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Excitation of the turbulence in the range of drift wave frequency and zonal flow in
magnetized plasmasis analyzed. Nonlinear stabilization effect on zonal flow driveis
introduced, and the steady state solution is obtained. The condition for the onset of
turbulent transport is obtained and partition ratio of fluctuation energy into turbulence and
zonal flowsisderived. The turbulent transport coefficient, which includes the effect of
zonal flow, isaso obtained. Analytic result and direct numerical simulation show a good
agreement.

keywor ds. zonal flow, drift wave turbulence, anomal ous transport, nonlinear
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1. Introduction

Turbulent transport in high temperature plasmasis one of the main issuein the
modern plasmaphysics. Microscopic fluctuations are induced owing to the gradients of
plasma pressure and magnetic field so as to enhance the cross-field transport of energy far
beyond the level that is determined by the binary collision of charged particles. Inthe
development of theory and direct nonlinear smulation (DNS) of turbulent transport in
toroidal plasmas, it has been clarified that the plasma turbulence in the range of drift wave
frequency, which we abbreviate 'drift waves in this article, plays key roles[1,2]. What
isfascinating is that the zonal flow [3], which is constant on magnetic surface but
changes rapidly across magnetic surfaces, are induced by turbulent fluctuations and, at
the same time, suppress the turbulent transport. The generation of zonal flow has been
confirmed by DNS (see, e.g., [4,5] and review [6] for full description). Zonal flow in
the core plasma has been observed in experiment very recently [7]. The problem of zonal
flow generation by pressure gradient has wide and deep impact of the plasma physics.
The zona flow is associated with the vorticity which is amost constant on magnetic field.
That is, aglobal axia vector field is generated. The problems of the generation of global
axial vector field from the gradient of scalar field include the geodynamo solar magnetic
field generation or astronomical jet formation [8,9]. The turbulence and zonal flow in
toroidal plasmas give opportunity to investigate this class of problems with theory , DNS
and experimental observation, simultaneoudly. Intensive studies of the system of zonal
flow and drift wave turbulence have been performed. The achievements so far have been
summarized in the review [6].

One of the key issues is the mechanism that regulates the structure of the induced
zond flows. The saturation mechanisms of zonal flow have been discussed in the
literature; while the turbulence is often completely quenched for weakly unstable cases at
the collisionless limit [10-13], stationary states with finite amplitudes of both the zonal
flow and turbulent fluctuations are realized when the plasmas are in highly unstable
states. The possibility of secondary instabilities has been pointed out[14-18], and the
condensation of micromodes into global modes has been studied by direct nonlinear
simulations (DNS) [19]. Regarding the theoretical formulation of nonlinear processes,
nonlinearity in the self-interaction of zonal flows has also been investigated. Research
has included the pursuit of the possibility that the zonal flows evolve into a kink-soliton-
like structure [20], the parametric evolution of a plane drift wave [21], and the theory for
the BGK (Bernstein-Greene-Kruskal) solution has also been developed [22-24].
Importance of the random noise to turbulence has been studied (e.g., [25,26]), and
influences of turbulent noise on zonal flow has also been studied [3, 24, 27]. Drift wave
spectrum was analyzed in the presence of zonal flow [28], and dynamical evolution has
also been studied [29]. Although these models provide useful understanding, they are
not free from limitations. For instance, the accessibility to the kink-soliton-like solution
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from asmall initial perturbation in ref. 20 is not clear; the drift waves often develop into
strong turbulence so that the assumption that the plane drift wave will be coherent may be
violated, and the decorrelation time of the drift wave packet is often shorter than the
circumnavigation time of the packet in the zonal flow trough. Theoretical efforts are till
required for the study of zonal flow structure in cases where drift waves have short
correlation times. In addition, it is known that the toroidal geometry is crucial in
determining the structure of turbulence and flow [13, 30-32].

In this article, we analyze the nonlinear state of zonal flow which isdriven by
fluctuations in the drift-wave-frequency range in toroidal plasmas, in the case that the
autocorrelation times of drift waves are much shorter than that of the zonal flow. (The
study of such a case is motivated by the DNS of core plasmas for highly unstable cases.
Itisclearly shownin ref. 33 that the half width at half maximum of the spectra intensity
of the zonal flow is much narrower than that of turbulence.) It was shown, for given
fluctuation amplitude in toroidal plasmas, that, Iy, (the transport of perpendicular

momentum in the radial direction) shows anonlinear saturation with respect to the zonal
flow shear, while IT; . (the transport of parallel momentum in the radial direction) does
not [32]. That is, the drive of the zona flow starts to decrease at high velocity, but the
damping due to the turbulent viscosity of parallel flow does not. Therefore, the zonal
flow evolvesinto anonlinear stationary state, and the stable coherent structureis
obtained. Inthisarticle, the higher-order corrections by zonal flow on the zonal flow
driveisrenormalized, and the driving term at an arbitrary magnitude of zonal flow
vorticity isderived. Based on the nonlinear form of the zonal flow growth rate, the
steady state solution is obtained. In the collisionless limit, the turbulence level is shown
to vanish while the zonal flow remains at finite amplitude, when instability isweak. The
critical condition for the onset of drift wave turbulence in the presence of zonal flow is
derived. Thisgivesatheoretical explanation for the Dimits shift phenomena. The
turbulent transport , including the zonal flow effects, is obtained. The partition ratio of
fluctuating field energy among the drift wave turbulence and zonal flow is also obtained.
A comparison with DNSis aso made.

2. The model
2.1 Formulation based on drift wave action
We study the system of the drift-wave (DW) turbulence and zonal flow (ZF) in

inhomogeneous and magnetized plasma. The model dynamical system for the drift wave
action Ny and the zonal flow velocity V7 has been studied [20]. The drift wave action

Ny has been introduced as

Ny = (1+k202) 3y )



where ¢y isthe k -Fourier component of electrostatic perturbation of drift waves, k | is
the wavenumber of drift waves perpendicular to the main magnetic field and pg istheion
gyroradius at electron temperature. Inthisarticle, the analysisis developed following the
framework which utilizes the coupled equations for N, andVz . (Seg, for the survey of
methods of analysis for zonal flows, [6].)

The growth of the zonal flow in the presence of the drift-wave turbulence has been
discussed by use of the time scale separation. The autocorrelation times of the drift wave
fluctuations are assumed to be much faster than the evolution time of the zonal flow. In
the slow time scale, the evolution of the zonal flow and the drift wave action is governed
by the equation [20]

— (:)72 c? d2k kﬂkl’

a ~
V=52 g2 Ny =" gamp U @
ot 2 2 2 Nk=Ydamp ¥
BT [1+k3p2)
and by the eilkonal equation
0 a(x)k . aNk aook. aNk _
Nkt T ax T ax ok 0 ©)

where U isthe vorticity of the zonal flow
U= 6VZ/ ar , (4)

r isthe minor radius, Ny isaslow modulation of N , which isinduced by V5 , and
Ygamp denotes the damping rate of zonal flow by other processes.

We study the case that the zonal flow retains the coherent structure in atime much
longer than the decorrelation time of the drift wave fluctuations. This'coherent regime' is
one of the characteristic situation of the DW-ZF system [6], and is observed in various
simulation conditions [13]. Equation (3) is solved by expansion with respect to the
vorticity of the zona flow as

Nk=N|((1)+ N|((2)+N|((3)--- (5)

where N|(<j) isthej-th order term of U . Substitution of Eq.(5) into Eq.(2) provides

0

%U =ZG(m)_YdampU (6a)



where the m-th order term with respect to U  in the Reynolds stress is expressed as
N (6b)

A linear response has been obtained from Eq.(3) as[20]

- oN
Here
_ i
R0 010 gul ide, ®

isthe response function, Awy isthe nonlinear broadening of drift waves,

Vgr = dwlok, 9)

isthe group velocity, and the zonal flow has a dlow dependence as
explig,r —iQt) . (10)

(9 istheradia modenumber of zonal flow.)

The higher order responses with respectto U , Nl(<2) , N|((3) , "+, canbe
calculated from the relation

~ AN ' a A~ -1 '

ngn)(qr + qr) =U R(qr +dp Q) ke TM NI(<n )(Qr) ) (11)

where I\AI|<(” B 1)(q,}) represents the g, -Fourier component. The group velocity Vgr isan
anti-symmetric function of k, for drift wavesin thisarticle. Therefore, Rid,, Q) hasa

symmetry with respect to K, . The contributions from the even order terms N&zm)

(m=1,2,3, ---)aresmall from the consideration of symmetry, and the drive of ZF
comes from the odd order terms N|(<2m+ Y (m=0,1,2, ---). Inaddition, when q;, is

chosen in the regime where the zonal flow has maximum growth rate, the higher-
harmonics componentswithng, (n=3,4, -- - ) have large damping rates [6, 34].
Therefore we keep 2 g, -component and have ardlation
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i . N(n—Z)
= U2KR g, sz)fkr(R(zqw ) e ) a2

where N[ isthe abbreviation of N&n)( q) .

2.2 Linear Response
Thefirst order term gives the diffusion-like form

Yz = Drrqrzz_Drr 9%ar2 (13)

in Eq.(2) with

2

2 2 9k, (14)
BE] [a+kdpz)” %
i.e., the zonal flow growth [3]. In astrong turbulence limit, Aw, >>q,vy, ,
R, Q)= VAwy . (15)
The partial integral of Eq.(14) gives an evaluation
2 k2
D, =<5 | d% U N (16)
2 2 k-
"B J (1+kip§) Aoy

Next, the most unstable wavenumber of the zonal flow is considered. The zonal
flow growth rateyz does not continueto increase at larger 9, when the dispersion effect

of the beat drift waves on the zonal flow isintroduced. A finite-Q, correctionto
Ra,, Q) isevauated inthelarge Awy limit by expanding Rd,, Q) to

A(l)k

2
R4, Q):Ag-ok(l_<qugr> +) (17)

andyz iswrittenas



Yz =Dy 0f (1_Qr2/K(2)) ) (18)

where

K3 = Awg (vg,| ™ (19)

represents the characteristic scale where the Doppl er-shift of drift waves suppresses the
zonal flow instability. An explicit form of K(Z) for the case of tokamak plasmasisgiven

inref. 21. It should aso be noted that the expression (2) is drawn with the condition that
g, <k; . Theanaysisin the case of g, ~ K, wasreported based on a modulational

instability, showing that the zonal mode drive vanishesif g, >k, [35]. We have
K= min (kr, Amk/vgr) _ (20)

The damping term Y gamp U includes the collisional damping term v ganp U . An
additional damping mechanism exists. TheE x B flow in toroidal plasmais associated

with the secondary flow. Asisshown inrefs. 30-32, the viscous damping of the
secondary flow due to toroidicity governs the damping rate of the zona flow, in addition
to the conventional collisional damping. The damping rate by this processis rewritten as
[31]

Y damp = M||(1 + 2CI2)Qr2 , (2D

where i isthe turbulent shear viscosity for the flow along thefield lineand g isthe
safety factor. (The coefficient 1+ 292 isreplaced by 1+ 1.69%/ve in the collisionless
limit [36]. This dependence on the collisionality is not considered for smplicity.)
Combining this damping associated with parallel flow, the damping rateis expressed as

Y damp = Veamp + W 1+ 202)K? . (22)

And an explicit form of vgamp IS givenin, eq., [6],

_ Vi
- €

V damp (23)

in the banana regime.
Combining these results, the linear termsin Eq.(2) are rewritten as



9 92 —294 92 _
at Y *D"<ar2U Ko w“)‘“"(“zqz)arzu +Veamp U =0
(24)

This equation predicts a necessary condition for the zonal flow growth with the
wavenumber g, at which the linear growth rate of zonal flow takes the maximum value.

The zonal flow has a maximum growth rate at

]__
Qr:qr*:@KO (25)
where
= wyf1+202)D5 (26)

The condition that the zonal flow has positive linear growth rate is given as

V damp
l-u> ZF . (27)
DrrKg

Both the zona-flow driving coefficient D, and the shear viscosity u are given by drift
wave spectrum Ny . Theratiow = u”(l + 2q2)Dr_r1 isafunction of the spectral shape of

drift wave turbulence and geometrical factor such asq , the inverse aspect ratio € , etc..

2.3 Third order correction
The third order term of the deformed action is given as

NE = U2k R (qy, Q) o
r

A(l
R2q, Q) a;\'kk ) . (28)

Substituting Eq.(28) into Eq.(6b), one obtains the third order term in the RHS of Eq.(2)
as

ek

G(S) :LZLZ R* q ,Q
(1+kip§)2 ( r )

o

U2d%

W
R 2q, @) 2k ) e

9
ok,



In astrong turbulence limit, Awy >> q,Vq, , which gives an estimate Eq.(16) through

partial integral, the RHS of Eq.(29) is evaluated as

Gl3= -2 E’; L u?d% ¥ ‘épg)z R'(a, QR2q,, Q') ag'k(krl) (30)
The partial integral is performed once again. Noting the relation
o [RlanelRza2) | Ho k2 12
oKy (1+ kip%)z Awf (1+kip§)2
with a coefficient
2 6q7 Vg (31b)

= +
1+kip§ Aw?pZ 9k?

(where the second term in the RHS of Eq.(31b) is afinite wavenumber correction), we
have an estimate of the third order term as

G(s): _672 072

oJ

_ 0%
—stus (32)

Awg

dzk<Hk%p§ U2> ( ke [

where the diffusion coefficient in the third order term is given as

( +KIps

o

Comparing Eq.(33) with Eq.(16), we finally have an estimate of the diffusion coefficient
of the third order term as

2
_ Hk§p3
A(D% rr

D3= (34)

The signin the definition of D3 ischosen such that D3 is positive when D, is positive.



Taking into account Egs.(24) and (32), Eq.(2) iswritten in an explicit form as

U+D”(8 u+K02"’ u) Dgazu —u|(1+2q2) U+vdampU 0

(35)

up to the third order with respect to U .

2.4 Renormalization of higher order corrections.

Equation (35) allows to study the radia structure of the nonlinear solution. The
expansion parameter is Hk3p2U%/Awg in deriving Eq.(35). The truncation at the third

order may not be appropriate if

Hk3p2U2 > Awp (36)

holds. Therefore, the third order formulais not relevant for the study of the Dimits shift,
where the fluctuation level isvery low so that Awg issmall. In order to study the case of

an arbitrary ratio of Hk3p2U %Awg , we must keep al order of U . In this subsection,
we discuss the renormalization of the driving term Zo Glam+1]
m=

The radial wavelength of the zonal flow istaken as 2n/q, « , and istreated asa
parameter in this subsection. By employing this simplification, we derive arecurrence
formula between G121 and G(2M=2) i the followi ng. The (2m+ 1 )-th order term

of Eq.(6b) iswritten as

G(2m+ 1) - —q? 82 dzkklz( Nk2m+ 1) (37)
(1+ kLps)

o

and isrewritten as

Il

Gl2m+1)=_g2 ¢ dzkkgkrqu*(q Q|- |R2q, @)

oJ

N(zm 1))

k
ok,

(38)
In the case of the strong turbulence, Eq.(15), the similar argument as Eq.(16) is

employed for Eq.(38). Thus, performing a partial integration twice, one has
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2.2112
(2m+ 1) — 42 c? 2 | Hkgp§ U KoKy q(2m-1)
G B2 dk Aco,% ( 2 Nk . (39)

That is, one obtains a relation between Gl2m+1) ggalam-1) o

Hk§pZ U?

G(2m+ 1) —_ Ao?

Glam-1) (40)

The result Eq.(40) indicates that the ratio Gl2m+1)g(2m-1) diverges as
Awy, — 0 for afixed value of U . However, such singular behaviour does not occur.

Thisis because the decorrelation between the drift wave packet and the zonal flow is not
given by Awy but by other processes, when Awy approaches zero. Therefore we put

HkgpZ U2

2 1
Glam+1) __ =

G- a5 Aw, —0 (41)

where I isthe decorrelation rate between zonal flow and waves in the small Awy limit.
One decorrelation process is the Doppler shift, and 9,Vy, playsarolethat limitsthe

resonance between zonal flow and drift waves. The other relevant frequency isthe
bounce frequency wy, of the drift wave packet in the trough of the zona flow [22],

» 2 — 2p§k9ql’ o, U

= 42
b T+ p2k3 (42)

Thatis, I' scaleswith max ((Db, QrVg r) . The quantitative determination of the
proportionality constant between I and max (mb, QrVg r) requires the detailed analysis of

the turbulent trapping regime, such as the granulation formalism [37]. Thus we choose
here

I' = max (wb, qugr) . (43)

It should be noticed that Eq.(40) does not mean G12™+

remainsfiniteasAw, — 0. [t
meansthat the ratio| G12™* /G (2"~ | remains finite. In the limit where Aw, =0 holds

and the trapping of wavepacket occurs, the net driving force of the zonal flow can vanish
and the solution can be given by BGK (Bernstein-Greene-Kruskal) solution. Within the
framework of the model of this article, Eq.(14) indicates that G!Y) vanishes (so does
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Gl2n+1] ) asAwy — 0. Thusthismodel provides renormalization in the case of finite
Awy and partly recovers the property in the limit of wave trapping. Taking a Pade

approximation, one has an interpolation formula as

clam+1)__ HKGpBU? ~(om )

Aoo% +T2 (44)
That is,
(2m+ 1) m U2 K (1)
G =(-1] Ao +T? (45)
Hk§p2

By use of the formula Eq.(44), the summation Zo G(2"* 1) can be calculated. We have
m=
the renormalized driving term for the zonal flow as

S (1)
G(2m+ 1) — G
%Z% L 4 HkGp3u? (40)

Awg +T?

In Eq.(46), the nonlinear correction up to all orders areincluded. The evolution equation
for the zonal flow Eq.(6a) is then written as

2D
0 1y =
U= e U e 20l U S
1+ 6 S
Awg + T2

3. Nonlinear radial eigenmode in collisionless limit
In this section, we study the nonlinear eigenmode of zonal flow for given drift
wave fluctuations by keeping the third-order nonlinear term. We take alimit of

Vdamp — 0, (48)

because the role of the nonlinear stabilization term in Eq.(35) isstudied. We use
normalized variables

x=r/L,t=tlh; andu=U/Ugq, (49)
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where
L2=K2(1-u),t,=D;*K52(1-u)" andU3=D, D3*(1-u). (50)

Equation (35) is rewritten as (V gamp —> 0)

9 L 0% 9% 3, 9% _
at U ax2 U g2 Y +ax4u_0' (51)

The short wavelength components with 42 L 2> 1 are dtabilized by the higher-order
derivative term. Theflow is generated in the long wavelength region of

q2<K3(1-p), (52

and the zonal flow energy is saturated by the nonlinearity and by the dissipation through
higher-order derivatives.

We investigate a case that the flow is generated from the state with small noise
level where no net flow exists,

fdxu:o, (53)

Conservation of total momentum holds for the periodic boundary condition and the flow
evolves satisfying the condition f dxu=0. Stationary solution of Eq.(51) in the

domain 0<x<d, for the periodic boundary condition, is given by an dlliptic integral as

f (1—2u2+ u4—1<2)_1j2

du==« (54)

X
N/é )

wherex isanintegral constants satisfying 0 = x <1 .and is determined from the
periodicity

U —12
U2+ ud — 12 - d
Lc(l 2u°+ut—x ) du oo (55q)
where
U=v1l-x , (55b)
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andn=1,23,---.
The temporal evolution of EQ. (51) is solved numerically. Starting from aninitial
condition with small random values, a stable steady state is reached. It is shown that the

growth is dominated by the component which has the largest linear growth rate. That is,
theinteger N isgiven by the one which is closest to

dn=4v2x . (56)

Figure 1 illustrates the stable stationary state. The peak value of U(X) isgiven as
U, =~ 0.95. Compared to asimple sinusoidal function (eigen function of linear operator),

the result in Fig.1 has much weaker curvature at the peak and is closer to a piece wise
constant function.

The stationary state isrealized by the balance between the drive of zonal flow
through dIg,/dr and the damping through dIT;/dr . (II isthe Reynolds stress)) The

dIlg/dr termiscomposed of the second and third termsin the LHS of Eq.(35) (having
coefficients Dy, and D3 ). ThedIl/dr term corresponds to the 4th termin the LHS of
Eq.(35), having coefficients ), . When the zonal flow amplitude is small and Eq.(27)
holds, the drive by dIlg,/dr exceeds the damping by dIj/dr so that the zonal flow
grows. When the ZF amplitude increases, the nonlinear term in dIT} /dr becomes
effective, and dIy/dr startsto decrease. At the amplitude of zonal flow where
dITg,/dr +dITy /dr =0 holds, the zonal flow reaches the stationary state.

4. Self-consistent state

Based on the analysis of the stationary coherent structure of zonal flow, we study
the self-consistent state for the DW-ZF system. The condition for the excitation of drift
waves in the presence of zonal flow and the energy partition of between the drift wave
and zonal flow isdiscussed. Then the transport coefficient by drift wave turbulence,
where the effect of zonal flow isincluded, is derived.

4.1. Model of coupled equations
4.1.1 Low-degree-of-freedom model

The self-consistent state of zonal flow and drift wave has been studied
theoretically by solving the evolution of the spectrum of drift waves[28]. The studies
have shown that alow-degree-of-freedom model, such as predator-pray model, is useful
in giving a qualitative understanding of the self-consistent state. In addition, the study of
the nonlinear radial wave form in 83 gives us the result that the structure iswell
represented by afew parameters like amplitude and periodicity length.

14



Based on the results in Section 3, we choose the periodic length 2tq; 1 of the
zond flow as

/1 —
Arpi =5 Kopi (57)

and employ the dynamical equation in which 4, istreated as aparameter. Under this
circumstance, the equation for the amplitude of the zonal flow is then given as Eq.(47).
By use of this simplification, both the collisionless case and the weakly collisional caseis
studied here.

The back interaction of the zonal flow on drift wave turbulence has been discussed
in detail. In order to show the argument with analytic transparency, we choose a ssimplest
model for the evolution of drift wave amplitude after [3, 38] as

~2 22 a2 22
L0721 - ad W —nw §2 (58)

wherey_ isthe growth rate of the turbulence energy and ¢ isthe normalized fluctuation
amplitude

2 2

% ) (59)

T

Kg

and \ ¢ \ is an amplitude of drift wave fluctuations, v isthe linear growth rate, the
nonlinear damping rate Aw shows the effect of the nonlinear interactions within drift
wave turbulence, therate o that satisfies

2D qf = OL(T)Z (60)
is used according to the convention of [3], and
o 2
W = (Ulw-) (61)

isthe normalized square amplitude of the zonal flow vorticity.
With asimilar procedure, EQ.(47) isrewritten as

~2
%W: (12(1) W — MOKIA)Z"'ZVdamp W (62)
Hkgp2wé .
1+-—9S 2 W
Awg+T
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where w1+ 29 2)92 termisrewritten as uoh? by use of Eqs.(26) and (60).

Equations (58) and (62) form a set of coupled dynamical equations for the DW-ZF
system in areduced model.

4.1.2 Evaluation of the nonlinear damping term
We here estimate Awy in various cases. In the strong turbulence limit of drift

wave fluctuations, Aoy, isestimated as [1]

Ao~ B~ 42§ (63)

Itisrewritten as
A(Dk -~ (D*(i\) . (64)
by use of the normalized drift wave amplitude. In aweak turbulence limit, one has
2
Aoy = 0+ (65)

4.1.3 Coupled dynamical equations

The relation between the fluctuation level and nonlinear decorrelation rate, Eq.(64)
or Eq.(65), closes the set of equations. The nonlinear damping rate by drift wave
turbulence is chosen here as EQ.(64) for the strong turbulence. By this simple model ,
Egs.(58) and (62) take forms as

22 22 a2n 3
L0721 ap W —0ed® (66)
and
9 \A ap? ; -2 ;
W kzpzer T 2 damp| W (67)
1+ 0SS W
w2 +T2

respectively. The set of equations (66) and (67) describes the partition of fluctuation
energy into drift waves and zonal flows.

4.2 Solution and energy partition
4.2.1 Domain of solutions
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Equation (67) givesthe condition for the stationary state for the zonal flow.
Putting 0/0t =0 in Eq.(67), one has

HkZp202 . b2
- S W= AZO“I’ -1 (68)
0o +T uah” + 2V gamp
or
W=0, (69)

From Eq.(68), one sees that the nontrivial solution W =0 isallowed for
22 _ 22
" =dth (70)

where

2
2V dampt~ =g+ uw + <2Vdamp0‘_1 —g+ MW) + 8(g +(1- M)W>Vdamp0€_l
2(1—pt) ’
(71)

/\2_
Oth =

and abbreviations are;

g=(l—u)F2u)r2 , W=Hk%p§w3W (72)

The zonal flow grows as ¢ > ¢, , and damps for $° < §3, . Figure 2 illustrates ¢, asa
function of the zonal flow vorticity for various values of collisional damping.

Equation (71) provides various limiting results. In alimit of small zonal flow
vorticity, W — 0 , Eq.(71) takes aform

2v
~2 _ dam
§2 = =Y damp.

th ( (73)

which shows that the fluctuation level is regulated by the damping rate of the zonal flow.
This recovers the previous result, although a screening factor by the return flow is
included in Eq.(73).

The other limit of interest isthe collisionless limit, v ggmp/@ — 0. In this case,

Eq.(71) takesaform
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w-15. (74)

This result has two specific features. First, <|A>t2h vanishes at acritical vorticity of

zonal flow,
U=U,, (754)
where
u2= L1 1o (75b)
uHkgpg
i.e.,
Upmmac| 221 A vy (750

uH uH

where use was made of Egs.(42) and (43). (Vg isthe diamagnetic velocity). Inthe RHS
of Eq.(75c), the first term in the parenthesisisgiven when I' isevauated by w, and the
second oneisgivenwhenI' isevaluated by Vg, . Equation (75a) meansthat the

growth of zonal flow remains margind at this critical vorticity evenin the limit of small
drift wave fluctuation level. Thisnonlinear balance at the limit of weak drift wave
fluctuationsis related to the Dimits shift problem, and is discussed in later subsections.

Next, EQ.(74) provides alaw of power partition between zonal flow and drift
waves. In alimit of strong turbulence, ¢ >> T2 wr 2, or U >> U, , Eq.(74) givesa
relation

W, (763)

(76b)

4.2.2 Stationary solutions
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We next consider the balance between the drift wave amplitude and that of the
zona flow. The stationary state of drift wave turbulenceis given from Eq.(66)

¢ = YL _ oy ’ (77)
W W
or
$°=0 (79)

Combining Eq.(71) with Eq.(77), the self-consistent solution is obtained. Figure

3illustrates the self-consistent solution schematically. Owing to the kink of the boundary
of Eq(71) at U = U, there arise three regions.

In the region of small growth rate of drift waves,

2v
L damp_ [regionl]  (79)
W (1 — M)a
thereisno crossing of lines (71) and (77). Therefore, only the solution EQ.(69) is
allowed, and one has the solution

b= (YD" , [region ] (80a)
with
W=0, (80b)

The zonal flow is not excited, and the turbulence level is not influenced by the zonal flow.
In an intermediate region,

2V damp <YL o 2V damp + 0

2 .
(1-pla o (1-plo o Ue [regionll]  (81)

the boundary for the stationary zonal flow is given by Eq.(73). The collisional damping
controls the steady state solution. In region 1, anaytic forms of fluctuation level and
zona flow amplitude are
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T o [region Il] (829)

and

vt/ P
W=6o-a (1—M)0¢’

(82b)

respectively. Inthisregion, the zonal flow amplitude increasesasy | increases, but the
turbulence level isunchanged. The fluctuation level (132 is proportiona to the collisional
damping rate of the zonal flow. This reproduces the preceding result of theory and DNS
observations [10, 21, 29].

When the growth rate becomes larger,

2v
LIS damp 4 a y2 region |11 83
o7\ Tiouie e Y [region 111] ~ (83)

Eq.(76) describes the balance of the zonal flow. The self-nonlinear damping of the zona
flow dominates the steady state. In a strongly unstable limit,

2v
LSy WP and U >> U, (84)
W+ (1—pt)cx
one has
. v, uHk3p2 -
0=\ / o S [regionlll]  (85a)
(1-u]
and
w=TL (85b)

When the growth rate becomes larger, the zonal flow velocity and the fluctuation level
increase asy| increases.

Figure 4 summarizes the characteristic domainsin the parameter space. Figure 5
illustrates the wave amplitude ¢ and the zonal flow vorticity U/ws asafunction of the

growth rate. Figure 5(a) illustrates the case in the presence of the collisional damping of
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the zonal flow. Three regions appear. Figure 5(b) shows the collisionlesslimit. Inthis
case, theregion | disappears, and transition between regions |1 and Il are seen.

4.2.3 Collisionless limit and upshift of excitation boundary
Here, the problem of the upshift of the critical condition in terms of the linear
growth rate is discussed. In the collisionless limit,

Vdamp — 0, (86)

Eqgs(74) and (77) provide a steady-state solution as

2
_ uHkgpZo: (MHkéﬁﬁh) +4(MHkép§vL_IQ

[1-u) @ 3)

_ (1-ufe (1-ujo
¢= > . (87)
if the growth rate exceeds acritical value
sy, alltor? 83
YL2YL,c= qu%pgw*z . (88)

Below thiscritical growthrate, y| <y ¢, we have

$=0. (89)

o=L{r-vq). (90)

From Eq.(90), one sees that the drift wave fluctuations are, in the limit of
vanishing collisional damping of the zonal flow, sustained at finite levels when the
growth rate of modesy | exceedsafinite threshold valuey .. Thisisatheoretica

explanation for the Dimits shift, which has been observed in numerical smulations. In
the limit of large growth rate, Y| >>v|_ ¢, Eq.(854) is reproduced from Eq.(87).

4.2.4 Partition of energy between DW and ZF
Combining Egs.(71) and (77), the amplitudes of the zonal flow and drift waves

are determined simultaneoudly. Thus the partition of energy between the zonal flow and
wave turbulenceis given. The partition of energy is evaluated by theratio VZZ,JVSW
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where Vz¢ isthe velocity of zonal flow, keqr—lvdm , and Vpyy isthefluctuating
E x B velocity of drift wave fluctuations, kekllvdcT) . Thisratioisgiven as

2 . 2 .
VZZF:ﬂﬂ: 4 ﬁﬂ (91)
Vow O $2 1M KGE§?

In the strong turbulence limit in the region I11, one has arelation from Eq.(76),
and the energy partition is given as

L (92)

The flow energy and wave energy are proportional to each other In the strong turbulence
limit, the energy can be converted into flow energy more than to the wave fluctuation
energy if k§p2<4/uH holds.

4.3 Turbulent transport coefficient

The analysisin 84.2 gives an insight of the turbulence and turbulent transport.
Theion thermal conductivity is deduced for the drift wave turbulence which is dressed by
zonal flows. Theion thermal conductivity is evauated as[1]

xi = Aoykr 2 . (93)

By use of the dependence of Awy on the amplitude of drift wave fluctuations, Eq.(64),
X Isevaluated as

Xi~=

kg Vthip|2> -
=0 o . 94
k?p; ( &9

Ln

The quantity (ke/k?p i) VinePLn 1 isthe so-called gyro-Bohm diffusion coefficient.
Equations (80a), (82a) and (85a) show the fluctuation amplitude as a function of the
growth rate in various regions, showing the effects of zonal flow.

The thermal conductivity in the case of the weak growth rate of drift waves and
strong damping of zonal flow [region I] is given from Eqs.(80a) and (94) as

% = % . [regionl]  (95)
r
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In this case, there is no zonal flow in the steady state, and this agrees with the case of
'bare’ drift waves. When growth rate of drift wave becomes larger (and yet the
collisional damping dictates the zonal flow) [region 1], the conductivity is given as

2V gomp s
Xi = /(1V—du)z‘ (|1<)2' [regionll]  (96)

In the collisionless limit, the region | disappears, and the transport in the region 11
vanishes asis shown by Eq.(96). Thethermal conductivity becomesfinite in the region
[11, and isgiven as

1-—
T 1+74( ZMZ)OL -
_ MH kepS(D* !.LH keps(,k)* ' W«

X = (1—M)0t 2 k7f .

[regionlll]  (97)

The transport coefficient %) becomesfinite, ;=0 , fory_ =y ¢. Inthis
collisionless case, in the vicinity of the nonlinear onset conditiony| =Y ¢, aEq.(97)

provides asmplified expression of the transport coefficient as

S Y

Xi e (98)

One might be interested in more specific case studies. In the framework that the
wavelength is much longer than pg and K, ps<<1,in small Aw -limit, the decorrelation

between drift wave and zonal flowis determined by the wave-bounce frequency. We
have

2022
rz= SPEN ViU, U U) (%9)
|1+ p2k3)

from Eq.(42), and the critical vorticity is given from Eq.(75¢c) as
UC:(Z(l—u) /uH)qud_ (100)

At thiscritical vorticity, op andI' are evaluated as
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= 4(1_M) qur

W+ | 101
uH 1+ pék% (102)
Substituting Eq.(101) into Eq.(88), the critical growth rate is evaluated as
2
_41-u) g2
YL,C-WK?G- (102)

The boundary for the onset of turbulence has adependenceasy | ¢ q? kgz o witha

numerical factor.
For practical usage, it is useful to have an interpolation formulaof x; inthese

threeregions. Inregions| and 11, x;j may befitted as

2Vdamp
(1-wo o

Xi=Xi+1 = 7
i I +11 Zvdamp k?
YLt ) o
(1-ufo

This type of interpolation formula has been derived in, e.g., [39]. A possiblefitting
formulafor al threeregionsis

YL

(103)

%i =/ B xRivL L, o) (104)

where®(v|_—v|_,c) isaHeaviside function, @(YL—YL,c):l fory_ >y ¢ and
@(YL—YL,c) =0 fory_ <y_ ¢ . Thisformulacovers both the collisional regime

(regions | and I1) and the self-nonlinearity regime (region 111), including the property like
Dimits shift.

The thermal conductivity in the presence of zonal flow inregions|l and 11,
Egs.(96) and (97), is much reduced, in comparison with the case of 'bare’ drift waves
(i.e., ZF neglected), for which Eq.(95) isgiven. The reduction factor, inregionsl|l and
[1l, A, canbedefined accordingly [40]. Anexample of transport coefficient in explicit

formis discussed in the appendix.

4.4 Comparison with nonlinear simulation
4.4.1 Global parameter dependence

It isworthwhile to compare these theoretical resultswith DNS. Theresultis
tested to the result of athree-dimensional nonlinear smulation of the ion-temperature-
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gradient (ITG) mode turbulence based on two fluid models[13]. In thissimulation, the
dynamics of the electrostatic potential, ion temperature and ion parallel velocity are
followed in toroidal geometry with an assumption of adiabatic response for electrons.
Radial width of smulation domainis 120p; and arealistic ITG dynamic was obtained by
switching off the unredlistically high parallel fluid heat conduction. Parameters are
en=2L/R=09  L/L:=31,q=14 (q=0.7 for zona flow component in order to
reduce the damping of zond flow),ands=0.8 . (L,, and L+ aregradient scaelengths
of density and temperature, respectively and S : magnetic shear). Details are explained in
[13].

In the analytic theory, the ITG mode is characterized by the modenumber

Kopi ~% : (1053)

and
Ko~k . (105b)

This set of parameters, Eq.(105), is chosen as an input to this theory, and the level of

zonal flow isanalyticaly estimated, and is compared with the result of DNS.
In this subsection, we derive the relation between U and ;; , because these

values of parameters are reported in DNSresults[13]. Inthe unit of Vgoi 1, the zonal
flow vorticity is given by U =kgpvWVgpi 1 where Vy isthe diamagnetic drift velocity.
By use of Eq.(105a), we have

U =% JWVprl, (1064)
and the relation
% =3¢ (Vthip.ZLﬁl) (106b)

is deduced from Eq.(94) by use of Eq.(105b).
For the case when the parallel flow damping has considerable influencein

modifying the quasilinear growth rate of the zonal flow (such asthe DNS parameter in
[13]), we choose a representative value of u ~ 1/2 . For the parameters Eq.(105), one

hasH ~ 2.5 . With the help of therelation for K in[20, 35] of Ko~ skg , one has

9y =01pg? (107)
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for the wavenumber of the zonal flow. By use of these parameters, EQ.(100) provides an
estimate

U.~0.085V 71, (108)

at the boundary for the onset of turbulence, and the steady state condition Eq.(74) with
Egs.(99) and (106) iswritten as

5= Vdps JUZ-U U = Vdps U2-0.085V 3 U (109)

in the collisionless limit. Combining Eqs.(106b) and (109), the relation between x; and
U, %i(U),isderived as

K =47t p2_008Vq (110)
ViniP£Ln Vg Pi

It is emphasized again that the estimate of u ~ 1/2 and Eq.(105) are the input parameters,

which are used to derive the theoretical prediction Eq.(110).

Equation (110) is compared with DNS in Fig.6. Solid line shows the theory
(Eq.(110)) and dots denote the result of DNS. A good agreement between them is
obtained. We should note here that the fact that the cut-off frequency I' isintroduced
based on an order-of-magnitude estimate, and the relation of the thermal transport
coefficient (e.g., Eq.(94)) has an ambiguity of numerical factor. Thus, one should not
examine an exact agreement of the DNS data and the theoretical result Eq.(110), but
should focus on the qualitative feature, such that the appearance of the cut-off at small
drift wave amplitude or an asymptotic relationx; « U in the limit of strong turbulence.
That is, the theoretical model reproduced the essential features in the relation between the
drift wave and zonal flow amplitudes, which is observed in DNS.

4.4.2 Radial profile of nonlinear eigenmode
Before closing the analysis, the radial profile of the induced zonal flow isalso

compared with the DNS. For the parameters of interest, the model theory providesthe
radial periodicity length asA ~ 60 p; from Eq.(107). Figure 7 illustrates the radial

distribution of the vorticity associated with the zonal flow, d<vy>/dr , Where < : >
denotes the average over the magnetic surfaceand r — and y — coordinates are taken in

theradial and poloidal directions, respectively. The simulation result confirmsthis
theoretical modelling. Firstly, the radial distribution of the vorticity shows the flattened
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quasi-periodic form. Thisisan extreme case of relatively low dispersion and high linear
drivein the analytic result. Second, the periodic length is about

A~30p; (112)

and isin the range of theoretical prediction. Third, the magnitude of the vorticity is
d<vy>/dr ~0.6Vg4pi ! . Thisvalueisalsointherange of theoretical prediction,

Ug~045Vgil a Aw~w+ . Theagreement of the magnitude of zonal flow between
theory and DNSis already explained in §4.4.1.

5 Summary and discussion

In summary, we have developed atheory of nonlinear evolution of the drift wave-
zonal flow system. In the regime where coherent structure of zonal flow survives much
longer than the decorrelation time of drift waves, the coherent structure of the zonal flow
was analyzed. The self-nonlinear effect of zona flow realizesthe stationary state. The
coherent structure of zona flow was studiedby the perturbative expansion with respect to
the zonal flow amplitude. The nonlinear radia e genmode was expressed in terms of
dlipticintegra. Thisdeterminesthe characteristic scale length of the zonal flow in
nonlinear saturated stage. By treating the radial wavelength of the zonal flow asa
parameter, the renormalization of the higher-order nonlinear effects was performed. The
driving force of the zonal flow was derived, in which contributions of zonal flow
vorticity at al orderswereincluded. By use of thisrenormalized dynamical equation for
the zonal flow, we studied the steady state system with both the drift wave fluctuations
and zonal flows. The energy partition between them, the thermal conductivity, and the
condition for the onset of drift wave turbulence were analyzed. The partition between the
drift wave energy and zonal flow energy was obtained as afunction of the growth rate of
drift wave and the collisional damping of the zonal flow. A theoretical formula of the
turbulent transport coefficient is derived, which covers the weakly-unstable regime (no
zond flow), the moderately-unstable regime (where the collisional damping of the zonal
flow dictates the transport coefficient), and the strongly unstable case. The obtained
formula extends the previousdy-derived formulato wider circumstances. The condition
for the onset of turbulence and turbulent transport in the collisionless limit was also
derived. Thisexplains what has been empiricaly known as Dimits shift in DNS.
Formula of the turbulent transport coefficient was aso derived, in which the screening
effect by zonal flowsis self-consistently included. The theoretical result was compared
with the DNS. The energy partition between drift wave and zonal flow is tested for the
relation xi( U ) . For awide range of plasma parameters that control the growth rate of
ITG mode instability, good agreement is also observed. Thus, this analysis captures
some essentia elementsin the physics of the DW-ZF system. Thistheory also givesa
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prototypical example to understanding the mutual interaction between the turbulent energy
transport and generation of axia vector field owing to the global gradient of plasma
pressure.

Although this theory has shown some success in understanding of the nonlinear
dynamics of DW-ZF system, further research is necessary. Oneissue isthe parameter
range of validity for the existence of the coherent structure of the zonal flow. The
coherent timeisfinitein reality, and must be self-consistently determined by use of the
statistical theory [3, 24- 27,41]. Systematic continuation of this model and the BGK
solution still needs further study. The decorrelation of drift wave at the low level of drift
wave turbulence, Eq.(41), remains to be avery crude estimate in this article, and
improvement is necessary. The other issue is the application of methodology to various
turbulence problemsin actua experimental conditions. In both issues, future evolution of
understanding is expected.
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Appendix: A formula of transport coefficient
In this appendix, explicit forms of the transport coefficient and the Dimits shift is

discussed for a practical use.
An analytic estimate for D,, has been given

DN

k
Drr’:i

oz, 16l (A1

=
—

in the vicinity of the marginal condition Aw, =y (See, e.g., 83.2.2 of [6]). Itisgiven,
in terms of the normalized fluctuation amplitude, as D, = (kgkf)w* ! cT)Z . The growth

rate of the zonal flow energy has been introduced by the definition 2D,,q2 = o> . That
is, thetimerate o isgiven as

O(.:'& 2k%q|’2
v ki

Wx . (A2

The Dimits shift is given by the critical condition that satisfies Eq.(102), i.e.,

1-u)? g2
YL,C=ME%0‘- (A3)

n2H?
Elimination o from Egs.(A2) and (A3), at Y =Y ¢, one has an equation of the critical
growthratey, ¢ as

2@(1—;1) Q2
YL,C_TE(D* . (A4)

For the least stable mode, 4, isestimated by Eq.(57), 4, = 712_M Ko , thisrelation

givesan estimate of y|_ ¢

2
_[1-u)7 kg
YL, = JZ wH Ew*- (A5)

One estimate for Ko =K :

_[1-u] k2
YL,C_ \/?MH Ew*

(A6)
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For parametersu ~ 1/2 | y|_ . isof the order of one-tenth of o= .

Explicit forms are aso derived for domains discussed in §4.2.2. One hasthe
following expressions.
(&) Small growth rate limit:

In the case of weak instability, i.e.,

4
1 KT .
< A S
YL (1—M> kéq? V damp [region ] (A7)

the fluctuation level is given by

¢ = ¢, (A9)

Y
W
(b) Intermediate growth rate limit:

For the case of

4
L <y, < i
(1_M) kng Vdamp <YL <YL, c» [region I] (A9)

r

the fluctuation level is given by

§= 1 k% / Vdamp Y|
\/1—M keqr W* Wx*

(c) Large growth rate limit
The transition from the collisiona -damping-dominated region [region I1] to the
nonlinearity-dominated region is expected to occur at

o - (A10)

1

——V + < ) region |1 All
quéké damp T YL, c <YL [reg ] (ALY

One has, from Eq.(87),

d‘)z MHpgkjl_ —1+ 1+
41-p)g? wHp3K?

81_” qr2 - c ~
(2w (YLY:{L’> L T (Al12)

W+
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The asymptotically-linear dependence ony inthismodel isrecovered, and a
suppression factor appears. The suppression factor, which isinduced by the co-existence
of the zonal flow, is approximately evaluated as +/ MH/Z(l - u) pKigrl~k ps.

A similar argument is possible for the thermal conductivity. Intheregions| and
[1, afitting formulais given as

- nwvo1
X+ = o+ 2 (AL3)
where
k4
v= 1 L (A14)

(1] Kfap ™

denotes the impact of collisional damping of the zonal flow. Intheregion I11, Eq.(94)
and Eq.(A12) provide

X = uHps J_Z —1+ 1+ ( 2)4" (YL YL,C) % . (A15)
41— uHpZkd | v ) K2
A fitting intheregions|, Il and I11 is
- 2 2
i = Xit =1/ X+ +X|||®(YL—YL,c) (A16)

where ®(y L—Y L,C) isaHeaviside function.
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0 2n 4t 6r X 8n

Fig.1 Stationary state of the normalized solution u(X) for the caseof d =8 . Radial
length X and vorticity U are normalized values.

dv_/dt>0
zF

Collisional

Drift wave amplitude

o

w*Kp  Zona flow
rs vorticity

Fig.2 The diagram for the zonal flow growth on (U, ¢ plane. Solid lineindicatesthe

neutral condition for the weakly collisional case, and the dashed lineisfor the
collisionless case.
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Ulw,

Fig.3 Three casesfor the solutions. Solid line indicates the marginal condition for the
zonal flow growth. Dotted lines denote those for the drift waves for various values of
linear growth rate. Dots indicate steady-state solutions. If the drive of drift wave isweak
[case ], the steady state solution is given by zero zonal flow. Theintermediate case[l1]
and strong drive case [I11] are also shown.

v/a. _
Region |
DW,

no ZF

Region |1

DW+ZF
Region 111
DW+ZF
0 YL1 Cc /(D % YL /(D*

Fig.4 Domainsin control parameters. (In thisdiagram, thetimerate o istreated asa

constant parameter.)
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Fig.5. The dependence of the amplitude of drift wave fluctuati ons ¢ (solid line) zonal
flow W (chained line) vs. vy, inthe collisional case (a). (Here, v/o« and /o« are kept
constant.) Threeregions appear. Drift wave amplitudqu) (solid line) and zonal flow
vorticity VW (thick broken line and thick dashed line) in the collisionlesscasev =0 is
givenin (b). Thin dotted line shows$ when zonal flows are not taken into account.
(o/ws iskept constant.) Theregion | disappear, and the drift waves are excited in the

region Il1.
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Fig.6 Comparison of the relationsx;(U) for the steady state of ITG mode. Zonal flow
vorticity is measured in aunit of Vgoi 1 and thermal conductivity isin Vthip?Lﬁ L
Theory (solid line) and DNS data (dots) quoted from [13].
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Fig.7 Radial distribution of vorticity of zonal flow U inthe DNS. Snap shot inthe
stationary state is shown. Origin of radiusrg ischosen at the center of simulation box.
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