3.2.14)

so long as € #0 . Thus the vorticity equation for the zonal flow reduces to the Euler

equation for a 2D fluid. By use of Eq.(3.2.12) and (3.2.14), the linearlized forms of
Egs.(3.2.10) and (3.2.11) can be written as

_—i|kd0ix4! (1 +k50l—(12)

04T o ddo0 Oz . (3.2.15a)
Wy - 0y, +Q (“'k%u) -
Pg = - _ bgo OzF . . (3.2.15b)
_ Wy + Wy —Q (] +k(21_l)_ _ . LA

We also obtain:

Qq3 bz = i|k g0y x| (kﬁol.—’k?iu) dd0 ¢d+_(k§iol_k%-J_) Pao Pa -

 (3.2.16a)
where o )
ko, — kg0, y

= , and ©y_= X (3.2.16b)
1+k2, s ey

0y +
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are the natural frequencies of the secondary drift waves. (Particular cases with

Wy~ Wy-2=0 orwy_.—-wy—Q=0, for which the denominators in Eq.(3.2.15a) or
in Eq.(3.2.15b) vanish, correspond to the parametric decay instability. They are
discussed above.) The eigenfrequency is illustrated in Fig.3.2.2.

Equations (3.2.15) and (3.2.16) yield the parametric modulational dispersion
relation

(md - 44 +. Q](wd +Wy_— .Q) =

2
|k 0. % a] (]+k2 2)2(k3+¢‘k§0x+k3—l—kﬁm logl® . (3.2.17)

2 z

The left hand side of Eq.(3.2.17) is a quadratic function of {2 . The condition for the
instability to exist, i.e., the solution for complex £ | is given as

0z - 0g 2 |kaorxal’ A k3, k2, kE | -kZ
(md_ d+ d—) o (1+k§0l—q2) d+ L " XdoL  Kd-1=RdolL |¢d0|2
2 q° l+k§+.|. 1+kc21—.L
(3.2.18a)

In the limit of a long wavelength of the zonal flow, ]q | << | k, ll , this condition can be

simplified to
(3.2.18b)

Parametric modulational instability can occur if the condition (3.2.18) is satisfied. The
growth rate of the secondary perturbation is given from Eq.(3.2.17) and is expressed in
the long wavelength limit as

Yzr=VZ | koL ¥4\ / 03 —M (3.2.19)
ZF oL 40 2|kd0.Lx‘I|2 . 2.

In the case that the drift wave is propagating nearly in the poloidal direction, kg =0,

Eq.(3.2.19) is simplified to

Yzr =kaor 4./ 2 0d0 - 42 . (3.2.20)
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The maximum growth rate is given as
Yzr = kg 030 (3.2.21)

for }q | = {go . Expressed in dimensional form, Eq.(3.2.20) is rewritten as

~ 1 - 2
e L, c e L, -
Yz = PikqoL qx\/2( 1?:0 ;ys) -43p? ﬁ=qysm*\/2( 3?:‘” p—s) -aip? .

Figure 3.2.3 shows a plot of the growth rate of the modulational instability as a

function of the wavenumber of the zonal flow. It is unstable in the long wavelength
region. If the growth rate of the parametric instability is larger than the collisional

damping, growth of the zonal flow can occur.

(ii) Tokamak plasma

In tokamak plasma, a singlé drift wave eigenmode is not a plane wave but is given
by a ballooning eigenfunction. Ballooning modes are similar to Bloch wavefunctions,
familiar from condensed matter physics. A ballooning mede has a single n-value
(toroidal mode number - the 'good' quantum number in the direction of symmetry), and
consists of a set of coupled poloidal harmonics, vibrating together with a fixed phase
relation, which defines the radial wave number. Coupling of poloidal harmonics occurs
on account of the poloidal angle dependence of the VB and curvature drifts. A
ballooning mode can be viewed as a particular poloidal harmonic linearly coupled (by
toroidal effects) to neighbouring side-bands. When written in terms of the extended
poloidal coordinate used in the ballooning mode formalism, ballooning modes are seen to
extend along the magnetic field line. A similar analysis has been developed, and toroidal
effects influence the coupling coefficients [2.23]. Here, the parametric modulational
instability calculation of section (i) is extended to toroidal geometry. The pump wave 1s
expressed as [3.42]

@0(,., t) = exp (_ in — imo‘); (Do(m - nq)exp (ime) +c.c. (3.2.22)

where m and n are the poloidal and toroidal mode numbers, respectively, and
(D()(m - nq) represents the poloidal harmonic wavefunction. As in the case of slab

plasma, a single toroidal mode number 7 is kept. The zonal flow dzr and two nonlinear

side bands of the toroidal drift waves ($+ and §_ } may occur by the modulational

instability. Note that in this analysis, it is important to distinguish between nonlinear
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sidebands (driven by nonlinear beats) and linear sidebands which result from toroidicity-

induced coupling. They are given as

Ozelr. 1) =exp (iq,r - iQr) O, + . (3.2.23)

$+(r, t) =exp (- inC — iyt + iqr — iQt)"Z <D+(m - nq]exp (ime) +c.c.

(3.2.24a)

| &(r, 1)=exp (mg +igl +iq,r — iQt)Z_r: CD_(m - nq)exp (im8) + c.c.
- (3.2.24Db)

This form is physically equivalent to the corresponding one in subsection (i), but the
toroidicity-induced coupling affects the structure of the eigenfunction. (The suffix "d"
denoting dnft waves is dropped in order to reduce the complexity of notation.)

The modulational instability is analyzed by a procedure similar to that for the slab
plasma. The response of the zonal flow to the modulation {equivalent to {3.2.11)) is

_iQ®, = g<; (a+d)6<1>+ - a"(DOCD_.)> . (3.2.25)

where

_(2+"r’)ke Bé
5728 416328

ay=k3, k2, (3.2.26)

ko=ngqlry . ry is a reference radius, ko) = kg +ing'd /98  E=m-ngq , and
ky = tkoy+7q,.

The side band components are calculated by use of the linear response to the drive

by the beat between the primary wave and the zonal flow. The drive is proportional to
®y®zr and has the frequency @ + €2 . The amplitude of @, is given by:

409+ Q) = keg, Py (3.2.27a)

where £, is the linear operator representing the linear response,
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(0p+ Q- . JFy i @,
oV g + Q) +ik, 1 Vou

£,(w+ Q)0 ={0y+ Q) 20, - J’ dv

(3.2.27b)

where @+ ; is the ion diamag‘ﬁetic drift frequency (including the temperature grédicnt), |
Vam is the drift due to the inhomogeneity of maghetic field and < : ) indicates the
average over § . The operator L+((D) determines the éigenfrequcncy of the beat mode,

®, , through the dispersion relation
zfo,)0,=0. (3.2.28)

As is discussed in subsection (i), the beat frequency @q + €2 is not equal to the
eigenfrequency ®, . To facilitate analytic approximation, the solution is assumed to have
a form of (D+(§) =A +(I>0(§) . Substituting this form into Eq.(3.2.27a) and averaging over

£, determines the proportionality constant A, so:
- ke‘i‘ r
D,(8) =55~ PzrPo(E) | - . (3.2.29)
+ .

where

D,= <q>;; Loy + Q)<1>0><| @) (3.2.30)

Because the frequency mismatch Wy + Q- o, jissmall, a Taylor expansion is used to

obtain

D+(m0+ﬂ)_=%%i (mU+Q-m+)+---=((oO—m++Q) , (3.2.31)

@y

(The second parenthesis of the right hand side of Eq.(3.2.27b) has a leading term 2@, .-
Therefore, to leading order, one has the estimate 9D /0w ~ 1 .) Thus Eq.(3.2.29) is

simplified to

‘D+(.§)'= ALk ) DpD{E) o (3.2.32)
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A similar procedure gives

; —i kﬂqr
®_[&)= B0 ) B2pd0(E) (3.2.33)

and W, = ®_ is used (due lo up-down symmetry). Equations (3.2.32} and (3.2.33) are

equivalent to Eq.(3.2.15). Because of toroidicity, the coupling coefficient is controlled
by geometric factors. Substituting Egs.(3.2.32) and (3.2.33) into Eq.(3.2.25), one
obtains a dispersion relation for the modulational instability, namely

(09— 0, + Q30— 0~ Q) =20q (3.2.343)
where

2 _(2+Tl.') Bj 2 2.2 2l“2| .

Ymod = ]_683/2“§gk9qfrcsps (o (3.2.34b)

and |$02 | = <E | @, |2> is the amplitude of the primary drift wave. It is worth noting that
e :

the difference of the eigenfrequencies is second order in the wavenumber of the zonal
flow q, , i.e.,

| 09—, | = wpg2p? . (3235

The factor of B%!( 1.6e3/ 238 ) is a consequence of the structure of the dielectric constant

of the plasma in toroidal geometry. The result has a similar structure to that of

Eq.(3.2.18) with similar scalings with the amplitude and the wavenumbers of the pump
. 2 .

drift wave and the zonal flow. If Y2 4> ((00 - (0+) holds, one obtains the growth rate

Q= i/ Y204~ (wo-0,)" , (3236)

using ®, =®_. The growth rate of the zonal flow has a similar dependence on g, as is

illustrated in Fig.3.2.3. An estimate of the wavenumber at which the growth rate has
maximum is estimated to be g, = k¢§ , where § is the shear parameter. Finally, on

account of the confluence of nonlinear beat-induced coupling with linear, toroidicity-

induced coupling, interaction with neighbouring poloidal harmonics is possible, and has
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no slab counter-part. For this reason, parametric modulational instability in a tokamak
has sometimes been referred to as "four-wave coupling”. This name is slightly
confusing, and the reader should keep in mind that, really, only three independent n
modes are involved, as in the case of parametric modulational instability in a slab. The
'fourth wave' enters via linear, toroidicity-induced coupling.

As is the case for the slab plasmas, the zonal flow is expected to be amplified if
the growth rate Eq.(3.2.36) is larger than the collisional damping, as explained in §
3.1.3.

\/Y?m)d - {m() - m+)2 > ’Ydamp . (3.2.37)

3.2.2 Zonal Flow Generation by a Spectrum of Drift Wave Turbulence
While the simplified, truncated-degree-of-freedom models discussed in Chapter 2

can elucidate and encapsulate some aspects of the physics of zonal flow generation, the

physically relevant problem requires an understanding of the answer to the question:

"Under what conditions is a spectrum of drift wave turbulence unstable to a test zonal
shear?". By a 'test zonal shear’, we mean a weakly sheared seed flow V,(x), such that

d V. (%) /dx #0. In principle, V. (x) itself can support a spectmrh of scales. Note that in
this respect, the zonal flow generation problem resembles the well-known magnetic
dynamo problem, which seeks to answer the question of: "When is a spectrum of MHD
turbulence unstable to a ‘test’ magnetic field?" In the (relevant) case of generation by a
spectrum of drift waves, the test zonal flow might interact with a broad spectrum of
primary drift wave fluctuations, each of which has a finite self-correlation time. 'Thus, a’
statistical, RPA-type theory is necessary. The essence of such a theory is to derive the
zonal flow growth rate by:

a.) first averaging the zonal flow evolution equation (i.e. mean field evolution

. . _— =2
equation} over an ensemble of drift wave realizations to relate d¢,. /o to <¢Dw> ,

thus obtaining an equation for mean field evolution in the presence of wave (i.e.

pondermotive) pressures and stresses,

b.)  then computing the response of the drift wave spectrum to the test zonal flow

~ shear, thus 'closing the feedback loop'.

This procedure, which is typical of that followed in the course of modulational stability

calculations, ultimately rests upon:
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a.) = the separation in time scales between the low-frequency zonal flow and the higher
frequency drift waves (i.e. Qzr << ;). This time scale separation enables the
use of adiabatic theory (i.e. eikonal theory and wave Kinetics) to compute the
response of the primary drift wave spectrum to the test shear, and justifies the
neglect of drift wave diffraction. Note that the parametric instability calculation,
discussed in Section 3.2, also rests upon such an assumption of time scale

separation.
b.) the assumption of quasi-Gaussian distribution of drift wave phases.

It is worthwhile to note that the weak turbulence theory of zonal flow growth is quite
closely related to the classic problem of weak Langmuir turbulence [3.43]. In Langmuir
turbulence, low frequency test phonons (i.e. ion acoustic waves) grow by depleting the
energy of a bath of ambient plasmons (i.e. plasma waves). Since @, >> gc,, the zonal
flow is the analogue of the ion-acoustic wave, while the drift waves are the analogue of
the plasma wave. Table 3.2.1 presents a detailed comparison and contrast of the weak
Langmuir turbulence and zonal flow problems. The interested reader who is familiar with
the weak turbulence theory of Langmuir turbulence may find it helpful to review Table
3.2.1 now. We will return to Table 3.2.1 later, after discussing the theory of zonal flow
growth,

i} Zonal flow growth ‘

As previously noted, the basic dynamics of zonal flows are governed by the 2D
Navier-Stokes equation, since the density perturbation associated with the zonal flow is
negligibly small. Alternatively, the zonal flow structure is essentially two dimensional, as
is a convective cell. Thus, in de-dimensionalized units, the zonal flow potential evolves
according to a 2D fluid equation:

d
_Vf‘pzr:

o i (v,dvza&)- Y iVi0s (3.2.38)

o -

Here Y , is a generic damping operétor, which may be a scalar coefficient or an integro-

differential operator. Physically, Eq. (3.2.38) tells us that zonal flow vorticity evolves
due to the spatial flux of drift wave vorticity T, = ({, Ve d). This observation is

important, as it establishes there is no net flow generation or momentum increase, up to
boundary through put terms. Rather, zonal ‘flow generation' is really a process of flow
shear amplification. Zonal flow evolution (i.e., velocity préﬁle evolution) is

transparently a process driven by vorticity transport , just as temperature and density
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profile evolution are driven by thermal and particle fluxes. Eq. (3.2.38) may be re-

written as:
8 1
¢7F Ba 2(V9¢JV ¢'d> (V ¢ZF) (3.2.39)
or, in spectral form, as:
d _2- 1 9*

2V 9x=37; 2[arz:rc kil -1,(v26,)  (3.2.40)

Equation (3.2.40) directly relates the evolution of zonal flow potential to the slow

variation of the drift wave intensity envelope. By "slow variation" we refer to the fact

: 2 2
that |qu§'|2 varies on a scale larger than upon which ¢} does, i.c. k,>(l/|¢g| }9 f /81‘.

Also, it is now clear that the scale of the drift wave intensity envelope is what séts the

scale of the zonal flow.

Since wave population density (alternatively the "density of waves") is conserved
along wave ray trajectortes, tracking the evolution of N, the density of waves, is
particularly useful in evaluating the response of the drift wave spectrum to modulation by
a test shear. ‘Thus, it is considerably more convenient to work with ¥ (k, r, t) than with

|¢‘,£"|2. The convenience of N(k, r, I) follows, of course, from the fact that N obeys a

Boltzmann equation, with characteristic equations given by the eikonal equations for a
drift wave. The question then becomes, 'just what exactly is N (k, r, t) , the wave

population density?' In most cases, N (k, r, t) is the wave action density N = 8/ Wi s

where € is the wave energy density. In the case of drift wave turbulence, this question

is complicated by the fact that drift wave turbulence supports two quadratic conserved

2
¢| and the potential enstrophy

2\2
quantities, namely the energy density € = (1+ki p;)
. 2.2 2 d 2 . i ' ' .
density Z =(l +k J_ps) |¢k l . Thus, one can count either the local 'wave' density,
given by the action densityN = (1 +k3p? ) |¢f| fwy , or the local 'vortex density’ (i.e.

'roton' number), given by N, = (l +k J_pf) |¢k | . However, for zonal flow shears

(which have g,=0), k, is unchanged by flow shearing, since
dk,/dt =~3(keVzr(x))/dy = 0. The action density then becomes

2 2
N =([+ kipf) |¢z| /a)*, where -, is an irrelevant constant multiplier, thus rendering

both counts of exciton density the same! Hence, we can rewrite the zonal flow evolution
equation Eq.(3.2.40) as [2.13, 2.17, 3.44]:
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In Eq. (3.2.41) above, the amplification of the zonal flow shear v, is related to
the density of waves N (k, rt ) which is, in turn, a functional of the zonal flow field. At

the level of a linear responsé theory for modulation of Nby v, N is given by
Bk, r, 1)= ( - Vzp) Vr, (3.2.42)

where {7 =0V ;/dr, so that y; evolution is then related to the modulation response
SN[&y:_ as:

:;IZF” ,[dz(

krks ( oN )
ko) vy =Y Tv,](3.243)
1+k3% P\) 5Vzr _[ ZF]

Note that Eq. (3.2.43) relates shear amplification to the .extent to which the modulaticn,
induced in the drift wave population N by l,"/Z'F , tends to drive a Reynolds stress, which
re-enforces the initial perturbation. An affirmative answer to this question establishes that
the drift wave spectrum is unstable to the growth of a seed zonal velocity shear.

The modulational response dN/6 V;, may now be calculated by linearizing the

wave kinetic equation for N, which can formally be written as (by taking a model of
nonlinear damping as Yy N = Aoy N 2INO ):

oN ~ d | ~ oN Aw .
‘g,‘*(!ﬁxzr)'YN—a—l(w%-yz,,)‘a—k:y,_‘N— NOW’ (3.2.44)

with characteristic equations for x and k evolution given by:

dx ‘ .

‘d—:—v +VZF, (3.2.45a)
dk J -
—=—-—(w+k- . 3.2.45b

The RHS of Eq. (3.2.44) may be simplified by noting that, in the absence of modulation
and inhomogeneities, N must reduce to an equilibrium value determined by local
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interactions, which do not conserve population density. Thus, in the spirit of the
Chapman-Enskog expansion, to lowest order N = Ny¥,/Aw;. For an ansatz reference

equilibrium spectrum No(k), this forces Y= A @y, so that the linearized form of the
wave kinetic equation for zonal flow shears becomes:
oN  oN . _ L\ ON)
§'+Vg—+}'£N=':(keVz,r) ok, (3.2.46)
Here {N) is the equilibrium value of the wave spectrum. Note that the +7, N damping

term arises from a partial cancellation between ¥, N and - 2A g, {N) N/N,., after using
Aw;~Y, and No=(N). It follows then that the modulation ¥, induced by y, is

given by:

5 ~qkoVz KN | -
= : 3.2.47
Nea (Q—-qvg+iy£) ok, ( )

so the modulational instability eigenfrequency 1s given by:

z 21,2 ' '
_14 J( ks Nk .. (3.2.48)

Q- gy, +iv,) .r(1+kipf-)2

This finally implies that the zonal flow growth rate is given by:

2. 2
="t fae KT (o) ok)-r (3249
B (14 .27 (a—qve) +7

Several aspects of the structure of the zonal flow growth are apparent from Eq.
(3.2.49) . First, note that growth requires d N/dk, < 0! This condition is satisfied for
virtually any realistic equilibrium spectral density for drift wave turbulence. In contrast
to the well-known case of Langmuir turbulence, a population inversion (i.e.
dN/dk, > 0) is not required for growth of zonal flows by RPA modulational mstablllty
This is a consequence of the fact that @, decreases with i increasing k, for drift waves,

while ¢, increases with increasing k for Langmuir waves (i.e., see Section 2). Thus,
induced diffusion of k, will deplete the drift wave population and drive zonal flows for
d{N)/dk, <0, while induced diffusion of k, wiil deplete the piasmbn population for
d(NY/dk > 0. ' |

It is also interesting to note that the leading behavior of the zonal flow growth has

the form of negative viscosity or negative diffusion, i.e.
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T,=q%D(q), | (3.2.50)

where

= N7 ~9(N)/dk. . (3.2.51)

This is, of course, consistent with expectations based upon the well-known inverse
cascade of energy in 2D, although we emphasize that zonal flow growth is non-local in

wave number, and strongly anisotropic, in contrast to the inverse cascade. See Fig.3.2.4
for the illustration of the integrand of Eq.(3.2.51). Note also that D{g) ~ I/¢* when the

drift wave packet transit-time through the zonal flow approaches 75‘_', so that an”
interpretation based purely upon the negative viscosity concept is over-simplified. An
order-of-magnitude estimate of Eq. (3.2.50) is given with the help of Eq. (3.2.51).
Assuming that kipf <1 and that ¥, > g v,, integration by parts yields

kgk, N .
| a2 K& )2 ak"~—fd2kk9|¢ [ =~ k3 |¢d12. (3.2.52)

Combining Egs. (3.2.51) and (3.2.52), D(g) is evaluated as

- |2 .
|¢d| ydt‘kzﬁ (3.2.53)

This value is of the same order of magnitude in comparison to other transport coefficients
driven by turbulent drift waves. However, it should be noted that zonal flow growth
occurs over a region of size g', while conventional transport coefficients quantify the
rate of diffusion across a profile scale length. Thus, zonal flow dynamics are mesoscopic
phenomena, occurring on spatial scales between those of the turbulence correlation length

and characteristic scale lengths of the profiles.

(ii) Energy Conservation property

It is appropriate to demonstrate here that the RPA theory of zonal flow growth,
presented above, manifestly conserves energy. Eqg. (3.2.51) gives the zonal flow
production rate as
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g 2
Iy= q, szk ko " gR(q,Q)k,M, . (3.2.54a)
B (l+kip_;) k,
R(g, Q)= Tk | | |
9, Q)= . (3.2.54b)

(Q - qvgf + 78

(The role of nonlinear damping is explained again in Chap.6.) Thus, the time rate of

change of zonal flow energy, due to interaction with drift waves, is

2
. kGVz \
dy. p N Fy A{N)
— = r = 2k : R(q.Q)—+. (3.2.55
Ve g?_ foue] Zfd (1+12p07) (@), 7 6259
The corresponding rate of change of the mean drift wave energy is
d( d 1 d
(€)= Jakr— (N (ks | 3.2.56
de’ I dt (l+k P, ) ( ( )) ( :

It is understood here that <N (k, I)) corresponds to the mean drift wave potential

enstrophy (N = (1 + k2 pf)2|¢£|2). Since a spectrum of sheared zonal flows induces

diffusion of the drift wave population in radial wave number, one can write:

4N) _ AN).

—D 3.2.57
da o o ¢ )
Proceeding to integrate by parts, we obtain

d <€> 2 (N

L S L Ay, W) (3.2.58)

(1+4302) k.
where:
1 L2
Drx= Y= k3[Va] 4'R(3.9). (3.2.59)

q

It is thus abundantly clear that
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d(|\",/ZF|2 +<E>)/dr =0,

so the theory conserves energy. Having thus rigorously established energy conservation,

we will make use of this actively in the future to simplify calculations.

3.2.3 Relation between the RPA and single mode description

It is appropriate, at this point, to establish some connection or correspondence
between the coherent modulation instability calculation discussed in Section 3.2.1 and the
RPA calculation discussed here in Subsection 3.2.2. To this end, 1t is interesting to note
that the zonal flow growth rate Eq.(3.2.48) may be re-expressed as a frequency, i.e.

- | Yi;n(q’k)
Q jd:k(ﬂ—qvgﬂn)’ (3.2.60a)

where

2

Kk,
Yiulg. k)= =1L a(N)/ ok, (3.2.60b)
B (1+41p)

or, after integration by parts

2,2
- N
Y= _iLZz. (3.2.60¢)
B (1+43p)
7 2y2 5 2\®
Here the effect of @/ 0k, on (1 +k Jj_‘)_|,) (1 +k lp_\) and R has been neglected. In

this limit, then Eq.(3.2.60a) can be rewritten as

Q- qv,) =70 (3.2.61a)
where
gy 2
1P,

This form is essentially the same as those obtained from the parametric analyses of

modulational instability, and gives the zonal flow growth rate as
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},ZZF = Ytznod - (q\'x) )

which is equivalent to Eq. (3.2.20). In this case, the growth rate Vg =¥, is linearly
proportional to the wavenumber of zonal flow and the amplitude of the drift wave. The

result in the case of the plane drift wave corresponds to the limiting case where the
lifetime of the primary drift waves, Y., is much longer than the growth rate of the

zonal flow. We emphasize, however, that the validity of the coherent calculation not only
. dv, !

requires that ¥ ., > ¥,, butalso ¥, > q—d;—"Ak. Here (q(dvg/dk)Ak) is the

autocorrelation of a drift wave packet with the zonal flow strain field, in that it measures

the time for a packet to disperse as it propagates radially across a zonal flow of scale g~

Thus, validity of the coherent modulational theory requires both proximity to marginal
stability of the primary drift wave spectrum (so ¥ ;> 7,), and a narrow spectrum (so

that ¥4 > g{d v,./dk)Ak).

Building upon these considerations, one may construct an interpolation formula:

Jo

Ik,

Q(Q—q +i7d,,-f,)=—}'fmd, C(3.2.62)

with the growth rate

5 NTE
(4}’mod+7u'n'fr) =Y arip »
Yzr = ‘ - 5 ~ ) : (3.2.63)

for the case of )/iwd > 0. Noticing that the coefficient D ' defined by Eq. (3.2.59)

satisfies the relation

Dy i =47 % YhodYarfi » (3.2.64)

within the approximation of Eq. (3.2.61). Equation (3.2.63) covers various ranges. In
the limit of plane wave, ¥ ,,;; < ¥ o the reactive instability Eq.(3.2.20) or (3.2.36) is

recovered, where Yzg =~ Ymod ° 4, holds. In the opposite limit, ¥ ... > ¥ 04, diffusive
growth (Yzf ~ Y204 92 ) is found. Figure 3.2.5 illustrates the transition between

regimes. -
It might be useful here to note the cut-off of the zonal flow growth at large ¢, . It

is explained in the case of plane drift wave (parametric modulational instability) as
Eq.(3.2.20) or Fig.3.2.3. A similar expression is obtained in the limit of RPA. In the
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expression of the zonal flow growth rate in the RPA limit, e.g., Eq.(3.2.54), the
response function is evaluated by R(q, Q) ~ 1/, . The lowest order correction of the

wave dispersion is written as R(q, Q) ~ Yk 1(1 —q,z-Vg,D{Ez +- - ) . Thus one has an

expression of Y7,
Yzr=D{g,=0) q?r(l - 424;¢)

where
q ?0 = Vgr;y; :

represents the effect of the dispersion of the drift waves. This is an expansion of
Eq.(3.2.50) with respect to q%q;oz .

3.2.4 Zonal Flow Drive by Poloidal Asymmétry

The particle flux driven by drift-wave fluctuations could be poloidally
asymmetric. If such an asymmetry exists in the background drift waves, a poloidal flow
is induced in tokamak plasmas. This mechanism was first noted by Stringer [3.6] and is
called the Stringer spin-up. We briefly explain it here.

The continuity equation (3.1.6) describes the flow on the magnetic surface if there
.is poloidal asymmetry in the net source term § - V-I" . Poloidal asymmetry of S~ V-T"

appears, if the particle flux is not uniform in @ . For instance, the local neoclassical flux

has O -dependence. In addition, the turbulence driven flux can, in principle, be poloidally

asymmetric, on account of poloidal dependence of the turbulence intensity. We write

S-V.I= (s—v-r) +(s— V-r)aF(e) | (3.2.65)

where ( : ) is a poloidal average, and ¥ (9) is a function describing the poloidally-
inhomogeneous part, so (F (9)> =0 . The magnitude of poloidal asymmetry, (S - V‘r)a ,
and the shape of FI (9) are taken as prescribed here. In steady state, this inhomogeneity

induces a secondary flow on the magnetic surface V, | which compensates the

asymmeitry of the source as is illustrated in Fig.3.2.6. The asymmetric flow V|| is

given by:

V=R (s-vr), [ a0 ¥(e). N (3.2.66)
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In the presence of this flow, the parallel component of Eq.(3.1.7) is affected, in
that the r~ 'VBBV"/aB term in V-VV does not vanish. As a resuli, one has

o
9 Uyt Voo oVoy+ V=0 | (3.2.67)

This relation, together with Eqs.(3.1.12a) and (3.1.12(:),

d 2
BTN ﬁS]ﬂGVExB+V|V”

g VE)(B+]2'\) ge SIDBN 0
yield the dispersion relation in the presence of the asymmetry (S - V-r)a . Asin
Eq.(3.l.1‘l), one may choose the poloidal dependencies in N(F, 9;?) and V”(r, 6; l‘) but
the E X B flow is symmetric, Vg =V B(r 31 ) . Writing the temporal dependence as
exp (—_ iQt) for these perturbation variables, the set of equations (3.2.65), (3.1.12a) and

(3.1.12¢) give the dispersion relation

26
Q% —gamZ 2= — i Vs, (3.2.68)

where Y, is the net particle "production” rate of the asymmetric source, i€,
= (7 de |
Yos =78~ V1), J 96 co5 6 F(6) (3.2.69)

This result shows that instability is possible if F° (B) has an in-out asymmetry, like
F(8) < cos@

Equation (3.2.69) predicts two possible types of instabilities. One is growth of
the zero frequency zonal flow with Q<< w®gam . In this case, Eq.(3.2.69) reduces to

2

. 1 2¢s R '
Q=1 =
YN Ry L Yo = .1 T Yas » (3.2.70)

which shows that poloidally-symmetric flow spins up if Y55 >0 . Figure 3.2.6 shows the
case of ¥,, >0 . The other case corresponds to the excitation of the geodesic acoustic
mode (GAM). For the branch with Q = ®Wgam , Eq.(3.2.68) gives an approximate

solution
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L‘2 R
2 Yoy = OGAM A Tag - (3.2.71)

Q-w —i
= Wgam 5
WGaM

The geodesic acoustic mode is destabilized if Y,; <0 . We note that the growth rate of the

axisymmetric flow, Eq.(3.2.70) or (3.2.71) does not depend on the radial extent of the

flow, i.e.,
Yas o< (a,)" . - - 62n)

where g, 1s the radial wavenumber of the zonal flow. Hence, the Stringer spin-up
mechanism can be important for the case of small ¢, . The collisional damping rate in
§3.1.3 1s also independent of ¢, . Comparing Eqs.(3.1.28) or (3.1.29) with (3.1.33),
the excitation of a GAM with long radial wavelength is expected to occur if Y5, <V; .
When the.radial wavelength is short, GAMs are stabilized by the turbulent viscous
damping of parallel flow, which is explained by the next subsection. Thus turbulent
transport plays two roles in the Stringer spin-up. Poloidal asymmetry of the particle flux
I' can drive the process while the radial dependence of the momentum flux can damp it.

(It has recently been pointed out that the shearing of the background turbulence by GAM
induces poloidal asymmetry of the particle flux I' and that this mechanism can cause the

GAM instability. In this case, the growth rate is proportional to q% . [3.45])

3.2.5 Influence of turbulent momentum transport on the secondary flow -
As is shown in 3.1.1, the zonal flow is associated with a secondary flow along

the magnetic field line that cancels the divergence of the perpendicular flow. The viscous

damping of this secondary flow due to toroidicity acts as a damping rate of the zonal

flow, in addition to the collisional damping. This damping rate is rewritten as [2.46]
Yaamp =11 +24°)g? (3.2.73)

where || is the turbulent shear viscosity for the flow along the field line, and ¢ is the

safety factor. Of cause, U | is a function of the drift wave intensity, and thus can be

suppressed in the regime of strong zonal flows, such as the Dimits shift. The Pfirsch-
Schliiter coefficient 1 + 2¢° is replaced by 1 + 1.6¢%//€ in the collisionless limit. This

damping term has dependencies on the wavenumber ¢, and the intensity of the primary

drift wave turbulence, which are similar to the growth rate, given in subsection 3.2.3.
The dependence on geometrical factors differs from Yzg . Therefore the safety factor ¢

{and thus the Bg(r) profile!) can play an important role in determining the domain of

zonal flow growth,
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3.2.6 Electromagnetic effects

The discussion in the previous subsections 1s cast in the framework of the
electrostatic limit, in the interest of transparency of argument. Plasma turbulence
supports magnetic perturbations, and electromagnetic effects also have important roles in
the physics of zonal flows. One of the effects is known as the 'finite-B effect’ on drift
waves [3.46], where P is the ratio of the plasma pressure to the magnetic field pressure,
B=2uoB 2p . In particular, the phrase "finite-B effect” includes the effects of magnetic
stresses (dependent on the B since B/B, scales with B ) on zonal flow growth.

Frequently, the magnetic stress tends to compete against the Reynolds stress, thus
reducing zonal flow growth. The other is the generation of the (poloidally symmetric)
magnetic field bands by plasma turbulence. The generation of the magnetic field that has
a symmetry (on a larger scale than that of the background turbulence) has been known as
the mean field dynamo. This dynamo is more akin to a 'mesoscale dynamo'’. Since the
magnetic fields so generated have zonal symmetry and structure, we refer to them as
zonal fields. As is the case of the zonal flow, the generated magnetic field may be
constant on the magnetic surface but is rapidly changing in radial direction. The study of
zonal fields is a new direction from which to approach the dynamo problem [2.58, 2.60,
2.61].

 Inthe broad context of the zonal flows, two directions of research are explained
here. One is finite-B effects on drift waves and the zonal flow generation by them. This
is discussed in the context of parametric decay.instability. The other is the magnetic field
generation by drift-Alfven waves. The zonal field calculation is approached using the

methods of statistical theory. Here, two examples are arranged as follows:

subject mechanisms for zonal flow growth
zonal flow generation modulational instability of

by finite-p drift waves a plane drift Alfven wave

zonal magnetic Random Alfven wave refraction

field generation of Alfven wave turbulence

(i) finite-p effect on the drift waves
In the finite-p plasmas, coupling between the drift wave and shear Alfven wave

occurs so as to form a drift-Alfven mode. The dispersion relation of this mode has been
given as

53



I+kzps—93—-—~0){~(’3ﬁ#vm*) =0, (3.272)
A

where V, is Alfven wave velocity.

The plane drift Alfven mode is also unstable to modulations. The method
explained in §3.2.1 has been applied to the finite-f case [3.47, 3.48]. Introducing the
vector potential perturbation ¥ (the component of the vector potential in the direction of

main magnetic field), one writes the plane wave as

0] _ ¢y . oo
(‘I’)O-(Wo)exp(!kﬂ-“kuz I(D()t) (3.2.73)

where the suffix 0 stands for the primary wave with real frequency @y given by

(3.2.72). The modulational perturbation thus follows

o\ _[0zF , ,
(‘l‘)m_(‘l’ZF exp(tqrx—th)
+¢+ g x + ik y+ ik 'mt+¢' expli ke .y — tkyz — iw_t
v, CXAp |1 X IRy + Iz — 10, Ly PHigX — Ky =1 II?_' —

_ (3.2.74)
where 97 is the electrostatic potential pérturbation that induces zonal flow, ¥zg
generates the zonal magnetic field, €2 is the frequency of the zonal flow and field, and

(¢+, \I!+) and (¢_, \i!_) are the upper and lower drift-Alfven mode sidébands.

As was explained in §3.2.1, nonlinearity induces the coupling between the

primary wave and the modulations. In the electromagnetic case, the primary
nonlinearities consist of the convective nonlinearity V| -V in the Lagrange time

derivative, and the nonlinearity in V|| , due to the bending of magnetic field lines [3.49,
3.50]. A set of bilinear equations for the variables ((1)0, Wo) , (‘Dz}:, \I’ZF] ' [¢+, \Il+) , and
((l)_, \IJ_] was derived. By using the estimate of k" ~ 1/qR | the growth rate of the zonal

flow together with the zonal field Yzr = Im&Q is given by

1/2
20

YZF=Q.tkyp§wcr'| ¢0| MA(] —@3 k%pgﬁ)+MB®8q }pSB qx2|¢ |
0

(3.2.75)
with coefficients
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- q.r_l"
My=C"" 1—m{,(zmo-l)k%pgmwz—-‘(l—L—k%pg) ., (3.2.76a)

Mo = Zk% 1 1 kz 2
B=~ Cki —6‘6"' W5 (3.2.76b)
C=1+k2p2-ag30,-2)k2p2B (3.2.76¢)

~ . A 2

where |¢0 f = | e(IJO/Tl , By =w/®+ , and P --B(qR/L,,) /2 are used for convenience to

elucidate finite-p effects. The coefficient [3 represents the ratio of the frequency to the
> ‘

shear-Alfven wave frequency, i.e., (u)*lk "VA) = k%p%ﬂ )

This set of equations are cast in terms of the parameters we now list: the amplitude
of the pump wave ] %l = |e$01 T

; the wavenumber of the pump wave k Ps ; the wave

number of the zonal flow g,p ; and the normalized pressure, B . The fourth parameter
appears as a result of finite § . In the limit of [3—> 0, the result of §3.2.2 are recovered.
Equation (3.2.75) describes how the growth rate of the zonal flow (via parametric
modulational instability) is altered by finite-B effects. In the limit of small B ,
Eq.(3.2.75) tells that the growth rate of the zonal flow decreases as B increases. This
has also been discussed in terms of 'Alfvenization’ of the zonal flow drive [3.51]. In
addition to the Reynolds stress, the divergence of the Maxwell stress is known to induce
a force on plasmas. The signs of the divergences of the Reynolds stress and Maxwell

stress are opposite for the drift-Alfven waves. For the shear-Alfven wave, the relation
Vo< B holds. This implies a cancellation of the Reynolds stress and Maxwell stress, and

the consequent quenching of the zonal flow drive. Thus, the finite-p effect, which
introduces a coupling between the shear-Alfven wave and drift wave, causes magnetic
field perturbations that reduce the drive of the zonal flow for fixed value of

l ¢0| = | 851'30/7"| . Equation (3.2.75) includes terms quadratic in B , which exceeds the
linear term on B , as [3 increases. In [3.48], it has been shown that the zonal flow

growth rate starts to increase if B exceeds a cnitical value, [3 > ﬁc .
Bo=2k3%p52. (3.2.77)

The origin of the reduction of turbulent transport at high beta value that has been observed

in direct numerical simulations [3.48] is attributed to this.

55



Another application of this type of analyses has been given for the Alfven ITG
mode [3.52]. The same structure of the modulational instability (3.2.20) was found
[3.47].

(ii) Zonal Magnetic Field Generation

The amplitude of the zonal magnetic field Yz¢ is shown to 'seed’ the growth of
modulational instability [3.47]. This effect is important for zonal field growth. In the
problem of the dynamo in space and astrophysical objects, the electric resistance by
collisions along the field line is weak enough that zonal magnetic field generation can
have substantial impact. The regime of low resistivity is also relevant to toroidal plasmas.
In addition, nonlinear MHD instability, like the neoclassical tearing mode [3.53], which
illustrates the critical role of the current profile in turbulent plasmas, can be 'seeded’ by
zonal field. Thus, the study of zonal magnetic field tl_lat is associated with, and similar to,
the zonal flow has attracted attention.

An analysis of zonal field modulational instability is briefly illustrated here, and
provides an introduction to further study of dynamo and field amplification problems.
The equation for the "mean field” is here considered to be that for vector potential

component in the direction of the strong (toroidal) magnetic field [3.54]. The equation is
given by the V)j moment of the electron drift kinetic equation, which is:

(1 - 83%) ;%‘IIZF - <E||%) + —3; r; ,=nVivzr | (3.2.78)

Here &, is the collisionless electron skin depth, C/mpe , (E ||ﬁ/n> gives the average
parallel acceleration, ' , stands for the turbulent flux of current in the x direction, and
Ny is the collisional resistivity. I', , is closely related to the mean magnetic helicity flux.
By using quasilinear theory as applied to the drift-kinetic equation, the terms (E ||ﬁfn> and
I, ., which contribute to the generation of the mean magnetic field, are easily shown to
be

i T %uip? k
By =-Toe 5 Pl w2 ok N
(B =-% 2+ 1202 [ky| ? fol ok Ny, (3.2.792)
nT w3p2 k,0f
=5 1Ps 23 R k) Ny (3.2.79b)

Q 4 2+k§_pg k|||k|||

where  is the time derivative of the zonal field, -(%WZF =—iQ Yop | fo((ﬂklk") is the

unperturbed distribution function of plasma particles at the resonant phase velocity,
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V|| = @i/ky , and N} is the action density of the kinetic shear-Alfven wave (i.e., the ratio

of the wave energy density divided by the wave frequency) given by;

2
2+k%p2
Ny = 2APs kip?

ey
TN T (3.2.80)

e

Note that I’y , >0 ask 3p =0 (i.e., in the ideal MHD limit). This is a consequence of
2 ) . .

the faci that, on resonance, rj, re |E l|| , which vanishes for ideal Alfven waves. Thus,

zonal field dynamics are explicitly dependent on E i of the underlying waves. As usual,

N may be thought of as a wave population density. The sensitivity of the weighting

factor to finite-gyroradius effects is due to the influence of the dispersion relation
of = kﬁv%(l + kip 3) on the phase relation W/¢ for kinetic shear Alfven waves. The
modulation of the action density NV resulting to the imposition of a seed zonal magnetic

field is calculated by the same procedure of §3.2.2. The wave packet evolves according

to the wave kinetic equation

3 oN 3 oN

o Mt T T o O B,

T3 = C[N), (3.2.81)

where C(N ) stands for wave damping. The dispersion relation for the kinetic Alfven

wave satisfies
of = kfvi(1+k3p2) (3.2.82a)
and the group velocity is given as

k vi
Vg = —(ﬁok— kp?. (3.2.82b)

(The kinetic shear Alfven wave is a forward-going wave.) Therefore the perturbation in
the wave frequency caused by the imposition of the zonal magnetic field 8B, is given by

%_ k)' 5B

T (3.2.83)

where By stands for the unperturbed magnetic field and the relation 8k = k. 8B, By s

used. Note that Eq.(3.2.83) results from a simple modulation of Alfven speed. By use
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of this frequency modulation, the modulation of the wave action density 8N, is easily

shown 1o be

oy ky g2 dyzp ONy
Q-q,vg «*+ITKSAW ki By ok, ’

8N, = (3.2.84)

where damping rate Ygsaw is introduced as C(N) =-Yksaw!N in Eq.(3.2.81).
Substitution of Eq.(3.2.84) into Eq.(3.2.79) gives the response of (E”ﬁ/n) andTy ,, to
the imposition of YzF , i.e., 5<E ||ﬁ/n) and 8T, . If the forms of 5<E ||ﬁ/n> and 01" ,
are substituted into Eq.(3.2.78), a closed equation for Wzr follows. This equation

determines the eigenvalue €2 , by which Eq.(3.2.78) is rewritten as

,
. Il
g—,\llzp=—:Q\sz— | ;ngj VzF - ' (3.2.85)
rve

The growth rate Im £ can be re-expressed as [3.54];

512
anc2d2q? [1+62p2)" 4242 azf U,
v o1 +q202) T 2+k3p2 (k| k314 k702

ImQ=

0

(3.2.86)

This result has a similar structure to the case of zonal flow generation, Eqs.(3.2.50) and
(3.2.51) in its dependence on q% , and on the wave population spectrum (i.e., Kk -

derivative of Ny ). It shows that zonal magnetic field instability is driven by a negative
slope of (ﬂ)kN k)/'\/ 1 +k%p2 . This condition is usually satisfied, without inversion of
populations for Alfvenic MHD.

As was the case for zonal flow drive by drift waves, the drive of zonal magnetic

field is also subject to damping by the collisional resistivity. If the growth rate
Yz =Im Q Eq.(3.2.85) exceeds the resistive damping rate,

gn

3.2.87
I +428 (280

Yzr =

the zonal magnetic field grows. This driving mechanism of mesoscale magnetic
perturbation by microscopic turbulence can have an impact on global MHD instabilities in

toroidal plasmas by secondary perturbations, such as neoclassical tearing modes.
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3.2.7 Comparison with MHD mean field dynamo theory
It is instructive to compare the results for zonal field growth with those of dynamo
theory, in MHD, which is another outstanding problem in structure formation in an axial

vector field due to turbulence.
In the mean field MHD dynamo theory, the mean magnetic field (B> and vorticity

(m) evolve (for incompressible turbulence) according to: [2.58, 2.60, 2.61]

d(B L :
"’"(T> =V x(Vx B)+nVX(B) | (3.2.88a)
do) o /B.vE

T_vx<4nntml— v 'W>’ (3.2.88b)

where V is a molecular viscosity. The essence of the mean field electrodynamic theory is
to approximate the averages of the nenlinear terms, quadratic in fluctuation amplitude, by
some effective transport coefficient times a mean field quantity. In many ways this
procedure for a closure approximation is quite similar to the familiar case of quasilinear
theory, which is a closure of the Vlasov hierarchy. While relatively minor, technical

variations abound, most mean field dynamo theories predict '

W s o

diw
¥=veffv2m+vv2m, (3.2.88d)

Here alpha () is the familiar psendo-scalar, proportional to turbulent helicity, and B and
v are turbulent resistivity and viScosity, respectively. Note that B is positive but V g
is not positive definite, since it is clear from Eq.(3.2.88b) that turbulence effects on (m)
must vanish if V= B/\/4rn;m; | i.e., a state of maximal cross helicity. This is identical

to the cancellation of the Reynolds and Maxwell stresses which occurs for zonal flow
generation by Alfven waves. Additional contributions to (‘7 X B) and

<B‘ VB /annm; -V -VV) may enter. These correspond to mean vorticity effects on

(B) and mean magnetic field effects on (m) , respectively.

An important, relatively recent development in the theory of mean field

electrodynamics was motivated by questions of self-consistency and conservation of
magnetic helicity. These considerations together suggest that @ should be quenched, as

compared to its kinematic value, and that the quench should be proportional to'the
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magnetic Reynolds number Rys . While this question is still controversial, both theory

and computation suggest that

(1 .
o= kin (3.2.88¢)

(1 " Rg,(vA)zl(Vz))

where Oy, 18 the kinematic alpha coefficient Oy, = (V : ﬁ))‘tc , T, 1s the correlation time

and © = 1 . It is useful to note that Eq.(3.2.88e) may be rewritten as

o= — kol (3.2.88)
N+ T{Va) | _

This expression emphasizes that mean field growth is ultimately tied to collisional

resistivity, as it is only the latter which breaks the freezing-in of field and fluid in MHD.

(i) Correspondence of driving terms

Comparing the results of Eq.(3.2.86) with Eq.(3.2.88¢), one finds that the
physics of zonal field generation in part-(1i) of subsection 3.2.6 has a deep connection to
the physics of mean field dynamos. In order to clarify the relation of zonal magnetic field

generation, Eqs.(3.2.85) and (3.2.86), to the MHD dynamo problem, Eqs.(3.2.85) and
(3.2.86) may be rewritten by the use of Bg =dy,(/dr | so

L Bg=-n7rVBy, (3.2.89)
where
52
2
T 0
v d1+q22) F 2+kipd k| ok /144302
(3.2.90)

Here, the collisional resistivity || is dropped and the g% in Eq.(3.2.86) is rewritten as
-v?, noting that the generated field depends only on the radius # . The sign of iz

- (1.e., corresponding to a negative resistivity) is positive for ‘normal’, i.e., one with

0 2/ok %((cokN k)/\/ 1+k ip z ) <0, but becomes negative (corresponding to positive

Y N
dissipation) if @ “/0k

(mkN k>/ I+ kipg) >0, as for a population inversion. If one

considers the B J term in Eq.(3.2.88¢), the induction equation can be written as
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dB/dt B oynamo BV?B . | (3.2.91)

Comparing Eqs.(3.2.89) and (3.2.91), one finds that the electromotive force for zonal
field generation corresponds to the B J -term in the mean field induction equation. The
driving takes the form of a coefficient N zg of negative turbulent resistivity. What is
interesting is that the sign of the turbulent resistivity varies with the spectrum slope.
Thus, the zonal field 'dynamo’ is really a process of flux or current coalescence,
somewhat akin to the inverse cascade of mean-square magnetic flux predicted for 2D and
3D reduced MHD. This process conserves total magnetic flux, unlike an alpha dynamo,
which amplifies magnetic flux via the stretch-twist-fold cycle. Note that there is a clear
correspondence between zonal flow and zonal field generation. Zonal field generation is,
simply put, related to the inverse cascade of magnetic flux while zonal flow generation is
related to the inverse cascade of fluid energy.

The relationship to the drive of zonal flow vorticity is also discussed. The growth

of the zonal flow vorticity, e.g., Equations (3.4.21) and (3.4.22), can be written as

9 U,=-D, VU, (3.2.92a)
and
k ON |
D =-—L ¥ ke sRank) o2 _ (3.2.92b)

r

28° T (1 +43p2)

where U, is the vorticity of the zonal flow, and the collisional damping term Ygamp 18

dropped in order to highlight the turbulent drive term. Comparing Eqs.(3.2.92a) with
(3.2.88), we see that the drive of zonal flow vorticity by drift waves corresponds to a
turbulent viscosity in mean field MHD (the first term in RHS of Eq.(3.2.88d). Asin the
case of the magnetic field, the viscosity-like term (D vy g ) in Eq.(3.2.92a) has the

opposite sign to the usual turbulent viscosity, ala Prandtl. The MHD dynamo theory has
also shown that the zonal flow can be driven by the curvature of plasma current, and its

possible role in the I'TB formation has been discussed [3.55]. A corresponding term in
the zonal flow problem will be obtained by retaining the Wzg -term in Eq.(3.2.74) in

calculating the evolution of §zr . This is a subject for future research.

(ii) Other contrasts

Meso-scale character:
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The zonal magnetic field and zonal flow both have a meso-scale character. That
is, while they can have a coherence length on a mesoscale, i.e., is equal to the system
size, in the poloidal and toroidal directions, along the magnetic field, the radial wave
length can be really as short as that of the microscopic fluctuations. In MHD dynamo
theory, research has concentrated on the large scale dynamo having a characteristic scale
length of the system size or at the small scale dynamo, which has a microscopic scale
length usually set by the dissipation scale. The problem of the zonal field and zonal flow
generation sits in an intermediate regime that connects both of large- and small-scales.
However, zonal structures are highly anisotropic. _

In addition, the symmetry of the generated field also influences the turbulent
driving terms. For instance, the generated zonal magnetic field in §3.2.6 is dependent on
only one radial dimension, and the toroidal magnetic field is unchanged. Under such

constraints of symmetry, Cowling's theorem guarantees that the @ -dynamo term can not

possibly appear.

Collisionless dynamo

Both zonal magnetic field and zonal flow couple to collisionless dissipation. In
the case of zonal fields, collisionless dissipation (i.e., in particular, Landau damping)
regulates both magnetic helicity and current transport. This ﬁrst, genuinely ‘collisionless
dynamo' theory is notable since Landau resonance is & natural alternative to resistive
diffusion for decoupling the magnetic field and plasma, in low-collisionality regimes. Of
course, one should also recognize that Landav damping is not a panacea for the problems
confrontiﬁg dynamo theory. For example, here zonal magnetic field growth occurs via

2
the product of the | E||| spectrum and Landau damping, i.e.,

2
Wzr~ Z I E ||| 8((‘)— k ||V1|) . As a consequence, zonal field growth is limited by the size
of E | (which vanishes in ideal MHD), since coupling of fields to particles enters via the

latter. Thus in progressing from MHD to kinetics, one in a sense exchanges the
"freezing-in law' difficulty for the EH ~ 0 difficulty.

Tertiary instability , ,

As is discussed in Section 3.5, one possible route to zonal flow saturation is via
generalized Kelvin-Helmholtz instability of the flow. Such an instability is an example of
a tertiary instability, i.e., parasitic instability driven by a secondary instability. Zonal
fields can also exhibit tertiary instabilities, since zonal fields correspond to localized
current layers, with regions of steep electron temperature gradients, we may speculate that
the tertiary instability of the zonal field is similar to a 'micro-tearing mode’', and is driven
~ by relaxation of the current and temperature profile of the zonal field. Of course, given

the narrow radial extent of the zonal field, such tertiary micro-tearing modes are almost
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certainly temperature gradient driven. Note that such instabiliies will also produce zonal
current filamentation, which may contribute to the seeding of neoclassical tearing modes,
as well. More generally, tertiary micro tearing instabilities offer another possible route to
dynamo saturation. Of course, just as magnetic shear severely inhibits the generalized
Kelvin-Helmholtz instability of zonal flows, it also can be expected to restnict the viability
of tertiary micro-tearing. Detailed research on tertiary micro-tearing is necessary to

quantitatively address the speculations presented here. -

Role of global parameters in turbulent coefficients

One of the goals of the study of structure formation in turbulent media is to relate
the turbulent driving coefficients (e. g., @, B, Vg in MHD turbulence theory, or Yzg and

Xwen 1N the problem of zonal flow and drift wave turbulence) to relevant dimensionless
parameters characteristic of the sysiem, such as , P /a , Rayleigh number, Taylor
number, etc. In this direction of research, explicit analytic formulae have been obtained
for the problem of zonal flow and drift wave turbulence. This 1s a significant
achievement of the cum;jlative research effort on turbulence theory. In addition, in this
area of research, one can find cross-disciplinary similarities, such as transport
suppression by the .'inhomogenous Ex B flow and '0 -suppression’ in MHD dynamo

theory.

The noticeable difference in the sign of correéponding terms in the zonal flow
problem and the dynamo problem may be viewed as originating from the differences in
the nature of the turbulence. In the MHD dynamo, turbulent dynamo coefficients are
evaluated based on three-dimensional turbulence, since the ti)eory 1s constructed for a
weak magnetic field. On the other hand, the turbulence which is analyzed for the source
of zonal flow is quasi-two-dimensional, on account of the strong toroidal field, which is
externally imposed. The unification of the dynamo problem and the zonal flow problem

is an outstanding key future challenge for turbulence theory.

3.3 Shearing and back reaction of flows on turbulence

In magnetized plasmas, if flow shear exists together with a pressure gradient (a
source of turbulence) the flow shear may suppress the turbulence driven by pressure-
gradient relaxation. The back reaction, both externally-generated and self-generated shear
flow on pressure-gradient-driven turbulence, is a key mechanism that governs the
turbulent state and the transport. Of course, flow shear itself may be a source of |

~ instability, such as the familiar Kelvin-Helmholtz instability. However, magnetic shear
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tends to mitigate or quench velocity-shear-driven instabilities, so they are not of too great

a concern to confinement systems.

3.3.1 Effect of flow shear on linear stability

The first step in analyzing the back interaction of sheared flow on turbulence is
linear stability theory. The linear effect of sheared flow on the pressure-gradient-driven
instability has been exhaustively surveyed in literature [2.14]. Indeed, the Richardson
problem of shear flow and buoyancy, which leads to the definition of the Richardson

=2 .
number R; = (gfL n)(d ijdx) , is a classic example of the competition between

processes (i.e., density or potential ternperature-gradient-driven buoyancy and shearing).
(Here the gravity £ is in the direction of density gradient, x-direction.) Readers are
recommended to refer to [2.14] for details of the various linear mechanisms. Some key
elementary processes are explained here.

One characteristic mechanism for shear suppression is via a deformation of the
eigenfunction. The eigenfunction of the least stable mode at thermal convection instability
typically has the longest wave length in the direction of the gradient. In the presence of
velocity shear, as is shown in Fi g.3.3. 1, the eigenfunctions are deformed, so that the
wave length in the direction of the gradient becomes smaller. As a result of this, the
linear growth rate decreases. (In other words, the fundamental mode, which has the
largest growth rate, is forced to couple to higher modés, which are much more stable than
the fundamental.) The scale for radial transport and mixing is also reduced by this effect.
Consideration of the symmetry explains how the stabilizing effect usually appears at

. . . 2 e .
second order in velocity shear, i.e., ~ (dV}fdx) , s0 the stabilizing trend does not

depend on the sign of dV,/dx . This mechanism works for the Rayleigh-Benard

instability in neutral fluids [3.56-3.58] and for plasma instabilities driven by pressure,
density and temperature inhomogeneities [3.59-3.68]. For non-resonant or

hydrodynamic process, stabilization is possible, if the heuristic condition
| Vess|~ w0 (3.3.1)

is satisfied, where Y is the linear growth rate in the limit of Vg« g =0 . Ttis very

important to realize that this is only an approximate criterion. This order-of-magnitude
estimate is consistent with the results of simulations of linear-dynamics with sheared flow
{2.17, 3.69].

In collisionless plasmas, there are other routes by which velocity shear leads to
stabilization. Another type of stabilization mechanism occurs via wave-particle
resonance. The ion orbit can be modified by an inhomogeneous electric field, so Landau

damping may be enhanced, and very strong ion Landau resonance takes place if the
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electric field shear is large enough [3.70]. For instance, ion Landau damping, which is
usvally a stabilizing effect, enters via the wave-particle resonant denominator

il(u) ——k"v") , so that wave-ion resonance occurs at X; = © /vy, ,-ki| (kil = dkdx ). In the
presence of sheared E X B flow, the shear flow Doppler shift renders the resonance

equal to il(m —k - kgxave/ax) . Here, it is understood that 3Vg/dx is expanded about

the resonant surface 7,y , 1.6., VEx g= Vg(rm,,) + (r— r,,m) dVgldx +- - - | where

x= (r - rm,,] . The resonant Doppler shift is absorbed into @ , Then, with velocity

shear, the ion Landau resonance point is shifted to x; = ® /("Th ;ki| +k eaVQ/BX) , so that

the resonance is stronger. Thus, electric field shear can significantly enhance the effect of
ion Landau damping. Drift reversal of trapped particles due to an inhomogeneous electric
field also influences stability. The toroidal drift velocity of trapped ions is modified by a
factor (1 + 2ug) , where u, = pp, ,-vﬁ,",-B; l(dE,/dn"] . If the condition 4y <- /2 is
satisfied, trapped particles drift as if the magnetic curvature were favourable. The
trapped-ion mode is thus stabilized by drift reversal in the range of u, <—1 . Note that
this stabilization mechanism is asymmetric with respect to the sign of E, [3.71].

If flow shear becomes too strong, KH type instability may occur [3.58]. The
evolution from drift instability to K-H instability has been confirmed for drift wave -

zonal flow and other plasma systems [3.63].

3.3.2 Effect on turbulence amplitude
In the model equation for a passive scalar advected by background fluctuations,

the effects of rapidly-changing fluctuations are included in the turbulent transport
coefficient, which is a measure of turbulent mixing. The equation of the test field X in

the presence of the sheared flow thus has the form

$R+7(x) £X-DViR=5 (3.3.2)

where V}.(x) is the sheared flow in Fig.3.3.2, D is the diffusion coefficient due to the

small scale fluctuations, and §ext represents the source. The stretching of contours of
constant test perturbations occurs, and the turbulence level (i.e., X)), the cross phase, and

the flux are suppressed by oV /ox (i.e., E ;, in magnetized plasmas). The mean velocity

is in the y-direction (poloidal direction), and is sheared in the x-direction (radial
direction). The sheared velocity is expressed as

V,=S.x (3.3.3)
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in local coordinates. The flow shear is interpreted as S, = r d(E,/Br)/dr in a cylindrical

geometry. The expression for toroidal plasmas has been derived [2.9] and is

_rd{9E) |
S”—er(rB)' (3.3.4)

(i) Mean-flow - constant stretching and decorrelation rate
We first consider the case where the mean flow shear S, varies much more

slowly than the autocorrelation time of turbulent fluctuations, and varies smoothly in
space (i.e., on scales longer than that of the turbulence correlation function). In this case,
S, may be taken as constant. The influence of the convection term V_‘.[X) % in (3.3.2)

is treated by using shearing coordinates [3.72]. The [Lagrangian time derivative in

Eq.(3.3.2) 1s given as

S0 ) % _’Bd?“LSv‘*a% A (3.3.5)

Shearing coordinates annihilate the operator (a/at +S§ an/ay) via the transformation
ky— kO 4 kS, 0 (3.3.6)
where k&o) is defined at 1 =0 . Note that shearing coordinates are quite analogous to

Roberts and Taylor twisted slicing coordinates, which annihilates the operator B - V .

The increase in the perpendicular wave number is also observed in the laboratory
frame. After time !, a circular element is stretched to an ellipse with a major axis of
length |

2 ’ .
L=/ L2+ (L8] . (3.3.7)

Since area is preserved by this stretching, the length of the minor axis is given by

L ‘ | |
L=—F——— . 3.3.8
N _ . (338

The reduction in L § is equivalent to the growth of the perpendicular wave number, so

that the characteristic perpendicular wave number for the test field X is effectively

enhanced by a factor {1+ 52?) [2.7, 3.73-3.75],
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k.zLerFki(] +53f2) : (3.3.9)

Again, this is quite analogous to the familiar expression for k _2]_ of ballooning modes,

i.e.,

k2 = k%(l +5%o- 90)2) .

Time-asymptotically, then

KiefrckySyt. (3.3.11)

The change of the wave number is linear in time, 1.e., ballistic. ,
The diffusivity D implies a random walk due to the background fluctuations.
The influence of the shear flow on diffusivity will be discussed in §3.6. One simple,
direct method to determine the relevant time scales is to analyze the random motion in
shearing coordinates. The correlation time Tgq, in the presence of random motion but in

the absence of shear 1s

L 3D ' (3.3.12)

The wavenumber increases in time so that the correlation time becomes shorter in the
presence of the shear flow, since k) is stretched, as shown in Eq.(3.3.9). Equation

(3.3.11) holds for long times, if K} §, ¢ > 1 . Then the effective correlation time is just

1
Tcor,efszk( ) (l + 57 Tcor eff) (3.3.13)

Thus, if SV tCOI’, eff = 1,

2/3
—L =) p 1B 523 N (3.3.14)

cor, eff

which is the enhanced decorrelation rate, resulting from the coupling of shearing and
turbulent decorrelation. This result is similar to Dupree 1966 and Hirshman-Molvig 1979

[3.76], all of which involve decorrelation via scattering of action coupled to dlfferentlally
rotating phase space flow. If Sy Teor eff <1,
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L0 1+ 52 cfg)+-). (3.3.15)

which recovers the shear-free result. Note that the hybnid decorrelation due to the shear
flow is effective if S, reaches the level Dk %_0 . For a constant DD, the relation

S, 2 Dk3, (3.3.16)

indicates when decorrelation by shear flow is more effective.

The reduction of the correlation Jength leads to suppression of the fluctuation
amplitude of the test field X , as

N1 ey 1 o)y
(%)~ 1+ 842 (%) = T+ 5L {9} jim 5{0) (3.3.17)

assuming that the magnitude of the source term Jim S(0) is unaffected.

(it) Random stretching and decorrelation rate
In the presence of zonal flows or the GAMs, the shearing velocity is nof constant

in time. Moreover, even a slowly-varying ensemble of zonal flow modes can result in
drift-wave-ray chaos due to overlap of 2 = 4,V resonances, thus validating the

assumption of stochastic dynamics. As an analytic idealization then, we take S p asa

stochastic variable

(s,)=0, (3.3.18)

where (SU) is a long-time average of S, , ( : ) = lim —}-J; dr--- . We write

| — o0
So=YudTae wlt) (3.3.19)

where ¥, denotes the instantaneous magnitude of the zonal flow shear, w(t) is the
temporal coherence function and T, is the autocorrelation time of the (random) zonal

flow. Obviously w(t) 15 constant for f < T,. and fluctuates drastically for # > T, .

The stretching of an eddy in the y-direction i1s now a stochastic process. Therefore

t
< f S, df> vanishes, but its mean square linearly increases in time, so
i)
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T 2 .
Jim %Jd:(fs dr) =2 1,1 . (3.3.20)

The stretching process is now diffusive. The length of the axis of stretching is
, 2
L,2=L2+L2(J; s, dr) | (3.3.21)
and is stochastic. Its statistical average is given by
(L7 =12+ L ry 1 | (3.3.222)
or
( ) kg)) +DK) whereD (K) = k@ V& Toe - (3.3.22b)

A similar argument as in the previous subsection applies to this diffusive shearing

case. We have an equation for the decorrelation rate in the presence of the stochastic

shear flow as
1 _pp(0)? | '
‘l:cm_Dk!L) (1 +75 Tac ’) , (3.3.23a)
and
! (0)2,2 . .
Togr = DKL Y0 Tac ! (3.3.23b)

for long times. Thus, if Tcor > "{32 'ta‘cl , we have

2 1.2
! :(Dk@ y%,rac) . (3.3.24)

TCOT

Note that this is a 'doubly-diffusive' hybrid decorrelation rate, combmmg a random walk
in radius with one in k. If, on the other hand, T¢or < ¥v2 Tz '

1

TCOT

- Dk (3.3.25)
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as usual. It is important to note here that Ty , the autocorrelation time of the pattern of
zonal flow shears that a drift wave packet actually sees, is given by
min {AQ, Ag ,Vg(k]} . Thus, the strength of zonal flow induced shear decorrelation is

sensitive to the structure of the zonal flow spectrum.
(iii) Stochastic Doppler shift _

* There might be a case in which the radial wave length of the GAM is much longer
than the wave length of the test mode, while the flow change§ in time very rapidly. In
such a case, in addition to the flow shear (as is discussed in (i1), in this subsection), the
stochastic Doppler shift is also effective in reducing the turbulence leve! [2.14,3.77,
3.78].- _ '

In the forced stochastic oscillator equation (3.3.1), the Doppler shift term is given

by the random Doppler shift,

L X+iy X - DVIR, =5 | | (3.3.26)

The impact of stochastic frequency shift is characterized by the parameter
TEt(e) | (3.3.27)

where T, ; 18 the autocorrelation time of the longer wavelength fluctuations J,. The

statistical property of the response function of equation (3.3.26)
G(t; 1) =exp (_ f dt {iey, + r)) (3.3.28)
has been studied when the correlation (mk(t‘ ) ﬁ)k(o)> decays as [3.79]

(G)k(z] @,(0)) = (0}) exp (- /1,c..) (3.3.29)

In the opposite limit, i.e., the limit of rapidly changing background fluctuations,

Toe 1<<Teor, C(3.3.30)

one obtains
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<G(r; O)G(l’; 0)>=exp (— 2(T,+tm'r)|r rl) . ‘ (3.3.31)

The decorrelation of the test field occurs with the rate of Toor + I'; . The statistical
average of the fluctuating field X is calculated. One finds that the fluctuation level is
suppressed by the stochastic Doppler shift, due to the longer wavelength fluctuations, by

the factor of

1

(for Toe, 1 << Tp ) (3332

assuming that the source gli_r)no 5(?) is unchanged.

In the large amplitude limit of random oscillation (or long correlation time Tyc ; ),
2 A0)> 1, (3.3.33)
the Gaussian response is given by |
<¢(r-, 0)G(t" o)> o ex§(~ 2(e?)(e - r')z) - . (3.3.34)

Equation (3.3.34), when compared to equation (3.3.31), is called motional néfrowing.

This results in

lim s*Y¢) (3.3.35)

/I
/- 2 / 750
A reduction by the factor 1/ T¢q, (GJE) is obtained.

3.3.3 Symmetry between zonal flow drive and turbulence suppression
After overviewing the back-interaction of flows on turbulence, we now visit the
issue of symmetry between zonal flow drive and turbulence suppression.

When the drift waves are stochastic in time, the random stretching induces
diffusion of drift wave fluctuations in k, space. One then has

(N - ai D()_( =Ny s (NYE L (3336)

where the k-space diffusion coefficient in Eq.(3.3.22b) 1S writtén as
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2 .
DK} = {0)° 2021 (3.3.37)
In this expression, an oscillating shear is rewritten in terms of the zonal flow velocity as

V=2 3% 6338
9.

The terms on the right-hand-side of Eq.(3.3.36) denote the linear growth and nonlinear
damping of turbulence by like-scale interaction. The effect of k -space diffusion on the
evolution of drift wave energy, W grif = ; mk<Nk> , 1s thus given as

3 o) =- T3 00 2 (V) + T ) sy (v)?)

k r
(3.3.39)
The second term, i.e., the contribution of the zonal flows, is given as
0 _ 90, (0)
o ‘_’Vdrift’ZF =- 2 kia Tac ak (Ny) g2 VZF q. (3.3.40)
This term may be written as
2
% Wdrif(L =-2Dy o 2V, (3.3.41)
d., -
where
_y 9 (0)2_ 3
D,=3 T ko) Tac 3 (V) - (3.3.42)

Note that T,. of Eq.(3.3.42) is really an estimate of the response function R(K ; -Q] in

the propagator:

R(K.Q)=1, . N (3.3.43)

The kinetic energy of the zonal flow Wzp= Z V%]:, g, increases, within the framework
9.

of quasilinear theory, at the expense of the zonal flow, i.e.,
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d _ 2 32

5 Wz . ij:D,.,, g 9% VZF,q‘ ) (3.3.44)
This proves

g Wirif -9 Wyg (3.3.45)

-a_t n ZF m drift

From these considerations, we see that symmetry between the coefficient & in

Eqgs.(2.10a) and (2.10b) comes from the conservation of energy in the coupling between
the drift wave fluctuations and zonal flow. The suppression of drift wave fluctuations by
the shear associated with the zonal flow can be alternatively described as an energy

transfer from drift wave fluctuations to zonal flow fluctuations. This relation holds for
the case where the quasilinear theory for N is applicable.

3.3.4 Poloidal Asymmetry

While we focus almost exclusively on zonal flows which are symmetric in both
the toroidal and poloidal directions in this review article, sometimes it is necessary to take
into account a weak poloidal variation of zonal flows, or a poloidally-varying large-scale
convective cell, when we study the shearing of smaller turbulence eddies by larger

coherent structures. The examples include:

(1) Strong-toroidal-rotation-induced centrifugal force can introduce the poloidal-angle
dependence of the electrostatic potential associated with the mean E x B flow. [3.80,

3.81]

(ii) Shearing of smaller-scale eddies by larger-scale convective cells (n ~m ~ 0[ 1) )

including a side band of zonal flows suchas ¢, =¢ m=1 , etc.
(iii) Shearing of smaller scale turbulence (originating from high-k instabilities) by larger

scale turbulence (originating from low-k instabilities); for instance, shearing of ETG or

CDBM turbulence by ITG-TIM (trapped ion mode) turbulence. (A more detailed

discussion is made in §3.4.6.)
(iv) Poloidally inhomogeneous toroidal flow induced by pressure anisotropy. [3.82}

The steep poloidal variation, rather than radial change, is associated with the streamer,

(which is beyond the scope of this review), briefly discussed in §6. For these situations,

73



one could construct a model problem of shearing by considering an electrostatic potential
¢u(r, 9) which varies in both radius and poloidal angle. Then the two-point correlation
function evolution is not only governed by the usual ambient turbulence-induced
diffusion and the radial shear of the poloidal £ X B flow, but also by the poloidal shear
of the radial £ X B flow, as well as the radial shear and the poloidal shear of the radial

Ex B flow.[3.83] These quantities in the order of appearance are:

W, == 35 0{r, 0) (3.3.46a)
op or=- 1L o(r6) 3.3.46b
E,Br‘_raearq)rs ) (3.3.46b)

3?2 '
‘”E»'ﬂ=‘am;—rae¢("’6) - (3.3.46¢)
0 g0 =2 4(r, 8) 3.3.46d
E 068~ qrzaezq’r’ (3.3.46d)

where ¢ is the safety factor. These illustrate the "tensor” nature of the shearing ®g by

convective cells. From these generalizations, the standard theories of shearing,
addressing the reduction of the radial correlation length, can be extended to study the
deformations of eddies in every directton [3.83] including the change in the correlation
length in the direction parallel to the magnetic field.[3.82]

Following a procedure in [2.7], the two-point correlation evolution equation has
been derived in general toroidal geometry [3.83] |

g— C|2+ (W_(DE +1_Wg g )i'l‘(lll_(l)E e+ﬁ_(1)E ee\ a -—De 82‘ (':'12
! Yy » Oy ag_ Y ' }aw_ ﬂacz
=5, | (3.3.47)

Here, = <5H ( 1 )5H (2)> is a cormrelation function of fluctuating quantity 84 , and
Do is the ambient turbulence-induced relative diffusion of two nearby points:

(\P M8 1) and (\Ilz, M2, Cz) in flux coordinates. Other notations follow those of
[3.83]). In contrast to the usual case of a flux function ¢(r) , where only the radial shear
of the E X B angular frequency, mainly in the poloidal direction, Wg, yuy, = - 324"’3\!12
= a(E ,/RBB)/E)W appears in the two point correlation evolution, (3.3.47) describes the

"tensor" character of the shearing process when ¢ is a function of both Y and @ .
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Op op Wwith subscripts ¥ and 0 for ., B is a natural flux coordinate generalization of

Eq.(3.3.46). By taking the moments and following the standard procedure of calculating
the exponentiation rate of two nearby points, one can derive that the shape of turbulent
eddies are distorted due to the various components of the shear tensor in the following
way [3.83]:

Ar2=Arfl 1+ WF (3.3.482)
Amk(A(ok +Wg wg]

and

.(3.3.48b)

where A®; is the decorrelation rate of ambient turbulence and
Wp=- (AwOIACO)(32¢/aW2) is the E X B shearing rate in general toroidal geometry.

Note that Eq.(3.3.48b) shows the reduction in parallel correlation length due to poloidal
asymmetry which has been indepéndently found in [3.82]. The tensor character of the
shearing process has been also recognized in the problem of the shearing of small ETG
eddies by larger ITG eddies, which is discussed in §3.4.6.

Unlike decorrelation via the shear in E X B zonal flow, it can be shown that from
a symmetry argument on the two point-correlation function that there is no net
decorrelation mechanism due to the flow curvature associated with the second radial

derivative of the zonal flow [3.84].

3.4 Nonlinear Damping and Saturation: Low Collisionality Regimes

In this section, nonlinear mechanisms which limit or saturate the growth of zonal
flows are described. Research in this direction has been particularly stimulated by the
challenge of understanding how zonal flow growth is controlled in low or zero

collisionality regimes, for which the energy density of zonal flows can substanliaily

exceed the energy density of drift waves, i.e., | V%Fl >> f N, dk . Several

possibilities exist, including:
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a) tertiary instability - i.e., a secondary instability of the zonal flow (itself a product of the
secondary instability), rather like the familiar Kelvin-Helmholtz (KH) instability of a
sheared flow. Such a tertiary KH instability will refurn energy to the m # 0 fluctuations,
thus limiting zonal flow growth.

b) nonlinear wave packet scattering - i .e., a process by which a drift wave packet
undergoes multiple nonlinear interactions with the zonal flow, thereby exchanging energy
with, and thus regulating the growth of the zonal flows. Such scattering processes are
quite similar to nonlinear wave-particle interaction, familiar from weak turbulence theory.
This process also returns energy to m# 0 fluctuations.

¢) nonlinear wave packel trapping - i.e., the process by which modulational instability is
saturated due to deflection of drift wave trajectories by finite amplitude zonal flows. This
process is analogous to the trapping of particles by a finite amplitude waves in a Vlasov
plasma, and acts to nonlinearly quench the zonal flow growth process by terminating the
input of energy to the zonal flow.

d) adjustment of system dynamics - i.e., an 'umbrella label' under which the various
routes by which the system evolves toward a stationary state via adjustment of the global
dynamics may be collectively described. Examples include the possibility of either multi-
dimensional (i.e., repetitive bursts or limit cycle) or strange (i.e., chaotic) attractors, in
contrast to the naively expected fixed point. Another possibility is adjustment (via
predator-prey dynamics) to exploit available, albeit weak, dissipation. Generally,
mechanisms in {d) work in synergy with mechanisms in (a)-(c).

sub- key Degrees of correlation coherent  next sub-
section concept freedom time structure section

drift  zonal drift zonal

wave flow wave flow

34.1 tertiary inst. - 1 long long - -
3.4.2  dithering small 1 long long dynamics 352
3.4.4  diffusion model large large short short no 353
3.4.5  predator-prey

model 7 3.5.1
3.4.6  wave trapping large large long long yes 3.5.4
3.47  collisionless satu. large large short long yes 3.5.5
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3.4.1 Tertiary instability

One mechanism for nonlinear saturation of zonal flows is turbulent viscous
damping of the flow, originating either from background drift wave turbulence, or from
instability of the zonal flow. As the zonal flow is itself the product of a 'secondary’
instability in the ensemble of 'primary’ drift waves, instability of the zonal flow is called
tertiary instability [3.85]. These tertiary instabilities of the flow may be thought of as
generalized Kelvin-Helmholtz (GKH) instabilities, which relax the profile of generalized
potential vorticity and so mix and transport zonal flow momentum, thus damping the
flow. Interest in GKH instabilities was sparked by consideration of the so-called Dimits
shift regime, where the overwhelming preponderance of available free energy is
channeled into zonal flows (i.e., Eze/Epw = Y1./Ydamp ), in turn naturally raising the
question of what sort of consideration of stability will ultimately limit zonal flow shears.
Of course, proximity to, or excedence of, the GKH stability boundary results in the onset

of momentum transport and turbulent viscosity.
The actual GKH is driven by both E X B velocity and ion temperature gradients,

since both enter the total potential vorticity V2(¢ + 'tT,-/Z) (where T=T/T; ). However,
it is instructive to first consider the simpler limit of T— 0 . In that case, flute-like
(k|| — 0 ) modes with low but finite m (i.e., m #0 ) evolve according to

(Ba_t + Vg V)V2¢‘KH +Vkn- VV2¢ZF=(88722 352 )(V v > % 0 ((Vz) (VE)J

(3.4.1)

Here the LHS describes the linear growth of the KH instabilities and the RHS represents
drive by drift wave stresses. Equation (3.4.1) thus states that m # 0 GKH fluctuations
(which transport and mix zonal flow momentum) can be excited either by instability of the

zonal flow or by drift wave Reynolds stress. This suggests that, in contrast to the
hierarchical scenario (Fig.3.4.1(a)) of primary — secondary — tertiary instability

described above, the process for generation of m #0 modes may be non-hierarchical
(Fig.3.4.1(b)) ‘, whereby low but non-zero m modes are generated both by KH
instability of the zonal flow and by modulational instability of the drift wave spectrum.
Here, we focus primarily on the hierarchical scenario and its implications. The direct
drive by drift waves is briefly discussed in Chap.6. The relative importance of the
hierarchical and non-hierarchical scenarios is a topic of on-going research. An existing
result indicates that the modulational drive of m #0 modes results in momentum
transport significantly in excess of the KH driven transport, but further research into this

question is necessary before reaching a definitive conclusion.
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Regarding KH instabilities, it is instructive (o start by considering a simple case
with zonal potential ¢z = § cos (q xX) , perturbed by a KH perturbation

ok é; 4, cos (ng x +4,) | (3.4.2)

(9 is the wave number of the zonal flow, and g, is the poloidal wavenumbe.r of the KH

instability.) The perturbation is easily shown to grow at the rate

2 q%*‘lf
=242 42 _ C (34.3a)
YRH x4y q%+q} |

Thus, Yk >0 requires qu( > q_,z. , 1.e., the poloidal wavelength of the KH mode must

exceed the radial scale of the zonal flow. This of course favors long-wavelength
instability. For qg’: << q% , hote that Ygy reduces to

YKH '“|quzF| : (3.4.3b)

Note that Yy scales with Vzg , not with dVzp/dx | [3.41, 3.86]

Of course, the example discussed above is over-simplified, as it omits magnetic
shear, electron dissipatidn, and many other effects. In particular, magnetic shear is quite
strongly stabilizing, as it works against the interchange of vorticities at an inflection point,
which is the basic mechanism of the KH and the elementary process which underlies the
well-known Rayleigh inflection-point criterion. Figure 3.4.2 illustrates the basic effect -
in a sheared magnetic field, the changing local angle of tilt of magnetic field lines requires
that vortex tubes rotate upon interchange. This imposes an energy penalty for the
interchange process, thus tending to stabilize the KH. The strong sensitivity of the KH to
magnetic shear is nicely illustrated later in Chapter 4. (The figure 4.18 of Chap.4 shows
the disruption of the zonal flow pattern in the regimes of weak magnetic shear and its
persistence in'regions of strong magnetic shear [2.52].} In order to examine the effect of
shear on tertiary KH modes, the energy transfer budget and zonal flow pattern of a
shearless and sheared system were compared in [3.87]. In the shear-free system,
transfers of energy from zonal flows to drift waves occurred, and disruption of the zonal
flow pattern was evident in the flow visualizations. In the sheared system, no back-
transfer of energy occurred and the flow pattern persisted.

In the plasma of interest, T # 0 , so the generalized potential vorticity is V2(¢) ,
where @ = ¢+ tT/2 . The system is described by the equations
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992040, V2¢] T:[ 7,v77] (3.4.4a)

9 T+[@,T]=0 (3.4.4b)

Here [g, h] is the Poission bracket. Note that, to the lowest order in T , this system

corresponds to a statement of conservation of potential vorticity in flows with generalized
velocity V = V@ x Z | Here, the temperature gradient, as well as E X B shear, can drive

instability. A similar analysis as before gives

q3-q%
Thu=73(0+3 T) 24 ( ’) . (3.4.5)

7+ g2

Note that the phase between the zonal potential and zonal temperature is crucial to the
result. This phase is determined by several factors, including the zonal flow generation
mechanism (i.e., which sets the ratio of growth _for ¢ and T ) and the Rosenbluth-Hinton
damping mechanism (i.e., which suggests that certain values of phase damp more rapidly
than others). While one study suggests a good correlation between the stability boundary
for GKH and the termination of the Dimits shift regime (see, e.g., Fig.4.16 in Chapter 4
[3.88]), the parameter space for this problem has not been systematically explored so the
"bottom line" remains controversial. Moreover, other linear stability studies which retain
ion Landau damping suggest that even for steep 7/0x , tertiary instability growth is very
weak and the scale of mixing is quite small. [3.89] Thus, tertiary instability and its effect
on zonal flow saturation remain open problems, where further study is needed.

With the as-yet-inconclusive findings described above in mind, it is interesting to
note that another, related, route to exciting momentum transport and the back-transfer of
energy from zonal flows to waves exists and has not been explored. This mechanism
exploits the situation that GKH modes, while not strongly unsiable, are not heavily
damped either, and the fact that noise emission from primary drift waves is abundant.
Thus, one has a situation of noise emission into slow modes, sitting close to criticality, so
that large transport can occur without linear instability. Moreover, the effective noise bath
will be enhanced by self-consistent inclusion of the GKH effect. Fmally, noise emission
can also produce localized defects in the flow, which in turn drive small scale relaxation

and momentum transport.

3.4.2 Model of small plane waves
As is explained in §3.2.2, dynamics of a plane drift wave explain the zonal flow
growth if the decorrelation rate of drift waves Yy is very small. One nonlinear
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mechanism is the back-interaction of excited secondary waves (zonal flow and side-band
drift waves) on the primary drift waves. Within this framework, one can construct a
model composed of three drift waves and one zonal flow. The example of toroidal drift
waves of §3.2.2 is explained.

The quasi-linear effects of the secondary waves on the primary drift wave are
given by [2.23]

e®, )’ kea, |®(E) D(E)
(?% - YL)<(“TQ) > =-25 aD?ng DfE) Pzrt E) bzr| (346)

where ‘YL is the linear growth rate of the primary mode, representing the energy source.
(See §3.2.1(ii) for definition of variables.) Replacing variables from a set of [(DO(E,.) \
Dyr (1)+(§) and (D_(E,) Jto[P,Z,S and ¥ ] which are defined as

2 D :
P= <(L;)O) > L Z = @,k and ﬁ = Sexp (i‘P) (3.4.7)

Do[&)

with suitable normalizations, a closed set of equations results. These are:

dP _ N7 |

- E—P—ZZSCOS( ) (348)
dz _ Y
Se=- ,Yz'li"pZ +2 PScos (‘P) (3.4.9)
ds _ Ysid
48 . Tue 5. 7 poos (¥) (3.4.10)

oy _(00-) zp sin (%)

5t Y s (3.4.11)

where the normalized time is T="Y;! , Ygamp is the collisional damping rate of the zonal
flow, Ysige 18 the side-band damping rate, and ®y — €2, is the frequency mismatch of the
side-band and primary mode.

Equations (3.4.9)-(3.4.11) describe the parametric excitation for a fixed pump

amplitude. The coupling to the primary wave, Eq.(3.4.8), describes the nonlinear
stabilizing effect of the driven zonal flow on the growth rate of the zonal flow Yzr .

3.4.3 Nonlinear coupled equation for a large number of drift waves
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If the number of excited drift wave modes are very small, so that the drift wave
can be treated as a monochromatic pump, a simple model like §3.4.2 applies. In real
plasmas, however, the primary fluctuations (drift waves) have a large number of degrees
of freedom, and an analysis treating the drift wave spectrum is necessary.

Equations (3.2.40) and (3.2.45) describe the coupled dynamics of the drift wave
action and the vorticity of the zonal flow, '

2 2V 4 12 _d

Ne=(1 +kJ_P§) |0]” and U=3- Vze

respectively. Taking into account of the collisional damping of zonal flow (§3.1.3), the

dynamical equation for the zonal flow vorticity

d 82 c? 2 kekr
(Eﬂdamp)(j:_i_z d% —r N, (3.4.12)
or” B (1+4%p2)

and that of the drift wave spectrum

N, dwyy ON 3N
Ve e Tt - S Ve = ko gt U (3.4.13)

dw
are derived, where U, = —a—’;& is the group velocity of the drift wave, and Yq,ig

represents the linear instability and the nonlinear damping rate that causes saturation of the
drift wave (in the absence of zonal flow).
In the following subsections, the evolution of drift waves and zonal flow is

explained in several limiting cases.

3.4.4 Diffusion limit
We first discuss the case where the autocorrelation time of the drift wave T, ¢

and that of the zonal flow T, zr are much shorter than the time scale determined by .
Y74 , where Yz¢ is the characteristic time scale of the linear zonal flow instability. It is
very important to keep in mind that we also use this ordering as a tractable model of the
case where the zonal flow spectrum is slowly varying, but spatially complex. Thus, this
limit is of broader interest than one may initially think. Note that the validity of the

equivalence between spatial complexity and short autocorrelation time follows from the
fact that it is the net dispersion in £ —q,v gr Which is of interests. Thus, even if AQ s

small, the existence of fine scale zonal flows can guarantee that v,,Ak is large, so that the

zonal flow-drift wave autocorrelation time is correspondingly short. The autocorrelation
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time of the drift wave, Ty¢ g = Y3k ; is determined by the drift wave self-nonlinearlity,

and is taken as prescribed in this review. The time scale orderings are written as

Ydrift >> YZF (3.4.14)

Tac, ZF I'>>yzp (3.4.15)

In this case, the phase of each mode composing the drift wave fluctuation is considered to
be random and the distribution function N is treated. Fourier components of the zonal
flow, U g, »

U=;Uq, exp (ig,r) ‘(3.4.16)

induce random Doppler shifts in the drift waves, because the autocorrelation time of U g,
is short. The coefficient kgl in the right hand side of Eq.(3.4.13) can be considered as

a random frequency modulation.

The term kgU oN/k, in Eq.(3.4.13) changes rapidly in time and is
approximated as random. The average within the 'long time scale’, YZ¢ , is evaluated
according to the analysis of §3.3.2. By employing a quasi-linear treatment for random
stretching from §3.3.2(i1), one has [3.44]

3301; i) INy
kol 3 = ak,,(DK o (3.4.17)
where
Dy =q2,R(k, g, k32 U2 (3.4.18)

is the diffusion coefficient in the wavenumber space that determines the straining of the
drift wave due to the'random Doppler shift. For further simplification, the response of
drift waves on the left hand side of Eq.(3.4.13) can be rewritten, in terms of the linear

growth term and nonlinear self-interaction term, as

oN N, do ON
Ve I A ok = Wk T (3419)
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where YL, is the linear growth rate and YN is the nonlinear damping rate. With this

formal .expression, Eq.(3.4.13) reduces to the diffusion equation for the drift wave

spectrum
oN ,
(;‘%—vmvm) . (DK akk) 0. | (3.4.20)
The evolution of the zonal flow is given by the negative diffusion effect and collisional

damping, as is explained in §3.2.2, as

12

(%“’damp)wqr ZDQ ac Ve Ug, | (3.4.21)

where the coefficient D is calcolated in §3.2.2 to be

2
D,=-1 er Rign k). (3.4.22)

3.4.5 Predator-prey model

The system of Eqs.(3.4.2]) and (3.4.22) describes the interaction between the
drift-wave and zonal flow. This is an example of a two-component, self-regulating
system. As the 'primary' fluctuation, the drift wave grows by its own instability
mechanism. The drift wave fluctuation energy is transformed into the energy of the zonal
flow via the secondary instability process. In this sense, a correspondence of the form:

drift wave fluctuation (N ) = % Ny ©  prey

(3.4.23)

o predator

zonal flow energy <U2> = ; | Ug 2

holds.
A low-degree of freedom model can be deduced from Eqs.(3.4.21) and (3.4.22).
Integrating Eqs.(3.4.21) and (3.4.22) in wavenumber space, one finds '

J _y_d 9N
;(gy—“ll_*'YNL)N—; ak,(DK akr) (3.4.24)

and
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(g'r + Ydamp)( > Zq q" Df{ ak Nk ‘ U I : (3.4.25)

A Krook approximation is used to write:

¥ o, (DK %]:f ) == C2,oUPHN) (3.4.26)
) ,?% 4+ Dg g%N"IU%]z = Can AU)N) (3.4.27)

where C7 _, 4 and Cy _, 7 are positive numbers. With this simplification, Eqs.(3.4.24)
(3.4.25) can be modelled as

(ga;-YL‘r'YNL)(N) =—CZ—>d<U2><N> , (3.4.28)
(3 +aam) (U2) = Cums?)M) 3429

where ¥y and Yy are typical numbers for the linear and nonlinear rates. Asis
explained, the collisional damping rate Ygamp does nor depend on the scale ¢, , asitis a

drag, not a viscosity. The conservation of the total energy among drift wave and zonal
flow requires

Casz=Cz54. | (3.4.30)
The evolution of the wave-zonal flow system critically depends on the nonlinear

damping of drift waves. The simplest form of the nonlinear damping rate of the drift

wave may be chosen as
TNL(N) = 12(N)” - (3.4.31)

By these simplifications, one has a two-dimensional predator-prey model of the form

LN =T (N) — 7o) - 4, UP)NY (3.4.32a)
9 (U?) = ~VgamplU2) + Cg - AUDN) . (3.4.32b)
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A tractable model with a small number of degrees of freedom can be constructed in the

diffusion limit, as well.

3.4.6 Coherent Nonlinear Drift Wave- Zonal Flow Interactions (1) - Wave
Trapping
The growth of the zonal flow is influenced by the finite amplitude zonal flow on
the drift waves, even if tertiary instability is not induced. The presence of the zonal flow
induces higher order deformation of the drift wave spectra, which causes the modification
of the growth rate of the zonal flow. This is, of course, analogous to the modification of
the distribution function structure due to nonlinear resonant particle dynamics in Vlasov
plasma problems. An analogy holds, and may be summarized by:
Drift wave -zonal flow problem {D Vlasov problem
N, o f (v]
k, ov (3.4.33)
-keU(x] « eE(x)

where U is the vorticity of the zonal flow, U = dVz¢/0x . A more thorough comparison

is summarized in the Table 3.4,1.

As in the case of particle trapping in a wave field, the trapping of drift wave
packet in the zonal flow field can take place, this phenomena thus has an influence on the
evolution of zonal flow. The bounce motion of drift wave rays occurs, as is explained in

Appendix A. In this subsection, we review the nonlinear process that is relevant when
the lifetime of the drift wave and that of zonal flow are long compared to both Yzr and

the bounce frequency Wyounce (the explicit form of which is given in Appendix A), i.e.,

when
Y drifi <_< YzE Wpounce . (3.4.343)

Tac,zF | <<YZF Opounce - (3.4.34b)

This is the opposite limit to §3.4.4, where waves and zonal flows are assumed to be
randomized rapidly duriﬁg'thc interaction between them, as in the quasilinear problems.
Another limit is that the life time of drift waves is much shorter than the trapping time, but
the coherence time of the zonal flow is longer than Yz . This limit is discussed in the
next sﬁbsection. (§3.4.7).

The coupled dynamical equations for the drift-wave fluctuations and the zonal
flow component are given following the argument of Egs. (3.4.12) and (3:4.13). The
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vorticity equation that relates the zonal flow to the wave population, (3.4.12) and the

wave kinetic equation, together form a nonlinear dynamical system

dJ ‘ 0?2 1 2 kekr ‘
(- +74 )U=—~— L AL VA (3.4.35)
or amp dr? B2 (] +kip§)2
N, . ON
SN o Sk S (14 kdp2)U (3.4.35b)

. .2
where the 'screening’ effect of a finite gyroradius is retained, U = U + p2 %ﬁ U. In

comparison with Eq.(3.4.13), the linear growth and nonlinear damping of drift waves are
dropped, because the case of coherent waves is studied here.
This set of equations (3.4.35a) and (3.4.35b) has a similar structure to the Vlasov

equation that describes wave-particle interactions (such as plasma waves, etc.). The term
koU(x) in Eq.(3.4.35b) is the counterpart of acceleration in the phase space. That is,

Eq.(3.4.35b) has a similar structure to the one-dimensional Vlasov equation, and
Eq.(3.4.35b) is the analogue of the Poisson equation. With this analogy in mind, one
can study a BGK-like solution with finite-amplitude zonal flow.

Consideration of drift wave ray dynamics (details are given in Appendix A) leads

us to conclude that the drift wave-packet can be labeled by the two invariants of motion
(l)ko andk)() s i.B.,

(l)k—"ukx—ky VZFE(DI(O and k)'=k.\'0’ (3436)

where u is a uniform velocity Bd_t - —u ;% . Note that the wavefrequency ®; and the
wavenumber &, are modified along the path of the drift wave-packet according to the

relation which is simply the dispersion relation
2 2!
=kl + Kk (3.4.37)

By use of these two integrals of motion, (0 and & () ), an exact solution for the

distribution function is given in the form:

N(x, k. k J.) = N(mko(x, k) k }0) , (3.4.38)
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Combining Eq.{A.37) and Eq.(A.44) describes the coherent structure of the sysiem of
zonal flow and drift waves.
The trapping of the drift wave-packet occurs in the trough of the zonal flow, as ts

explained in the Appendix A. Figure 3.4.3 illustrates the rays of drift wave-packets in
phase space for the case in which the screened velocity ¥z has a sinusoidal dependence

in the x -direction. The trapped region is determined by the difference AV z¢ between the
maximum and minimum of ¥, . The wavenumber on the separatrix at the minimum of

Ve is given as

AV (1 +ka)2
- AP {1+ k)

k3. sep = (3.4.39)

for a simple case of stationary zonal flow structure. Wave packets which satisfy
kfo < kio’ sep are trapped in the inhomogencous zonal flow. The bounce frequency at

the bottom of the trough is seen to be

2p_%kyqr dVZF
2.2 ka .
1+pky dr

(3.4.40)

wgounce =

As is the case for the trapping of resonant particles by waves in collisionless plasmas, the
bounce frequency of quasi-particles (wave-packets) has a dependence like
Opounce = V YzF . The bounce frequency away from the O-point can be evaluated by use
of eiliptic functions. The bounce frequency becomes lower as the trajectory approaches
the separatrix. The assumption in this line of thought, Eq.(3.4.34a), means that
Yarifi < Opounce 15 Necessary in order that the wave-packet trapping 1a relevant. Thus,
trapping of wave packets is particularly relevant near marginal stability of the drift waves.
If the trapping of the wave-packet is effective, the growth of the zonal flow stops.
On a trapped trajectory, the distribution function tends to approach the same value. The
distribution function N, finally recovers a symmetry with respect to X, , and the RHS of
Eq.(3.4.35a) vanishes. The trapping of the drift wave tends to terminate the growth of

the zonal flow.

3.4.7 Coherent Nonlinear Drift Wave- Zonal Flow Interactions (2) - zonal
flow quenching

If the zonal flow has a long life time, it is possible to form a coherent spatial
structure through a strongly nonlinear deformation of the drift wave population density.
However, the condition of Eq.(3.4.34a) does not always hold. That is, the
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- autocorrelation time of drift waves can be shorter than the life time of zonal flow

structures, while the zonal flows maintain their coherence, i.e.,

Yarin > Yzr Obounce - (3.4.41a)

TaezF | <<YzF . (3.4.41b)

In this subsection, we study the case where the turbulent drift wave spectrum forms a
spatially coherent zonal flow structure.

The wave kinetic equations as in §3.4.4, Eq. (3.4.35a) and Eq.(3.4.35b), are
employed. An asymmetric part of N; with respect to k., N, , contributes to the time

evolution of U through Eq.(3.4.35a). Solving Eq.(3.4.35b) and expressing N, inthe

form of a perturbation expansion
N, = N;(l)U + NLZ]Uz + Ni3)03 o ' (3.4.42)

and substituting it into Eq.(3.4.35a), a nonlinear equation of the zonal flow vorticity U is

obtained. The lincar response has been obtained, as is explained in §3.2.1, i.e.,

JN
940 = 2 (kove) Rlg, @) .

~where R(q ~ Q) = if(Q —qg+ i'Ydriﬂ) is the response function. The first-order term

gives the negative-diffusion-like form Yzg = D ,,qg , 1.e., the basic zonal flow growth.

The higher order responses with respectto U, N 12) and N 13) can be calculated using the

formal relation

aﬁLH_l)

R =keU R(g,, Q) 2

(3.4.43)

r

This simplification is based on the assumption that the relaxation of drift wave spectrum
by its own self-nonlinear interaction is fast. Equation (3.4.43) is based on a formal
expansion in the parameter U R(q ~ Q): UM geife . Thus, all resonance functions, both

R(q ” Q] = i/(Q —qu,+ i’ydriﬂ) , and those corresponding to higher resonances, reduce

to the simple form R(q . Q) ~ W4t - Note that this approximation clearly fails close to

marginal stability of the primary drift waves, where Ygrig — 0 . Quantitatively, the
competition between Y| and the dispersion (spread) in Q—q,0, , is given by -
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A(Q - qrvg) . For Yirin < A(Q - q,ug] , resonance structure becomes important, and the
analogue of phase-space density granulations form in N.

For a wide spectrum of fluctuations, one has R(qp Q) — /Y4 and obtains the
leading diffusion term of Eq.(3.2.51) of §3.2.2. In such a case, R(q,, Q) has an
approximate symmetry with respect to k, . The contribution from the second-order term

is small, from the consideration of this symmetry, so the first contributing order is the

one comes from the third-order term:

33N

RO 3R k3 ko (3.4.44
Note that this is equivalent to the term which gives nonlinear Landau damping in the
Vlasov problem. Recall that nonlinear Landau damping is also third order in the
perturbation amplitude, involves contributions at beat wave resonances, where

w0+ = (k + k']v , and may be obtained from 'higher-order quasilinear theory'. Here,

' the explicit beat wave resonance is absent, since R(q " Q] ~ W anfe -1.e., large Yqrife

smears them out. Figure 3.4.4 illustrates the linear response N il) and third order

response V L3) for the case of a monotonically decreasing drift wave spectrum. The

nonlinear term works against the linear term, so as to cause nonlinear saturation.
Substituting Eq.(3.4.44) into Eq.(3.4.35a), one obtains a nonlinear equation for the drift
wave vorLicity [3.90]

2= ,,aaz U+D3§ 5 0% ~Ygamp U . (3.4.45)

with

3
Dy=-—>5 dkR( )kekraNk

3 3 3 (3.4.46)
B (]+kips)‘ ok}

As the spectral function is peaked near k, = 0, the sign in the definition of D5 is chosen
such that D5 is positive when D, is positive.

Equation (3.4.45) shows that the drive of the zonal flow is reduced (and can even
be quenched) when the amplitude of the zonal flow becomes larger. The quenching of
the drive of the zonal flow is a characteristic mechanism in the problem of generation of

the axial-vector field through turbulent transport of energy (such as dynamo problems).
In the case of magnetic field generation via a dynamo, the coefficient & for the mean
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electro-motive force is known to be suppressed by the generated magnetic field. The so-
called & -suppression problem has been investigated [3.91]. Equation (3.4.45) 1s an
explicit expression for the quench of the driving force of the axial vector field.

Equation (3.4.45) governs the dynamics of the (coherent} structure of the zonal

flow. Further exploration of this result follows. The most unstable wavenumber of the
zonal flow is derived in §3.2 The zonal flow growth rate YzF (the first term in the RHS

of Eq.(3.4.45)) does not continue to growth at larger ¢, when the dispersion effect of the
drift waves on the zonal flow is introduced: Y7 = Dr,q;?(l —q?/q 2,0) , where q;ol
represents the characteristic scale where the dispersion suppresses the zonal flow
instability. An explicit form of 4,¢ is explained in §3.2.2. Of course, flow growth must

slow down on scales smaller than the neoclassical or collective (screening) lengths,
namely, Pg; and p; . Damping is induced by collisional processes (§3.1.3) and by the

turbulent diffusion of a secondary parallel flow (§3.2.6), via

Ydamp = 'ygglrl,p + u"(] + 2q2)q,2. , where 'Yﬁg],},p is the collisional damping explained in
§3.1.3, and I is the*turbulent shear viscosity for the flow along the field line, and g4 is
the safety factor. (The coefficient | + 242 takes a slightly different form, depending on

the plasma parameters.) Thus, Eq.(3.4.45) can be written in the explicit form

. 8‘2 _ 4 _ 2 2
'aa't‘ U+Dn.(m U+qr02%Z U)—D3 %'503—[1”(] +2q2]%U+YﬁgH1pU=O

(3.4.47)

The zonal flow is excited if the condition D,, > u"(l + 2q2) is satisfied. Both the zonal-
flow driving coefficient D,, and the shear viscosity || are given by the drift wave
spectrum N . Equation (3.4.47) explains that the zonal flow is generated by the

background turbulence and is stabilized by collisional damping, higher-order dispersion
and by the nonlinearity.

Section 3.4.8 A Unifying Framework - Shearing and Wave Kinetics
Building upon the studies of particular nonlinear mechanisms in various limiting
cases, which are explained individually in the preceding subsections, we now propose a
unifying framework for understanding the zonal flow problem. This framework is one of
shearing and wave kinetics. |
We now discuss the physics of stochastic shearing of primary drift waves by a
spatio-temporally complex spectrum of zonal flows, in particular, and also survey the
wave kinetics of drift waves in a slowly evolving spectrum of zonal flows, in general.
Extensive use is made of an instructive and far-reaching analogy between the wave

kinetics of a drift wave packet in a zonal flow field and the kinetics of a particle in a
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Langmuir wave field in a one-dimensional Vlasov plasma. On account of the particular

symmetry of the zonal flow field, both the drift wave - zonal flow and 1D Viasov
problem can be reduced to 2D phase space dynamics, for x , V and x| &, | respectively.

In each case, the effective frequency of the motion UJ(J ] is a function of the action

variable J , so that the dynamics are non-degenerate, and differentially rotating flow in
phase space results. The analogy enables a unification of many analyses of shearing
effects, both in the stochastic and coherent regimes. Of cause, shearing dynamics are of
great interest, as they constitute the mechanism by which the zonal flows regulate
transport and turbulence levels, and thus merit detailed attention.

The analogy between zonal flow and Vlasov plasma 1s motivated by the
observation of the obvious similarities between the wave-kinetic equation for N (k, X, t)

_ ~ 12 )
in the presence of a zonal flow spectrum ] v, i and the Boltzmann equation for

. . a2 "
f (V, X, I) in the presence of a Langmuir wave spectrum iE L ‘”i . These equations are

N v N’ :
’aaTN”g"a?'a_x[ V) akx=C(N)=yd,i,-lN, | (3.4.482)
and
d o of
If+v- ‘aL 3%(}%43)"{7: (1), (3.4.48b)

where E.k. o ==0 /0x for Langmuir wave turbulence. (The suffix L stands for the

Langmuir waves.) The analogy is summarized in Table 3.4.1, which we now discuss.
Rather clearly, the analogue of the 'particle’ with velocity V' in the Vlasov case is the drift
wave packet with group velocity V (k] , which is sheared by the zonal ﬂow field V ,
itself the analogue of the Langmuir wave field. The analogue of the Boltzmann collision
integral C (f ) which maintains a near- Maxwelllan average distribution function is the _

wave kinetic collision integral C( ) , taken to have the form

N2
YarireV = ViV ~ A5
0

in some cases which require an equilibrium spectrum of turbulence in the absence of
zonal flows.
Aspects of the dynamics can be elucidated by consideration of resonances and

time scales. The analogue of the well known wave-particle resonance

wk=V
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is that for which the phase velocity of the shearing flows equals the wave packet group
velocity

v (k) =g, .

Just as in the particle case, chaos occurs when the zonal flow - wave group resonances
overlap, resulting in stochastic drift-wave-ray dynamics. Stochasticity of ray trajectories
provides the crucial element of irreversibility in the drift wave - zonal flow interactions.

Note that since zonal flow energy is concentrated at very low frequency, while the
dispersion in U g(k) is large, overlap of U g[k ) =LV/q, resonances occurs at quite modest

zonal flow amplitudes. Such a state of ray chaos naturally necessitates a stochastic
description. At least four time scales govern both the wave - particle and zonal shear -

wave group dynamics. These are:
i) The spectral autocorrelation times T, . In the case of the Vlasov plasma,

-1
Ty = MIN {(k A(mlk)) ) VAk} . These times correspond to the lifetimes of the

instantaneous electric field pattern 'seen’ or traversed by a particle. For the zonal shear,
) -1 - |
T, = Min (AQ) , (A(qxvg)) ) (3.4.49)

Here, (AQ]_ I gives the flow pattern lifetime, which is usually quite long, since £2~0 |

However, the dispersion in the Doppler frequency shift of the wave in a propagating
packet (i.e., A(q ng) ) 1s usually quite large, resulting in short auto-correlation time, and

suggests that a stochastic analysis is relevant. It is important to again stress the fact that
no a priori postulate of randomness or noise in the zonal flow spectrim is required.

ii) the nonlinear orbit times, which correspond to the vortex circulation times in phase or

« -1
eikonal space. These correspond to the particle bounce or trapping time (e¢1jm) in the

case of the Vlasov plasma, and the shearing rate of a fluid element in a zonal flow,
Loy
1, =(q.V2) (3.4.50a)

or the bounce time (®pohnce ) of 2 trapped wave packet, where

2p3k a7
Wpounce = \/ Tp;’"k% Wy VZF ) (3.4.50b)
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whichever shorter. In the event that resonances do not overlap, and that the nonlinear
orbit time is shorter than the autocorrelation time, a coherent interaction analysis of the
dynamics is required.

iii) the nonlinear decorrelation time, which quantifies the scattering time for an individual |
trajectory of coherence time for a resonant triad. For the Vlasov plasma,

-3 . , - R R
T, = (kzDv] , the well-known result first obtained by Dupree. .Here Dy is the quasi-

linear diffusivity in velocity space. For the zonal amplification problem,
2\~ 173
t.=min { yi |, k%D, (q}D_k(dugIdk) ) : (3.4.51)

Here ¥4 controls the triad coherence time. Note that ¥ appears in place of a nonlinear

self-decorrelation rate A, via the requirement that C(N ) =0, to determine N in'the

absence of zonal flow. Dk "2'is the rate of diffusive scattering (i.e., random refrﬁction)
' : 113 : A o
2 143
and (Q%Dk(dv g/dk) ) . is the analogue of the Dupree decorrelation rate. (k?DV) for

the eikonal problem . [Noté that D has the dimension of m~2s~! ] This arises as a
consequence of coupling between scattering in k x (due to Dy )and the propagatlon at the
wave group speed v (k] '

iv) the time scale for evolution of the average populanon dens:ty, i.e., the macroscopic
relaxation time. * For the Vlasov plasma, this is Trejax = AV D , Where Av s the extent

of phase velocities excited, and D, is the quasi-linear velocity space dlffl.lSlOl‘l coefﬁcnent.

Sum]arly, for the zonal ﬂow problem
_Trelax=Ak2/Dk- o ' o C - (‘-3.4.52)7
The p0551b]c dynamjcal states of the system are classified by the ordenng of the
various time scales, and by whether or not the trajectones are chaonc or not. The four
basic time scales can nearly always be ordered as.

min-(‘rac, ’CL) < max (rac, Tl')é To < Trelax - R (3.4353) |

Thus, the possiblc system states can be classified by:

i) the Chirikov overlap parameter
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Avg

Here, Av é is the width of the wave group - zonal shear resonance, and A(qu ,) is the

spacing between resonances.

ii) the eﬁéctive Kubo number
A=1,41,, (3.4.55)

the ratio of the autocorrelation time T,. to the zonal flow shearing time T .

These ratios immediately divide the system states into three categories, which are
analyzed in Table 3.4.2. For > 1 and A << 1, the dynamics are stochastic, with
stochastic rays, and random shearing and refraction of drift waves by zonal flows
constituting the principal effect of zonal flows on the turbulence. This regime may be
treated by using the method of quasi-linezir theory, yielding a picture of diffusive
refraction (Section 3.5.4). Extensions to higher order expansions in population density
perturbations N have been implemented, and are analogous to induced scattering (i.e.,
nonlinear Landau damping), familiar from weak turbulence theory for the Vlasov plasma.
(Section 3.5.7 discusses such an extension.) For S<<1 and A'>1 | the dynarmcs are

coherent, with strongly deflected rays tracing vorticities in the (x, k x) space. In this

regime, the wave population density evolution will exhibit oscillations due to the
'bouncing' of trapped rays, and will asymptote to the formation of wave packets
corresponding to BGK solutions of the wave kinetic equation. In this regirﬁe zonal flow
shear and wave packets adjust to form a self- trapping state. (Section 3.5.6. Some
extensions are discussed in Chapter 6.) A third regime is that with S>1 and A<
whlch corresponds to the regime of turbulent trapping. The dynamics here resembles
those of the stochastic regime, except that consistent with A'< 1, closely separated wave
packels remain correlated for trmes t>7T.. These eorrelated small-scale packets are
analogous to clumps in the 1D Viasov plasma, and resull in granulation of the wave
packet population density N . Such granulations necessitate the calculation of a Fokker-

Planck drag, as well as diffusion, for describing the evolution of (N > , i.e., the Jong time

averége. (This issue is discussed in Chapter 6.) Likewise, self-trapped wave packets
correspond to holes or cavitons in the Vlasov plasma. Figure 3.4.5 illustrates the
parameter domain and various theoretical approaches.

Having outlined the general structure of the dynamics of shearing in wave
kinetics, we now proceed to discuss the regime of stochastic ray dynamics in some detail.
Here, we are primarily concerned with the evolution of the mean drift wave population

<N (k, t)) in the presence of the zonal flow spectrum. The salient features of the



stochastic dynamics regime are given in Table 3.4.3, along with their analogies for the 1D

Viasov turbulence problem. Averaging the wave kinetic equation yields the mean field
equation for (N )

2M-5 % (ko?) N> = (c(v)) (3.4.562)

where the mean refraction-induced flux of (N ) ink, is given by
Fk,.=<—§; (ko) N>=—i; gko?_ N, . (3.4.56b)

Proceeding in the spirit of quasi-linear theory, the expression for

Iy = <aa; (k 9‘7) N> =— i; g,k vi qu may be calculated by iteratively substituting the

response of N to V., 8N/ v . Proceeding'as in Section 3.2,

'ﬁq e g:f:ri“(dﬁn aéﬁ) ’ (3.4.572)
so that the wave number space flux is
Ty =-Dy aa(;?O (3.4.57b)
x
with the & -space diffusion coefficient
Dkr=;q§k%| v,['R(k.q,) (34570
and resonance function
Rlk,q, )= — o (3.4.57d)

(Q’ - vag)z + Y(%rifl

As noted above, the resonance in question is that between the drift wave packet with,
group speed v g(k_) and the phase speed of the zonal shear Mg . It is interesting to

observe that this resonance appears as a limiting case of the well known 3-wave

resonance denominator
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i

Rigi+qg= (3.4.58)

mk+mq—wk+q+i(Amk+Amq—Awk+q

Expanding for Iq | < Ik I and replacing the broadenings by Yarin then yields

— i
ARk. g k+q™— mq -q- a(!.)k 7 ok + inrift . (3.4.59)

Finally, specializing to the case § = ¢,% and rewriting @, =€ then finally gives

R = L
k0 k+07Q g0, + Fnn

=R(k. q,) . l(3-4.60)

This is no surprise, since zonal flow generation is due to the Reynolds work on the flow
shear (i.e., <V_r\7y)d Vzp/dx ) which is intrinsically a three-wave process. The diffusion

equation for (N ) may also be straightforwardly derived by a Fokker-Planck calculation.

Here, one should recall that, in the absence of additional physics, the analogue of
Liouvilles theorem for a stochastic Hamiltonian system implies a partial cancellation
between diffusion and drag terms, leaving a result equivalent 1o the quasi-linear equation
derived above. ‘

In the stochastic regime, the evolution of the drift wave spectrum is simple. The
k, spectrum Spreads diffusively, with <5k E) =Dyt . The random walk to larger k, just

reflects the random shearing at work on waves. The self-consistent dynamics of the drift-

wave - zonal flow system are then described by the mean field equation for
(N) (rewriting Eq.(3.4.56))

% (N)- % D, égj(w) ={c(N)) (3:4.61)

with Eq.(3.4.57¢) and equations for the zonal flow intensity evolution.

3.5 The Drift Wave - Zonal Flow System: Self-Consistent State

In previous subsections, elementary processes for zonal flow dynamics were
explained. These included the linear damping process, the bi-linear growth process, the
back-reaction of zonal flows on drift waves, the nonlinear saturation mechanism and
-electromagnetic effects. Combining these elementary processes as buildihg blocks, self-
consistent states of the system are now discussed. As in the description in §3.4,

explanations here are given which note the differences in the number of degrees of
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freedom and in the correlation times of drift waves and zonal flows. Useful modelling of
self-consistent states depends on these key factors, and the correspondence is listed in
Table 3.5.1.

First, models with few degrees-of-freedom are explained by focusing on two
examples. One is the quite generic predator-prey model (§3.4.5), which is valid for the
case where many drift wave modes and zonal flow components are randomly excited, and
their correlation times are much shorter than the characteristic time of evolution of the
system. This basic model is explained in §3.5.1. The other is the opposite case where
only one drift wave is unstable (with side-band modes linearly stable). The coupled
modes are thus assumed to have long coherence times (§3.4.2), as in simple dynamical

| systems such as the Lorenz model. This case is explained in §3.5.2

Next, more detailed descriptions follow. The spectral shape is of considerable
importance (as discussed in §3.4.3 and §3.4.4), and is explained within the scope of the
induced diffusion model in §3.5.3. Coherent spatial structure is discussed in §3.5.4 and |
§3.5.5. These discussions correspond to the nonlinear mechanisms in §3.4.6 and

§3.4.7, respectively.

3.5.1 Predator-Prey model

Drift waves excite zonal flows, while zonal flows suppress drift waves. The
degree of excitation or suppression depends upon the amplitudes of the drift wave and
zonal flow. These interactions are modelled as a predator-prey dynamical system, for

zonal flow mean square shear (U 2) = 21 U, |2 and drift wave population density
9

(N) = ; Ni . (See Eq.(3.4.23) and (3.4.32).)

(i) Stationary states
This system of Egs.(3.4.32a) and (3.4.32b) has two types of steady-state

solution. One is the solution without zonal flow

(vy=1L ' (3.5.1a)
Y2 _
(u?)=0, . @35.1b)

which results in the case of strong damping of the zonal flow,

Cisz

X 3.5.2
v YL ( )

Ydamp >
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The other 1s the state with zonal flow,

Y

(Ny=—==E (3.5.3a)
Cianz

73 YN W PV T (3.5.3b)
( ) Cd—)Z ( ‘L Cd—)Z ame
which is relevant when the damping rate of the zonal flow is weak,
C, .
0<’Ydamp< C,IY;ZTL . (3.5.4)

(The case of Yaamp=0 needs special consideration, as is explained later.)

This system is controlled by two important parameters, i.e., the linear growth rate
of the drift wave Y. and the damping rate of the zonal flow Ygzmp . In the region of low
zonal flow damping rate (as for Eq.(3.5.4)), the zonal flow coexists with the drift wave.
The phase diagram is illustrated in Fig.3.5.1. The other important result is the role of
(YL » Ydamp ) in determining the partition of the energy. In the region of low

collisionality, where the zonal flow is excited, the drift wave amplitude is independent of
the linear growth rate Y , but is controlled by the zonal flow damping rate Ygamp - The

magnitude of the zonal flow increases if ¥y increases. The dependence on Y illustrates
the importance of the self-nonlinearity effect of the zonal flow, which is discussed in
Eq.(2.13). By use of a generic form YNL(U 2) ~a,U 2 , the partition between the waves
and zonal flows is explained in Eq.(2.14). The dependencies are shown, in Fig.3.5.2 for
the case of fixed Y, (Fig.3.5.2(a)) and the case of fixed Ydamp (Fig.3.5.2(b)), when the

self-nonlinearity effect is present. The prcdator—prcy model thus explains the most

prominent features of the role of zonal flows in determining system behaviour. The
possible shift of the boundary for the appearance of turbulence from Y, =0 to

Yi = Yexcite > O (so called Dimits shift for ITG turbulence) is discussed later.

(ii) Dynamical behaviour

Equation (3.4.32) also describes the characteristic dynamics of the system. The
fixed points Eqgs.(3.5.1) and (3.5.3) are stable for a wide range of parameters. In some
particular circumstances, different types of dynamics appear, as is categorized in [3.92].

Stable fixed point: At first, the stability of fixed points is explained. In cases
where all of the coefficients (i.e., YL » Ydamp » C4_57, Y2 ) are non-negative values,
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YL¢0sYdﬂmp¢0!Cd—)Z¢Oa’Y2¢0 (355)

the fixed points are stable. For instance, the perturbation near the stationary state of the

solution Eq.(3.5.3), {B(N), 5<U2>} o< exp (iu)r) , shows a damped oscillation with the

frequency

=V damp¥2 * f\/ Vaamp¥3 — 4YdampYL(C§ -2~ Ca- z)
©= 2045z

(3.5.6)

The imaginary part of ® is negative. Equation (3.5.3) predicts a stable fixed point.

Depending on the initial conditions, transient oscillations of drift wave and zonal flow can
occur. However, they decay in time and the system converges to a stationary solution.
Repetitive bursts: When the nonlinear self-stabilization effect of the drift

waves is absent, i.e.,

1=0, | B35

periodic bursts of the wave and f]qw occur. In this case, Eqs.(3.4.32) has an i.ntelgral of
the motion; namely '

(N) - Y‘?]inp ]n(N) + <U2> —In <U2> = const. (.3.5.8)

[3.93, 3.94]. A phase portrait for the system is given in Fig.3.5.3. Periodic bursts
appear. The burst of the drift wave spectrum is followed by one of the zonal flow shear.
However, this is unphysical for real drift wave turbulence, since the nonlinear self-

interaction effects are essential to the turbulence dynamics.

Single burst and quenching of waves: When collisional damping of the

zonal flow is absent, i.e.,
Ydamp=0 s . (359)

Eq.(3.5.1) requires particular care, because the relation (N)=0 satisfies the RHS of
Eq.(3.4.32). Asis pointed out in [3.92, 3.44], the problem is a transient one, and the
final, steady state depends on the initial condition. The trajectory ((N), (U 2}) satisfies
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dv) —Yz(N)“CHZ<U2>

d<U2> Cd_,Z<U2> , (3.5.10)
which is solved to yield
=T - 258 () a0 - asm

Here ¢ is a constant which is determined by the value of ((N ), (U 2)) at1=0. The

trajectory ((N), (U 2)) is shown in Fig.3.5.4 for various values of the initial condition. -

The drift wave amiplitude increases at first. Then energy is transferred to the mean square
flow shear, and the wave energy is finally quenched, at a constant value of the amplitude
of the flow. The state is related to the complete quench of wave energy near marginal
stability, i.e., the so-called Dimits shift [2.50]. It may be viewed as the continuation of
the trend Nl'(U 2) ~Ydamy/ YL to the limit where Ygamp =0 .

These features are also seen in the nonlinear coupling of different modes, being
studied in relati_on with the L-H transition problems (e.g., [2.44, 3.95-3.106]). The
phase portraits show differences in the underlying dyhamics.

3.5.2 Single instability model .

When only one drift wave is unstable, the primary drift wave and side-bands
maintain a long coherence time. This is the opposite limit from the case (i), for which a
reduced variable model applies. This case is explained in §3.4.2. A closed set of
equations is derived for the amplitude of only one unstable mode, £ , the amplitude of
zonal flow, Z | the relative amplitude of side-band drift wave 8 and the frequency
mismatch ¥ as Eqs.(3.4.8)-(3.4.11). This type of coherent interaction of model
amplitudes appears in the Lorenz model, and other dynamical systems.

'Equations (3.4.8)-(3.4.11) describe the parametric excitation for a fixed pump
amplitude P , and give the zonal flow growth rate Yzg . The coupling to the primary
wave, Eq.(3.4.8) accounts for the stabilizing effect of (nonlinearly driven) zonaj flow on
the primary drift wave. This system of equations has been analyzed for the problem of
three-wave coupling [3.107]). The fixed point is given [2.23] by

-/ Ydamp
P.=\/ T Zx (3.5.12a)
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2
7 _\/(030-9+) +Yide (3.5.12b)
) 2 YL Vside =

'Ydamp |
S:r = Z . D
\/ T Vae * (3.5.12¢)

(‘)O_.Q+
\/ ((‘)O - Q+)2 +Y4ige

sin s =

(3.5.12d)

For a fixed value of Y1 (Yp is used as a normalizing parameter for obtaining

Eqgs.(3.4.8)-(3.4.11)), the dependence of the saturation amplitude on the damping rate of

zonal flow is explained by Eq.(3.5.12). The amplitude of the primary unstable drift wave
increases as Ygamp according to:

P o< v/ Ydamp -

In the small Y4,mp limit, the zonal flow amplitude Z+ remains constant, but the
amplitudes of the primary wave and sidebands, P» and S« , vanish. These results are

qualitatively the same as those of the model in §3.5.1. In this model, a forward Hopf
bifurcation takes place, when Ygamp exceeds a threshold. Figure 3.5.5 illustrates the

numerical calculation of the lohg time behaviour of the solution of Eqs.(3.4.8)-(3.4.11).
In the case of small Ygamp » the solution converges to the fixed point in the phase space.
In a limit of large Ygamp , the system exhibits chaos.

3.5.3 Saturation: determining the Drift Wave Spectrum

The wave spectrum contains additional freedom, and can influence the self-
consistent state. Equations (3.4.20)-(3.4.22) form a set of nonlinear diffusion equations
that determine the spectra of zonal flow and drift wave. [3.44]

The stationary state of the zonal flow is realized, as is seen from Eq.(3.4.21), by
the balance between collisional damping and the bi-linear drive by the drift waves,

4% 2 Dq g5~ Nic =Yaump - | o 6s1y

On the other hand, the stationary state of the dnft waves arises, as seen from
Eq.(3.4.20), by the balance between linear drive and damping, nonlinear damping and & -

space diffusion by the random zonal flows. Linear instability sits in the region of small
|k ,,| . In the absence of diffusion, the local (in k-space) balance
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YL=YNL (3.5.14)

gives the saturated state of drift waves. For a simple case of YNL = Y2y, Eq.(3.5.14)

yields the saturation level

In the presence of random shearing by zonal flows, diffusion in the k-space occurs, and

- flucination energy is transferred to stable regions of k-space, as is illustrated in Fig.3.5.6.

(i) Constant diffusivity

The case of constant diffusivity illustrates the competmon between various
~effects. The simplest case of YN = Y2/Vy is chosen. The coefficients (Y3 , Dk ) are

independcnt of k, . The linear growth rate is also independent of k . , in both the stable
region (| k,l >k ¢ ) and unstable region (] kr| <k,.). (Such as the case of Fig.3.5.6.)

In this limit, Eq.(3.4.20) is modelled by a simple diffusion equation

~YLNg+72 NE - Dy reanl © (3.5.16)

This equation is solved by constructing a Sagdeev potential. Multiplying dN /dk ,A by
Eq.(3.5.16) and integrating over k., one has .

"l ) | [Nk
(—'YLNk-F'Ysz)de—EDL ak = const . (3.5.17)
’ ¥
The boundary conditions:
dN, , : ] .
" =0 at Ny,=0 (stable reglon,|k,|>km ) (3.5.18a)
r ' .
dN, :
% =0 at k,=0 (unstable region, |k,,|<k,,C ) (3.5.18b)

r

are natural choices. Equation.(3.5.17) ylelds integrals in two reglons namely
|k l>km , for which:
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dN, ] 2. 2Y2 33
= =i\/3k(‘YLNk+TN’< , (& ]>k), (3.5.19)

r

andlkrt<krC , for which

dN, 1 2y 2 2 3
dkkzi\/b*k(’YLN*%*TzNE”LN(O) -=EMO)7

r

(& |<k) (3.5.19)

respectively, where Ny = N(O) at k,=0 . The relation Eq.(3.5.21} is illustrated in
Fig.3.5.7.
Equations (3.5.19a) and (3.5.19b) are solved and reduced to quadrature as

=k, (k/|>kp ), (3.5.200)

dN, /Dy

2 2
YL NE + 2 N+ mN(0) - 2 (o)’

=k

r

o N

(k,|<kp). (3.5.20b)
Two solutions to Egs. (3.5.20a) and (3.5.20b) must be connected at
|k | =k : . (3.5.21)
This continuity condition determines N (0) as an eigenvalue. As an illustration, a case of
strong linear stability in the region | k Jr| >k is described here. In this case, the

connection at 'k ,| =k, requires

N(k,)=0. | (3.5.22)
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That is,
|

dn Dk

=k, " (3.5.23)
2 y,N(0) (n3-1)
3L

1-n?+

& fl

where n(k r) =N /IN (0) is a normalized function that describes the shape of the spectrum.
This relation (3.5.23) gives a relation between N (0) , YL and Dy (i.e., the zonal flow

amplitude), as

D, = %&L" (LHS of Eq.(3.5.18))2 . (3.5.24)
rc
Equation (3.5.8) requires
k2
g2 2Ly =8 R(g,. k) (k) | N{0) = Yaamp (3.5.25)

Equations (3.5.23) or (3.5.24) and (3.5.25) describes the self-consistent solution.
Equation (3.5.19) shows that Dy, (i.e., the mean square zonal flow amplitude) is an

increasing function of Yy but is a decreasing function of N (0) . Although the coefficient
in the square bracket in Eq.(3.5.25) depends on Yyamp through the spectral shape
function N(k ,) , Eq.(3.5.25) tells us that N (0) increases nearly linearly with respect to
Ydamp » in the limit of small Ygamp -

Figure 3.5.8 illustrates the solution of Eqs.(3.5.23) or (3.5.24) and (3.5.25).
The gradual change of the drift wave spectrum with the collisional damping is
demonstrated. The features in Eqs.(3.5.23) - (3.5.25) are the ones clarified by the low-
dimensional model in §3.5.1. Direct calculation of diffusion equation gives a smooth

continuation from the collisionless regime to the regime of strong collisionality.

(ii) Numerical solution
In more realistic examples, for which ¥,_ and D; depend upon the wave-number

k, ,a numerical solution of Eq.(3.5.20) is required. Examples of such a numerical
solution of Eqgs.(3.5.23)-(3.5.25) are quoted in Fig.3.5.9. The linear growth rate ¥

(right vertical axis) is assumed to be a smoothly decreasing function of k, . The drift
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wave spectrum N(k,) is also shown for two time slices. One is in the early phase of the

(temporal) growth of the wave energy. The other is at the time where the zonal flow
reaches its peak and the waves are already subject to back reaction. In the early phase,
the spectrum is concentrated in the region &, ~ 0 | where the mode has the largest growth
rate. After being sheared by the driven zonal flow, the width of the spectrum increases.
(i.e., about 1.5 times, measured by the half width at half maximum.)

The solution of the full diffusion equation recovers the basic trends of the low-
degrees-of-freedom model. The drift wave amplitude goes to zero if Yyamp approaches to
zero. However, there is a quantitative difference between the two models. The result of

solution for the spectrum gives an empinical fit as [3.92]

(N) > Yaamp" " . (3.5.26)

This dependence is slightly weaker than that predicted by the predator-prey model, and

than the analytical result in (i). This may be due to the fact that the change in spectrum
shape due to finite Yy,mp leads to the modification of the effective coupling coefficient

C4 -5z which is averaged over the drift wave spectrum.

Temporal evolution is also investigated by the numerical solution for (N)
distribution function. In this case, the coupling coefficient Cy _, 7 is not constant in time,
on account of the change of the spectral shape, and the result in §3.5.1 must be re-
examined. By solution of the diffusion equation, the qualitative conclusion of the low-

dimensional model is confirmed. Specifically:

(a) the steady state is a stable fixed point, and the temporal solution converges .
after transient oscillations [YL # 0, Ygamp# 0, Y2 #0 as is in Eq.(3.5.5));

(b) periodic bursts appear forYy #0, Yaamp#0, Y2=0 as is in Eq.(3.5.7),
corresponding to a limit cycle attractor;

(¢) asingle transient burst of drift waves is quenched by zonal flow for v, # 0,
Ydamp =0, Y2 # 0 asis in Eq.(3.5.9), corresponding to the Dimits shift regime.

The results are demonstrated in Fig.3.5.10. Figures.3.5.10(b) and (c) correspond to the
trajectories in Figs. 3.5.3 and 3.5.4, respectively. They confirm the understanding
which is obtained by use of a simple model in §3.5.1. Study of the transient phenomena
by simulation {3.108,.3.109] is explained in Chapter 4.
3.5.4 Wave trapping and BGK solution i

When the coherence time of the zonal flow and drift waves is much longer than

the time scale of drift wave spectral evolution, trapping of drift waves by the zonal flow
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may occur [2.36, 3.110-3.112]. For this, the relations Y. << Whoupce and
Tac. ZF V<< Wpgynce apply. In this case, the drift wave-packets have constants of the

motions (k 300 (l)k{]) as is shown in Appendix A. Note that in this regime, the dnft wave

ray dynamics resemble those of a particle trapped in a single, large-amplitude plasma
wave. Time asymptotically, then, the solution for N corresponds to a BGK solution,
i.e., a time-independent solution parameterized by a finite set of constants of (in this case)
the motion of the ray trajectory. As with all BGK solutions, there is no guarantee a
particular solution is stable or is physically accessible. Additional physical considerations
must be introduced or addressed to determine stability.

In this system, there are infinite number of constants of motion, because the wave
kinetic equation (for RHS =0}, like the Vlasov equation, is time reversible. Just as
irreversibility enters the collisionless Vlasov problem when phase mixing of undamped
~ Case-Van Kampen modes leads to Landau damping of (macroscopic - i.e., velocity
integrated) Langmuir wave perturbations, irreversibility enters here when spectral
integrals of N are computed. The BGK solution corresponds, in principle, to the finite
amplitude, time-asymptotic state of such solutions. The distribution function can thus be
written in terms of the constants of motion as Eq.(3.4.38). Noting that the trajectories are
classified into untrapped and trapped orbits, Eq.(3.4.38) can be rewritten as

N{x ko k)= NL/(ka(x, k). k}o) + N,-((oko(x, k) k_‘(,) (3.5.27)

where the suffixes U and T denote the untrapped and trapped wave-packets.
The self-consistent solution is given by Eqs.(3.4.37) and (3.5.27). Rewriting the
integration variable in the RHS of Eq.(3.4.37) from (k ok y) to (G)ko, k_\,o) , one has

"min

(u%_ydamp)VZF=_%[wdkyk)‘ '[rmdwmw.[ "dwJ Ny} (3.528)

where w =~ W /k g, J is the Jacobian of the transformation of variables, wy, is the
value of w at the separatrix, and w;, isw atk,=0 [2.36].

The distribution functions Ny and Nt have infinite degrees of freedom, and
flattening (i.e., plateau formation) might take place (and likely does} in
N y(mko(x, kx), k_‘,g) . Schematic distribution may be the one in Fig.3.5.11. Choosing a

particular class of the functions N U{mko(x, kx), k )0) and N ,{mm(x, k x)’ k yg) , a self-

consistent solution Vzr has been obtained from Eq.(3.5.28). For instance,

106



N U(U)ko(X, k _r), k _,0) is chosen to have a Lorentzian shape with respect to the constant of
motion w = - o /k . In Fig.3.5.11, the distribution function in the trough (solid line)
and that at the peak (dashed line) are shown, when the zonal flow is given as in
Fig.3.4.2. Trapping of wave-packets in the well of Vzr means that the wave density is
high at the trough.

The accessibility and stability of a particular distribution function require future

research.

3.5.5 Zonal flow quenching and coherent structure

If wave trapping is not complete, a coherent structure of the zonal flow is formed
by drift wave turbulence. This is the case for Yarift > Yzr ®bounce »-and Ty, zF~ le<yzg .

The case where the turbulent drift wave spectrum forms such a spatially coherent zonal
flow structure is discussed in this section. '
If the asymmetric deformation of the distribution function N (k x) is calculated to

higher order in the zonal flow vorticity U , the correction of order U 3 tends to reduce

asymmetry. This is reasonable, since the third order contribution is stabilizing. This
situation is illustrated in Fig.3.5.12. For the case of U >0 , modification of ON is

positive for k, >0 | so as to increase U . The third order term has the opposite sign, so

as to suppress the growth of the zonal flow. [3.90, 3.113]

Taking into account the modification of the growth rate of the zonal flow, the
dynamical equation for the zonal flow is written in an explicit form as Eq.(3.4.47). By
use of normalized variables x= r/L | T=1/t; and U=UIU, , where L™ 2= g% (,l - p) ,

- -2 - . . .
t7= D,,,1 g7 (l —u) and US =D, Dj ! (1 —|.1) , Eq. (3.4.47) is rewritten in the

collisionless limit as
2 2 4
%m%m%&%%%o. (3.5.29)

The short wavelength components with g2 L?> 1 are stabilized by the higher-order
derivative term. The flow is generated at the large scale q? L?<1 , and the zonal flow
energy is saturated by nonlinear coupling to higher-order dissipation, via 0 steepening
Note that Eq.(3.5.29) is a 1D nonlinear wave equation for U , which states that U grows
and nonlinearly couples to small scale dissipation via 'wave function' steepening (ie.,
nonlinear flow shear amplifications.).

The case that the flow is generated from a state with low noise level, where no net

flow momentum exists, ( f dx 0 =0), is studied. Here the flow evolves satisfying the
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condition f dx U=0. A stationary solution of Eq.(3.5.29) in the domain 0 < x <d | for

the periodic boundary condition, is given by an elliptic integral as

F(l~2u2+u4—x2)_mdu=+i (3.5.30)
"—\/7’ .

where X is an integral constant (0 £ ¥ < 1) given by the periodicity constraint

-2
J (1 —2u? +ut - Kz) du=di2V2n (n=1,2,3,- - Theinteger n is the one

which is closest to d/n = 4¥21 ) Numerical solution of Eq.(3.5.29) has shown that the
solution (3.5.30) is stable and is an attractor. Figure 3.5.13 illustrates the stable
stationary state. Compared to a simple sinusoidal function (eigenfunction of the linear
operator), the result in Fig.3.5.13 has much weaker curvature at the peak, and is closer to

a piecewise constant function.
The normalized function u(x) 1s of the order of unity, so that the characteristic

values of vorticity and scale length [ are given as

1”2 ‘
Up=DP D7 (1 )" - (3.5.31)

- 1/2
I=qp! (1-n)" 7. (3.5.32)
The amplitude of zonal flow is given as Vo ={U, . From Eqs.(3.2.51) and (3.4.46),
one can obtain an order of magnitude estimate of D3/D,, . The ratio Dy/D,, is
- 1/2
characterized by D3 ~ k%[zAmgz D, . One has an estimate Uy = v 1 I(l - !-l)

L

where U, =A@k’ . The flow velocity Vo =Ug ! is given as

Vo=v, (1-1)". (3.5.33)

This result gives an expression for the zonal flow in terms of the decorrelation rates of
drift waves. Combining this with the dynamical equation which dictates the drift wave
fluctuations, e.g., Eq.(3.5.16), the amplitude of the self-consistent state may be derived.

Further research is necessary to understand the significance of these results..

3.5.6 Shift of the boundary for drift wave excitation
When coupling with zonal flow is taken into account, the boundary in the
parameter space for the excitation of turbulent transport 1s modified. The shift of the

excitation boundary 1s one aspect of characteristic nonlinear interactions. The shift is
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noticed in the context of subcritical excitation of turbulence (see, e.g., [3.114-3.116] and
areview [3.117]). The shift also appears for supercritical excitation [3.118-3.123]. The
case of ITG coupled with zonal flow also belongs to this class of stability boundary
shifts.

The mutual interaction of fluctuations with different scale lengths has been studied
[3.118]. The component with longer wave length is called 'intermediate scale’ and that
with shorter wave length is called 'micro’. In the presence of mutual interaction, the
phase diagram is illustrated in Fig.3.5.14. The boundary for the excitation of the micro
mode is no longer Y[ =0 but shifted to a positive value of Y[icr0 | In the absence of
the intermediate scale mode, the micro mode is excited for Y™ >0 . However, when
the intermediate scale mode is excited DM™eH€ 5 0 the micro mode is quenched in
the vicinity of the stability boundary Y["'™ ~ 0 , and is excited at finite level only if the
growth rate exceeds a substantially larger value, YTIET  This constitutes an-upshift of
the boundary for excitation of the turbulence. An analysis of the coupling between ITG
and current diffusive ballooning mode is reported in {3.121] and the case of the ITG and
ETG is given in [3.123]. These examples also exhibit stability boundary upshifts. (See
also the simulation study [3.124, 3.125].) |

In the case of drift waves coupled to zonal flow, the 'micro’ fluctuation is the drift
wave, and the zonal flow plays the role of the 'intermediate scale' fluctuation. For
transparency of argument, we take here the limit of vanishing collisional damping of

zonal flow, 1.e.,

Ydamp = 0.

The shift of the boundary for the excitation of the drift waves from YLDW] =0 occurs if

the zonal flow has finite amplitude for very small amplitude of the drift wave [3. 126].,
ie., (U 2) #0 at <N ) =0 . In the other limit of large growth rate, the increase of the

drift wave amplitude (N ) by the increase of YLDW) requires self-stabilization of the zonal
flow. Examples of such self-nonlinear effects are the YNL(VZ_) term in Eq.(2.10b) or the
U? termin Eq.(3.5.29). Summarizing these, the stability boundary for the zonal flow in
the (UZ, <N>) plane should have the form as is illustrated in Fig.3.5.15(a). That is, the
boundary for the marginal stability condition dUzg/dt =0 (solid line in Fig.3.5.15(a))

intersects the boundary (N ) =0 at a finite value of the zonal flow amplitude (denoted by

Uit )- This allows a finite amplitude of zonal flow at a very low level of drift wave

fluctuation. In this circumstance, the boundary for the drift wave excitation shifts from
¥[P") =0 0 y[P¥) =y, >0 . The dotted line in Fig.3.5.15(a) illustrates the boundary

of the marginality condition for the growth of drift waves from the case of 'YLDW) =Yerit -
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Below the critical value of the growth rate, a steady-state solution is allowed for <N ) =0.

Figure 3.5.15(b) illustrates the partition of the energy between drift waves and zonal flow
as a function of the growth rate of the drift waves. The waves are not sustained in
steady-state below the critical value ’YLDW) <Ycrit - After the transient growth of waves,
the zonal flow can be sustained at a finite value, and this level is dependent on the initial
condition. If the critical growth rate is exceeded, i.e., YLDW] > Yerit » both waves and
flows are excited. The estimate of the drift wave amplitude for the case when the

excitation of zonal flow is ignored, is denoted by a thin dotted line.
Noting the presence of critical value of zonal flow vorticity Uy, , a phase

diagram in the (YL, Ydamp) plane is shown schematically in Fig.3.5.16 [3.126].

The mechanism that gives the finite values of the critical vorticity of the zonal flow
has been discussed in [3.126]. The key 1s the determination of the self-nonlinear

damping term for the zonal flow growth, e.g., YNL(U %F’ <N>) , as in Eq.(2.10b). The

marginal condition for the zonal flow growth is thus expressed as

YQL(U%F, (N)) = a(N) . 3.534)

3.6 Suppression of turbulent transport’

Mean shear flow and zonal flow can reduce or quench transport by altering either
the turbulent fluctuations amplitude or the wave-particle correlation time, which
determines the 'cross-phase’ between, say ¥, and 71 , in the particle flux I', = (fi Vr> .

Up till now, we have been pfimarily concerned with effects on the fluctuation intensity.
However, both zonal and mean shears can alter the correlation times and thus fluxes,
even at fixed fluctuation amplitude. In this section 3.6, we examine shear flow effects on
transport. We begin by considering the effect of sheared mean and zonal flows on

transport of a passive scalar by an otherwise fixed or prescribed ensemble of turbulence.
3.6.1 Passive scalar transport: sheared mean flow

The average cross field flux is given in terms of cross correlations between

various fluctuation fields. For instance, the radial particle flux is given by:

(1 Eqg) ' B
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This flux, an averaged quantity, is determined by the amplitudes of density and electric
field, and by the phase between them. In the case of electrostatic fluctuations, I', can be

written as:
r,=|7||Ee|sin o " (36.2)

where O is the phase difference between the density and potential fluctuations. o is

determined by the wave-particle correlation time and by the response function.
Obviously, shifting alpha can reduce (or increase) the flux.

Here, we investigate the effect of mean shear on transport by analyzing the
response of a passive, phase-space field f (i.e., a distribution function) to a given

ensemble of turbulence. A model equation for the passive advection of f in the presence

of prescribed fluctuating v is:
af » \v} V) 2
SrrUbVIH(V)Vf+v YV f-DVf=0. | (3.6.3)

Here (V) =V},(x) ¥ is the mean sheared E X B flow, v} is the parallel phase-space

_velocity and D, is the collisional diffusion coefficient. We focus on strong turbulence,
and consider the asymptotic limit where D, — 0. [3.127, 3.128}

Following'the standard methodology of renormalized turbulence theory, the
equation for the response of F tov can be written as:

- i(m— Koy - xS, + i/rck)f;,m: Tered s, (3.6.4)

(Here: $, =dV g, pfdx and fy is the average part of f .} Note that Eq.(3.6.4) contains

many time scales for irreversible dynamics, which must be considered. These are:

a) A®,; - the mode self-correlation decay rate , or inverse life time, due to nonlinear

scrambling;

b) Doppler spread (autocorrelation) rates:

d(’)f? Akz

e - the spectral self-spreading (autocorrelation) rate, 1.e., the inverse

lifetime of the spectral pattern (reflects the effect of dispersion - linear process);
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|k"vHAx’ - the parallel Doppler spread (autocorrelation) rate, i.e., the rate at which

parallel Doppler shift vy changes with radius;

|k vy AXI - the shearing Doppler spread (autocorrelation) rate, i.e., the rate at
which the sheared £ X B flow- induced Doppler shift k Vg p changes with

radius;

¢) Decorrelation rates
kiD_, - particle decorrelation rate for radial scattering;

113
(ka}S 3) - particle decorrelation rate for hybrid of radial scattering in sheared

flow, i.e., due to random walk in shearing coordinates,

13
*2 . . . _
(k" viD X) - particle decorrelation rate for radial scattering in a sheared

magnetic field.

Here Ax is the radial spectral width, D, is the radial test diftusion coefficient, ki| =ky/L

and L is the shear length. Hereafter, parallel dynamics are ignored. Shearing becomes

of importance when

lk_‘,SUAx|2kli~%, |kySvAx|2A(nk (3.6.5).

In this case, the relevant decorrelation rate is set by
2. oo\l
/g =(k2D,52) " (3.6.6)
A formal solution for ﬂ « <an be written as

—1 ﬂx‘ ]
w- kHUH —k“,xSU +i

kow=

..
r;k'dxfo' 66

The cross field flux of f , I'y= (f * f)’,) , is then given by

2
iUrka

r =Rez -
f k.o O— k”U” - k_‘ISU +1T,

L (3.6.8)
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For k ,S,Ax>> k), but

k\S,ax or | Ak day/dk | greater than Aw, and T;! , T'; can

be simplified to
Y
]"fe—rtszvx,d S(mk— k_\SUx)%fo (3.6.9)
.0 _
-1 _
(An analytic expression Im ((D —k xSy +i kf, D).) - nﬁ(m —k xS v) is used.) Note

that here k = (m, n) and x is measured relative to the rational surface r,, , where
k-B=0,sothatx=r—r, ,. Ofcourse, Uy o= Ui u.(r_ rm,n) =04, m(x) . Using

the familiar change of integration variables:

: k
J- dmdn=RJJ’dmclx

By
L

5

the cross-field flux then reduces to:

U .
— a_ﬁ) . | (3.6.10)

Note that the flux depends on the spectral intensity at the resonance point x, =Wk S, .
The assumption that this point falls within the spectral envelope is valid if x, <Ax or
equivalently, w < | k_‘SUAx’ . Since we are concemned with the regimes of strong shear,
this is almost always the case. In such strong shear regimes, then, I’ 7~ scales inversely

with S, , ie.,
[recS,™, - | (3.6.11)

A detailed analysis in [3.128] established that the passive scalar amplitude perturbation

scales as

V ((f’f)2> o< 5,7 (3.6.12) .

50 that

/6

sin ot 5,71 (3.6.13)
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Note that the effect of even strong shear on the flux is modest (~ §,~ "'yandits impact on’

- /6

the cross-phase is quite weak (~ S, ). Thus, the theory predicts that suppression of

the cross phase is weaker than reduction in turbulence intensity.
It is interesting to examine the scaling of D, in the strong turbulence regime, for

weak and strong shear. Noting that I'yj=-D, % fo , we have already established that

D,~S,” ! for strong shear and weak turbulence. In the case of strong shear and strong
turbulence, Tz >|k_‘SUAX| , s0 T’y is given by (from Eq.(3.6.8)):

’ 2
Tf=—Rethck 0 kw| = ho (3.6.14)
,

ie., Do=14{0?) . Taking Eq.(3.6.6) with D= D, then gives

D ——(U2>3M (3.6.15)
x” 172 9.
(k,S)
which is consistent with the expected scaling D, ~ u)b(AxT)z where ®,, is the particle

bounce time in a poloidal wavelength, and Axy is the resonance width in radii.

Next, for the strong turbulence, weak shear case 1/7,, = kli , SO

)ulz ' . | (3.6.16)

which is the familiar scaling for transport in strong 2D turbulence, first derived by Taylor
and McNamara. Finally, we also note that the regime of strong shear (i.e.,
lk Pulx | > 17}, Ay, @ ) but with non-resonant response has also been investigated

[3.127]. The predictions are

rp~8,7* (3.6.17a)
and

sinote ;72 (3.6.17b)
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The importance of this regime is quite unclear, though, since strong shear naturally
favours a large shearing Doppler spread which, in turn, suggests the applicability of

standard quasilinear theory, and the occurrence of a resonant intcraction.

3.6.2 Passive scalar transport: zonal flows

In the previous subsection, we considered the effect of a mean shear flow on
passive scalar flux and cross phase. While understanding the case of a mean shear is
necessary, it is certainly nof sufficient for an understanding of the effects of a spectrum of
zonal flows upon transport. Two additional features must be considered in the case of
zonal flows. These are: _

(a) the flow pattern has a finite lifetime or self-correlation time, T zF ;

(b) shearing occurs as a spectrum of scales, each corresponding to a radial zonal
flow wavenumber ¢, . The shearing pattern may be spatially complex.

The implication of differences (a) and (b) are that the effectiveness of shearing will be
reduced (relative to that for equal strength mean flow) for short T, zr, and that one

should expect to find S v, rms (the root mean square value) replacing S, in the quasilinear

predictions given above, when T, zr—°° . The details of these calculations are presented

in the literature. [129]

3.6.3 Reduction of turbulent transport
The results in § 3.6.1 and 3.6.2 imply that the scaling of transport in a shear flow
is not universal, and turbulent transport must be computed by specifying a relaxation

mechanism. In addition, the amplitude of the fluctuating velocity field and characteristic
correlation length must be determined simultaneously by considering the effects of £,

and dE,/dr | and their spectra. Some representative analyses of the calculation of
turbulent transport are reported here. ,

Several analyses have been performed for ITG modes, e.g., [3.130-3.132]. An
expression for the turbulent transport coefficient has been proposed [3.132]:

(YL‘ W) "Y*I)IQY"':/Z
K

Kb = (3.6.18)

where ¥, is the linear growth rate in the absence of flow shear, 0z, isthe £Xx B flow

shear frequency

E,
g = %(?,B), (3.6.19)

[~
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Y+, 1s the shear of the dlamdgnctw flow, Y, is the damping rate of a representatlve zonal

flow mode. The latter is approximated in [3.132] as
Yo = 0.3(T/T, Jo, (3.6.20)

(@ is the toroidal magnetic drift frequency), and &, is the poloidal wavenumber of the
~most unstable mode. The dependence of X, On @, is adjusted to the results of
nonlinear simulation, i.e., the expression represents a fit to data,
In the case of self-sustaining CDIM turbulence, the thermal diffusivity has been
predicted to be [3.82, 3.133]

I G3” [ ¢ \2Pap
Xturb ~ (q)_) a

2 (3.6.21)
(140565 03} ¢ a

where Wg =k gT 40E ;jB , Gy 1s normalized pressure gradient and ‘
<k _ZL) oc (1 +0.5G, 'm%l) Gy ', Asthe gradient of radial electric field becomes larger,

the correlation length becomes shorter. 1n toroidal geometry (i.e., CDBM turbulence),
the normalized parameter Wg) =T Ae(dE ,/dr]/SrB controls the turbulence level and.

turbulent transport [3.74). The effects of £ X B flow shear and magnetic shear
complement each other. This shear dependence is also found for the case of the ITG
mode. ' '

The electron temperature gradient (ETG) mode has a shorter characteristic wave
length. This fact suggests that the £ X B flow shear has a weaker effect. However,

extended streamers could be affected by £ X B shear, and the transport by ETG modes
could then also be affected. Current research indicates that some transfer mechanism of

ETG energy to longer scale (either, say, by streamer formation or by inverse cascade to
c/w,, ) is necessary for ETG turbulence to be of practical interest to tokamak

confinement. The electron gyro-Bohm thermal diffusivity, i.e., X, B = ngTh,e/LTe
=ym,/m; %; gB, is 100 small to be relevant. Further study is required to understand
the relation of transport by shorter wavelength turbulence to electric field shear [3.118,
3.123, 3.134, 3.135].

In addition to the inhomogeneity of flow across the magnetic surfaces, the
inhomogeneity on the magnelic surface is also effective in suppression of turbulence.
The toroidal flow in tokamaks varies in the poloidal direction if a hot ion component

exists. This poloidal dependence suppresses turbulence [3.82].
The dependence of X, On Wg has also been explained experimentally. The

expression
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1
I + (mE,ly)h

Xiurb & (3.6.22)

has been derived analytically with an index /2 (Y is the decorrelation rate or instability
growth rate in the absence of £ x B shear). The index is given as =2 in the models
[3.73-3.75] and as 1 =2/3 in the strong shear limit in [2.7]. A nonlinear simulation has
suggested a dependence as that in equation (3.6.13) for the case of ITG mode turbulence.
Further elaboration of theory is required in order to derive a formula which is relevant in a

wide parameter region. A comparison of the index 2 with experimental observations has

been reported [3.136] for when the electric field bifurcation is controlled by an external
bias current. The result is in the range of 2 =2 [3.136], but the comparison is not yet

conclusive [3.137-3.139].

3.6.4 Self-regulated state A
The final solution of the turbulent transport problem requires a self-consistent

solution for the turbulent heat flux and the zonal flow. The level of the turbulence-
generated E X B shearing rate in formula in §3.6.3, e.g., Eq. (3.6.22), must be

determined self-consistently from the dynamics of the drift wave - zonal flow. Here
research in this direction is discussed.
Let us illustrate the problem by a mode] of two scalar variables from the

discussion of §3.4, as

% Epw =Y1.Epw — 0EzeEpw - 0:EDw , (3.6.23a)

% Ezp=~ Yaamp Ezr + 0 EnwEzr —Yzr, N2 E2F, (3.6.23b)

where Epw and Ezg are the quadratic amplitudes (i.e., the fluctuation energy density) of

the turbulence and the vorticity of zonal flow. This set of model equations includes
processes like the suppression of turbulence by zonal flow (0Ezp ), the excitation of
zonal flow by turbulence (& Epw ), the collisional damping of the zonal flow (Y gamp )

nonlinear damping via self-interaction of drift waves and nonlinear saturation mechanism

of the zonal flow. (The nonlinear saturation mechanism is symbolically expressed as
YNL = Yzr. N2 Ezp for zonal flow, and Aw, = 0,Epy for drift waves. Both represent

nonlinear transfer to dissipation,) The resuiting formula of transport coefficient depends

on the competition between the terms Y gamp EzF , & EpwEzr , 0:F 12)w and YzF, N2 E%F .

(i) Collisional damping limit
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The simplest case is that for which the quasilinear drive of zonal flow by
turbulence is balanced by collisional damping. In this case, Eq.(3.6.23b) gives
Epw= Ydamp/a . The physics of this result is simple - the fluctuation level adjusts so that
the zonal flow is marginally stable. That is, the saturated level of turbulence is
independent of the magnitude of the drive of linear instabilities, but is controlled by the
damping rate of the zonal flow. Alternatively put, the zonal flow regulates the fluctuation
level and the flow damping regulates the flow, so the flow damping thus regulates
fluctuations and transport. ‘In this case, an analytic result is easily derived, and one

obtains a stationary state in a dimensional form

]
=

e&') ;Ydamp P ) | )
T:‘/ — L—S ‘(3.6.24)

where & is the amplitude of fluctuations in the range of drift wave frequency and Yaamp

is the damping rate of the zonal flow. The right hand side is_reducéd by a factor
v/ Ydamp /®+ , as compared to the mixing length levels, due to zonal flow effects.

Numerical simulations have confirmed the essential weak turbulence limit, i.e.,

~ 2 ‘ -
((eq)/Te] > o< Y gamp/ @ , not | e¢/Te‘m °< Ydamp/®+ . The damping rate of the zonal flow
(Ydamp ) 18 proportional to the ion-ion collision frcquency in the high temperature limit

(see -§3.1 .3). As aresult, the level of fluctuations that induces transport is controlled by
ion collisions, although the fluctuation spectrum itself is composed of ‘collisionless'
waves. The transport coefficient follows as

Xi==®, L eB O« L _eB" (3.6.25)

This scales as a gyro-reduced Bohm thermal diffusivity, 'screened’ by the factor of
Ydamp /o« . Of course, retaining non-adiabatic electron effects complicates the questions

of collisionality scaling.

(ii) Nonlinear saturation mechanism
In high temperature plasmas, where v /@: — 0 holds, the saturation of the zonal

flow is influenced by nonlinear processes. These processes are discussed in §3.4.
Possible nonlinear saturation processes include the trapping of drift waves in zonal flows,
excitation of fertiary instabilities, quenching of zonal flow drive by drift wave spectrum

modification, and others. The formal solution of Eq.(3.6.23) can be rewritten

Ezr=0Y7¢ n2 Epw (3.6.26a)
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1 TL

‘ . ' (3.6.26b)
I +a?m7 'vzd Ng 02

Epw=

Because of the production of zonal flow, the usual fluctuation saturation level is

-1 S
'screened' by the factor of (l + (12(05 'Yzﬂ, Nz) as compared to the level Y /®; .
Thus, the nonlinear stabilization of turbuleace may be dominated by the zonal flows
shearing channel, instead of the usual mixing process, , i.e., o203 ]"/214, N2> 1. (This

is the case that is often observed in nonlinear simulations. It is important, however, to

keep in mind that most nonlinear simulations address the regime near marginal stability.)
In this case, the turbulent transport coefficient is reduced by the factor of 0.~ 2w,y ZF, N2 -

WY 7F, N2
iTT g2 Xi,0- (3.6.27)

where X ; o is the predicted thermal conductivity in the absence of the zonal flow.

Obtaining an explicit formula for the nonlinear suppression mechanism (the term
YzE, N2 ) is a topic of current research, and a final answer has not yet been determined.

However, if one employs one example from the mode] of nonlinear reduction of zonal

flow drive, one has

1

573 Xi,0 (3.6.28)

M Ty

where U, = V is the saturation velocity of the zonal flow, ¢, is the wave number of

zonal flow, and T, is the correlation time of turbulence. In the vicinity of the stability

boundary, where the correlation time of turbulence is expected to be very long, the

reduction of turbulent transport is quite strong. 1f the drive of turbulent transport
becomes stronger (i.e., going further from marginality) and T v,4,= 1 holds, then the
parameter dependence of X; becomes similar to that of X; o .

(iii) Role of GAM
When the damping of zonal flow is strong, ¥ damp > Y 0/®; , the zonal flow may

not be excited, but the GAM is still driven. As is discussed in §3.3.2, the fluctuation

-1
levels are suppressed by a factor of (1 + T T, GAM(k%VGAM2>) , where Vgam is

the E X B velocity associated with the GAM, and T¢ gam is the autocorrelation time of

the GAM. In the large-amplitu.de limit, the suppression factor is given by Eq.(3.3.35).

119



This suppression factor is derived for the condition that the source of turbulence is
unchanged. As discussed in §3.1.3, the GAM is subject to collisional damping. The
saturation mechanism and saturation level of the GAM have not yet been determined.
Links between the driven GAM and poloidally-asymmetric cross-field transport have
been suggested [3.140]. The accumulation of fluctuation energy in a finite poloidal
region, which is coupled to zonal flow dynamics, has also been discussed [3.141].
Calculation of turbulent transport, which is regulated by GAM, is left for future research.
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Chapter 4. Numerical Simulations of Zonal Flow Dynamics

4.1. Introduction

Direct nonlinear simulation (DNS) studies have played a crucial role in the
development of research on zonal flows. The synergy between the theory and DNS has
been a key promoter-of-interest in the physics of the zonal flows. Although the technical
details of direct numerical simulation techniques are beyond the scope of this review, the
physical results of nonlinear simulations are reviewed here, in order to illustrate
elememafy dynamics and processes of the drift wave -zonal flow system.

There are several steps in reviewing the understanding which has been facilitated
by DNS. These should be addressed in sequence. The first is modeling, i.e., reduction
to basic equations appropriate for plasma geometry. Although the rate of developement
of computational power has been tremendous, the direct computational solution of the
primitive nonlinear plasma equations (such as the Klimontovich or Vlasov equations in
real geometry and for an actual size} is still far beyond the computational capability of
even the foreseeable future. Thus, reduced modelling has been employed to simplify the
basic dynamical equations. The main representative models and hierarchical relations
among them are explained in Appendix B. (Keywords for various reduced equations are
explained in this appendix.) The second is the selection of important elementary
processes in zonal flow and drift wave systems. We here focus on following issues:

i) Generation of zonal flow by turbulence,

i) Shéaring of turbulence by zonal flow,

ii1) Co-existence of zonal flow and drift waves,

iv) Nonlinear states,

+ v) Collisional damping,

vi) Dependence on global plasma parameters,

vii) Nonlinear phenomena.

For these elementary processes, the results of DNS are explained in the following.
Third, several important features of zonal flows have been discovered by DNS studies.
Therefore, the historical development is also described, though bounded by
considerations of brevity.

The observation of zonal flow by DNS has been reported in the last two decades
for various types of plasma turbulence. Figure 4.1 is one early example {2.6], in which
the formation of a quasi-symmetric isopotential contour, loosely resembling that of the
magnetic surface, is demonstrated. These contour structures indicate the presence of a
banded poloidal E X B flow, called a zonal flow.

It should be stressed again that the objective of the explanation here 1s an
illustration of elementary physical processes of zonal flows. The examples are chosen
primarily from the DNS of core turbulence, i.e., ‘Gyro-Bohm’ drift-ITG turbulence. It is

121



well known that the progress in the DNS studies for plasma turbulence and zonal flows is
not limited to this class of examples. Readers are suggested to refer to related reviews on
DNS of the subject (for instance, see [4.1]). In the following subsections, the progress
in DNS of drift-ITG turbulence with zonal flow is reviewed together with the

specification of simulation methods.
4.2. Ton Temperature Gradient Driven Turbulence

4.2.1 Models and geometry

| Research on zonal flows in plasma physics simulation community has exploded in
the 90's and still continues so, to date. This happened as it becomes more obvious that,
independent of simulation method, simulation domain, and boundary conditions, zonal
flows play a dominant role in regulating ion temperature gradient (ITG) driven
turbulence, which is a prime candidate for the anomalous ion heat transport ubiquitously
observed in most plasmas in tokamaks[2.16]. This progress also paralleied the advances
in both gyrokinetic and gyrofluid simulation methods for various geometries. We
summarize the highlights of this story in a roughly chronological order.

Exploiting the governing equations of plasma microturbulence, gyrokinetic
simulations are based on the nonlinear gyrokinetic description of plasmas, in which the
full charged particle kinetic dynamics in a strong magnetic field is simplified, using the
disparity between the spatio-temporal scales of the phenomena of interest, and the scale of
the magnetic field inhomogeneity and the gyroperiod as leverage. As a consequence, the
gyro-center distribution function is defined in a five-dimensional phase space, after
decoupling and elimination of the gyromotion. The perpendicular velocity enters
parametrically. The wavelengths of instabilities can be comparable to the size of an ton
gyroradius. Some DNS approaches use the particle-in-cell simulation method, which is
Lagrangian in character (i.e., particles are pushed) while others use the continuum Vlasov
approach which is Eulerian in character (i;‘e., the gyrokinetic equation is solved as a
partial differential equation). While, to date, most simulations in toroidal geometry have
used the conventional nonlinear gyrokinetic equation[4.2], which ignores the parallel
acceleration nonlinearity which is formally weaker, some simulations[4.3] have used a
fully nonlinear energy-conserving form of the nonlinear gyrokinetic equation[4.4].
Gyrofluid models are then derived from the gyrokinetic equations by taking
morhents[4.5]. Some kinetic effects, such as linear Landau damping and a limited form of
nonlinear Landau damping, have been included in gyrofluid models while others have
not. Most notably, gyrofluid models do not accurately treat nonlinear wave-particle
- interaction. (See Fig.4.2.)

Regarding simulation geometry, global simulations typically use a domain which -

spans a macroscopic fraction of the tokamak volume. Annular domains are sometimes
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used as an option. Radial variation of gradient quantities, such as temperature gradient
and magnetic shear, is allowed in global simulations. Of course, questions concerning
mean profile evolution persist. Flux-tube simulations are restricted to a local domain of a
few turbulence correlation lengths and assume the existence of a scale separation between
the turbulence and equilibrium profiles, and so do not accurately represent mesoscale
dynamics. Typically, radially periodic boundary conditions are used and the gradient

guantities are treated as constant within a simulation domain.

4.2.2. Adiabatic electrons and conventional collisionless gyrokinetic ions

We start from the simplest case of the collisionless limit in order to explain some
of key elements of zonal flow DNS. In this subsection, illustrations are given on the
issues of 1) generation of zonal flow by turbulence, ii) shearing of turbulence by zonal
flows, ii1) coexistence of zonal flow and drift waves , and some aspects of 1v)
dependence of dynamics on global parameters,.

Historical overview : While zonal flows with large radial scales (the system size -
so as to render them indistinguishable from mean flows) were observed in ITG
simulations in a simple geometry in early 80's[4.8], it was in early gyrofluid[4.9] and
gyrokinetic[4.10] simulations of toroidal ITG turbulence, where fluctuating sheared
E X B flows driven by turbulence with a radial characteristic length comparable to that of
ambient turbulence (several ion gyro-radii), began to appear and attract attention. These
simulations were either quasi-local in the flux-tube domain [2.15,2.17, 3.36, 4.7], or in
a sheared slab geometry[3.88). On the other hand, early global gyrokinetic simulations
of ITG turbulence either did not address[4.8, 4.9] nor find the effects of fluctuating
Ex B flows[4.10] on turbulence to be significant. The reason for this is as follows.
Early global gyrokinetic simulations [4.9, 4.10] had relatively small system size (in ion
gyro-radius units), and consequently had rather sharp radial variations of pressure
gradient. Zonal flows with scale lengths of the system size have been the dorminant
feature in these simulations [4.10]. In other words, the simulation domain was so small
_ that it was effectively impossible to distinguish between zonal and mean flows. Even as -
more codes were independently developed, this qualitative difference between global
simulations [4.3, 4.11] and flux-tube simulations [3.36, 4.7] continued, and fomentgd
lingering doubts as to the proper treatment and possible existence of such fluctuating
flows. However, as computing power became sufficient to handle larger system size, the
finer scale flows began to appear in global gyrokinetic simulations [4.3], although its
effect on steady state transport was not observed to be as significant as that seen in the
flux tube simulations. , '

The importance of these small scale zonal flows in regulating turbulence in the
tokamak has begun to be widely appreciated, as gyrokinetic simulations{2.16] in both full

torus and annulus geometry (with various boundary conditions), for which radial
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variations of the pressure gradient are mild, have produced results which exhibit the
importance of the fluctuating flows with qualitatively similar characteristics as those in
flux-tube simulations[2.17, 2.50, 3.36]. Inclusion of zonal flows in gyrokinetic
simulations[2.16] significantly reduces the steady state ion thermal transport, as reported
earlier[3.36, 2.50]. Figure 4.3 illustrates some of characteristic results for the effects of
zonal flows on ITG turbulence. Isodensity contours are shown. Fluctuations in the
presence of zonal flow, Fig.4.3(a), have shorter correlation length and lower saturation
level, in comparison to the case where zonal flows are suppressed, Fig. 4.3(b). A similar
illustration for noncircular plasma is reproduced as Fig.4.3(c). |

The dynamics of coupling between drift waves and zonal flow has been explicitly
analyzed by DNS. This simulation has directly tested the physics of modulational '
instability process, as well. Figure 4.4 illustrates the generation of zonal flow by
turbulence and the back reaction of zonal flow shear onto that turbulence. In this study,

‘the ITG turbulence freely grows to a saturation, with zonal flows suppressed. This
generates a stationary spectrum or ‘gas’ of ITG modes. (Thick solid line, being followed
by thin solid line (c)). In the second run, the turbulence first develops to saturation
without zonal flow, but then flow evolution is restored to the system (after 7 =40 L /e,
in this simulation). The zonal flow then starts to grow exponentially (thin solid line (a)
plotted on a logarithmic scale), and reaches a new stationary state. As the amplitude of
the zonal flow increases, the turbulence level decreases. (Thick solid line (b).) Note that
the new stationary level is much smaller than the reference case. The modulational
instability of a zonal flow spectrum to a test shear is thus established by the observed
exponential growth. The reduction in turbulence level confirms the expectation that the
zonal flow shearing will reduce turbulence levels.

The shearing of turbulence by zonal flow is also clear. The key mechanism of the
turbulence suppression is as explained in §3. One new significant finding from this
simulation is a broadening of the ¥, spectrum of turbulence due to self-consistently
generated zonal flows, as shown in Fig. 4.5. It is in agreement with the expectation that
an eddy's radial size will be reduced as shown by the contours of density fluctuations in
Fig. 4.3. These also agree (qualitatively) with theoretical expectations of the reduction of
radial correlation length due to the shearing by £ X B flow [2.7, 2.8]. The quantitative
analysis of the turbulence shearing rate is explained below.

The zonal flows observed in simulations[2.16, 3.36, 4.12]contained significant
energy in K — ® bands, with radial scales and frequencies comparable to those of the
turbulence. It was therefore of vital importance to extend the nonlinear theory of
turbulence decorrelation by the mean £ X B flow shear[2.7, 2.8] to address the effect of
rapid-time-varying E X B flow shear in regulating turbulence. This was needed for a
better quantitative understanding of the nonlinear simulation results. An analysis of the
nonlinear gyrofluid simulation results indicated that the instantaneous E X B shearing
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rate associated with self-generated zonal flows exceeds the maximum linear growth rate
by an order of magnitude, while the turbulence fluctuation amplitude definitely remained
above the thermal noise level, and the ion thermal transport remained significantly
anomalous[4.12]. This was somewhat puzzling since in the cases with mean £ X B
shear flows, which are now either measured or calculated from data in existing loroidal
devices, many leading experimental teams observed that their plasmas made transitions to
enhanced confinement regimes[3.137, 4.13] when the £ X B shearing rate in general
toroidal geometry[4.14] exceeded the linear growth rate of microinstabilities in the
absence of the £ X B shear. This puzzie can be resolved by considering the following
points.

One thread of thought is to look at fine space—timé scales of zonal flow shearing
rate. Fluctuating sheared E X B flows play an important role in saturating the
turbulence[2.15,2.17, 3.36, 3.88, 4.7]. These flows are typically of radial size
k,p;~0.1 but contain of a broad & » spectrum of shears. Since the E X B shearing rate
is proportional to k%d) , the high k. component of ¢ , although small in magnitude, can

contribute significantly to the £ X B shearing rate. Indeed, for l oy |2 ~k~% | the shear

spectrum actually increases with & (until FLR effects, etc., kick in), i.e., l vy |2~ k4o

unless ® >4 | which is unlikely. The instantaneous E X B shearing rate, which varies
in radius and time, can be much higher than the maximum linear growth rate for a
significant portion of the simulation domain. An example is shown in Ref.[3.77}. of
course, shearing depends on the lifetime of the shearing pattern, as well as on the shear
strength, as discussed in section 3.6.

Specifically, using gyrofluid-simulation zonal flow spectra and time-history data
to calculate the correlation time of zonal flows, the effective shearing rate in Ref.[4.12],
which reflects the fact that fast-varying components of the zonal flow shear are relatively
ineffective in shearing turbulence eddies, has been evaluated for each k, . It has a broad
 peak at low to intermediate K, , and becomes smaller at high &, , as shown in Fig. 3 of
Ref[4.12]. Higher kK components of the shear flows, while strong, have short correlation
time. Overall, this rate is comparable to the linear growth rate. This seems qualitatively
consistent with considerable reduction, but not the complete suppression, of turbulence
(as observed in simulations). The expression for the effective shearing rate is presented in
Sec.4.5. where we discuss the role of Geodesic Acoustic Modes (GAM) [3.5]. The
instantaneous £ X B shearing rate from global gyrokinetic particle simulations is also
dominated by high kK, components, and varies roughly on the turbulence time scales as
reported in Ref.[4.12). It is much larger than the maximum linear growth rate for a-
significant portion of the simulation domain.

The other thread of thought is to reconsider the heuristic rule-of-thumb estimate
for turbulence quenching, Yex g = Y [2.17]). Though bandy and dandy, this formula
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has several hmitations. First, the nonlinear theory [2.7, 2.8, 2.9] tells that Ygx g should
be compared to the turbulent decorrelation rate, Y , not to Yy . It should be noted that
it is much easier to calculate ¥ than Yy , so that this is one reason why many
experimental results were ‘analyzed’ in this simplified context. While ¥) can be used as

a rough measure of strength of ambient turbulence when an estimation of ¥ i, s not

available, the limitation of this approximation is obvious.

The dependence on global parameters in the collisionless limit is discussed here.
One finding of DNS is the complete suppression of the ITG mode near the linear stability
boundary. In the regime of a weak linear growth rate, the initial value problem of DNS
showed that the ITG turbulence can first grow but is then quenched by the induced zonal
flow. This zonal flow can be strong enough to reduce the ion thermal transport to a value
which is nearly zero, within the resolution[2.50] of the simulation. Such transient
evolution, and later quench of turbulence have been confirmed by DNS. This is the so-
called "Dimits shift", indicating a nonlinear upshift of the threshold for an ITG-driven
thermal fluxes. In essence, the Dimits shift regime is one where expansion free energy is
transferred to the zonal flows, with relatively little remaining in the drift waves. Asa
result, the heat flux vs. gradient curve is ‘upshifted’ — hence the name. The Dimits shift
regime is, to a large extent, a consequence of the approximation of zero or very low
collisionality. A well known example is from a simplified set of equilibrium parameters
from the case of DIII-D H-mode plasma [4.15]. For this particular set of parameters, the

critical value of the ion temperature gradient has been effectively increased from
RILt;=4 to R/L1;=6 due to the undamped component of zonal flows. Note that both

linear and the up-shifted thresholds are, in general, functions of slg, TJT; ,and R/IL, .
Figure 4.6 illustrates the turbulent transport coefficient in a stationary state as a function
of the ion temperature gradient ratio. In collisionless simulations, turbulence is
completely quenched slightly above the linear stability threshold. The up-shift of the
threshold for the onset of turbulence is observed. When the driving source of turbulence
(temperature gradient in this case) becomes larger, the turbulence level starts to increase,
as summarized in Fig.4.6

It has been emphasized that low frequency turbulence in confined plasmas should
be considered as a self-regulating, two-component system consisting of the usual drift
wave spectrum and the zonal flows [2.13]. One of the early indications for the
coexistence of the zonal flow and turbulence is shown in Fig.4.7. In this simulation, the
co-existence of drift waves (with finite kg, and frequencies comparable to the
diamagnetic frequency) with the poloidally-symmetric (k , = 0 ) short-scale-length zonal
flow perturbations (called radial modes, here) 1s clearly demonstrated.

The partition of the excited energy between the turbulence and flows is explained
in §3. The partition has also been examined in the DNS. While the gyrokinetic approach

is desirable for quantitative studies of this issue, as demonstrated in Ref. [4.15], a
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simpler model can illustrate the main trend. One of the examples from a fluid simulation
of toroidal ITG turbulence is presented in Fig.4.8 [4.16]. Near the linear stability
boundary, nearly ail of the energy is carried by the flow. When the temperature gradient
(and consequently the linear growth rate Y[ ) increases, both the turbulence energy and
flow energy increase. As is explained in §3.5, the rate of increment of the turbulence
energy and that of flow energy are dependent on the nonlinear saturation mechanism for
the zonat flow. Theoretical analysis is in qualitative agreement in this 1ssue of energy
partition, but has yet to provide a satisfactory quantitative answer. In particular, the
branching ratio between zonal flow and drift wave turbulence is set by the ratio of wave
growth to flow damping (collisional and otherwise). For modest collisionality, near
threshold, £ pow/E wave = YL"Ydamp -

An approach to the total quench of turbulence in the Dimits shift regime has also
been studied in DNS. Transient bursts of turbulence energy have been observed in direct
simulations with various level of modelling. The evolution was studied in the context of
various models, e.g., in the convection problem [3.108] and a detailed Vlasov model of
1D ITG turbulence (near the stability boundary) [3.109]. Figure 4.9 illustrates an
example of the resuits of the Vlasov model study.

Before closing this subsection, a distinction caused by models is noted. Global
gyrokinetic particle simulations and flux tube gyrofluid simulations display many
common features of the physics of zonal flows, despite differences in simulation
methods, simulation domains, and boundary conditions. However, the following
quantitative difference between them exists. Short wavelength components of zonal flows
are more prominent in flux-tube gyrofluid simulations, as compared to gyrokinetic
simulations. However, according to estimation from nonlinear gyrofluid simulation,
most of the shearing is done by the low to intermediate & , part of the zonal flow
spectrum. Since the long wavelength components of zonal flows are more prominent in
global gyrokinetic simulations, as compared to the flux-tube gyrofluid simulations, one
can speculate that the higher value of steady state ion thermal diffusivity typically
observed in gyrofluid simulation (in comparison to that seen in gyrokinetic simulation) 1s
partially due to an underestimation of the low k, component of the zonal flows. These
components of zonal flows which are undamped by collisionless neoclassical process
[2.40] were inaccurately treated as completely damped in the original gyrofluid
closure[3.36]. This undamped component of the zonal flows (hereafter, we will call it the
Rosenbluth-Hinton zonal flow) is of practical importance because it can upshift the

threshold value of the ion temperature gradient for ITG instability.

4.2.3. Simulations with additional effects: neoclassical damping of zonal

flows, nonadiabatic electrons, and velocity space nonlinearity
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Other fundamental issues of the zonal flow are its neoclassical (both collisional
and collisionless) damping, nonadiabatic electron effects, and phase space dynamics. We
now discuss these effects.

The aforementioned example of the Rosenbluth-Hinton (RH) zonal flow [2.40]
illustrates the importance of a correct treatment of zonal flow damping in predicting the
levels of turbulence and transport. This motivated further research on the neoclassical
damping of zonal flows and its effect on turbulence. When EXB flow is initialized in a
toroidal plasma and allowed to relax in the absence of turbulence and collisions, its
poloidal component is damped due to the variation of B in the poloidal direction. The
damping occurs due to the “transit-time magnetic pumping” [3.9], and in the long term it
evolves to a finite RH residual flow level.

The collisionless neoclassical process (transit-time magnetic pumping) induces
decay of the flow. The evolution of the flow could be viewed as a superposition of the
RH zonal flow of zero frequency and the GAM oscillation, which decays via transit-time
magnetic pumping. In Fig.4.10, the evolution of the electrostatic potential (averaged over
the magnetic surface) is illustrated, where the initial condition is chosen as a high
amplitude zonal flow. A simple adiabatic electron model and the one which includes
electron effects and electromagnetic effects are compared in DNS [3.34]. The simple
model of adiabatic electrons captures an essential part of the physics, as zonal flows in
this system are mostly governed by ion dynamics, more specifically the neoclassical
polarization shielding [2.40] and geodesic curvature coupling. In the long term, the flow
converges to a level predicted by neoclassical theory [2.40].

In the banana collisionality regime, this short (transit) timescale, collisionless
damping accompanied by GAM oscillation is followed by a slower collisional damping.
A decay of zonal flows due to ion-ion collisions occurs via a number of different
asymptotic phases [2.41], but most of the damping occurs on a time scale T;; = €/v;; ., as
summarized in Sec. 3.1.5.

The important role of collisional damping of zonal flows in regulating transport
has been nicely demonstrated by gyrokinetic particle simulations[2.49]. Even a very low
ion-ion collisionality, which is typical of core plasmas in present day tokamaks, was
enough to enhance turbulence level by the reducing the amplitude of zonal flows. The
changes in the linear growth rates of ITG modes were negligible. Near and beyond the
ITG linear threshold, collisional damping of zonal flows was responsible for a non-zero
level of ion thermal transport, and thereby effectively softened the nonlinear upshift of the
ITG threshold. Equivalently stated, the presence of collisional damping eliminated the
Dimits shift regime. Figure 4.11 shows the turbulent transport coefficient as a function
of the ion collisionality for the parameters of R/Lp=15.3 . This parameter is in the
"Dimits shift” regime (i.¢., practically no turbulent transport, although the ITG is linearly
unstable) for V; =0 . As the ion collision frequency increases, the level of zonal flow is
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reduced, and the turbulent transport increases concomitantly, as predicted by theoretical
models. The theory of collisional damping of the zonal flow explains this parameter
dependence well. Note again that the linear growth rate Y. is essentially not influenced

by the ion collision frequency, for this set of parameters.” The change of the turbulence
transport is not caused by a change in Y , but by the damping rate of the zonal flow. Ttis

worth emphasizing here that the turbulent transport coefficient often has very different
dependence on global parameters, in comparison to those of ¥y, . This is a simple
consequence of self-regulation — flows damp the drift waves and collisions damp the
flows, so collisions (more generally, zonal flow damping) ultimately regulate the
turbulence. A schematic drawing of the self-regulation is illustrated in Fig.4.12.

It should be noted that system states are not always fixed points. Near the
threshold, the two component system consisting of zonal flows and ambient turbulence
has exhibited a bursty cyclic behavior, with a period proportional to the zonal flow decay
time ~ T; = &/V;; . It is interesting to note that this is a well-known feature of a predator-
prey type dynamical system which has been widely used in transport barrier formation
models[4.17, 4.18]. More details on the effect of collisional zonal flow damping on ITG
turbulence and transport from gyrofluid simulation with flux boundary conditions were
recently reported [4.19]. In this study, the authors reported that the increase in the zonal
flow E X B gshearing rate is responsible for the increase in the energy confinement as one
decreases the collisionality. It is worthwhile to note that this simulation confirms that the
transport reduction occurred via the reduction in fluctuation amplitude, via the shearing
mechanism we discussed in detail in Sec 3.6. ‘

We note that a theory [3.127] suggesting that most transport reduction due to
E x B shear flow comes from the change in phase relation between the fluctuating radial
velocity (transporter) and the quantity which is transported (transportee) has been
proposed. Significant theoretical disagreements have emerged concerning this claim
[3.128, 4.20]. Indeed, simulations in Ref. [4.19] show that the change in the cross-phase
was negligible while transport varied significantly. An example is quoted in Fig.4.13.
The same conclusion can also be drawn [4.21] from the proportionality between transport
and fluctuation intensity during the bursting phase observed in Ref. [2.49]. Thus,
indications at present favour amplitude reduction as the primary mechanism for transport
quenching.

Nonadiabatic electron response (which depends on collisionality) can also change
the linear drive of ITG instability. Thus, it is of practical interest to address how the
electron-ion collisions can modify transport near marginality i.e., in the Dimits-shift
regime via their effect on electrons. For high density core plasmas in tokamaks, such as
the one encountered in Alcator C-Mod, the trapped electron response is dissipative (i.e.,

Vo€~ 172> ws, ). Thus the additional linear drive of ITG instability, due to trapped

electrons, scales roughly with (D*LJ(V eia-”?) , modifying the predictions based on a
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purely electron adiabatic response. From continuum gyrokinetic simulations in flux-tube
geometry [4.22], results indicated that the nonlinear upshift of the ITG threshold
decreases as the electron-ion collsionality decreases, and the nonadiabatic electron
contribution to the linear drive increases. At higher collsionality, nonadiabatic electron
effects get weaker, and a significant nonlinear up-shift occurs, as predicted by ITG
simulation with adiabatic electron response. In the collisionless or low collisionality
regime, nonadiabatic trapped electron response can significantly enhance drift-ITG
instability drive, even near the ITG marginal point. The concomitant increase in
turbulence and zonal flow amplitudes can be sufficient to drive the zonal flows into a
strongly nonlinear regime, where collisionless (nonlinear) flow damping significantly
exceeds the now familiar collisional damping, thus breaking the scaling of fluctuation
intensity with collisionality. Indeed, some hints of a robust nonlinear saturation process
for zonal flow were observed in a recent global PIC simulation of collisionless trapped
electron mode (CTEM) turbulence [4.23]. In that study, the spectrum of zonal flow was
significantly broader in frequency and shorter in radial wavelength than for comparable
cases of pure ITG turbulence with adiabatic electrons. The influence of non-adiabatic
response of electrons is also illustrated in Fig.4.14. Two cases, without and with, are.
compared. The two-dimensional power spectrum of the flux-surface-averaged
electrostatic potential for electrostatic adiabatic electron turbulence is shown. The zonal
flow spectrum is narrowly peaked about @ = 0 , together with the peak at the GAM
frequency. The spectrum for electromagnetic kinetic electron turbulence shows a more
turbulent zonal flow spectrum. In the presence of nonadiabatic response of electrons, the
power spectrum of the zonal flow component becomes wider. [4.23] Thus, seemingly
paradoxically, collisionless electron effects can alter the collisionality scaling of drift wave
turbulence. Of course, for larger V.. , the nonadiabatic electron response decreases, thus
restoring collisionality dependence via the zonal flow damping. |
Some global simulations have suggested there is an interesting link between zonal
flows and ‘non-locality’ phenomena in drift or ITG turbulence. ‘Non-local phenomena’
1s a catch-all which generically includes mesoscale dynamics associated with avalanches,
turbutence spreading, etc. Of particular note here 1s turbulence spreading {4.24, 4.25],
and the mesoscale patterns which form in drift-zonal flow systems. Figure 4.15 shows a
spatially inhomogeneous, and in fact highly corrugated and structured, pattern of
turbulence level intensity and zonal flow radial electric field. Simply put, the turbulence
level is large in the £, trough and relatively small in regions of strong £, shear. Such a
pattern quite likely was formed by a process where by:
i) a finite region of instability produced growing fluctuations
ii) these fluctuations naturally drove zonal flow (with preferred radial wave length)
growth, implying a concomitant decrease in their intensity levels, and the formation

of fluctuation intensity gradients,
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iii) the steepened intensity gradient in turn stimulated turbulence spreading via

the spatial scattering associated with nonlinear mode coupling,

iv) the subsequent growth of the zonal flows, following the spreading turbulence.
Such a mechanism could create the corrugated profiles observed in the simulation.
Indeed, the corrugated fluctuation intensity profile may be thought of as a “turbulence
suppression wave”, which is at first propagating, and later standing. Of course, some
additional physics is necessary to explain the apparent quenching of turbulence at £,
maxima. For this, zonal flow curvature effects on turbulence (which is explained in
§3.4.6) are likely candidates . Flow curvature can squeeze or dilate fluctuation wave
structures, and thus has an effect which is sign-dependent.

Tertiary instabilities have been discussed in DNS results by a number of authors.
For instance, the growth rate of the tertiary instability for an observed zonal flow
structure has been reported in [2.51] and is reproduced in Fig.16. The simulation has
suggested the possibility that the growth of the zonal flow is quenched by the onset of the
tertiary instability. (A similar argument was advanced by [4.27] in the case of ETG.)

Most simulations mentioned above have used the conventional nonlinear
gyrokinetic equation [4.2], which ignores the velocity space nonlinearity. The latter is
formally smaller than the £ x B nonlinearity. It is commonly believed that this omission
of velocity space nonlinearity does not cause a serious problem, if one focuses on
practically oriented issues, such as the comparisons of the linear growth rates, turbulence
and transport levels tn the post nonlinear saturation phase, etc. However, the
conventional nonlinear gyrokinetic equation fails to obey the fundamental conservation
laws, such as energy (of particles and fluctuation fields), and phase space volume, at a
non-trivial order. For longer times, well after the initial nonlinear saturation of
turbulence, even very small errors in the governing equation can accumulate in time,
regardless of computational methed, and muddy the physics predictions. A recent
_simulation [4.26] in cylindrical geometry used a fully nonlinear energy conserving and
phase space conserving form of the nonlinear gyrokinetic equation [4.4]. The importance
of using governing equations with proper conservation laws is demonstrated in this series
of simulations, with and without velocity space nonlinearity. The authors reported that
neglecting velocity space nonlinearity in an ITG simulation resulted in undesirable
consequences. The energy was no longer conserved between particles and fluctuating
fields, and a precious indicator of the quality of numerical integration was lost. The zonal
flow pattern and the radial heat transport pattern were affected as well. The results are
presented in Fig. B1, since it highlights an issue related to reduction of equations
discussed in Appendix B.

It is worthwhile to note that velocity space nonlinearity of electrons has been
considered in the context of the electron drift kinetic equation for the drift wave problem

in a sheared slab geometry [4.28]. In this continuum Vlasov simulation, the parallel
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trapping of electrons due to velocity space nonlinearity has been resolved by using a
sufficient number of grid points (~ 100) in 1-D velocity space. It was found that this
velocity space nonlinearity significantly affects the spectral transfer in k|| , especially
between convective cells (including zonal flows) and the ambient turbulence. The
resulting turbulence and transport levels are also significantly affected. This effect is most
pronounced at zero magnetic shear, but gradually gets weaker as magnetic shear
increases. Obviously more simulations with sufficient resolution are required to
understand the role of velocity space nonlinearity, nonlinear Landau damping [2.18,
4.29] in the presence of zonal flows[4.30, 4.31] and dynamic coupling between zonal
flows and phase space granularities (i.e., clumps and holes)[4.32] due to (phase space)
trapping. ' ‘

In this regard, it should be appreciated that, it is not computationally
straightforward to reproduce the collisionless limit by the present simulation schemes. In
the case of large ion temperature gradient, strong turbulent transport is predicted even in
the collisionless limit, as is illustrated in Fig.4.6. Under this condition, Vlasov plasma
simulation is performed with a sufficient resolution with the number of grid points in
velocity space up to 8000, and an asymptotic limit is shown to reproduce the collisionless
limit, as is demonstrated in Fig.4.17.

4.3. Electron Temperature Gradient Driven Turbulence

Electron temperature gradient driven (ETG) turbulence is considered to be one the
candidates for causing anomalous electron thermal transport. Since it produces little ion
thermal transport and particle transport, its possible existence cannot be easily ruled out
by a variety of experimental observations on different transport channels. Fluctuations
with wavelengths and frequencies as predicted by ETG theory have not been fully
observed to date (except that the observed short-wave length fluctuations on TFTR by
Wong et al.[4.34, 4.35] has a possibility of being the ETG or current-diffusive
ballooning mode [3.74]). There are plans to measure such short-wave-length fluctuations
in NSTX [4.36], DIII-D [4.37], and C-Mod [4.38]. ETG is almost isomorphic to ITG in

the electrostatic limit, with the role of electrons and ions reversed. If this isomorphism
were perfect, ETG turbulence at electron gyroradius (~ p, } scale would produce electron
thermal transport XETG ~ymjm; x?TG which is too small to be relevant to tokamak

plasma experiment. Here, x}TG 1s 1on thermal transport expected from the electrostatic

ITG at the ion gyroradius scale. A more detailed explanation for the isomorphism
between ITG and ETG is given in the Appendix C. This isomorphism is broken if one
considers zonal flows in the nonlinear regime or Debye shielding effects [2.52]. As stated
in the preceding section, for ITG turbulence, a proper electron response with

&n ing = e(cl) - (¢>)/Te , was essential to obtaining an enhanced zonal flow
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amplitude[4.13]. On the other hand, for ETG turbulence, the 1on dynamics asymptotes to
a pure adiabatic response On/ng= —e®/T; , as it is unmagnetized for k ;p; >> 1.
Equivalently, both ETG mode and ETG-driven zonal flows have adiabatic ions. For this
pure adiabatic ion response, the role of the zonal flow in regulating turbulence was
expected to be weaker than that for ITG turbulence. This is a consequence of the fact that
the adiabatic ion response effectively increases the zonal flow inertia. For this case, flux-
tube gyrokinetic continuum simulations suggest that radially elongated streamers can be
generated and might enhance electron thermal -transport significantly [4.39]. At present,
there exists significant qualitative differences in ETG simulation results regarding the
level of transport produced by ETG turbulence (4.40-4.42], and it is premature to
conclude whether the ETG streamers could enhance electron thermal transport up to the
level of experimental relevance. |

It has been reported [4.39] that transport is reduced significantly for negative or
small magnetic shear and large Shafranov shift. A follow-up study on this issue [4.43]
attributes the main variations in electron thermal flux (due to ETG turbulence}) to the
degree to which the relatively long wavelength ETG instabilities contain significant
parallel velocity fluctuation (which can be Kelvin Helmholtz (KH) unstable), and to the
proximity of the electron temperature gradient to its linear threshold (which depends on
the magnetic shear) [4.44, 4.45]. Global gyrokinetic particle [2.52] and global gyrofluid
[4.41] simulations in a sheared slab geometry near ¢y, , found that transport is

substantially reduced in finite magnetic shear regions regardless of its sign, as compared
to the region near the §;;, surface. This result is in semi-quantitative agreement with the
fact that a state with zonal flows can become unstable to KH instability, but only in the
absence of the strong stabilizing influence of magnetic shear [2.7].

An illustration of the zonal flow is reproduced here in Fig.4.18. This case treats
- the ETG turbulence in the vicinity of the radius where the magnetic shear vanishes (i.e.,
the 'g-minimum’ surface). The horizontal axis indicates the radial direction, and the
vertical axis corresponds to the poloidal direction. The center of the horizontal axis of the
figure corresponds to the surface of zero magnetic shear. It is noticeable that the zonal
flows are reduced in the vicinity of the minimum-q surface. Away from the minimum-q

surface, the zonal flow is strongly excited. It has also been noted {2.52] that for some
tokamak plasma parameters, the electron Debye length Ap, can be larger than the

electron gyroradius P, , and thus can make a quantitative difference in ETG turbulence
driven zonal flows.

- It is noteworthy that a gyrofluid simulation of ETG turbulence, which completely
neglecting ETG zonal flows [4.40], obtained a transport level only a factor of 2 or 3
higher than the insignificant value expected from naive mixing-length estimation based on

ETG turbulence at the electron gyroradius scale XE";&L (i.e., 'electron gyro-Bohm

scaling’). This level of transport from gyrofluid simulation without zonal flows is much
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lower than that obtained from the aforementioned gyrokinetic simulation with zonal flows
[4.39]. This current state of discourse is disturbing, because in the ITG case, the higher
level of transport from gyrofluid simulations compared to that obtained from gyrokinetic
simulation is believed to be due to the incorrect damping of zonal flows in a gyrofluid
model. There are undamped Rosenbluth-Hinton zonal flow components in the
gyrokinetic simulation. We note that in Ref. [4.39], the radial size of streamers is
comparable to the size of simulation domain, invalidating the assumptions of spatial scale
separation for flux-tube sirnulations, and that in Ref. [4.40], unrealistically small system
size was assumed. More recent global gyrokinetic particle simulations, with system size
comparable to an actual experiment, show that the transport level is quite modest (similar
to the result of Ref. [4.40]) even in the presence of radially elongated streamers [4.41].
We note that non-adiabatic ion response due to residual ion magnetization (finite 17k 1 p;
correction), which is typically ignored in simulations, could enhance the level of zonal
flows by reducing the effective ion inertia.

Despite recent theoretical progress on electron zonal flow damping [3.39], which
is the electron counter-part of the ion zonal flow damping [2.40, 2.41], it appears that
understanding of zonal flow physics in ETG turbulence has not matured to the level of
understanding of that for zonal flows in ITG turbulence.

4.4. Fluid Simulations with Zonal Flows

Zonal flows have been widely studied in the geophysical and planetary fluid
mechanics community, as recently summarized in [4.46]. Zonal flow generation due to
inverse cascade has been theoretically predicted [2.2] for the Hasegawa-Mima (HM)
system {4.47] which is isomorphic to the quasi-geostrophic or Rossby wave equation
first derived by Charney [4.48, 4.49]. Zonal flow generation observed in simulations of
the HM-Rossby system as a consequence of inverse cascade is combined with the Rhines
scale crossover [4.50] from a dispersive-wave-dominated, weak turbulence regime at
large scales to a strong turbulence regime at small scales[4.51]. The Rhines scale is that
scale at which the fluid particle circulation frequency (i.e., turbulent decorrelation rate)
equals the three-Rossby-wave frequency mis-match. Thus, the Rhines scale {Rhines is
set by a competition between nonlinearity and dispersion (due to polarization drift). The
Rossby dispersion relation, ® = — P gk }k]_z (where BR is a coefficient to show the
gradient of Coriolis force and k ,, is the wave number in the longitudinal direction (see

§5.2 for more detailed explanation), implies that for scales longer than the Rhines scale,
non-zero triad couplings require one component to have k , =0 , meaning it is a zonal

flow. Thus, for ! > Igpines » the dynamically preferred mechanism of nonlinear

interaction is seen to involve zonal flow generation. The crucial role of the polarization

nonlinearity in zonal flow generation was also confirmed.
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Following the pioneering work on the zonal flow self-generation in the
Hasegawa-Wakatani (HW) system [2.6], turbulence driven zonal flows have also been
observed in the nbnlinear_simulalions of various fluid turbulence models [4.52-4.57].
Their radial scales were typically of the order of a fraction of the simulation domain. In
the multi-helicity case, both flows and energy transfer between flows and ambient
turbulence oscillate in radius and turbulence suppression by zonal flow was weaker.
Large coherent vortices around low-order rational surfaces were found to participate in
the generation of zonal flows [4.58].

A new issue of zonal flow is pointed out by Wakatani in conjunction with the
control of resistive wall mode (RWM) [4.59]. RWM stability is strongly dependent on
plasma rotation. Wakatani showed that the perturbation-driven torque (divergence of the
Reynolds-Maxwell stress) tends to decelerate the flow velocity at the rational surface.
This would be an origin of the nonlinear instability. That is, when the plasma rotation
frequency decreases, RWM becomes more unstable because the lower real frequency
enhances the Ohmic dissipation in the resistive wall. The stronger instability will make
the Reynolds-Maxwell stress larger so as to decelerate the rotation more effectively. Thus

RWM can exhibits a nonlinear instability dynamics.

4.5. Edge Turbulence
4.5.1. Outstanding Issues

| While physical details of zonal flows have been more frequently and thoroughly
discussed in the context of core ITG turbulence simulations, as mentioned in Sec.4.2,
and the importance of an accurate treatment of zonal flow damping [2.40, 2.41, 3.128]
has been emphasized in that context, the causal role of zonal flows in barrier formation
from simulation was first claimed to be observed in a Braginskii fluid simulation [4.60].
Ref.[4.60] reported many features appearing in the simulation which are similar to
features in experimenta! observations of the L-H transition [4.61]. However a lack of
detailed diagnostics of zonal flows, and absence of follow-up studies have caused a
continuing debate in the edge turbulence simulation community, the issues of which are
described below.

A different research team also has reported the formation of an £, ‘well, which is
due to turbulence-driven zonal flows, in Braginskii nonlinear simulations in diverted -
geometry(4.62]. Yet another independent nonlinear simulation, based on a similar set of
equations[4.63], however, has NOT produced the results similar to those of Ref. [4.601,
namely that turbulence generated zonal flows play an essential role in the early phase of
L-H transition, if a slow heating term is added. Even after an addition of physics relevant
to less collisional, so-called transcollisional regimes, a case where sclf—generated zonal
flows suppress turbulence significantly enough to arrive at a H-mode-like state has not

been observed [4.64]. Since zonal flows in these edge turbulence simulations contain
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significant corhponems with finite frequency, more physics issues, related to the geodesic
curvature coupling [4.65] and the Geodesic Acoustic Mode [3.5], must be discussed
here. Also, the reader should remember that the L-H or ITB transitions involve mean E,

dynamics, as well as zonal flow evolution.

4.5.2. Effects of Geodesic Curvature
Figure 4.19 illustrates the co-existence of the dominant zero-frequency zonal

flow and the weak GAM oscillation of the flow intensity spectrum in a core, on a linear
scale. A different set of edge turbulence simulation results, shown in Fig.4.20, indicates
a) that the zonal electrostatic potential spectrum is more continuous and connects directly
to a weak GAM, b) the flow spectrum in which the GAM component is almost invisible,
even on log scales, and c) the side band (m=1) pressure perturbation which showsa
dominémce of the zero frequency component. At present, long time, high resolution
simulations for both core and edge turbulence seem to indicate that the dominant part of
zonal flow component is a broad band zero frequency component. Direct measurements
of zonal flow potential (either via heavy ion beam probe or Langmuir probe) are more
likely to identify GAMs, however, due to their finite frequency.

In the context of fhe fluid description in toroidal geometry, the axisymmetric

(n=0) and poloidally symmetric (m=0) component of the "zonal" electrostatic potential '
$g, o is geometrically coupled to the (n=0, m=1) component of density fluctuations,

dn) o through the geodesic curvature term in the vorticity equation. Then, through the
nenlinear coupling in the continuity equation, 5"0, 1 can connect to the ambient
turbulence, say &1, ,, and 89,, », _ . This particular coupling due to geodesic curvature
can provide a channel for a spectral transfer out of the zonal flow which was absent in
cylindrical geometry. Reference [4.64] argues that in its toroidal simulations, this
"geodesic curvature induced transfer” is responsible for reducing the growth rate of zonal
flows by depleting the fluctuation energy from the "zonal" ¢q ¢ , thus stopping the
turbulence suppression. In two-dimensional drift plane model, where the geodesic
curvature coupling is absent, they have observed that the self-generated zonal flows can
suppress turbulence, if the collisional damping of zonal flows is weak [4.52]. This is, of
course, is eminently consistent with the carlier discussion of the Dimits shift regime and
the effects of collisional flow damping on it. Since the geodesic curvature coupling is
also responsible for GAMs, as we discuss shortly, it seems to play a subtle dual role of
supporting both regulating edge turbulence via GAMs and weakening zonal flows via
spectral transfer. The relative strength of these two symptoms may depend sensitively on
equilibrium parameters and geometry, as well as the number of modes kept in
simulations. -One can speculate that this could be the origin of the qualitative differences
between Refs. [4.60, 4.62] and Refs. [4.63, 4.64]). The difference could be also due to

the differences in boundary cenditions, resolution, in the treatment of background
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profiles, the heating term and in the sizes and aspect ratio of the flux tube simulation
domain [4.65). At this juncture, it is very important to point out that zonal flows are not
the only entity which quenches turbulence, and that while the L-to-H transition may
involve zonal flows, the mean E X B flow is essential to complete and 'lock-in' the post-
transition, steepened profiles. Indeed, as the transition progresses further, zonal flows
must die out, as the driving turbulence is quenched, and dissipation (collisions, neutral
friction, etc.) most certainly persists. Thus it seems most unlikely that the L-to-H
transition can be explained by the zonal-flow-induced quenching of turbulence, alone.
Recent theoretical work has suggested that the interplay between zonal and mean flows
can produce 'dithering oscillations' near the transition threshold.

One can obtain the Geodesic Acoustic Mode (GAM) by closing the loop between
$p o and dng, 1 via a linear coupling to a compressional part of the E x B velocity in the
continuity equation. Then one obtains a damped oscillation with a real frequency
wgaMm = 2V1h/R , where the coefficient of the order of 1 depends on the equation of
state (i.e., the assumptions on the pressure evolution). Since k" = 1/¢qR , the GAM

suffers ion Landau damping. The GAM component of the zonal flow (recall that the
"zonal"” ¢ o is typically larger than ¢ | ) seems more relevant at the edge than in core

for the following reasons. First, the ion Landau damping gets exponentially weaker as the |
q value gets higher towards the edge and T; decreases. Second, due to the steep

pressure gradient at the edge, the characteristic turbulence decorrelation rate Aw; can be
greater than WGaMm =~ V1h/R . This is in contrast to the situation in core turbulence
discussed in detail in the context of ITG turbulence in Sec. 4.2. Thus, GAMSs can interact
with the turbulence. A wave kinetic theory proposed in Ref. [4.12] elucidated why
WGAM < A0y s required for the GAM to efficiently shear the eddies in the ambient

turbulence. Specifically, the relevant competition in the wave kinetic equation is between
the GAM frequency Wgam , A0 the turbulence decorrelation rate and k GapmVy , the

transit frequency of a drift wave packet through the GAM. For ©gaMm < Awy , the drift
wave-GAM resonance function is simply ! / A®; to leading order, as it is for the zero
frequency zonal flows, rather than Aw/@&anm , as for the 'usual' case of GAM:s.

Assuming that the potential for zonal flow varies sinusoidally in time with a
characteristic frequency @ , ref.[4.12] has shown that the fast-varying components of

zonal flows are less effective in shearing turbulence eddies. The fundamental reason for
this is that the zonal flow shear pattern changes before the eddies can be torn apart. The
turbulent eddies can then recover some of their original shape, and the shearing effect is

reduced. The following effective shearing rate has been analytcally derived [3.77]

(1+ 3F)2 + 4F2)”4

(1+FNT+aF

Qp¢r = O
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where O is the instantaneous E X B shearing rate and F = 0%/ Aof . For F>1

Wgsr is smaller than the instantaneous value ®Wg . This is the reason why the Geodesic
Acoustic Mode (GAM) with Wgam = Vr/R , which can have a high instantaneous
shearing rate, does not quench the ambient turbulence for typical core parameters {4.12].
The adiabatic approximation for zonal flows, focusing on the zero frequency component
[2.11], was thus well motivated for core turbulence. At the edge, sharp pressure
gradients can make the turbulence decotrelation frequency greater than the GAO (geodesic
acoustic oscillation) frequency. Therefore, the GAM could affect the ambient edge
turbulence [3.140, 4.63]. It has been noted that including nonadiabatic kinetic electron
response for typical core parameters does not affect the GAM frequency and damping
[3.34].

4.6 Short summary of the correspondence between theoretical issues and
numerical results

4.6.1 Survey of correspondence

As is stressed throughout this article, the explanation of simulation studies in this
chapter does not aim for an exhaustive review of the simulation of zonal flow, but rather
strive to illuminate the understanding of zonal flow which has emerged together with
theory, and to identify to what extent the theoretical understanding has been verified by
DNS. For this reason, the emphasis is on the ITG-ZF cases, and the example figures are
limited. It would be useful, after listing some DNS results, to summarize the
correspondence between theoretical modelling and DNS. Table 4.1 illustrates key issues,
sections of this review, and corresponding figures from DNS. It is clear that the theory
and simulation has cooperated to advance the understanding of drift wave -zonal flow

systems. Further research can be expected to improve understanding consdierably.

4.6.2 On tfansport coefficients _ ‘

The results of global transport studies may attract broader interest, in particular
from experimentalists. A short note is added here.

The ITG mode has been studied most intensively. Simulation observations

include: .

(a) Upshift of the critical temperature gradient for the onset of turbulent transport [4.67-
4.69]

M, bNs > Mg, lin
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where M. pns 1s the cntical temperature gradient above which turbulent transport occurs
and N¢ jin IS the linear stability boundary. In between two critical values,

M. pNs > Ni > Ne i, turbulent transport remains very close to zero but the zonal flow

energy dominates, for weak zonal flow damping. The determination of the critical
gradient at the onset of turbulence is a subject of current research, and is explained in
§3.5.6.

(b) Recovery of mixing levels of X; at higher gradient:

Xi"‘(ﬂf—’ﬂc,DNs)l_z

asM; exceeds M. pns [4.16, 4.67-4.69], and

X.“"(Tl:—"lc.DNs)O

asM; >> "N, pns [4.67-4.69).

A maijor gap in the findings from numerical simulations of the physics of drift-

ITG - zonal flow turbulence is a systematic exploration of at least the two-dimensional
parameter space of zonal flow damping (Y gamp ) and deviation from marginal stability

(i.€., 8N ;=M;—M¢ jin ) as is illustrated in Fig.4.21. A possible 'third axis' would

measure the strength of non-adiabatic electron effects. Even for the pure ITG case, a

systematic exploration of the (Ydamp, om ;) parameter space has not been undertaken.

Such a study could help answer many questions, such as:

(i) finding the cross-over point between collisional and collisionless saturation;

(i1) understanding and elucidating the relevance of various nonlinear saturation
mechanisms for zonal flow, such as trapping, nonlinear scattering, tertiary instability;
(ii1) understanding the effect of nonlinear drift wave noise on zonal flow saturation. The
thorough completion of such a study should be a high priority for future DNS

investigations.

139



5. Zonal Flows in Planetary Atmospheres

This chapter presents a survey of zonal flow phenomena elsewhere in nature.
Special emphasis is placed upon the origin and dynamics of belts and zones in the Jovian
atmosphere. The physics of the Venusian super-rotation, is discussed as well. The
relationship between zonal flow generation and the magnetic dynamo problem was
already discussed in Section 3.2.6.

In this chapter, we begin with an introduction to the mechanics and waves in a
thin rotating épherical atmosphere. An introduction to the Rossby wave [4.48] is
presented. Then a description of the structures seen on Jupiter and the theoretical
understanding of them follows. We conclude with a discussion of the superrotation of
Venus.

5.1 Waves in a Rotating Atmosphere,
5.1.1 Introduction for rotating coordinates
The observers of geophysical phenomena are rotating in space, with the earth.
For understanding the observation of geophysical, planetary and astrophysical objects,
which are rotating on their own axes, description using coordinates rotating with the
objects is convenient. Thus, we begin with brief introduction of the rotating coordinates.
We consider the rotating sphere as is shown in Fig.5.1.1(a). The radius is given
by 7, latitude is given by 0 , and the distance from the rotation axis is denoted by R .

The point G on the ground has a velocity
VG =W Xr=aX R, (.1.1)

where g is the angular frequency of rotation. The acceleration of the point G is given
as

dv
2= (o x R)= pxvg . (5.1.2)

When the observed velocity relative to G (i.e., the velocity in the rotating frame) on the
- surface is U , the total velocity Uy, 18 given by U5, =0 + @p Xr . The acceleration

observed in rotating frame (:'—': 1s then written as

dvl0l=d_v+ Y v 513
ar _ar TOFXU. (5.1.3a)

The motion Uy, = U + @ Xr has centripetal acceleration @ X U\, i.e.,
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duv
u}vau“:mvai-—dtg, (5.1.3b)

The total vector acceleration in the lab frame, which balances against external force per
mass F / p , dv,,/di + @ X v, , is given by the relation

dv dv dug

—f+m,:xv,m=wa+2(nva+?, (5.1.4)
This gives the momentum balance equation:

dv _ 1 dvG

E+2(0FXUfﬁ _d_f' . (515)

Usually the right-hand side denotes the force which includes the centrifugal force, which
is additive with pressure. The term ‘

f=-2wgxv (5.1.6)

is called the Coriolis force. It is straightforward to see that the Coriolis force for

horizontal motion is given as
Ji=-2wp 2%V (5.1.7)

where Z -axis is taken in the vertical direction. Note the structural similarity of the

Coriolis force to the Lorentz force.

The equation of motion on a rotating sphere takes the form

p%—t‘5+pv-VV—JxB+Vp—pg+2mexVlot-uV2v=0 (5.1.8)
0 ) N ) N O &) (6) (7

where g is the gravitational acceleration and p is the pressure. Combining some of

terms in Eq.(5.1.8), various phenomena have been discussed in fluid dynamics.

Characteristic examples are listed in table 5.1.1.

5.1.2 Rossby wave
The Rossby wave has special importance in geophysical fluid dynamics. This
wave has a strong similarity to drift waves in magnetized plasmas and provides a bridge

from the study of plasmas to many other applications in nature.
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Local Cartesian coordinates are chosen on a rotating sphere. In this review, we
choose the x-axis in the direction of latitude (from pole to equator), the y-axis in the
direction of longitude (from west to east) , and z-axis in the vertical direction.
(Fig.5.1.1(b).) This distinction is for the convenience of plasma physicists who are
accustomed to using the y-axis for the ignorable coordinate and the x-axis along the
direction of inhomogeneity. [The convention in fluid dynamics is to choose the x-axis in
the direction of longitude and the y-axis in the direction of latitude.}

Neglecting the gravitational force and viscosity in Eq.(5.1.8), the dynamical
equation for the Rossby wave is derived. Rossby waves occur in rapidly rotating
systems, where the Coriolis frequency ®g is the fastest in the system. In such a case,
the motion is primarily geostrophic, so the dominant balance in the momentum equation is

between the pressure gradient and the Coriolis force. Such dynamics are classified to as
geostrophic, and occur in regimes where R, < 1. Here R, is the Rossby number, which

is the ratio of the vorticity of the motion to the rotation frequency @ . One may assume

incompressible motion on the horizontal plane (sz VJ.) . One can then relate the fluid

velocity to a stream function
=_29 -
Vis—3 Vs Vi=gz V- (5.1.9)

Taking a curl of Eq.(5.1.8) eliminates the pressure term, and assuming independence of
the z-direction, one has

0Wg , J
o V-2 0. (5.1.10)

Noting that the Coriolis force is stronger near the pole and weaker near the equatorial
plane, (i.e., g , is a decreasing function of x ), the coefficient am[:‘ J9x is negative. If

the perturbation is not constant in the z-direction, Eq.(5.1.10) has a form

D
Dt

2 )2
7 (J\)F:,z wF.zaW_ ‘
Vﬂ’*m‘")‘z—ax—*ay—(” G-1.1H

where H,, is the eigenvalue in the vertical waveform, being of the order of the vertical

thickness. This introduces a spatial scale, the Rossby radius,

JeH,
Pr= G . (5.1.12)
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Equation (5.1.11) is equivalent to Hasegawa-Mima equation for drift wave
turbulence [2.2, 4.47, 4.49]. In the context of geophysical fluid dynamics, the equation
is commonly referred to as ‘quasi-geostrophyic equation’, and was first derived by J.

Charney [5.2]. The gradient of the Coriolis force in the direction of latitude plays the role
of the density gradient in magnetized plasmas. The Rossby radius pg is the analogue of

the gyro-radius for drift wave systems. Taking a perturbation to have the form
y e cos{k ox) exp [k, o), | (5.1.13)

the dispersion relation of the linear perturbation is given as

2k,pr Oop
Tl . | (5.1.14)

d0E , |
where the quantity |2 pk —a%‘ plays the role of the diamagnetic drift velocity in

confined plasmas. The wave is propagating in the — y direction (westward), because
dwg Jox is negative. The propagation of the Rossby wave is illustrated in Fig.5.1.2.

It is useful to evaluate various scale lengths for the earth's atmosphere:

vertical'hcight' H,=10%m - angular frequency: W ;= 1.5 X 10-4

Jm .
gradient of frequency: —-3—- 10~ m-lsec— 1,
Rossby radius: pg ~2 % 10 m

ZP;? 102mse<:‘l | (5.1.15)

phase velocnty

The Rossby radius is about 10% of the arc length of the equator.
With the introduction of the normalization

‘ i
a(l)l:: -1

2 —a—z t=1, %X 5x l—w and( ) PR3y oy,

‘ PR "Pr- PR R
(5.1 16)

Eq.(5.1.11) takes the form
d

aa—(VN w) [w,Viw]—%ﬂ, (5.1.172)
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where
[7.2]=(VsxVe) 2. (5.1.17b)

5.1.3 Rossby wave soliton, zonal flow

Because of the similarity of the normalized equation (5:1.17) to the Hasegawa-
Mima equation in plasma dynamics, the understanding of the zonal flow generation,
Rossby wave soliton and suppression of Rossby wave by zonal flow is readily extended,
using the methods in Chapter 3.

There arises a critical wavenumber k. , above which the nonlinear cascade gives a

power law spectrum as

|wi[Poe k4  5.1.18)
with
0 /3
- R .
<= 4L|\|!|) : (5.1.19)

where k. is normalized, L is the horizontal gradient scale length of O , (in the
direction of latitude) and |\P| is the normalized stream function [2.2]. Below this critical
wavenumber, global structure such as zonal flow appears. This scale, known as the

Rhines scale [4.50], may be estimated by comparing the three-wave frequency mismatch

for Rossby wave interaction with the eddy turn-over rate for the 2-D turbulence, ie.,
AWpspy = O — Wpr — W Vs, kV, . This comparison effectively locates the scale at which

the transition from strong to weak turbulence occurs, and is known as Rhines scale. This
is given by k7 | (taking Awppy ~ (k_\.pﬁau)ﬁax)klzpiz and noting V = prVy x ?).
Note that for scales smaller than k. I , wave dynamics are effectively irrelevant, és the

eddy decorrelation rate exceeds the wave frequency: For scales longer than the Rhines
scale, the turbulence is weak, so that the three-wave resonance condition must be

satisfied. Since kipﬁ is finite, dispersion makes this difficult. Thus, three wave
resonance is most easily achieved if one mode has k), =0, ie., is a zonal flow. Note that

this picture suggests, then, that:

(a) Zonal flows are the ultimate repository of large scale energy of the 2D inverse cascade
in a geostrophic system, —
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(b) geostrophic turbulence is a three component system, composed of eddies, Rossby

waves and zonal flows.

The significance of the Rhines length for determining the scale of zonal flow excitation 1s
nicely illustrated in [4.51]. Application to the giant planets, Jupitor and Saturn, has been
reported by Hasegawa [5.3].

The nonlinearity becomes important if the normalized amplitude of vorticity V21|!
becomes unity. This is the case if the flow velocity reaches the level (in the case of earth,
Eq.(5.1.15))

do -
V—~’p§—a% ~50msec—! . (5.1.20)
for the horizontal scale length k , ~ pr'~ 1079m=! | The azimuthal mode number

(i.e., corresponding to the poloidal mode number) is in the range of a few to ten.
This estimate implies that the jet streams are associated with the wind speed of the
order of 50 msec= ! if it is indeed generated by the Rossby waves. Figure 5.1.3

illustrates the zonal flow and giant red spot in planetary atmosphere.

5.2 Zonal Belts of Jupiter

"~ One cannot have heard about or contemplate the topic of zonal flows without the
vivid image of the belts of Jupiter coming to mind, at least for an instant. Surely these
structures are the most famous of all zonal flows! Thus, we spend a significant amount of
time on a discussion of their formation and dynamics. While several of the giant planets
exhibit zonal flows in their atmospheres, we focus the discussion on the case of Jupiter,
in the interests of brevity.

The planet Jupiter consists primarily of a fluid molecular hydrogen, with a solid
core of metallic hydrogen. It is enormous, with an equatorial radius of 7.14 104km7 and
rotates quite rapidly, so that | Jovian day lasts only 9.9 hours. The core of the planet 1s
also very hot, so that the gas envelope is convectively unstable. Thus, the atmosphere is
quite dynamic and turbulent. The rich variety of structures we normally tend to associate
with the Jovian atmosphere, such as zonal belts, the Great Red Spot vortices, Kelvin-
Helmholtz billows, etc., all live in the weather layer, a thin two-dimensional (spherical)
surface layer which is stably stratified, and thus acts as a 'rigid lid' on the convectively
unstable interior. Thus, the phenomena of the weather layer are the visible projections of
the dynamics of the cloud tops, in turn driven by the convective dynamics of the planetary
interior, which are hidden from view. Thus, the crucial element in any effort to
understand the formation of zonal belt structures is to properly account for the coupling

between the (invisible) convective interior and the weather layer and how the former
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might trigger zonal flow formation. In this respect, the situation resembles that of solar
physics before the start of helioseismology, when researchers were forced to deduce
aspects of the convection zone dynamics by watching their photospheric manifestations,
or that in radar surveillance of ocean dynamics, where one attempts to uncover the
structure of ocean internal waves and currents by studying their modulations of the
surface wave field.

The turbulence of Jupiter is driven by thermal buoyancy, and is strongly affected
by rotation, so that the Rossby number R, is exceedingly low (i.e., R,= ®/0p<< 1,

where ®F is the planetary rotation rote and ® is the vorticity of the fluid motion). Thus,
the Taylor-Proudman theorem applies. This theorem states that, in the presence of strong
rotation, fluid flow tends to form columnar cells (i.e. "Proudman Pillars") aligned with
the axis of rotation, so as to minimize the energy expended on the bending of vortex
lines. In case of Jupiter, the Taylor-Proudman theorem implies that the cells in the interior
are Taylor columns aligned with the axis of rotation of the planet. As shown in Figure
5.2.1, the lower boundary condition on the columnar motion is the no-slip condition,
applied at the surface of the metallic hydrogen core. This, of course, implies an Ekman
layer must connect the rigid surface to the rotating columns. The upper boundary
condition is v, = 0 .at the weather layer, consistent with the 'rigid lid’ imposed by the
stable stratification there. The structure of Jovian convection described here is sketched.
The basic characteristics and turbulence physics of the Jovian atmosphere are summarized
in Table 5.2.1, and are compared to their counterparts in toroidal plasma systems, as
well, '

The dominant role of rotation in the dynamics of the Jovian atmosphere, together
with the rigid lid and no-slip boundary conditions, imply that the evolution may be
described using a two-dimensional thermal Rossby wave model, which evolves the fluid
potential vorticity and the potential temperature along trajectories determined by
geostrophic velocities. In this model, which is structurally similar to the curvature-driven
ITG turbulence model, the free energy source is the radial temperature gradient, released
by a buoyancy drive process. A critical value of the Rayleigh number R g, crit ™ 0(104)
{4.46] must be achieved for instability. Finite frequency, which enters via the diamagnetic
frequency in the case of plasmas, appears here via B-effect, i.e. the gradient in the
Coriolis frequency. For significant deviations from the critical Rayleigh number Ra, ctrit »
large transport will result. Thus, it seems likely that the convection system will hover near
marginality in the planetary interior, with a large temperature gradient 'held’ at the upper
and lower boundary layers. In such a case, the temperature in the interior will consist of
bursty rising plumes, as well as cellular motions. The Jovian atmosphere is quite strongly
turbulent and the effective Reynolds number of the weather layer is high. This is in sharp

contrast to the case of a tokamak plasma, where the effective Reynolds number is quite
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low, i.e., R, ~ 10— 100 | at most, and the turbulence is more akin to wave turbulence

than strong hydrodynamic turbulence.
Given this situation where the essential core dynamics are obscured by cloud
cover, it is not surprising that (at least) two schools of thought on the origin of zonal belts

have arisen. These are

i} a secondary bifurcation approach (coherent), developed by Busse and his
collaborators [4.46]. This scenario accounts for the appearance of zones via the
coherent modulational instability of an array of convection cells.

" ii) the inverse cascade scenario (turbulent) , developed by Hasegawa [5.3] and by
Marcus and collaborators [5.4], which builds, in part, on the ideas of Rhines.
This school seeks to explain the appearance of zonal belts via an inverse energy
cascade in P -plane turbulence. Thus 2D turbulence is forced by rising plumes,

which impingé on the weather layer, thus energizing its motions.

Here, we briefly discuss the essential features of both approaches. The assumptions and
logic of the two scenarios are summarized in Fig.5.2.2. The key elements of Jovian zonal
flow physics are listed in Table 5.2.2, which includes a comparison to corresponding
aspects of tokamak zonal flow physics.

Figure 5.2.3 encapsulates the quasi-coherent, secondary bifurcation scenario. The
idea here is that a modulational (or 'tilting’) instability occurs in the array of Taylor
columnar vortices. The tilting instability is that originally analyzed by Howard and
Krishnamurti, and subsequently studied by many others. As a consequence, the cellular
'footprints’ of these columns on the weather layer also undergo tilting instability, thus
tending to amplify zonal shears and cause the development of belts. In this scenario, the
number of zones is determined by the number of unstable columnar cells which 'fit’ into
the fluid interior region of the atmosphere. At high latitudes, near the polar regions,
granules rather than belts are expected, since the columnar cells sense both the no-slip
lower boundary condition at the surface of the metallic hydrogen layer, as well as the
rigid lid boundary condition at the weather layer. Thus, belts are limited to lower
latitudes, where both 'ends' of the Proudman pillar pierce the weather layer. This is
consistent with observations of the Jovian atmosphere.

It is interesting to note that, as R, is increased, the bifurcation sequence closely
resembles that familiar from the formation of the transport barrier. As shown in Figure
5.2.4, starting from R, , thermal transport (as quantified by the Nusselt number N )
increases with R, . At a second critical Rayleigh number called R, ;¢ , generation of
secondary flows begin. This generation is accompanied by an alteration of the convection
pattern structure, in that cells are tilted, sheared and distorted by the zonal flows. As R,
increases beyond R, v;i , the Nusselt number decreases with increasing R , while the
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zonal flow energy increases, symptomatic of heat transport suppression and the increased
channeling of free energy into zonal flows, rather than convection cells. At higher values
of R, , tertiary bifurcations, vacillations, cyclic phenomena, etc. are predicted to appear,
as well. This is shown in Figure 5.2.4. Not surprisingly for this scenario, the mean zonal
flow pattern exhibits north-south symmetry, modulo some correction for the effects of the
great Red Spot, which appears in the southern hemisphere. This ts consistent with
Voyager observations. A plot of zonal velocity is shown in Figure 5.2.5.

The second scenario is that of an inverse cascade ona P -plane, as proposed by
Marcus, building upon the ideas of Rhines. In this scenario, rising plumes from the
convection zone constitute a source of forcing for the 2D inverse cascade on a P -plane.
The forcing term is proportional to @0V /0z , where 8V /07 is necessarily large in the
weather layer, on account of the stable stratification there. On forcing scales, the
nonlinearity 1s strong, so an inverse cascade develops toward large scales, with
Kolmogorov spectrum E(k) ~ k=B Anisotropy develops as a consequence of § , via an
extension of the mechanism of Rhines. The Rhines mechanism is based on the
observation that on a P -plane the eddies have a finite frequency, corresponding to the
Rossby wave frequency ® =Pk xklz . At low k , such waves are strongly dispersivf:, SO
that triad interaction is severally inhibited, expect for domains with kK, =0, The
preference of nonlinear interaction for such states of high symmetry explains the tendency
to form zonal bands. Note that the Rhines length effectively defines the scale size on
which enstrophy enters. The onset of such band formation occurs at large scales when

the eddy turn over rate drops to the level of the wave frequency, i.e. k‘?= Bk J(]_z , S0 that

; ] . (Y12 .
the 'Rhines scale’, which demarks the onset of zonal structure, is (V/B) . The inverse

cascade 1s, in tumm, damped by scale independent Rayleigh friction, associated with
Ekman damping, etc. Not surprisingly, the frictional damping plays a crucial role in the
model, as the Rosenbluth-Hinton scale-independent friction term does in the plasma zonal
flow problem. Marcus, et al. emphasize that three conditions are necessary for zonal flow
formation, in addition to rapid rotation, convective instability and large dV,/0z in the
weather layer, which we have already established. These are that the size of the vorticity
advection nonlinearity must

(a) exceed the frictional damping on the forcing scale. Otherwise, energy cannot couple to
the Rhines scale and thus anisotropy cannot develop.

(b) exceed the strength of the B -effect, i.e., & ,00p/dx on forcing scales. Otherwise,
energy will be coupled to Rossby waves, rather than zonal flows. Of course, a spectrum
of Rossby waves can be unstable too, and thus amplify zonal perturbations, as discussed
here. The implications of this secondary mechanism have not been addressed by Marcus,
et al. '
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{c) exceed the viscous damping. Otherwise, energy will be dissipated so that structure
formation wiil not be possible.

In the Marcus scenario, the number of bands is determined via energy balance by
the system parameters, such as the forcing strength (related to the heat flux), the frictional
damping, etc. In addition, tertiary Kelvin-Helmholtz instability may enter the
determination of the band structure by limiting the strength of zonal vorticity. While
Marcus and collaborators have assembled quite convincing computational arguments that
large scale structure formation will occur if criteria (a)-(c) (above) are satisfied, further
research is necessary to clarify the issues related to the details of pattern selection, such as

band scale, number of bands, etc.

5.3 Superrotation of the Venusian Atmosphere

. Another interesting mystery in the dynamics of planetary atmosphere is the
superrotation of Venus [5.6, 5.7]. By "superrotation”, we mean a fast zonal flow with
an azimuthal speed in excess of the rotation velocity of the planet itself! Indeed, Venusian
winds can reach 100 m/sec at altitudes of 60-70 km, which is about 60 times faster than
the speed of the planet. This remarkable observation naturally suggests that the planetary
wind results from some processes of self-organization of thermally driven convective
flow in the Venusian atmosphere, which is similar to the mechanism of zonal flow
generation. . . |

The key questions pertinent to the generation of zonal flows in the atmosphere of

the Venus ate:
(a) What is the mechanism of symmetry breaking which seeds zonal flow generation ?

(b) What are the implications of 3D geometry? In this regard, note that the Venusian

atmosphere is not thin.

Regarding (a), the conventional wisdom is that superrotation results from a tilting
instability, the initial symmetry breaking for which results from the motion of the solar
heating. This is called the "moving frame mechanism”. Another possibility for
symmetry breaking is instability convection between day and night sides of the planet.
[5.8]. Other mechanisms involve thermal tidal pumping [5.9] and Hadley circulation
pumping mechanism [5.10] which involves a horizontal eddy viscosity. Regarding (b),
recent results [5.6] indicate that the moving frame mechanism is viable in 2D (though the
cell-temperature perturbation is a critical element of the dynamics, contrary to initial
expectations), but fails in 3D, since the basic flow is stable in spherical geometry [5.6].
Thus, attention is shifting to the tidal pumping and Hadley mechanisms. Clearly, much

further research is necessary in order to understand the superrotation on Venus.
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6. Extensions of Theoretical Models _

To supplement the theory of zonal flows explained in Chapter 3, some advanced
extensions are described in this chapter. The first topic is the streamer, which has a lot of
similarity to the zonal flow but can have a quite different influence on the drift wave
turbulence and transport. The second issue is the statistical nature of the zonal flow.
While the mean field instability growth associated with the negative viscosity effect,
explained in Chapter 3, is essential to the dynamics of zonal flow, noise can be important,
as well. Thus, the PDF for the dynamical quantities in the system of drift wave -zonal
flow can have non-Gaussian properties, and the noise can have greater influence on some
global parameter of interest (e.g., heat flux, transition boundary, etc.) The third is the
non-Markovian nature of the system dynamics. These issues belong in the realm of
advanced research on the zonal flow, and are discussed briefly in this chapter. Finally, a
method of theoretical analysis of the zonal flow (based on reductive perturbation theory}),
which is complementary to the one explained in Chapter 3, is briefly addressed.

6.1 Streamers
6.1.1 Illustration

The subject of this review is the zonal flow, but it is worthwhile to give a short
discussion of the streamer. The streamer is an intermediate scale perturbation of the

electric field, which varies in the poloidal direction but is extended radially,
g={0,44.0) , and  E=(0,Eq0) . (6.1.1)

(See figure 6.1.1). The EX B flow due to this electric field perturbation is in the radial
direction, at a particular poloidal angle. Like the zonal flow, the streamer is also a highly
anisotropic convective cell, albeit one extended radially, rather than poloidally.

The question of the origin of streamer cells is a hotly debated topic of current
research. One group of researchers regard the streamer as a residue of the linear
ballooning modes, which have the structure of 'twisted eddies’, extended in radius.
Other researchers conceive of the streamer as a nonlinearly-driven convective cell. From
the early days of DNS of drift waves in the absence of magnetic shear, convective cells
were found to increase anomalous transport [2.3, 6.1- 6.3]. Such cells associated with
radial flows are streamers. Once a streamer is generated, the radial flow of plasma
(energy, etc.) can be enhanced. The modification of the density profile due to the

streamer can be estimated from the streamer mixing length rule

Var e T= Ve S Tor. (6.1.2)
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where the suffix str indicates the streamer. So one has Axg, /L7~ T /T and strong

. gradient modification. The deformed iso-density contours in the presence of a streamer
are illustrated in figure 6.1.2. Figures 6.1.2 (left) and (center) show (schematically) the
potential perturbation and deformed density contour in toroidal plasmas, respectively. A

detailed profile of the density deformation is given in Figure 6.1.2 (right) [6.4].

6.1.2 Excitation of streamer by drift wave fluctuations

Although there is on-going debate on the quaniitative estimate of the excitation of
the streamer, a simple explanation is given here. The streamer can also be induced by
modulational instability of drift wave fluctuations. The growth rate for generation of the
streamer has been calculated for the case of a coherent monochromatic drift wave

(through modulational instability) [3.41] and for the case of drift wave turbulence
(through & -space diffusion) [2.27] The growth rate of the streamer due to a

monochromatic drift wave, Ys , is given as

Ys~gek PsCs 7, (6.1.3)

ey
T
where g is the poloidal mode number of the streamer, and k, and ;f)d are the radial
wavenumber and fluctuation amphtude of the drift wave. In this case, the growth rate s
monotonously increases until finite gyroradius effects start to suppress instability, in
contrast to the case of zonal flow. The streamer is more easily excited if the radial
wavenumber of the drift waves is larger. A genéric result for the evolution of secondary

vorticity takes the form
2
_C%(Vz@):(_éa}_ 37 )(VV) W((Vz) (Vf>)- (6.1.4)

The region of streamer excitation in wave number space is illustrated in Fig.6.1.3. The
growth rate Yg has a value similar to that of Yz .

The theory of streamer generation in turbulence has also been developed. The
analysis of this process proceeds very similarly to that for zonal flow growth. Thus, drift

wave stresses drive radial flows, which in turn modulate the underlying drift wave
population. The streamer perturbation is reinforced for dN/dkg < 0 , and damped for

ON/dkg >0 . Streamer flows can react back on the drift wave population by driving
diffusion in kg, so that drift wave eriergy is transfered to high kg , and thus to damped
scales. In the case of streamers, note that sheared radial flow produces high kg .
Additional damping may enter via dissipation on the streamer scales (i.e., Landau

damping).
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6.1.3 Nonlinear drift instabilities

The back-interaction of the streamer on the ambient turbulence is also important.
A nonlinear linkage between a streamer and dnift-wave turbulence can induce nonlinear
instability of the drift waves. A nonlinear link is as follows:

(1) streamers (k = 0 ) are induced by the drift waves (k” #0), and cause a

strongly sheared radial flow;

(ii) this system with a radial flow is unstable to drift waves (k| # 0 ); and

(iil) the drift waves regenerate the streamers, closing the nonlinear link.
A set of equations for the coherent interaction of streamer and drift wave has been
proposed [3.115]. This system closely resembles that of the tilting instability, proposed
as a mechanism whereby convective cells form zonal flows. A potential perturbation of
the form

$ = d.cos Ty + (¢d,cos Ty + Ogpsin 21ty)sin k z exp (ik x) (6.1.5)

is considered, where ¢ is the streamer amplitude, ¢4 is the least stable drift wave, and
042 denotes the linearly damped drift wave. The original density gradient is in the x -
direction, but a (perturbed) gradient of density in the ¥ -direction appears, due to the
streamer formation. The drift wave in equation (6.1.5) propagates in the x -direction.
The streamer potential ¢g grows at the rate given by Eq.(6.1.3), and the density streamer
is generated according to Eq.(6.1.2) as Y| 0A/dy = ¢§ , wWhere the coefficient ¥, is given
by the nonlinear interaction terms. Its explicit formula is given in [3.115]. The complex
growth rate of the drift wave is calculated by retaining the lowest-order correction due to
the streamer as

) _
l+kip2+gy =ik 90 - (6.1.6)
5 k? x'a")','- R

From this set of equations, a nonlinear mechanism for self-sustainment emerges: in this
mechanism, the drift wave causes convective cells to form, the cells lead to a density
streamer; and the density gradient in the y -direction destabilizes the drift wave. This
provides a possibility that the drift waves can be subcritically unstable. Subcritical
instability mechanisms are also found to be possible through other mechanisms [2.46,
2.54, 6.5). At the moment of completing this review, the study of possible subcritical

instabilities is on-going, and future research is clearly necessary.
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Another route of streamer saturation 1s back-reaction on the underlying drift wave,
via shearing. As mentioned earlier, in this case radially directed, poloidally sheared flows

will diffuse drift wave energy, i.e., Sk% ~D; 1t where
£ 8

DkezzR(Qavg,eqe)k%qa Y3 4 | (6.1.7)
de

Thus, high kg are generated, and the kg spectral structure is modified.

This discussion naturally leads to the question of what state is induced by the
mutual interaction between the drift wave turbulence, zonal flow and streamers. Some
research has been done to address this, and an example is illustrated here. Reference
[6.6] studies the coupling of zonal flow, streamer and turbulence, in the context of a
system of Rayleigh-Taylor instability, with curvature drive. This illustrates the physics
of drift wave, zonal flow and streamer in the absence of magnetic shear. A model

dynamical system description is proposed:

%N:yN-an-BNS+SS2 (6.1.8a)
a%v=an-vv (6.1.8b)
% S=v.S5+BNS—yVS (6.1.8¢)

where N, V and § are squared azﬁplitude of the drift waves, zonal flow and streamer
and the coefficients Y, & aﬁd v denote linear drift wave growth, zonal flow drive and
collisional damping. With the introduction of the streamer component, new coupling
coefficients P , 8, X enter, as well. The coefficient Y4 is introduced so that linear
instability can exist in the model of Rayleigh-Taylor instabilities. More generally, Vg -
the linear growth rate of the extended radial scale (streamer), could be either positive or
negative, depending on the model. This model and generalizations thereof can be used to
study the competition between the zonal flow and streamer. A 2-D generalization of this
0-D model would be especially interesting. _

Direct numerical simulation of Rayleigh-Taylor turbulence has also been
performed. The study contained two control parameters; the collisional diffusivity of
particles D and the molecular viscosity L . When collisional damping is large, the final
state is found to be dominated by streamers.

Before closing this subsection, a few words are added conceming the role of

magnetic shear for the streamer. If one sticks to a rigorous definition for the streamer,
that k| =0 holds everywhere with large poloidal mode numbers (9/06 # 0 ), it may not
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be possible to construct an eigenfunction when magnetic shear is present. In the system
with magnetic shear, it might be necessary to extend the definition from k) =0 to k) =0
for the streamer. With this generalization, one can do the modulational instability
calculation for streamers in ballooning representation. This allows streamers to evolve to
adjust to shear, i.e., twist with the field line, a la Taylor-Roberts quasimodes [6.7].
Direct numerical simulations have reported observations of streamers [2.52, 4.53, 6.8].
It is also suggested that radially extended structure with high poloidal mode numbers
appears as a remnant of the linear mode structure, indicating an importance of geometrical

factors [3.124]. This is an important area which requires future research.

6.2 Noise Effects and Probabilistic Formulations

Background turbulence that induces zonal flow has a short correlation time, so
that the driving force for zonal flow has a component that rapidly changes in time. The
driving force by turbulence, on the average, acts to cause the growth of the zonal flow as
is explained in Chapter 3. However, in addition to the ‘negative viscosity effect', which
drives zonal flow growth, there is noise excitation of zonal flow scales due to incoherent
emission from drift waves. While generally the mean field instability growth associated
with the negative viscosity effect is of greater significance dynamically, noise can be
important as well [2.11, 2.40, 2.41, 2.46, 6.9]. Indeed, noise effects are particularly
interesting in instances where the zonal flow modulational instability is weak, marginal or
weakly damped. In the latter case, large zonal flow fluctuations can occur, due to the
weak damping of 'slow modes', even for low levels of noise. This behaviour is rather
similar to the well known phenomenon of critical opalescence, close to the critical point
for phase transitions. '

Schematically speaking, the torque for zonal flow by background turbulence is
written as F with appropriate normalization presumed, i.e.,

L Vae=F, (6.2.1)

F' is a quadratic nonlinear term in the background fluctuation level and Vzf is the zonal

flow velocity. Then £ can be separated into mean and fluctvating parts,
F=(F)+F " | (6.2.2)
with <F ) =0, where < . > is an average over tfme longer than the autocorrelation time of

the background turbulence. (Note that the tilde for /' does not mean the drift wave

amplitude.) The extensive discussion given in Chapter 3 shows that one may write
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<F> =Yzr VZF . (623)

and also discusses calculation of the zonal flow growth rate Yzp . The rapidly-varying

part F is treated as noise, and Eq.(6.2.1) takes the form of a Langevin equation, possibly
with negative drag (i.e., Yzg>0 )

L Ve~ Vzr Var=F . - (6.2.4)

Of course, the analogy with standard statistical mechanics is clearest when Yzp< 0 -

i.e., in the slightly over-saturated regime. In such a case, the nonlinear zonal flow
saturation must balance both growth and noise emission. The property of the rapidly-
varying part ' has been studied, and it is modelled as a noise for the evolution of the

zonal flow. The formulation of the noise is discussed below. Of course, one may just
simply calculate the noise emission into low ¢, modes via a closure of the 2D fluid

equation, treating the background modes as drift waves.
A systemnatic description of the statistical average (F ) and the noise has been

given in the literature [2.46, 6.9]. A calculation using the eddy-damped-quasi-normal-

Markovian (EDQNM) approach has been discussed in detail in [6.9]. By use of the
action of drift waves Ny and the enstrophy of zonal flows Z , a set of balance equations

for the system dynamics has been derived. Detailed calculation is left to the references,

but the noise term.is explained here. For long wavelength evolution, one finds

a _ _l .
7 Z,=2v,2,+ 2,7 (6.2.5)

where ¥, is the growth rate of the zonal flow. Note that a stationary solution is possible
only when ¥, <0, which requires confrontation of the problem of nonlinear saturation of

zonal flows. Here Z'gmse is the long time average magnitude of the mean square of the

noise term, i.e.,

. kK2
27 =q4 ) —--—kai—; Re B, ; 4 NE. (6.2.6)
K (1 +k_2L) '

where O _ o is the triad interaction time of three waves [6.9]. This result is also given

in [2.11].
Equation (6.2.5) gives a solution for the steady state as
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> N0ISE
Z,=- L0 (6.2.7)
2y,

In this expression, Y g must include the effect of nonlinear stabilization, so that Y, may

be negalive at finite amplitude, which is necessary for a (meaningful) stationary state.
This equation necessarily has the form of an extended fluctuation-dissipation relation for
zonal flow. By use of such a balance equation, the role of noise pumping has been
analyzed [2.46]. The possibility of bifurcation has been pointed out. As mentioned

above, the result of Eq.(6.2.7) is strongly dependent upon the knowledge of the damping
rate ¥, , which includes all relevant nonlinear as well as linear effects. Obtaining and

understanding such aY, is a subject for on-going research, and the full solution of this
problem is left to future studies.

Equation (6.2.5) provides an expression for the noise term in the Langevin
equation for the zonal flow vorticity Uzp , Uzp=dVzg/0x | as

% Uzg="nzrUzp=$ , (6.2.8)

with

$=\/ 23 w{1) (6.2.9)

where Y, zF Includes all relevant nonlinear as well as linear effects, and n{t] is a
Gaussian white noise term, <W(t) W(I'D =5(I - t') . The term § is rapidly changing in
time on a scale faster than the autocorrelation time of Uyg , but does not have the property

of white noise. Gaussian white noise is a simplifying approximation.

6.3 Statistical properties

As a result of the progress in toroidal plasma experiments, the importance of the
tail component of the probability density function in transport problems and in the onset
of transport and bifurcation events is gaining in recognition. It is well known that a
statistical approach is needed to treat the probability density function . [2.14, 6.10, 6.11)
This statistical problem is also relevant to the physics of zonal flows.

The probability density function (PDF) is the fundamental goal of turbulence
theory. In order to clarify the implications of statistical theory on the understanding of the
relevant phenomena, it is useful__to consider models which discuss low dimensional

systems. One may write a Langevin equation to study the statistical property of the
quantity X which is the subject of interest:
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2 x+[AdX)+ A (X)i(3)| X = mfe)s (6.3.1)

In this equation A is the (nonlinear) damping rate, which can be nonlinear and which can
contain multiplicative noise W;(T) , & is the magnitude of the noise source and WO(T)
represents the noise. [It is not necessary to specify the RHS of Eq.(6.3.1) as Gaussian
white noise. What is necessary is that the autocorrelation time of the noise must be much
shorter than the relevant time scale A~ ' .

Non-Gaussianity of the PDF is caused either by the nonlinearity in the damping
rate A , or by the dependence of the noise source £ on the quantity X , or by
multiplicative noise entering via the damping rate. An example of a problem involving
multiplicative noise is zonal flow growth in the presence of avalanches. This review
gives an extensive discussion on deterministic models for zonal flow growth in terms of
quasi-stationary local parameters. However, these parameters may vary stochastically
due to intermittent transport event bursts, i.e., due to avalanches. Thus, the relaxation
rate A should be regarded as noisy. This scenario is a .simp]e example, then, of
multiplicative noise. Note that multiplicative noise necessarily changes the structure of
the Fokker-Planck equation, so that the PDF is, in general, non-Gaussian.

There have been some basic studies of the effect of noise on bifurcation
transitions and transport barrier formation [2.4], but in general, the theory of zonal flow
and transport barrier dynamics with noise remains ferra nova. Note that the interplay of
avalanches with zonal flows and barriers gives another perspective on the problem of

interplay of zonal flows and streamers, discussed previously.

6.3.1 Instantons

It has been known that the large amplitude drift wave takes a form of 'modon'.
[6.12, 6.13] (The modon is a solitary vortex structure which has a long life time.)
Analogous vortical structure has also been found in the nonlinear evolution of the Rossby
wave, as is discussed in Chapter 5. Modon solutions can be used a basis for a theory of
instantons in drift wave turbulence. Instantons are temporally localized solutions which
correspond to trajectories of least action. Instanton solutions are those of steepest
descent, and so dominate the time-asymptotic PDF. They thus serve as tractable models
of intermittency phenomena. '

Schematically speaking, nonlinear drift waves have an 'anti-shielding effect,
which corresponds to vortex coalescence. That is, vortices agglomerate to make a larger
vortex. This process sustains the modon against the dispersion of waves. It means that
the larger the vortices, the longer the lifetime. (An explicit illustration by direct numerical
simulation is seen in [4.50].) Taking this mechanism into account, the formation of a
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drift wave modon by random excitation is studied by use of the instanton calculus, for
noise with fixed magnitude. A longer life-time is expected for a larger-amplitude modon,
so that a stretched, non-Gaussian PDF is obtained [2.53, 6.14, 6.15]). The PDF of the

local Reynolds stress & is then obtained from the fluctuation PDF. The Reynolds stress
PDF P( ) is :

P( %)~ exp ('— g 9{3’2) . (6.3.2)

where K is the mean-square noise forcing, and €' stands for a normalization coefficient
that includes the effect of the spatial shape of the medon. In this case, a statistical
exponential tail is obtained. In addition, as the external forcing becomes larger, the tail
extends to larger value of X . .

The divergence of X is the torque that drives plasma flow. This result suggests
that the noise source for the zonal flow, which has been discussed in previous sections, is
given by a non-Gaussian distribution. Further research in this direction is needed in the

future.

6.3.2 Nonlinearity in noise

Nonlinearity in the noise source gives very prominent tails. In the renormalization
model for drift waves, g is given as a function of the amplitude of the turbulence [2.14,
3.119, 3.120, 6.4, 6.11, 6.16-6.18]. Stronger nonlinear noise appears for stronger
fluctuations. This gives small but finite power-law tails in the study of multiple-scale |
turbulence and bifurcation. The presence of non-Gaussian tails suggests that large-scale
but rare events could play a dominant role in determining the average. A detailed
calculation of the turbulent noise has been developed in [6.19] and has been applied to the
case of zonal flow excitation[2.47, 6.9).

The role of turbulent notise is particularly important when one studies subcritical
bifurcation. Including turbulent noise terms, a dynamical mode! for a relevant, reduced
degree of freedom (magnitude of the radial electric field) has been developed for the L-H
transition [6.20]. A Langevin equation for the radial electric field in the plasma edge
X =ep,EJT is derived. The damping term in (6.3.1) is given as
AX= ( 1+ 2q2)—l(qR/ p,ecsn,.) J,. where J, is the normalized current. As has been
discussed in a model of the L-H transition that focused upon the impact of ion-orbit-loss,

the coefficient A is dependent on X and the deterministic equation for steady state thus

becomes

AX=0 (6.3.3)
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with multiple solutions for X . The solution is controlled by the ion collision frequency

and the pressure gradient at the edge. The noise source is induced by micro-fluctuations.

Their amplitude is influenced by the shear of radial electric field. Therefore the noise
amplitude g is dependent on X , so we have a case of nonlinear noise. The stationary

solution for the PDF of X , P, X}, may be expressed as P, (X} = g™' exp (— S(X)) by

use of the nonlinear potential
X - - ’ ’
S(X):f an(x)e(x) X dx" . - (6.3.4y

The minimum of S[X ) (apart from a correction of order In g ), i.e., zero of A, predicts
the most probable state of X. The PDF of £, and the transition rates between the L-

mode and the H-modes are calculated. The phase bdundary is obtained by using the

statistical average
S(Xup=8(X)+ S (ApAy). (6.3.5)

where A} y=2 ,XBA x/9X | at X=X, y. This is an extension of the Maxwell's

construction rule in the thermodynamics. The statistical average of the gradient-flux
relation ¢ ,{p] is derived. The results are illustrated in Fig.6.3.1. Normalized pressure
is defined as X ¢ =— pg 1 pprg . We emphasize that the hysteresis is important, due

to the fact that the inequality of three holds for the forward and back transition thresholds
in the deterministic model. Although a deterministic model predicts hysteresis in Q,{p'] ,

the statistical average (q,) is a single valued function of p .

An important property of a nonequilibrium system is the life time of a metastable.
state. The transition rate from one metastable state to a more stable state is calculated by
use of the nonlinear potential [6.20], in a manner similar to the Kramers barrier transition

calculation [6.21]. Statistical averages determine the boimdary of the phase (6.22].

6.3.3 Self-Organized Criticality (SOC) models

The analysis of turbulence has shown that the fluctuations have small but finite
radial coherence length, and that they can be excited subcritically. This has motivated the
view that fluctuation amplitude and the radial coherence length change nearly
simultaneously, and that excitation happens if random kicks of the local gradient exceed
some threshold. These properties have stimulated the use of SOC model [6.23]lf0r the
dynamics of fluctuations and transport [6.24-6.31]. The correspondence between the
SOC model and continuum model has been investigated [6.32]. Schematically, the

correspondences are given in Table 6.3.1 .
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A nontrivial tail of the PDF is obtained in analyses based on the SOC models.
The mesoscale dynamics which are inherent to SOC models are realized here as
avalanches of transported quantities (heat, particle, etc.). A large avalanche contributes to
the tail of the flux PDF and contributes heavily to the total transport. [6.31)

An advantage of the SOC model is that it allows one to easily grasp the nonlocal
features of the dynamical phenomena, while retaining a physically plausible picture of
localized fluctuation events. Figure 6.3.2 illustrates a gradient-flux relation which is
deduced from a SOC model of L-H transitions. The bulk of the PDF exhibits power-law

scaling but the tail shows an exponential decay.

6.3.4 Observations of avalanche phenomena in DNS
The PDF of the heat flux P(q,(x, y)) has been determined from direct nonlinear

simulations of drift-ITG turbulence. Here, ¢ ,(x, y) 1s an instantaneous value of the local
heat flux at (x, y) . Abbreviating P(Q ,-(I, y)) and Q,(x, y) by P[Q ,) and O, , a power

law tail

P(Q,)= 07 © : (6.3.6)

was found as the result of direct nonlinear simulation. The power index O is an
important parameter: depending on the condition whether

a>2 or o<2 {(6.3.7)

the statistical average (Q ,) changes its nature. Consider that the power law
P(Qr) o< Q7% holds in the range Qmin < @y < Qmax - If ®>2 holds, the contribution
from the tail to the average is given by Q,zni—na . That is, the tail does not contribute to the
average. If, on the contrary, the relation @ <2 holds, the term Q,%,;,P‘ is dominant. The
average is governed by the maximum value of the instantaneous flux. In that case, rare
events (i.e., Op~ Qmax ) control the average. According to the analysis in [3.87, 6.33],
the result can be fit to ¢ = 1.5 for the case of weak shear flow, and to &t = 2.3 forthe
case of strong shear flow. In the former case, rare events (probably associated with the
larger scale avalanches) play important roles in determining the average flux. It is thus
not surprising that gyro-Bohm scaling is broken in this case.

The statistical analysis has also been performed for the bursty flux in the SoL
[6.34-6.36]. In this case, an exponential tail for the flux is obtained. These results show
that non-Gaussianity in the PDF is frequéntly observed and is important, and that the
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specific form of the tail depends on the explicit form of the nonlinearity that governs the

dynamics.

6.4 Non-Markovian Theory _

The nonlinear analysis explained in §3 was presented in simplified limits. One is
the limit where the turbulent decorrelalion of drift waves is absent, that is, a drift
wavepacket has two integrals of motion. As a consequence, drift wavepackets are
considered to move on a surface in phase space set by the initial conditions. These BGK-
type solutions are addressed. The other is the limit in which the turbulent decorrelation of
drift waves is so fast that the Markovian approximation is used to model nonlinear
interactions. In general, the nonlinear decorrelation time of drift waves is not zero, even
though it may be short. Non-Markovian theory is necessary to treat the intermediate

cases [6.37]. Recent advances in this direction are discussed in this section.

6.4.1 Hamiltonian structure of the dynamics
The conservation property of drift waves in the presence of zonal flow is

expressed by the invariance of the action along rays, el.g., Eq.(3.4.l3). In order to stress
the analogy with Hamiltonian dynamics, one may rewrite the N equation as [3.112]

L N(x; k1) = £, N(i; k, 1)

| BH(x; k, t] aN(x;k, t] ah’(x;k, r] 8N(x;k, I)
=k * T ok ax (6.4.1)

with
H{x;k,t)= @fk) +k  Vge(x, 1) | (6.4.2)

where ay(k ) and k are the frequency and wavevector of drift wave, and VzF is the

zonal flow velocity.

Equation (6.4.1) is a Hamiltonian equation for the wavepacket density. Asis
shown in previous subsections, the zonal flow itself has a finite correlation time, even in
the situation Where the root-mean-square value is stationary. Drift wavepackets in
ambient zonal flows are also subject to statistical modulations. In order to consider this
statistical dynamics property, the response of wavepackets in the presence of the zonal

flow described is reduced perturbatively. One writes

| N(x; k, t] = <N(x; k, I]> + N[x;k, t] (6.4.3)

161



where (N (x skt )) is an average over temporal variations with respect to zonal flows,

and N (x; k,1 ) denotes the deviation. At the same time, the operator £,, is separated into

Ly =Ly, 0t Ly, zF - 644

where £y, o determines the unperturbed motion of drift wavepackets in the absence of

zonal flow

| Lw'0=—vg-a§'£ | (6.4.5)

(V= dw/ok : group velocity of wave) and Ly, zF describes the perturbation by the

zonal flow as
d
Lyzp=-Vzp g ~Wop 2, Wzp=-L{k V). (6.4.6)
By the separation in Eqs.(6.4.3) and (6.4.4), Eq.(6.4.1) can be rewritten as

387 (N(x; k, t)) - Ly o (N{x; k, r)) = <Lw ZF N(.r; k, t)> (6.4.7a)

Ba? N(x; k, I) ~ Ly o N’(x; k, t) ~ Ly 7F N’(x;k, t)= 1, ZF(N(J.'; k, t)) . (6.4.7b)

A solution of Eq.(6.4.7b) can be expressed as a path integral along the
characteristics. By combining it with Eq.(6.4.7a), one can derive a non-Markovian
equation for wavepackets, as

| g? (N(x; k, t)) — Ly 0 <N(x; k, r)) =

i

dr' { £, zAx:k, r)ﬁw,ZF(x(th');k(tlt'), t') <N(x(tlt’);k(r]t’), t’)> . (6.4.8)

it

where x(t|t’) and k[t|t’) denote the trajectory of wavepackets in the presence of zonal

flow, with the initial conditions

x(fr)=x and k() =k art=¢". (6.4.9)
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Equation (6.4.8) is an example of a Zwanzig-Mori equation. For a intermediate scale
zonal flow,

k>>K,>> L1, (6.4.10)

the approximation
<N(x(t|t'); k(tlr'), t']> = <N(x; k, r’)) (6.4.11)

may be accéptable. Equation (6.4.8) then turns to be a non-Markovian phase-space
kinetic equation of the form:

9 (Nlxik, 1)) = £y o (Mxik, 1)) =

o & Do) oo e 0Me-) ()

W0

{aak DKX(,_,:)_B%+B%.DKK(;“;’). a%}(N(x;_k, r)> . (64.12)

pXX ’ DXK’ DKX and DKK'

where are 2x2 tensors, given by

D (1-r)= <Vzn=, (. Vg, {x{dr), t)> : (6.4.13a)
blf{r-1)= <V2F, {x, ()Wzp, {x(d), k(slr), r]> , (6.4.13b)
Di’i,x(t - r’] = <WZF, ,—(x, k, I)VZF, j(x(tlt’), t’)> , : (6.4.13¢)
D:SK(t - t') = <WZF, i(x, k, I)WZF, j(x(tk'), k(flt’), t')> . (64 13d)

where I, j stand for the X and y directions. (The tensor form is necessary if one -

considers poloidal inhomogeneity, as is discussed in §3.3.4 or §6.1.) If the Markovian

approximation is now employed, one finds

J dr of¥(r ) (6.4.14)
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where &, B vary over X, K . The two quantities D}y and D)K)K reduce to what has

been previously obtained in the limit of short life time of the dnft waves.

Equation (6.4.12) describes the evolution of drift waves in the presence of a
statistical ensemble zonal flows. First, it is a non-Markovian equation, and includes the
finite memory time. Second, this equation includes cross interaction between the
wavenumber space and the real space. Note that the cross-interaction terms are also
derived in the diffusion approximation. Because of these effects, a deviation from the
simple diffusion approximation in phase space arises. As a noticeable consequence of the
non-Markovian effect, [6.37] illustrated super-diffusion and sub-diffusion phenomena in
the transient response. (The cross-interaction term is small for the pure zonal flow case.)

The Kubo number X may be defined as the ratio of the decorrelation time of drift

waves to the bounce frequency of wavepackets in the trough of the zonal flow,

- ®pounce
K‘_—Ydrift . | (6.4.15)

The analyses in §3.5.4, 3.5.5, and 3.5.7 are developed for A'< 1 , while that in §3.5.6
is given for the limit A" — = . (For the details of the bounce frequency, see §3.5.6.)
Equation (6.4.12) allows a study that covers a wide range of the Kubo number.
Evaluations of the Lagrangian correlations in the RHS of Eq.(6.4.13) have been studied

by using of the method of decorrelation trajectories [6.38-6.40]. Analysis of these effects
has begun [3.112]. One important fact is that the poloidal wavenumber of drift waves k

is no longer constant when the E X B flow exhibits the poloidal asymmetry. This is in
contrast to the case of stationary and purely m =0 zonal flow. New insights will be

given by future research.

6.4.2 Case of multiple fields

One of the key issuves in the theory is an extension of the Hamiltonian formalism
to the problems with multiple field variables, such as occurs with the inclusion of
magnetic perturbations. The transparency of the analysis which was brought by the
introduction of the wave kinetic equation could be maintained by introducing Casimir
invariants for the Hamiltonian dynamics with multiple fields [6.41]. Research in. this
direction is on-going, and results from it will be used for the case of zonal flows or for

the dynamo problem in electromagnetic turbulence.

6.5 Envelope Formalism
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The zonal flow problem belongs to the class of problems concerned with
understanding interactions in multi-component systems, with each component having its
own range of characteristic space-time scales. The ratio of the disparate scales naturally
defines one or more expansion parameters, which can then be used to develop
perturbative approaches to such multi-scale problems. A number of such multiplé time
and space scale perturbation theory methods exist. So far, we have discussed two
approaches to the muiti-scale interaction problem. The first uses parametric
(modulational) theory, and is based on a modal interaction expansion. The second is
wave kinetics and adiabatic theory, and is based on a description employing rays and
eikonal theory. A third multi-scale expansion approach exists, and is commonly referred
to as the envelope formalism. This section is devoted to describing the envelope
formalism approach to the zonal flow problem. '

The envelope formalism uses reductive perturbation theory to develop a
description in terms of the dispersion relation of a rapidly varying carrier wave
{associated with the primary perturbation) and the amplitude of a slowly varying intensity
envelope, associated with the mean field. The envelope evolves slowly in space and
time, as compared to the carrier. The envelope formalism complements the parametric

and wave kinetic approach in that:

(a) it is not restricted by the structure inherent to a modal expansion, and thus can
represent a wider and richer class of nonlinear phenomeha (i.e., solitons, collapse, etc.)

than simple parametric theory can.

(b) it is not restricted to an eikonal description, and so can capture the physics of the
competition between diffraction and nonlinearity, unlike wave kinetics.

Anticipated by Landau, the rigorous envelope formalism was pioneered by
Newell and Whitehead [2.33] in 1969, with the aim of describing secondary pattern
formation slightly above marginality in Rayleigh-Benard convection. The most notable
application of the envelope formalism in plasma physics is to the classic problem of
Langmuir turbulence and Langmuir collapse, as studied by Zakharov in 1972 [3.43]. It
is worth mentioning here that the Zakharov equations are the coupled envelope equations
for the amplitudes of the electric field £ and density perturbation 7 in Langmuir

turbulence, i.e.,

- 2i0p, $ E=A E-yvVE | (6.5.12)
3% . o202 2 )2
S fi-cdVi=V |EI". (6.5.1b)
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Depending on dimensionality, initial conditions, and the number of degrees of freedom,
many different nonlinear phenomena, including soliton formation, collapse, secondary
radiation-etc., can be described using this simple model. The simplicity and flexibility of
the Zakharov equations has greatly stimulated interest in both Langmuir turbulence and in
the application of the envelope formalism to other multi-scale nonlinear problems. The
first application of the envelope formalism to convective cell dynamics (and thus zonal
flows) was by Taniuti and collaborators in 1979. [6.42]

Here, we discuss only an especially simple application of the envelope

formalism [6.43, 6.44] to the problem of zonal flow generation in drift wave turbulence.
We consider a plasmas in 2D geometry with 7; =0, but with a mean E X B flow. In

this case, the basic equations for the fluctuations ~ and averaged fields ( . ) are:

g—(l—ngz)—eﬁ+Vd g e—‘T’+(VE)-V‘(1 —pgvi’-)i‘i

! e -a; € TE
+Vp V((n) - pg-V?%‘t)) =0, - (652)
9 vHp)+(Vg YV2§)=0, (6.5.3)
| o - |
aa? (n) +V, ay -1<re) +{(VgVi)=0, (6.5.4)

where the density # is appropriately normalized and V is the drift velocity. As in many

previous examples, we take the drift waves to be Boltzmann, but not the mean flows.
This system can be used to describe simple zonal flow and streamer phenomena. To

implement the énvelopc formalism, we write
eff) ] '
T:Nexp z(k-x—wt)+c.c. (6.5.5)
g : ‘ ‘ .

and assume the drift wave envelope ¥ (X , T) varies slowly in space and time. The fast

: -1
variation obeys the usual dispersion relation ® = kevd(l + kipg) . The scale of this
variation is, of course, tied to that of the secondary, mean fields (n) and (¢) . Here, for

the slowly varying parameters, the ordering

T=er,  X={exey) (6.5.6)
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expresses the scale separation. (In this section, € is a small parameter, not the inverse
aspect ratio.} Note that nonlinearities associated with like-scale interactions are ignored.
Now, expanding in £ throughout yields the equations for the envelope N and the mean
fields () and (¢) , which are

%0, 32 02w, 32 282&)k hY:

id y, ]
E k2 ax2 " k2 ay? + 3Kk, oxay |

2
+_p§mc1(ka@)-z“N-%(ka()) EN=0, (65.7a)

e

2 2 2
+2plog kxk).(a—‘%—#%(ki-kf.)afaa—y N[> =0, (6.5.7b)
(E%_vg . V) <n> +Vy ai}, §.e> =0 . ‘ ' (6.5.7c).

These equations are set in the reference frame moving with the wave group velocity, and
T=¢€T . Note that Eq.(6.5.7b) shows that the structure of the secondary flow is
determined, in part, by the anisotropy of the underlying turbulence - i.e., via terms

~ (ki - k?) , etc. The system of Egs.(6.5.7a) - (6.5.7c) constitutes the set of envelope

equations for the drift wave - zonal flow system, including the more general case of drift
wave - convective cell systems. [6.45-6.50]

For the particular case of zonal flow, d/dY = 0, and collisional damping of the
zonal flow Ygamp is important, so Eq.(6.5.7b) becomes

3 dJo 32 €(0) 322
(83_ akkB_J"YdamP)aXz T, _2Pgmcikxky5:§§|Nl =0

(6.5.8)

In the weakly collisional regime, then, the zonal flow potential is slaved to drift wave

stresses, via

' 202wk . '
o] e(d)):_( P W¢; xk))|N|2=0 (6.5.9)

dwy/ok
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so that the envelope equation is a cubic nonlinear Schrédinger equation

io N+l az(l)k 92 + 2pg(’)gik3?’kx
9T T2 %2 ax? d /oK

)|N|2N=0. (6.5.10)
Straightforward analysis then predicts modulational instability for drift wave numbers
such that

1+p2k5~p2ks>0. (6.5.11)
The most unstable zonal flow wavenumber is
5
2
mg‘{l + ng_l_)

V§(1 +p2k2 - pEki)

9 x, max =

Vo | (6.5.12)

where Ng is the maximum drift wave amplitude. The domains of zonal flow and
streamer instability are shown in Fig.6.1.3. A similar analysis for the collisional case has
been performed as well. The results are given in [2.27].

It is interesting to note that the results of the envelope expansion may also be
used to determine typical zonal flow scales. From the expression for §, .y » weakly

collisional zonal flow will have radial scale
ATAR
ar~ P () Falpsk ). , (6.5.13)

H

Here F Zp(p o 4 _1_) is determined by the p gk j -dependence of g, ax . Note that the scale
is amplitude dependent. For Aifng~pJ/L, , Ar~pgF Zp(psk _1_) , so a wide range of
zonal flow scales may be excited. In particular, smaller scales producing strong shear are

possible. Finally, note that zonal flows will be strongly localized near caustics, where
dwp/ok ,2 — 0. Strongly anisotropic collapse, to localized, singular shear layers, is

possible at caustics.

There is considerable work on the envelope formalism beyond the simpie analysis
described above. Weiland and collaborators have explored the effect of finite T; and ion

temperature perturbations [6.51]. More recent extension includes the study of
electromagnetic perturbations [6.52]. Spineanu and Vald have studied the structure of
zonal flow and have analyzed possible poloidal dependence [3.141, 6.53). Gurcan, et al.
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have examined zonal flow and streamer formation in ETG turbulence, which is
isomorphic to quasi-geostrophic turbulence, since both waves and flows have Boltzmann
ions [6.54-6.56]. They determined the criterion for collapse to singular shear layers and
addressed the problem of pattern competition between streamers and zonal flows using
technigues from the Langmuir problem.
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7. Laboratory Experiments on Zonal Flows Physics

In this chapter, we discuss laboratory experiments relevant to zonal flows. As we
have previously noted, the overwhelming preponderance of research on zonal flow
phenomena in plasmas has been theoretical or computational, and experimental studies of
zonal flows in plasmas are few and far between. Thus, this chapter is written with two
aims in mind, namely, both to review existing work and also to outline possible future
directions for studies of zonal flows, in the hope that more experimental work will be
stimulated. Given the intrinsic difficulty of studying zonal flows in confined plasma, we
divide our discussion into sections dealing with direct and indirect measurements. Direct
measurements are those which reveal and quantify the nature of potential, electric field,
velocity, and density fluctuations etc. which we associate with zonal flows. Indirect
measurements are coﬁEemed with the study of nonlinear couplings, etc., associated with
zonal flow dynamics.

This chapter is organized as follows. Sec 7.1 presents experimental results on
determining zonal flow characteristics. Sec 7.2 discusses zonal flow dynamics and their
interaction with ambient turbulence. For each section, we first summarize relevant
information from theory and simulation, and then present experimental results and
progress. We present our suggestions for future experimental research, including

possibilities for basic experiments designed for zonal flow measurements, in Sec 7.3.

7.1 Characteristics of Zonal Flows

The characteristics of zonal flows are described in Chapters 2, 3 and 4, and are
summarized in Table 2.1. Here, we reiterate some of those which are most relevant to
experimental measurements and tests [3.77].

7.1.1 Spatial Structure:

In confined plasmas, the equilibrium profile is usually treated as a smooth
function of radius, the characteristic scale length of which is less than or equal to the
minor radius (excluding the case of transport barriers) or of the barrier thickness (for
barriers). In the presence of turbulence, which varies in radial, poloidal and toroidal
directions, the flux-surface-averaged flow velocity can vary radially for two reasons.
One is the E X B zonal flow structure, which is discussed in this review. The other
possible origin is the corrugation of flux-surface-averaged pressure. If such corrugation
occurs, the diamagnetic drift velocity is also modulated, so as to vary in radius. As this is
often the case, the fluctuation envelope may, in turn, be localized in radius and decay in a
spatially intermittent manner. This latter type of localized diamagnetic flow, which is
nothing but a symptom of flux surface-averaged pressure corrugation, must be carefully
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distinguished from true zonal flows in experiments. Such pressure corrugations may be
induced by avalanches, streamers, and other transport events.

Turbulence-driven zonal flows are radially localized, with a broad spectrum of
radial scales ranging from the microscale (i.e., turbulence eddy sizes of Ar ~ several 10n
gyro-radii) through meso-scales (i.€., a fraction of minor radius). Gyrokinetic
simulations of ITG turbulence show that the component of the zonal flow has ¢, p; ~ 0.1

[3.77], for typical tokamak core plasma parameters, though the sensitivity of this value to
variable system parameters is unclear. The flows are axisymmetric (9; =0 n=0), and
the flux-surface-average of £ X B flows is mainly in the poloidal direction. The
associated electrostatic potential ¢ is poloidally symmetric (g = 0).

We note that the magnitude of zonal flow velocity, as predicted from tokamak core
turbulence simulations, is typically small (i.e., Vzg=10" 2Vm, i ), but the associated
E X B shearing rate is significant enough to regulate turbulence and transport [3.77,
7.1]. Obviously, this indicates that the zonal flow shear spectrum peaks at a higher g,p;,
than the zonal flow velocity and potential spectra. This 1s apparent from the results of
gyrofluid simulations, as shown in Fig. 3 of Ref. [7.1]. This suggests that the
difficulties in measuring zonal flows in the experiments come mainly from the fact that it
is neccesary to simultaneously ensure sensing long correlation lengths in the toroidal
direction (n=0) and poloidal direction (m=0) along with fast radial variation (on the scale
of several ion gyro-radii). This constraint poses severe challenges to experimental
measurement capabilities. Finally, achieving the goals of detecting the variability of the
portion of the zonal flow spectrum responsible for transport regulation and identifying a
causal link between flows and turbulence are further complicated By the fact that the
‘relevant’ shearing scales are determined by their autocorrelation times, as well as their
shear strength. Features of the zonal flows contrasting the zero frequency zonal flows
from GAM components are listed below in Table 7.1. ‘

7.1.2. Temporal behavior:

The frequency spectra of zonal flows and GAMs depend on plasma conditions,
and for this reason edge turbulence deserves a later, separate discussion. In the core, the
zonal flow frequency spectrum at a fixed ¢, has a broad peak at @ =0, and a width
indicating afinite lifetime, T, zp= (A(DZF]_ ' Zonal flows thus have frequency
components which significantly outlive the ambient turbulence (Awzg < Awygq, Or
equivalently T, 7r > T, gqq)- Their lifetime T4, 2F s determined either by collisions,

turbulent transfer processes as are explained in Chapter 3, by external noise, which is
explained in' Chapter 6, or by the instability of the zonal flow pattern.
In general, the question. of the nature of zonal flow damping boils down to a

comparison between the strength of collisional and nonlinear processes.
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7.1.3. Toroidal Geometry and GAMs
While the basic nonlinear properties of zonal flows can be most effectively

described in a simple geometry, and fundamental contributions to zonal flow physics can
be made by basic experiments, it is necessary to characterize the specific geometric effects
for each configuration to obtain a proper understanding of the actual experimental resuits
from toroidal devices. In toroidal geometry, the poloidal direction is no longer an
ignorable coordinate, and there exists an inevitable poloidal angle dependency of many
key quantities (for instance, B depends on the poloidal angle). While the flux-surface-
average of £ X B flows are mainly in the poloidal direction [2.7, 2.8], the toroidal return
flow has a sin 8 dependence. In general toroidal geometry, the zonal flow magnitude
Vor=—EJ/B =B '9¢,/0r, ie., (RBQB' I)B¢ZF181|! (y being the magnetic flux
function) has a slight in-out asymmetry due to a flux-expansion factor "RBg" [2.9]. Due
to the presence of geodesic curvature in various toroidal devices, the zonal flow contains
a linearly damped oscillation called a Geodesic Acoustic Mode (GAM) {3.5], as discussed

in Sec 3.1.2 and Sec 4.5.2., in detail. Since GAM pressure fluctuation has dominant
mode numbers n=0, m=1 (due to toroidal coupling), it has k" =1/gR , so that

Wgam = Gvy, /R. Here G is a coefficient of the order of 1, and ion Landau damping for
GAMs scales like ~ exp {— w22k ﬁvfh ,—} ~ exp {— G2q2/2}. Thus, one would expect a

“GAM peak” to be clearly visible in the frequency spectrum when GAM energy is
appreciable. In conclusion, some key features of GAM are not only a well-defined linear
oscillation frequency, Wgapm = Gy, /R, but also the existence of side-band pressure
fluctuations with n=0 and m=1. Properly distinguishing between oscillatory GAM’s and
classical zonal flows (which are quasi-stationary) is a major challenge to experimentalists
interested in zonal flow physics. This issue is particularly relevant since the finite
characteristic frequency of GAMs renders them easier to detect experimentally than the
zero-frequency zonal flows are. |

Finally, we briefly remark on stellarators (helical systems). Turbulence-driven
zonal flow properties in stellarators have not been discussed widely to date, but have
recently begun to be addressed in print [7.2]. The questions of the effective damping and
inertia.of zonal flows in systems for which axisymmetry is absent, are particularly acute.
In particular, new or enhanced damping mechanisms may be present, and the continued
status of zonal flows as “modes of minimal inertia’ is not certain. ‘For these, experiménts
on future stellarators with quasi-axisymmetry such as the National Compact Stellarator
Experiment (NCSX) [7.4} and CHS-qa [7.5] would be illuminating.

7.1.4 Experimental studies of zonal flow structure via potential

measurements
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. Flux-surface average radial electric field

* The most direct evidence of zonal flows comes from measurements of the E X B
flow Vo, the associated radial electric field E,, or the associated electrostatic potential
¢zr- As the importance of the flow shear decorrelation mechanism [2.7-2.9] in
enhancing confinement has become widely recognized [3.137, 4.13, 7.6], there have
been significant advances in the diagnostic capabilities in measuring E, using the motional
Stark effect (MSE) [7.7] or the heavy ion beam probe (HIBP) {7.8, 7.9], and in
measuring the poloidal velocity Vg of carbon irnplirity ions using charge exchange
recombination spectroscopy (CHERS), and then calculating E, from the radial force
balance relation [7.10-7.12]. However, an order of magnitude improvement in the
temporal resolution of these diagnostics is required to distinguish the temporal evolution
of zonal flows from that of the mean £ X B flow. Note that the "mean flow” can have a
component which is rapidly varying in radius, on account of a fast local variation of the
plasma density or temperature profile, especially at transport barriers. For this reason,
the "mean equilibrium” profile must also be measured with a radial resolution sufficient to
distinguish profile corrugation induced by a spatially intermittent turbulent transport and
narrow barrier widths from zonal flows. As discussed at the beginning of this section,
while zonal flows are typically long lived as compared to turbulence eddies, their auto-
correlation rate can reach 5KHz for typical tokamak core parameters [3.77]

Identification of zonal flow by use of HIBP

The heavy ion beam probe (HIBP) is capable of measuring the electrostatic
potential ¢, associated the radial electric field. Its relatively fine temporal resolution has
allowed detailed analyses of the edge transport barrier of the H-mode [7.13, 7.14] and the
internal transport barrier (ITB) dynamics in stellarators 7.9, 7.15, 7.16]. By use of a
single HIBP, the radial resolution of which has not been better than lcm, the mean E,
was measured. This is believed to be mainly determined by neoclassical (collisional)
particle transport, rather than by turbulence. The identification of the core zonal flow has
been achieved very recently by use of a dual-HIBP system, i.e., two HIBP's are set in
different toroidal angles, thus allowing the measurement of the toroidally symmetric 7 =0
component, which is the critical element of the zonal flow measurement. [7.17, 7.18]
Improved resolution and S/N ratio allowed the measurement of the local electric field.
This has made a path to the direct measurement of zonal flows in the plasma core. Figure
7.1 illustrates the power spectrum of the radial electric field in the core of CHS plasma,

. indicating the zonal flow component near @ ~ 0 and the peak of the GAM oscillations.
Measuring E, at fixed radius 71 by one HIBP, and E, at various radii 72 by the other
HIBP, the coherence of the radial electric field at #1 and 7, is directly measured. The
low frequency part (®/ 2% < 1 kHz ) has high coherence, démonstrating a long coherence
length. Cross-coherence takes a large positive value at 1 =77 , i.e., 2=0_, Asthe
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relative distance r'{ — 2 varies, the cross coherence-value between two measured.electric
field varies, alternately, between large positive values and large negative values. By this
measurement, the radial wavelength of the zonal flow was identified. In the case of
Fig.7.1, the radial wavelength of the zonal flow is about 1-2 cm. - This rapid radial
variation is another essential feature of the zonal flow. The amplitude of this zonal flow -
is also observed to be few 100 Vm~! _and the EX B shearing rate remains smaller than
the diamagnetic velocity divided by the plasma size. The sample volume still:remains of -
the order of the radial wavelength. This limit of spatial resolution may be an obstacle for
measuring the precise peak height of the zonal flow. The decorrelation rate of the zonal
flow, Awy,p, is found to be smaller than (or at most) 27 X 10 s~ in this observation,. -
and is close to the inverse time of the global energy confinement time. (The energy
confinement time is a few ms in low density ECH plasmas.) The radial scan of the
measurement point has revealed that the zonal flows exist over a wide region of radii. To
date, this result seems the most direct and convincing experimental confirmation for the
presence of the zonal flow in core plasmas.

Measurement at edge -

Near the edge of tokamak plasmas, Langmuir probes are applied to the study of
long-range electric field fluctuations. In the study of [7.19], radial electric fields are
measured at different poloidal angles simultaneously, and the low frequency component
is identified. Although the poloidal angle between two forkéd probes is limited (the
distance between them-in toroidal direction is about 1/10 of the minor radius), the
observation gives a strong support for the presence of the poloidally symmetric, low
frequency radial electric field perturbations as is shown in Fig.7.2. The amplitude and
radial wavenumber are evaluated as Vp/Vipp; = 0.5 -0.9% and ¢,P;=006-0.1 The

half-width at half maximum of the spectrum is not clearly identified.

Edge transport barrier
Another measurement of the electric field by use of the HIBP has been performed on the

JFT-2M tokamak [7.13, 7.14] in conjunction with the L-to-H transition. The radially-
localized response of the electric field structure near the last closed flux surface is
precisely measured. The jump of the radial electric field and associated change of the
fluctuations have been measured at the onset of the-L-H transition. . The high temporal
resolution of the potential measurement has allowed the determination of the rate of
variation of the radial electric field at the onset of the L-H transition: Results indicate

EJE;~ O(lom - ') This is in the range of theoretical predictions for the rate of radial

electric field bifurcation. So far, an accurate decomposition of the measured radial electnc
fiéld into the zonal flow and the "mean flow “has not been possible. The discrimination

of the zonal flow comporient from the "mean flow” at the transport barrier and other |
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regions of rapid profile variation remains a significant challenge for future experimental

research on zonal flows.

Observation of potential fluctuations in GAM frequency range
The long range oscillation in the core plasma, which is attributed to the GAM, has

been observed on CHS by use of dual HIBP systems as is iltustrated in Fig.7.1. The
frequency of /21 = 17 kHz is close to the GAO frequency at the observed ion
temperature [7.20]. The half-width at half maximum of the spectral peak is a few kHz.
The measurement of other wave parameters, e.g., the parity of the density perturbation,
the radial wavelength, and others, is on-going.

The experimental evidence for the presence of GAMs in tokamaks has also
increased. The measurement of potential fluctuations by use of the HIBP has been
performed on the JIPP-TIIU tokamak [7.14]. Low frequency fluctuations in the range of
20kHz have been identified in the vicinity of the plasma edge and core, as well [7.8,
7.21}. This was the most advanced measurement of potential fluctuation in the mid 90's.
This fluctuation was conjectured to be a GAM oscillation. Further analysis of the
measured data is ongoing.

Motivated by the recent community-wide interest in measuring zonal flows, HIBP
measurement data obtained from TEXT tokamak plasmas in the early 1990's have been
recently re-analyzed in detail [7.22]. The measured potential fluctuation has the following
propetties. For a range of minor radius fromr/a=0.6 tor/a=095 [them=0
component of the potential fluctuation with radial correlation length below 2cm (smaller
than the sample volume size) was found to be oscillating with a well-defined frequency
which matches that predicted for the GAM [3.5]. Outside of this radial range, no
significant m = O fluctuation in potential was detected.

It should be noted, however, that conclusive measurements of the long toroidal
correlation length (n =0 component) have not yet been completed (except by the dual
HIBP measurement on CHS). In particular, the pertinence of the measured potential
fluctuations to zonal flows (as opposed to GAMs) is still unclear. Even the dual HIBP
experiments need future experiments for more conclusive results. For instance, one
would expect that shearing amplitudes can be greater for the zonal flow component. It
also remains to be seen whether the potential fluctuation is accompanied by a side-band
pressure perturbation. It would also be illuminating to explore, via numerical sifnulation,
whether or not GAMs in that particular frequency and parameter regime could play a

significant role in regulating turbulence.
7.2. Zonal Flow Dynamics and Interaction with Ambient Turbulence

As is illustrated in Fig.7.1, the zonal flow amplitude and drift-wave fluctuations

are simultaneously measured on CHS by use of the dual HIBP system. This provides a
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possibility to identify the causal relation between the zonal flow and ambient turbulent
fluctuations. The detailed measurements and analyses are on-going, and a definitive
conclusion has not yet been obtained. Therefore, in this section, we discuss indirect
measurements on zonal flows. Such experiments attempt to detect and to elucidate the
physics of zonal flows by indirect means. In some cases, such indirect approaches strike
at the heart of the fundamental physical processes thought to generate zonal flows (i.e.,
triad interactions between two high frequency drift waves and the zonal flow). In other
cases, such approaches look for the “foot print” of the zonal flows in other, more
accessible fluctuation measurements channels (i.e., such as the Doppler shifted frequency
spectra of density fluctuations presumed to be advected by zonal flows). Thus, these
approaches are motivated by concerns of both physics and expediency.

7.2.1. Zonal Flow Generation Mechanisms

As discussed in Sec. 3.2, zonal flows in electrostatic turbulence in a simple
geometry are generated by the Reyndlds' stress associated with the nonlinear coupl‘ing of
higher-k components of the ambient fluctuations {2.30]. In the more general context of
electromagnetic turbulence in toroidal geometry, the evolution of the zonal flow can be
wrilten in the following schematic way,

d -
oz = Reynolds’ + Maxwell’s + Stringer-Winsor + damping ~ (7.1)

Most theoretical discussions on zonal flows have focused on the role of Reynolds’ stress
[the first term on the RHS of Eq. (7,1)], since it is believed to be relevém regardless of
geometry, values of the plasma beta, and the nature of fluctuations. However, some
[7.23] argued that, in the transition region between the core and edge of tokamak
plasmas, the Stri'nger-Winsor {SW) term [the third term on the RHS of Eq. (7.1)], can
play a major role in generation of the GAM component of zonal flows. The Stringer-
Winsor mechanism is basically a torque on the plasma pressure column caused by the
interaction of pressure inhomogeneity with the in-out asymmetry in magnetic field
strength [7.23]. In the results of Braginskii fluid simulation described in Ref. [3.140], it
was found that the SW term was greater than the Reynolds’ stress term for a typical
parameter set for the transition core/edge region. However, more recent related fluid
simulations by other teams found that the SW effect has a different sign from that of the
Reynolds’ stress and can make zonal flow generation weaker [4.64, 7.25].

As discussed in Chapter 3, for electromagnetic turbulence, the Maxwell stress
term [the second term on the RHS of Eq. (7,1)] associated with the / X B nonlinearity
can be appreciable. In the ideal MHD limit of purely Alfvenic turbulence, the Maxwell's
stress cancels the Reynolds’ stress exactly, and the state 1s called the purely Alfvenic
state. This establishes that zonal flow can be driven only through non-ideal MHD effects.
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7.2.2. Experimental Studies on Zonal Flow Dynamics

Tt is encouraging 1o note that the Reynolds’ stress has been measured using
Langmuir probes on the TJ-2 stellarator [7.26] and the H-1 tokamak [7.27]. One should
note that the dominant nonlinear mode coupling channel for zonal flow generation is the 3
mode coupling involving two high-k fluctuations and the zonal flow, i.e., a nonlocal
(distant) interaction in K. An increase of this nonlinear mode coupling is an indicator ,
albeit indirect, of increased zonal flow generation [7.28] . The strength of interaction can
be quantified by bi-coherence measurements and there have been bi-coherence analyses of
the probe measurements on DIII-D edge [7.29-7.31], which support the notion that the
nonlinear couplings, which are necessary for zonal flow generation, increases abruptly
just prior to the H-mode transition. A relevant experiment has been performed on H-1
heliac [7.32], confirming the dominance of nonlocal interaction in the generation of the
poloidally extended structures. The role of geodesic curvature coupling (i.e., the relative
importance of Reynolds' stress drive and the Stringer-Winsor drive/damping) have been
further investigated on the Kiel stellarator [7.33].

7.2.3. Experimental Studies on Zonal Flow Interaction with Turbulence
Given the difficulty in measuring ¢ , E, | etc., most fluctuation diagnostics
measure density fluctuations. Therefore, there exist many fusion plasma devices in which

zonal-flow-related experiments can be tried via density fluctuation measurements. We
summarize some experiments along these lines using different methods. One can try to
measure the zonal (n=0,m=0) cornponént of density fluctuations associated with the zonal
flow potential ¢,,.¢ ,-0. Anexperiment and analysis based on line-integrated
measurements of density fluctuations on DIII-D tokamak edge using the phase contrast
imaging (PCI) {7.34] was able to demonstrate that the fluctvation spectrum as a function
of k, and w, S(k,, a)] resembles that obtained from ITG turbulence simulations.
However, this line-integrated measurement could not demonstrate that the observed
fluctuations were symmetric in both poloidal and toroidal directions (i.e., m=0, n=0).
The estimated upper bounds on the mode number-was of the order of 30.

One way of examining zonal flow properties is to estimate the zonal flow velocity
(which advects the ambient turbulence) by analyzing the "measured” ambient turbulence
density fluctuation spectra. We note that for this approach, the instantaneous Doppler-
shift of the density fluctuation with wave vector k should exceed the decorrelation rates
of both the zonal flows and turbulence, thus allowing the use of Taylor’s hypothesis
[7.35]. Significant progress in this approach has been made by using a 2-dimensional -
array of beam emission spectroscopy (BES) diagnostics on the plasma edge. BES

measurements and analyses have identified that density fluctuations are advected by the
zonal-flow-like field [7.36]. The estimated flow amplitude was of the order 10~ 2vm‘,-
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roughly in the range observed in numerical simulations [3.77]. The alleged zonal flow
also has a well-defined frequency close to that of the GAM [7.37]. A signal was readily
observed at high q and not observed at low g [7.38], as expected from the ¢ -dependence
of GAM Landau damping, as discussed in Sec. 7.1.3. Unfortunately, another important
aspect of GAM oscillation is that the zonal flow (n=0, m=0) is accompanied by the n=0,
m=1 component of density fluctuations. This prediction could not be confirmed. This
shortcoming was partly due to the fact that the BES arrays were located near the low field
midplane side of the tokamak, where GAM density fluctuations are expected to be very
weak. From a simple theory, the GAM amplitude, at a given flux surface, is expected to
be highest at the top and at the bottom of the tokamak. The poloidal mode number of
density fluctuations from this experiment was predicted to be on the order of 10 [7.37].

Another way of estimating the zonal flow velocity, which of course advects the
ambient turbulence, is to measure the Doppler shift of the ambient turbulence density
fluctuation frequency spectra, using Doppler reflectometry [7.39]. An ocsillation at 20-
30 kHz was observed in the core of T-10 tokamak and was attributed to the GAM [7.40].
From a measurement of the edge plasma of ASDEX-U, a coherent peak in the spectrum
near the GAM frequency has been observed in addition to a stronger and broader peak at
much lower frequency which appears to be “zero frequency” zonal flow [7.41]. The
dependence of the peak frequency on the edge electron temperature s in broad agreement
with GAM frequency for various operation modes of plasmas including Chmic, L-mode,
and quiescent H(QH)-mode plasmas as reported in Ref [7.41].

7.2.4. Measurements of Zonal Flow Effects on Confinement

Another indirect way of demonstrating the existence of zonal flow is by
identifying the change in transport and confinement due to zonal flows. These include the
expected changes in turbulence-driven transport onset conditions (for instance, a change
akin to the Dimits shift) and transport scaling with key macroscopic variables (for
instance, ion-ion collisions, which damp zonal flows, or parameters which enter the
neoclassical dielectric function). Such studies should emerge from systematic

dimensionless parameter scans of plasmas.

7.3. Suggestions on future experiments and information needed from
simulations and theory

After a summary (not exhaustive) of the recent experimental progress in pursuing
the measurements of zonal flows, we discuss some future experimental plans and
possibilities for further progress and list key physics information which future
experiments will need from numerical simulations and theories for the identification of
zonal flows.
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We mentioned that an order of improvement in the temporal resolution of the
present day diagnostics, together with the identification of the 7 =90 component, is
required to distinguish zonal flows from the “mean E % B flows”. Regarding HIBP
measurements, two HIBP systems are operating on CHS, providing simultaneous
measurements of the electric field perturbation pattern and structure. Initial data from the
dual HIBP system has already yielded the essential direct observation of the zonal flow.
Future progress on CHS experiments are promising, and will play a central role for the
experimental study of zonal flow in core plasmas. Studies of higher resolution are
planned on the National Spherical Torus Experiment (NSTX) using a new spectroscopic
technique with a higher temporal resolution [7.42] and on the Alcator C-Mod tokamak
using a 2-D gas puff image (GPI) of edge turbulence [7.43].

Regarding bi-coherence analysis of turbulence spectra, the conclusive result in
this endevour requires the precise measurement of the zonal flow component, together
with the other two 'legs’ of the three wave coupling triad that resonate with the measured
zonal flow. The coherent part of this nonlinear interaction with the zonal flow of interest
must be measured, so as to quantify the acceleration of the zonal flow by the background
turbulence. This process can be extended to electromagnetic fluctuations in high
plasmas. Then the incoherent part of the nonlinear interactions must be measured to
quantify the stochastic noise term. Through these processes, one has solid understanding
of the physical process which governs the géneration of the zonal flow '

For further elucidation of the implications of the experimental results based on the
measurements of density fluctuations, the following information from direct numerical
simulations will be extremely useful. First, for an identification of density fluctuations
which accompany the zonal flows, simulations should quantify the expected level of
density fluctuations not only for the n=0, m=0-mode, but also for the side bands n=0,
m=1, etc. We note that most 'zonal flow charactenistics' listed in print to date [3.77] are
based on pure ion temperature gradient (ITG) turbulence, with adiabatic electron response
where A/n=0 for n=0, m=0 mode. With recent advances in gyrokinetic simulations
including more realistic electron dynamics as described in Chapter 4, such information
should now be available and should be extremely useful for experiments measuring
density fluctuations, such as phase contrast imaging (PCI) [7.44]. Of course, for detailed

comparisons between experiment and simulations, more comprehensive spectral
information than those usually presented (such as S(kr) or S(m) at a fixed &, etc) would

be desirable, especially S(k ~ 0)] and S(k O, ke) form=0, £1, £2 .- etc. Another

way to systematically demonstrate the effects of zonal flows is to scan the plasma
parameters and compare the detailed spatio-temporal behavior of the ambient turbulence
measured by comprehensive 2-D microwave imaging [7.45) to results from direct
numerical simulations. This, however, requires that the simulation code should be

validated via comparison to simpler experiments.
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Second, for an identification of zonal flows through the measurement of high-k
density fluctuations which are advected by the flows, the temporal scale separation of the
various physical frequencies required for Taylor’s hypothesis [7.43] should be
established in order to strengthen the validity of the experiments and analyses. The
relevant frequencies involved are:

k - Vg, the instantaneous Doppler-shift of the frequency of ambient wrbulence,
due to zonal flows, |
AWy, the decorrelation rate of the ambient turbulence,
and
Ay, the decorrelation rate of the zonal flow itself.

While the estimate that Awyg < Aty <k - Vg [3.77] is often quoted, this was only one
case for a 'typical' set of tokamak core parameters. Preferably, such information should
be available from direct numerical simulation, for each experiment.

The reason why the measurement of the zonal flow has been so rare in the
experiment of plasma confinement, which has lasted already about five decades, was
explained at the beginning of Chapter 7. That is, the need of high resolution of the
electric field measurement in radius and time, simultaneous with the capacity to measure
long poloidal and toroidal correlation length, is really demanding. These difficulties must
be overcome in the future, because the understanding of the drift wave-zonal flow

turbulence is a crucial element of the understanding of anomalous transport.
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8. Summary and Discussion

In this final section, we present the conclusions of this review of zonal flow
physics and briefly discuss directions of, and areas for, future research. There is no
question that zonal flows exist, are ubiquitous constituents of drift wave turbulence in
confined plasma, and also occur many places in nature. Research has also demonstrated
that zonal flows are an essential element of the mechanisms of self-regulation of drift
wave turbulence and of the formation of edge and internal transport barriers. The
development of the understanding of zonal flow phenomena has made a concrete -
contribution to controlled fusion research, in general, and to the design of ITER and other
future experiments, in particular.

The theory of zonal flows is now a well-developed subject. We have shown that
it is convenient and illuminating to classify the diversity of zonal flow dynamics
according to the degree of stochasticity of drift wave ray propagation in the zonal flow
field, and by the ratio of the zonal flow autocorrelation time to the 'bounce time' of a dnft
wave packet trapped in a zonal flow field. A variety of approximation methods have been
utilized to calculate the rate of zonal shear amplification, for both the coherent and the
stochastic regimes, and for a variety of different geometries. All of this wide variety of -
calculational approaches have the common element of their foundation in the disparity of
time scales between the primary drift waves and secondary zonal flows. The back
reaction of zonal flows-onto the primary drift wave spectrum via shearing, both coherent
and stochastic, is now well understood. Such insight has facilitated the construction of
simple but self-consistent models which describe the various states of the drift wave-
zonal flow system. The development of more advanced theories, such as probabilistic
approaches and models, is proceeding in the research community. ‘

Numerical simulations of zonal flows have identified their generation in a broad
regime of models of low frequency microturbulence. In addition, some aspects of zonal
flow structure, generation by modulational instability, and saturation scaling trends have
been critically tested by numerical simulation, with a high degree of success. However,
the further development and application of detailed computational diagnostics to
quantitative tests of zonal flow theory is still quite desirable. Experimental research on
zonal flow phenomena is still in its youth. While several experiments have identified
various elements characteristic of zonal flow phenomena, critical tests of basic zonal flow
physics and of the basic theory remain incomplete.

We now discuss some of the frontiers of, and possible future developments in,
the physics of drift wave-zonal flow turbulence. In the realm of theory, the critical
problem is that of identifying and evaluating zonal flow saturation mechanism in the
collisionless regime. Further and deeper work on tertiary shear flow instability, nonlinear

wave Kinetics, trapped wave packets and turbulent trapping will be valuable and surely
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will be forthcoming. Such works need to confront the reality of realistic geometry,
including that of the stellarator, as well. The advancement in meeting the challenge of
complex geometry and dynamics will strengthen an already powerful theoretical basis,
which commonly helps to solve the expected mysteries presented by future space and
astronomical observations. In addition, the role of convective cells (1.e., alternatively
nonlinear streamers ) in the drift wave-zonal flow system must be better understood.
General convective cells, which varies in the poloidal direction, can be induced by drift
wave turbulence, and may have a strong impact on the dynamical evolution of transport in
the system. The structure of convective cells which are rapidly varying in the poloidal
direction may be strongly influenced by magnetic shear. The partition of excitation
energy between drift waves, zonal flows and convective cells has not been fully
addressed, and requires intensive future study. This issue lies at the heart of the "pattern
selection' problem, as to which type of secondary structure is the ultimate 'attractor state’
for a given set of system parameters. More generally, the nonlinear theory of wave
kinetics, particularly the régimc near primary wave marginality (i.e., v, — 0), remains
unexplored and thus merits further development. This is a general theme in plasma
theory, and progress on this topic will sow the seeds for future benefits in a number of
problems. Another area of likely activity is the study of the interaction of zonal flow with

mean E X B sheared flows and other questions pertinent to confinement, such as

turbulence propagation. Also, further study of electromagnetic effects on zonal flows is
necessary, including, in particular, A | effects (A is the vector potential in the direction
perpendicular to the magnetic field), which are critical to high beta plasmas, such as those
found in spherical tori. The more general questions of the interaction between zonal flow
dynamics and those of magnetic dynamos, etc., remain to be clarified, as well. Finally,
since zonal flow shearing is effectively a process whereby smaller scales are strained by
larger scales, it is fundamentally an intermittency phenomenon. Future theoretical
research must address-such intermittency, in order that predictive capacity be optimized.
In particular, the astute reader will surely have noted that all discussion of zonal flow
shearing, herein and elsewhere, is, as usual in plasma physics, organized in the either
coherent shearing models, where k ,V:g x gt , or-stochasfic shearing models, where
8k, ~ /Dyt . In reality, nondiffusive Levy-flights on k, , with k., ~t% 12 <a <1 are
surely possible and will appear as intermittent, strong shearing events. To describe such
phenomena, a fractional kinetic theory [8.1] will be necessary. Insights from SoC-type
models [3.111] may be useful, as well.

Future simulation research must progress further from observation and
identification of zonal flow phenomena to quantitative numerical experiments and tests.
. More advanced numerical diagnostics must be developed, and more systematic regime
surveys must be implemented. Though numerical simulation has contributed much to our
understanding of drift wave-zonal flow turbulence, its full potential has not yet been
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tapped. Finally, it must be said that the greatest opportunities for future research on zonal
flows lie in the realm of experiment. Particular chalienges include the simultaneous
study, correlation and synthesis of generation dynamics in real space (i.e., via vorticity
transport) and & -space (i.e., via nonlinear mode coupling), and the development of
methods to control zonal flows. More generally, future experiments must emphasize
challenging the theory and confronting it with stressful quantitative tests.

Finally, it should be emphasized that the zonal flow dynamics problem represents.
one well-defined example of a broad class of bifurcation phenomena in confined plasmas.
As such, it can and will join with other firm webs of interacting feedback loops which
collectively govern plasma dynamics. For example, in burning plasmas, both burning
and quenching can be expected to appear as dual, bistable states. Transitions between
them, either periodic or intermittent, could be triggered by transport events, for which the
dynamics of drift wave-zonal flow turbulence in high temperature D-T plasmas would be
of central importance. Internal transport barriers formation in burning plasmas is another
example of events from this category. The predictability of such transition phenomena
merits intense theoretical study. However, interest in zonal flow physics is not limited to
the realm of fusion plasma physics. Zonal flow generation is an example of a broad class
of problems dealing with the ampliﬁcaﬁon of an axial vector field with global symmetry
by microscopic turbulence which is driven by the gradient of a scalar field. This category
of problems also includes the magnetic dynamo (solar, terrestrial and galactic), accretion
disk dynamics, jet formation, the global circulation of the ocean, etc. Thus, the study of
zonal flows is a splendid opportunity for plasma and fusion science to demonstrate its

capability to make a significant contribution to this now classic lore of problems.
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Table 1.1. Comparison between zonal flow in plasmas, dynamo, electromagnetic (EM)
flow generation and flow structure formation.

Main Generated Equations in Coverage
Name of Name small-scale  global Examples .  fluid limit and by this
Concept fluctuations  structure fundamental drive  review
Ex B flow EM and pressure Zonal flow MHD eq. Yes
dynamo  fluctuations Ex B flow in toroidal Plasma response
Electro- (drift waves) plasmas Pressure gradient
magnetic .
flow MHD flow EM Magnetized MHD eq. " No
dnve dynamo  and flow flow Bipolar jets Gravitational force
fluctuations Coriolis force
Neutral Small-scale  Zonal flow Jobian belt. Navier-Stokes eq. Yes
flow thermal Tidal current Thermal convection
Flow dynamo conveclion Jet stream, etc. Coriolis force
gene-
ration Flow Small-scale  Structured Swirling flow, Navier-Stokeseq.  Partly
structure  convection  flow Asymmetry in  Drive of axial flow
formation pipe flow
Dynamo  Fluid motion . Magnetic field  Geodynamo MHD eq. No
(thermal Solar dynamo  Thermal convection
convection) Coriolis force
Magnetic
dynamo  Magnetic Magnetic Magnetic field RFP torus MHD eq. No
structure  fluctuations External toroidal
formation (kink, tearing) current
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Table 2.1. Characteristics of zonal flow

Spatio-temporal structures
eigenfunction

electrostatic perturbation is dominant; A /ng = q*p2ed/T, oriing=0
radial wave length g7 ' _

ap;>q;2>pt org,~ 0(0. 1 ) pr !, weak poloidal assymmetry
radial coherence length

canbe ~ /dp,; (See also § 6.4)
real frequency Qzp

Qzp=0

autocorrelation time

v;£7), and see § 3.5.1
amplitude
' average vorticity is order Py 'Vd (§3.5)

Phase diagram for ZF
appearance: See §3.2.1, §3.2.2

significant impact for turbulent transort: ¢,Vzg > Ao, (See §3.5)

Microfluctuation that is the origin of ZF
all instability in the range of @« ; p; and p,
partition between ZF and turbulence: See §3.5.1, §3.5.6

Impact on turbulence
significant impact if ¢,Vzr> Aw, (See §3.5)

scattering of drift wave packet in (x, k x) space if Wpgunce > AWy (§3.4.6, §3.4.7)

Interactions between ZFs
through modifying microfluctuations; no direct condensation/cascade so far
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Table 2.2: State of Drift Wave - Zonal Flow System

State No flow Flow ((],2 = 0) Flow (az % 0)
+oyyo )
N (Drift wave YA® :/a‘_' Yd + 0y

o+ Awo o !
turbulence level)

F y— )
) ¥ _ Awy, Y- Awyge
V# (mean square 0 0~ o2 o+ Amo0 |
flow)
Drive/excitation Linear Growth  Linear Growth Linear Growth
mechanism Nonlinear Damping of
. Flow

Regulation/inhibition ~ Self-interaction Random shearing, Random shcai‘ing,

mechanism of turbulence Self-interaction Self-interaction
- Awy,o ! - Awygo !
Branching ratio 0 Y= 00y it 1
. Yd Yg + O Y
V2/N
Threshold ¥>0 ¥ > Ay o ! ¥> Awry o

(without noise)
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Table 3.2.1: Analogy Between Weak Langmuir Turbulence and Zonal Flow

Generation

Langmuir Turbulence

| Drift Waves and Zonal Flows

High Frequency Population

Plasmon/Electron Plasma
wz = wi + yv%hrkz

Drift Wave
@ = Weef1+ k3 P:

Low Frequency Structure

Phonon/lon Acoustic
Q=qc,

Zonal Flow
Q=0

Drive Mechanism

Ponderomotive Pressure

(E?)

drw,

Turbulent Reynolds Stress

(w:%)

Wave Population Distribution

Action «>Plasmon Number
|E| 9€
N=1Z=
. on dw

Potential Enstrophy — Drift-ion Number

N =(1+k1p7) ef 2

Modulational Instability Criterion

dooydi>0— XM S g
dk

Population Inversion Needed

dw/dk<0-—)£i~<—N—)<0
dk

Population Inversion Unnecessary

Regulator

Ion Landau Damping of Phonon

{ Collisional Damping of Zonal Flow
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Table 3.4.1: Analogy of 1D Vlasov and drift Wave - Zonal flow Problems

1D Viasov Plasma

with Langmuir Waves

Drift Wave Packets
in Zonal Flow Field

Particle
Langmuir wave spectrum

Constituents

Particle velocity v
real space X

Time scales
Autocorrelation time T,

min {(k Awk)) ',vAk}
Nonlinear time Trapping time (e /m)” ’

-1/
Decorrelation time T, (kzD)

Relaxation time Av 2D; :

min { vz |, k%D, (.«;}Dk(du gldk)z)

Drift wave packet
Zonal shear spectrum
Packet group velocity v
wavenumber X ,

om0 oy

Turnover time T, = Qx‘?ZF ) ml;olunce

-1/3

AKYD,

Resonance and ~ Wave-particle w/k = v,
irreversibility
Phase space overlap

<> Orbit chaos

Wave packet - Shear flow

v g[k] =Qlg,,

Group-shear resonance overlap
<> Ray chaos

Stochasticity/Quasi-linear
T, < T, , orbit chaos,

Random Acceleration
Velocity diffusion

Tae < 7Ty, ray chaos,

Random Shearing
Diffusive refraction

Weak turbulence
Induced Scattering <>

Nonlinear Landau damping

of particles

Induced scattering of wave packets
in Zonal flow field

Coherent/Trapping

Tac > T , particle bounce motion

Trapping oscillations
~ BGK mode

Tac > Ty , Ray trapping
Ray trapping oscillations
— BGK wave packet

Trapping in turbulence
Granulations, clumps
— Fokker-Planck drag

Wave population granulations
— Wave kinetic drag
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Table 3.4.2: Regimes of Zonal flow - Wave kinetics

Chirikov Overlap  Kubo Dominant
Regime Parameter number Physical Process

S=nMvJAQq,) A=1,d1,

Stochastic S>1 A << 1 Stochastic Rays
Random Shearing and Refraction

Turbulent S>1 A<l Stochastic rays,
Trapping Shearing with Granulated N
Coherent S<<1 A>1 Strongly Deflected Rays,

' Wave Packet Trapping
BGK solution A > oo Wave Packet Trapping
Single wave S—-0 A -0 Modulational instability
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Table 3.4.3: Comparison of Stochastic Dynamics

Particles in Electrostatic
Wave Spectrum

Drift Wave in
Zonal Flow Field

Diffusion Coefficient
2y .
p,=T 4 |E, ’R{k, w)

Rlt )= — ok
(m—kv) + T
Scatering Field
Wave spectrum
g |2
Z|E
Scatered Field

Particle v > f[v)

Spectral Autocorrelation Rates
A®~! & time for fastest

slowest waves
to cross

Nonlinear Decorrelation Rate TZ !

kD

r

time for particle to scatter
one wave length

201

Zonal shear spectrum
72 X7 2
| Vzr =;¢13 VZF.ql

~1
(q {dv g/dk)Ak) & time for

wave packet to disperse while crossing
flow layer

1/3
max ¢ Yy, Dkk_z, (q%Dk(dv gldk)z)

lower of times for wave packets to diffuse
one wavenumber or to scatter through
zonal flow scale by wavenumber
diffusion and propagation or persistence
time of triad




Table 3.5.1 Short summary of theoretical method and description in this subsection

Theoretical
method

Nonlinear process and

subsections in §3.4

Self-consistent state
explained in §3.5

Parametric
instability

Random Phase
Approximation

Coherent structure

tertiary inst.; 3.4.1
dithering; 3.4.2
predator-prey;  3.4.5
diffusion model; 3.4.4
wave trapping; 3.4.6
saturation; 347

L
Lh
L —

W
halod
o
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Table 4.1: Correspondence between the presentations of theory and corresponding
examples of computational results

Key Issue Section for  Example of
theoretical Computational
explanation result (Figure #)

Linear Process
eigenfrequency
colliisional damping
RH undamped flow

'-hw

§3.
§
§
Generation by turbulence §3.2
growth rate §3.2.1, §3.2.2
§
§
§

Suppression of turbulence
stretching vortex
effect on cross phase

Nonlinear interaction
tertiary instability § 3.4.1
RPA and diffusion approach . 8343
wave trapping §3.4.6,
broadening of ZF spectra §3.4.8
dynamical evolution §3.5.1

Steady state
and energy partition
weak instability case
complete suppression §3.5
role of collisional damping §3.5
quench via transient burst -§3.5.
$3.5
§3.4

B h
oo~ o
>
[ o]

strong instability
coherent structure

Other effects
Non adiabatic electrons 4.14, 4.20
electromagnetic effects §3.2.6 4.14

ETG mode Appendix C 4.18

Collisionless dissipation 4.17
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Table 5.1.1 Terms in dynamical equation (5.1.8) and related equations, flow and

waves [5.1]

M @ 3 @& 6 ©O O
0 Y Hydrostatic equilibrium
0 0 0 Bernoulli equation
¢ ¢ 0 0 Y Navier-Stokes equation
¢ 0 0 geostrophic and thermal wind eq.
0 Q 0 gradient-driven flow
0 ¢ inertial flow
0 ¢ Stokes flow
0 0 Eckman spiral
o 0 Y Fick's law
¢ 0 ¢ Sound wave
0 0 0 'Rossby wave
0 ¢ 0 Alfven wave
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Table 5.2.1 Comparison and Contrast of Jovian Atmosphere and Toroidal System
Dynamics ' '

Jupiter Toroidal System

Basic Characteristics

Free energy vr VT ,Vn e
Rotation Q. >> 0 Q. ;>0
Rossby number  R,=®/8, << 1 R, = kip? e0/T << 1

Effective Reynolds number
strong turbulence Ry~ 10 - 100
wave turbulence

Instability Thermal Rossby - Drift- ITG
' Frequency  Becffect  Diamagneic
" Cell Structure_Taylor-Proudmann  Ballooning modes,
Columns extended along B
Threshold R,>R,. RiLg;> RiLg),,
By Rising Thermal Plumes  Ballooning envelope fragments
 Tamspont wbulentwansport Dot ~Dgoporm
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Table 5.2.2 Comparison, continued

Jupiter Toroidal System

Basic structure Belts, Zones n=0, k_ finite,
' electrostaiic fluctuations

Location Surface, "Weather Layer” Core and Edge of
‘ Confined Plasmas
Mechanism i) Secondary bifurcation of Modulational instability of
for Convection Column Wave spectrum
Generation Tip Cells
i1) Inverse Cascade in

Weather Layer with

B -effect
Large Scale Eckman Friction Rosenbluth-Hinton Friction
Dissipation
Anisotropy B -effect Flow - Minimal Inertia
Flow and Same Flow 2D (n =0 ) and
Fluctuation model Fluctuation 3D, with kv, o> 0
Bifurcated State Belt Formation L-mode, ITB, ETB
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Table 6.3.1 Correspondence between the SOC model and continuum model (based on
[6.25])

model of continuous media SOC models

Localized fluctuation (eddy) < Grid site (cell)
Local turbulence mechanism <> Automata rules:
~ Critical gradient for local instability <>  Critical sandpile slope
Local eddy-induced transport <> Number of grains moved if unstable
Heating noise <> Random rain of grains
Energy/particle flux <> Sand flux
Mean temperature/density profiles <> Average slope of sandpile .
Transport event ¢ Avalanche '
“

Sheared electric field Sheared flow (sheared wind)
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Table 7.1. Experimental characteristics of zonal flows

Zonal flow GAMs
(narrow sense) :

Jluctuation structure
m=n=0 for¢ m=n=0 for¢
ﬁ<<lf) m=1,n=0 for#
‘ﬁ/n0|= ﬁqrps|e("f>/Te|

real frequency

Q=0 Wgam = UTh/R
autocorrelation time :

evy;!, or other (TBD) v;!, or other (TBD)
radial wavelength

ap;> ;%> p? -

radial coherence length
several tens of p; ~ /ap; «

amplitude (vorticity) '
order of p7 1V, TBD
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Appendix A Ray of Drift Wave Packet and Trapping

A ray of drift wave packet in the presence of zonal flow is calculated by assuming
that the autocorrelation time of drift wave . is much longer than the dynamical time of

the zonal flows. The drift kinetic equation for the drift-wave action density is given as

3 d Ny
— N +vV,_-
o kT8 gy

IN, OV

=k
8 gk, dx

; (A.1)

When a screening effect of the finite gyroradius effect is kept, V- is replaced by Vg,

which is given as

42V
d2

Ve = Vg +pl (A.2)

In comparison with Eq.(3.4.13), the linear growth and nonlinear damping terms of drift
wave are dropped in Eq.(A1), because the case with coherent waves is studied here.

(i) Stationary State

A coherent and stationary structure for the zonal flow is considered here in
Eq.(A1). A stationary solution which is propagating in the x direction with the speed u

is analyzed by the transformation of

4 , .48 . : : .

Equation (A.1) is rewritten as

N, | dVz aN, _ : o
(vg—u) =y akx_o. | (A4)

Equation (A .4) shows that the drift wave action is constant along the characteristics
ky=k g | | . (A.5)

and
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Ok, _ ky dVy
- Sl B ol | (A.6)

Integrating Eq.(A.6) once over x, Eq.(A.6) gives
(Dk—ukx—kyVﬂ:EU)ko (A7)

~ with
1 . . . .
u)k=k)0(l + K2+ ) : | (A.8)

Equations (A.5) and (A.7) show two integrals of motion. The integral constant wy is

the initial frequency, and the LHS of Eq.(A.7) is kept constant during the evolution of the
system. This means that the wave-packet of drift wave moves in the phase space

(x, ko k J) while keeping % y and the screened frequency (A.7) constant: Itis

strai ghtfon&ard to see that k y is constant, because the zonal flow does not violate the

symmetry in the y-direction.

(u) Ray of Drift Wave-Packet
Equations (A.7) and (A.8) describe the ray of the wave- packet of drift waves. Ina
case of the inhomogeneous zonal flow like Fig.A.1(a), the wave- packet moves in the phase

space (x, k x). The trajectory is illustrated in Fig.A.1(b) for the case of u=0. Note
that the group velocity of the wave in the x-direction is opposite to the phase velocity.
The wave-packet with positive x-direction (i.e., k < 0), the velocity decreases, and is
reflected.

The trajectory Fig.A.1(b) explains the mechanism of linear instability of zonal flow.
The wavevector of the drift wave starts to increase when the test zonal flow (dV,/dx> 0)

is imposed. The distribution function N(k J which is symmetric in & . starts to

deform. Figure A.2 illustrates the change of distribution function after the imposition of
the zonal flow like Fig.A.1(a). The original symmetric one (solid line) deforms as is

shown by dashed line. Asa result, N(k Q becomes larger for k >0 and decreases for

k ,<0. The difference of N(k x) after the imposition of the zonal flow is positive for _

k > 0. Thisis an alternative explanation for the source term illustrated in Fig.3.2.4.
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(iii) Reflection and Trapping of Drift Waves

If the inhomogeneity is localized in space, the trajectories are categorized in two
Zroups. One is the transit orbit, moving in all piaces. The other is reflected trajectory.
By this reflection of wave-packets, the inhomogeneity of zonal flow velocity is sustained.
Figure A.3 shows an example of the localized inhomogeneity of zonal flow and the
reflection of waves.

The preceding analysis leads to the fact that (a) the drift wave-packet can be labeled
by the initial frequency y, and that (b) the wavefrequency oy and the wavenumber &
are modified along the path of drift wave-packet according to Eq.(A.7).

The trapping of the drift wave-packet in the trough of zonal flow velocity is derived.
Figure A.4 illustrates the rays of drift wave-packets in the phase space for the case that the
screened velocity Vo has a sinusoidal dependence in the x-direction. Near the
minimum of the zonal flow velocity, the wave-packets follow the bouncing orbit. At the
maximum, the separatrix appears. If the initial value of & _ is large, the wave-packets are
not trapped but follow the transit orbit. Thus the wave-packets are divided in to the class
of trapped waves and the class of transit waves. - They are also called the bounded quasi-
particles and free quasi-particles. |

The trapped region is determined by the difference between maximum and

minimum of Vg, AV . The wavenumber on the separatrix at the minimum of Vg

is given as
— : 2
, AV (14K%)
k_xo’ sep = = 3 : (Ag)
I - AVZF(I +k }0)
for a simple case of ¥ =0. Wave packets which satisfy
K0 <K%, sep (A.10)

are trapped in the inhomogeneous zonal flow.  As is the case of particle trapping in the

waves of collisionless plasmas, the width of the trapping region in the phase space of

quasi-particles is in proportion to the square-root of the amplitude of the zonal flow.
The bounce motion of wave-packets is analyzed.  As is explained in Eq.(A.10),

" the "acceleration’ of the wave-packetin k _ space is given as kgdV/d x. Therefore the

dynamical equation of the wave-packets are given as
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(=9
-

-d-:t—=vg (A.11a)
Sk =k LV (A.11b)

Expanding Eq.(A.11a) and (A.11b) near the O-point of the trapped particle orbit at the

bottom of V., one has a linearlized equations

dx _ — 2wy
-—d k =1k d? 1% X ‘ (A.12b)
TR R T AR : )

where the subscript m indicates that the derivative is taken at the minimum of the zonal

flow velocity. The bounce frequency is derived as in a dimensional form

. 2pkk K, d%]". (A13)

w = w
bounce 2.2 kO
1+ psks dr

5 max

As is the case of the trapping of resonant particles by waves in collisionless plasmas, the
bounce frequency of guasi-particles (wave-packets) has a dependence like

wbounée x I ZF - (A-l4)

The bounce frequency away from the O-point is evaluated by use of the elliptic functions.
The bounce frequency becomes lower as the trajectory approaches the separatrix.
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Appendix B: Hierarchy of Nonlinear Governing Equations

In this appendix, the hierarchy of nomlinear governing equations is explained.  Steps for

reduction, and physics lost due to reduction is also listed.

Nonlinear equations: | Steps for Physics lost due to reduction
From fundamental, reduction

primitive to reduced,

simplified

Vlasov-Klimontovich
equation |B1}

Gyrokinetic Equation:
Conservative-
|4.4, B2-BS5|

Gyrokinetic Equation:
Conventional |4.2]

Gyroﬂ uid Equation
[4.7, B7, B8]

Fluid Equations
[B11-B16]

Remove high
frequency terms

(20;)

[ High frequency phenomena [B6]

B T e T

Neglect velocity
space nonlinearity

" Take moments in |
velocity space

Expansion in
finite Larmor

Conservation of energy between |
particles and fields, of phase-space
volume, nonlinear trapping of

particles along B. (Influence is
illustrated in Fig.B.1.)

o s e s e e e

Some nonlinear kinetic effects
including inelastic Compton
scattering | B9], accuracy in
damping rates of zonal flow {2.40,
2.41] and damped mode |B10]

radius terms;
Ordering for
collisional
plasmas

Most kinetic effects associated with
long mean free paths and finite size
orbits.

Table B.1 Hierarchy of goveming equations

As is explained in the main text, most simulations mentioned above have used the

conventional nonlinear gyrokinetic equation{4.4|, which ignores the velocity space

nonlinearity, which is formally smaller than the Ex B nonlinearity. The conventional

nonlinear gyrokinetic equation fails to obey the fundamental conservation laws, such as

energy (of particles and fluctuation fields), and phase space volume at a non-trivial order.

For longer times, well after the initial nonlinear saturation of turbulence, even very small

errors in the govemning equation can accumulate (in time, regardless of computational

method) and muddy the physics predictions. A recent simulation |4.48] in cylindrical

geometry used a fully nonlinear energy conserving and phase space conserving form of

the nonlinear gyrokinetic equation {4.6]. The importance of using governing equation with

proper conservation laws is demonstrated in this series of simulations, with and without

velocity space nonlinearity. The authors reported that neglecting velocity space

nonlinearity in an ITG simulation resulted in undesirable consequences. The energy was
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no longer conserved between particles and fluctuating fields, and a precious indicator of
the quality of numerical integration was lost. The zonal flow pattern and the radial heat
transport pattern were affected as well. The results are presented in Fig. B.1; it highlights

an issue related to reduction of equations.
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Appendix C: Near-Isomorphism between ITG and ETG

Here the quasi-isomorphism between TG and ETG are tabulated in Table C.1.

TG

ETG

From gyrokinetic equation

— e¢/T; : pure adiabatic

(4

Key issue
Linear response in the t
electrostatic limit !
-
|7
1
1
1

e((b - (q)))/Te : adiabatic

with zonal flow

From gyrokinetic
equation

Disparity in transport channels
caused by particular turbulence

Xi~Xp> Xe» D

Xe=%7> Do %p Xo

Zonal flow strength in
nonlinear regime

Typically strong

Typically weaker

Radial correlation length of

Uncertam — current

. . P
ambient turbulence at nonlinear Several research
saturation
Isomorphism breaker Zonal flow - residual magnetization

of ion response
- electromagnetic effect

'| - Debye shielding

Table C.1 Quasi-isomorphism between ITG and ETG

In this table, D, X¢ and X, are diffusivities of particle, momentum and current.

Note

that ETG will transport current much like ITG transport momentum. % ; is like hyper-

resistivity.
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Free Energy
Source,
grad T, grad n

—

Drift Wave
Turbulence

—>

Classic Paradigm of Drift Wave Turbulence

Free Energy
Source,
grad T, grad n

Drift Waves

/

:

‘| Zonal Flows

Dissipation
(i.e., Ion Landau
Damping, etc.)

—»

Wave
Dissipation

Flow Energy
Dissipation
(i.e., Collisional
Friction)

New Paradigm of Drift Wave-Zonal flow Turbulence

Fig. 1.1 New paradigm for the plasma turbulence
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Shearing of Turbulence

by Zonal Flow
State of
wajp- | Turbulence
Zonal Flow Shear and Flows
Amplification by
Turbulence

Fig.2.1 Mutual interaction of drift waves and zonal flows

Fig.2.2. Zonal electric fieild and zonal flow. The poloidal crosssection of toroidal plasma
is illustrated. Hached region and dotted region denote the positive and negative charges,
respectively.  Plasma flow is in the poloidal direction as is shown by the arrow.
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time

>
O.0.Oz=Z=
Fig.2.3 Shearing of the vortex

#\'ry |
T RN S

(a)

Y y
|V

» X

(b)
Fig.2.4 Sheared mean flow (a) and zonal flows (b) are illustrated. ‘
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A time \ ﬁ (\

Fig.2.5 Drift wave in sheared flow field. When a drift wave packet is propagating in the
x-direction in the presence of flow shear, dV_‘/d.x >0, the wave number &, changes.

Fig.2.6 Short wavelength fluctuations (k| , k,) generate the long wave length
The local

component (q ) by nonlocal interaction in the wavenumver space.(left).
interactions in the wavenumber space generates the long wavelength component, i.e.,

inverse cascade (right).
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(a) (b)

Fig.3.1.1 (a) The flow perturbation in the poloidal cross-section. The bird-eye view of
the net flow associated with the zonal perturbation is illustrated in (b).

CL Vesg  |CL dn/dt
@

©

Fig.3.1.2 GAM flow pattern and the rise of density
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Fig.3.1.3 Magnetic field line (thick solid line, black) and geodesic line (thin solid line,
red) on a toroidal magnetic surface (a). Geodesic curvature is also shown. If geodesic

curvature exists, i.e., the magnetic field line is not the geodesic line, the Ex B velocities
(written in the right figure) are not parallel to each other. That is, the divergence of the
Ex B does not necessarily vanish and can induce compression. (b)

Fig.3.1.4 Schematic drawing of the phase-space distribution of ions. Hatched square
shows collisionless case. [3.30]

CL

Fig. 3.1.5 Transiting ions and trapped ions. Trapped ions do not rotate in the poloidal
direction.
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312 v
&7y O T

Fig. 3.1.6 Schematic drawing of the collisional damping rate for the zonal flow.

(a) (b} (c)
: q
. secondary ;-. 4

primary drift wave ‘\I

drift wave |“

k,w P o lﬂ“ Y l"1|U

k|l= qr rA U.)" = O .I'|'
zonal flow o

Fig.3.2.1 Parametric instabilities of a drift wave (a). (b) Parametric decay of ihe
primary drift wave (denoted by k) into a convective cell (denoted by ¢) and the

secondary drift wave (k4 ): Structure of the wave numbers selection rule is shown in (b)
and (c) for decay case and for modulational instability, respectively. (c) Parametric
modulational instability of the primary drift wave (denoted by k&, ) generating a

convective cell (denoted by ¢ ) and the secondary drift waves (ky, and kg4 ).
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drift wave . W

zonal flow g
0 -k

Fig.3.2.2 Eigen frequencies of drift waves (solid line) and zonal flow (dashed line)
plotted vs k. The frequency of the zonal flow is exaggerated.

. . O
=) 'm thg unitof ¢ p /L g

1 L L
0.1 0.2 03 q p 0.5

(=)

Fig.3.2.3 Growth rate of the zonal flow for lhe parametric modulational mstablllty A
case of ¢ q)dO/T =02p /L, and k,; ,=0 is shown.

=™ -
LR

‘source in

0 k

Fig.3.2.4 Conceptual drawing of the distribution of the drift wave action N, and the
right hand side of Eq.(3.2.51). (The sign of the term kg dV/dr is chosen negative.)

224



0 L

Ymod Ydrifl :
Fig.3.2.5 lllustration of the growth rate of the zonal flow as a function of the inverse of
the life time of the primary drift wave, ¥ .r - (Y09 1S given by Eq.(3.2.60c).) When
the life time is long, Y 4up << ¥ mod - the growth rate of the modulational instability is
recovered. In the opposite case, the diffusive growth occurs.

CL  S-divl CL - v

a, ll

Q &)

Fig.3.2.6 Poloidal inhomogeneity of the excess source S~ V-T" (left), and the
secondary flow on magnetic surface V, , (right).

-«
cold &V m
TN |

Fig.3.3.1 Rayleigh-Benard instability in the presence of gravity (a) and the KH
instability in the presence of sheared flow (b).
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Fig. 3.3.2 Flow in the y-direction, which is inhomogeneous in the x-direction

time

>

OO /
< - 4/
Fig.3.3.3 Stretching of eddy by shear flow which is constant in time.  Thick arrows

indicate the sheared flow.

time

—
QOO OJO
Fig.3.3.4 Random shearing flow and stretching.  Shear flow (denoted by blue arrows

or red arrows) is rapidly changing in time.
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secondary nsl.

mixiulaional
inst.

msd pltional
INsi.

= Ninear KH inst,

Fig. 3.4.1 The contrast of the linear view of the GKH modes (a) to a more general case
where GKH modes are generated by both linear and nonlinear modulational instabilities
(b). The linear view is hierarchical in that GKH is generated by the linear instability of
zonal flows (ZF), which are already generated by DW. In general, GKH modes can,
however, be generated directly from DW by modulational instability.

tertiary inst.

A,

X

-

i

Fig.3.4.2. A schematic picture showing the magnetic shear and zonal flow profile; the
exchange of two vortices requires the alignment of those vortices with tilted magnetic field
lines.

|

4 0 /L 1 -1 0.5 4] 0.5 x/L 1

Fig.3.4.3 Trapping of wave-packets in the trough of zonal flow velocity. The spatial
profile of zonal flow velocity (a) and trajectories in phase space (b).
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Fig.3.4.4 Linear response of the distribution function ﬁ!‘) (dashed line) and the third

A - . - .
order response N,((3) {broken line). The nonlinear term tends to cancel the linear drive.

W P: . I3
Stochastic
Twbulent
N R Png
BGIK
.I 5 ]
sululiogn
Paranwelsay ol
] ulatioal Uliese it
ustaldty W
0

Fig.3.4.5 Parameter domains for various theoretical approaches
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YL
DW + ZF
DwW
{ZF suppressed)
]
Ydamp

Fig.3.5.1 Phase diagram of the predator-prey model for the system of drift waves and
zonal flow. In the region of low damping rate, y damp < Cq = 7Y /Y, - the zonal flow

coexists with drift waves. In this regime, (U?')/N ~ YL/ damp -

(a) ’ | (b)
X 2
v <U™> <N> .
LY : -
z ]:_\‘ DW <N> <U2_>;-’
‘\\ DwW .,"
~ - ZF
h) P
0 y 0 y

L
Fig.3.5.2  Amplitude of drift waves (N) and that of zonal flow (U 2) for the case
where the self-nonlinear stabilization effect of zonal flow (e.g., the ‘/NL(VZ) term in
Eq.(2.10b)) exists.  (a) shows the Y4, -dependence with fixed y; ,and (b) shows the
Y1 -dependence with fixed value of ¥ damp -

<N>

0 ‘
<l12>

Fig.3.5.3 Phase portrait in the absence of nonlinear stabilization effect of drift waves,
¥, =0.[2.14|
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Y 7C <U>
L dZ

Fig.3.5.4 Trajectory in the case of no zonal flow damping Yg4,;,, =0. Depending on -

the initial conditions, the system reaches different final states, in which the waves are
quenched.

: 72
Fig.3.5.5 Normalized amplitude of zonal flow Z, as a function of the normalized
damping rate y, =Yy damp’Y L- Quoted from [2.23].

k

Fig.3.5.6 Spectrum of drift waves irn a stationary state (solid line). Linear instability
exists in the lower Ik,l region. The local balance of self-nonlinearlity , y; =y is
denoted by the thick solid line.
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dN/dk
A

0

,
=~s__,” unstable

-

gion
. Slable
region,

N(k ) N(0) N(k)

Fig.3.5.7 Relation (3.5.19). Thin lines fall in the region of linear stability, |k I >k,
and thick lines fall in the unstable region, |k rl < krc . Solid lines define the solution.
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Cuillnion.iny
Fig.3.5.8

Amplitude of drift waves (normalized to 2y; /v, ) in the stationary state as a

function of the collisional damping rate of zonal flow Ydamp - - 1he horizontal axis is

taken ¥ gamp/Yy In the unstable region |k r| <k,.. Inthisfigure, A isa parameter that

is in proportion to C,4_, 7/y, . (quoted from [3.44].)

P Acmphimede, 4 L1
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3.5.9 Linear growth rate and spectrum of drift waves. [3.92]
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Fig.3.5.10  Temporal evolution of drift wave energy, zonal flow and the average wave
number. cases of y; # 0, Ygamp=0, y2# 0 (a), y2=0 (b)and y4,,,=0 (c) are
shown.-[3.92]. : : :

NG

0

Fig.3.5.11 Example of the distribution function of N(k ,) for the case of Lorentzian

shaped distribution in w. The distribution function in the trough (solid line) and that at
the peak (dashed line) are shown. (Zonal flow is given as in Fig.3.4.5)
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Fig.3.5.12 Deformation of the spectrum function N (k 9 by zonal flow. In the
absence of zonal flow (solid line) and in the presence of finite amplltude zonal flow
(dashed line). Difference is also shown.

U(x)

JELSN B

-1 1 1 1 1 1

0 in 4 6r X 8x

Fig.3.5.13 Coherent profile of normalized zonai flow vorticity.

k L] T T
DN
| micro both i
2 | .
semi-
s micro
- 1 1 1
0 i
2 D
N

Fig.3.5.14 Phase diagram-for the case of mutual interactions between intermediate scale
and micro modes.
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<N>
dU_ /di>0
Ycritle \‘ : ¥
" dU J/dt<0
\‘ ZF
\\
‘l
.\
o U u

0

o

vorticity

cril

L

crit ZF
Fig.3.5.15 Marginal stability boundary for the growth of the zonal flow is shown by the

solid line in the limit of Y damp = 0 (a).

condition for the drift waves (a).
the growth rate of drift waves, in the limit of y damp = 0 (b).

0

Tor /

7

DW+ZF

ya owl DW

Tdcr

e

/

Ya

Dotted line indicates the marginal stability
The excited energy of waves and flows as a function of

Fig.3.5.16 The diagram, indicating the regions of residual drift wave, and zonal flow
turbulence as well as the region where they coexist in the .(7 L ydamp) plane.

Fig.4.1 Contour of electrostatic potential from the simulation of [2.6].
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Viasov
i elinunation of short

time scale dynamics

Gyrokinetic

$ Laking muormesnts

| Gyrdiuid |

Fig. 4.2 Reduction of model equations

Fig. 4.3 Radial size of turbulent eddies shown in colored contour of ambient density
fluctuation gets reduced due to the random shearing by self-generated Ex B zonal

flows from gyrokinetic particle simulation, (a) and (b) (from [2.16]). (c) is quoted from
http://fusion.gat.com/comp/parallel/gyro gallery.html.

4r
i (@) ]
E :_4
3
2 1.5
1 ]
7 A N L (fff_j-s
- (b)
0' A S——| 1 ! 1
0 20 40 60 80

time (Ln/cs)

Fig.4.4. Temporal evolution of the amplitude of the zonal flow, on log scale (a), and
turbulence level (b) and (c) on linear scale [2.13].
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kp, kp,

Fig.4.5 k, spectrum of the ambient density fluctuation from gyrokinetic particle

simulation is broadened due to random shearing of eddies by self-generated Ex B flows
(dashed lines) [3.77]
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Fig.4.6 Dependence of ion thermal conductivity by ITG turbulence on the ion
temperature gradient (collisionless limit). from [4.15]
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Fig. 4.7 Contour of fluctuation spectrum from [2.17].
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Fig.4.8 Dependence of the turbulence level (shown by ion thermal conductivity) and
zonal flow amplitude on the ion temperature gradient. (from [4.16])
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Fig.4.9 Transient burst of ITG turbulence and associated transport in the collisionless
limit. [3.109] : _

LSSV

[
44

—00slll . ) . . ) '
000 005 010 015 020 025 030
t

Fig.4.10 Transient evolution of the poloidal flow and approach to the R-H zonal flow.
K(0) = ¢(1)/6(0) is the normalized potential and time is normalized to T;; . (from [2.37])
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Fig. 4.11 Ion heat conductivity in nonlinear gyrokinetic simulations
with R/ Lt =35.3 vsthe ion-ion collision frequency [2.49].

Inhomoge. Drift wave
neity turbulence

DRIVE

Fig. 4.12  Schematic illustration of the self-regulation. In the right circle, ‘energy return
indicates the process of energy return to drift waves (being investigated.)

07

06
0S5k -

04

03}t

ool . . .. .

01§

: 20,2570,
¥, 025

0 20 40 e 8 1 120
007112

Fig. 4.13 Cross phase evaluated at the radial position where the ZFs are persistently
localized (r/a =0.8 ) for all the simulations with p»=0.02 versus time. Yyg ,the
poloidal damping rate normalized to ¢ /gR ,is varied as indicated. [4.19].

238



B 2
[k, w) 2w - Adiabatic e (k- w} av - Blecywmagnstic

(CTEM) turbulence. Note a peak of pure zonal flow near @ =0 and that at GAO

frequency ®gao = vrn/R. The influence of non-adiabatic response of electrons is
illustrated. The case without (left) and with (right) are shown. In the presence of
nonadiabatic response of electrons, the power spectrum of zonal flow component becomes
wider. [4.23]

TG level c.1. Electric tield

0.2 0.4 0.6 o8
N . e .
Fig.4.15 Snapshots of the zonal Ex B flow, ITG amplitude, and effective temperature
profile in the nonlinear stage. [4.26]
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Fig.4.16 Growth rate of tertiary instability [2.51]
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Fig.4.17 Asymptotic convergence of the turbulent transport in the collisionless limit.
from [4.33]

Fig.4.18 Two dimensional contour of the electrostatic potential perturbation of ETG
turbulence near the q-minimum surface x=0.[2.52]
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Fig.4.19 Frequency spectrum of the zonal flows from gyrokinetic particle simulation of

ITG core turbulence. Note a peak at GAO frequency ®gao = Vrpi/R is subdominant to a
broad peak at zero frequency [4.12].

Fig.4.20 Frequency spectrum of the zonal flows from
gyrofluid simulation of edge drift-Alfven turbulence [4.66]. Note a SIgnlﬁcam intensity

spectrum from zero frequency all the way up to the GAO frequency ®Wgao , withouta
distinct single peak.

o
=

Terra Nova

and reduction of growth

drive of DW instabiiity

@l tudies of tertiary instability

Ydamp scaling studies of
| >

collisional damping rate Ydamp

Fig.4.21 Schematic drawing for the systematic exploration of zonal flow dynamics.
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(a) (b)

Fig.5.1.1 Rotating sphere (a). Coordinates on a rotating sphere (b). The x-axis in the
direction of latitude (from pole to equator), y-axis in the direction of longitude, and z-axis
in the vertical direction. '

Rossby wave

Fig. 5.1.2 Propagation of Rossby wave in the westward direction.

242



Fig.5.1.3  Zonal flow and giant spot in planets. {quoted from
http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact. html]

Granulations in ‘Thin Weather Layer;
Folar Region Location of Belts,
Red Spot, ete.

Metalic
Core

Taylor Colunm Fluid Atmiosphere:

Vorees

Fig.5.2.1 Schematic drawing of convectidn phenomena in Jovian atmosphere. (Based on
[4.46].) _ . - "
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Fig.5.2.2 The assumptions and logic of the two scenarios.
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(b)
Fig.5.2.3 Schematic depiction of zonal belt formation in secondary bifurcation scenario.

(a) Northern and southern projections of Taylor column onto Weather Layer. (b} After
tilting modulation and bifurcation.
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Fig.5.2.4 Cartoon of secondary bifurcation scenario, after Fig. 6 of {5.5].
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Fig.5.2.5 Mean zonal flow pattern, from Voyager observations. Solid and dashed lines
for northern and southern hemisphere, respectively. The left data is from Voyager 1, and
the right from Voyager 2, respectively. (Reproduced from |4.46].)
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Fig.6.1.1 The streamer as an example of convective cell formation. Poloidally-
inthomogeneous radial flow occurs for a streamer. :

Potential perturbation Density contour

Fig.6.1.2 lllustration of density contour in the presence of a streamer. Potential
perturbation (left) and density contour (center). Contour of unperturbed state is denoted
by dashed curve and deformed one by solid iine. Expanded view of density contour
(right).  Quoted from [2.14] and is also based on [6.4].

K k
.yp54 i | yP54 i -
... Zonatflow ______,
Formation T i : ]
2L - 2 Streamer .
Foymation
N - B i T
C— "t
kx P, k P

X

Fig.6.1.3 Region of wavenumber of drift waves for the excitation of zonal flow (a) and
streamer (b). Zonal flow is generated by waves with larger poloidal mode number 44,

but the zonal flow is excited by drift waves with larger radial modenumber k,. (Based
on [2.27]
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[
Fig.6.1.4. A consolidated phase diagram in D, m space delineating regions corresponding
to the predominance of zonal and streamers structures in the final state. The circles and
asterisks represent the values of D and m where the numerical simulation was actually
carried out leading to the formation of zonal and streamer structures, respectively.
(quoted from [6.6].)
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Fig.6.3.1 (a) Phase boundary on the plane of PDF of normalized collision frequency of
banana Xyc-. Dashed lines for deterministic model, AX=10,and the solid line shows

the statistical average. (b) Normalized heat flux (Q r) as a function of global gradient

Xyc - Deterministic model shows the cusp catastrophe (thin line). Ensemble average
is shown by the thick solid line. (Quoted from [6.20].)
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Fig.6.3.2. Family of parametric plots of local flux T", versus local slope Z(r]
functionF(Z) is multivalued for T'>3. (quoted from [6.29].)
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Fig.7.1 Identification of zonal flow on CHS. Geometry of measurements and fluctuation
spectra. (a) Observation points of dual heavy ion beam probes in CHS. (b) Power spectra
of a electric field, and coherence between electric fields from the HIBPs. In the frequency
range from 0.3 kHz to 1 kHz, the activity to show long range correlation is found to be
zonal flow. A peak at the GAM frequency is shown by an insert. Fluctuations in the
range of tens of kHz are drift-wave turbulence. [7.17]
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Fig. 7.2 Spectra measured with the modified forked probe. Peaks of zonal flow and

ambient turbulence (AT) are shown. (a) Auto power spectrum of Vg, (Ar=-0.2cm).

(b) Auto power spectrum of Vg, (Ar= —1.2 cm). (c) Cross power spectrum. (d)

Coherency spectrum. (e) Wave num'b_er spectrum. (c), (d). and (e) were calculated from the

long distance correlation between Vg, and Vg,.[7.19]
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Fig.7.4 Frequency of observed oscillations (attributed to GAM) and it dependence on

temperature. Measurement of D III-D is compared to the calculated GAM frequency

(left) [7.37].
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Fig.A.1 Case of constant gradient of the zonal flow (a). The trajectory of the wave-
packet (b). (The unit of velocity is diamagnetic drift velocity.) ‘

Fig.A.2 Change of distribution function after the imposition of the zonal flow like
Fig.A.1(a). Original symmetric one (solid line) is shifted and deformed as is shown by
dashed line.
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Fig.A.3 Schematic drawing of the localized inhomogeneity of the flow (a) and the
reflection orbit (b).
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Fig. A.4 - Trapping of wave-packets in the trough of zonal flow velocity. The spatial
profile of zonal flow velocity (a) and trajectories in the phase space (b).
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Fig. Bl Time evolution of the radial heat flux, with (left) and without (right) Vi
nonlinearity. [4.47]
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