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Unified Linear Response Function for the Stationary Zonal Flow and the Geodesic Acoustic Mode  
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Abstract 

 
This paper presents a formulation of linear response function of electrostatic 

potential to the nonlinear drives, which is important in considering the 
self-regulation of the turbulence. There are two well-known branches, stationary 
zonal flow and Geodesic Acoustic mode, which are known to have weak damping 
rate and therefore have been believed to regulate the turbulences. Since the fre-
quencies of these modes are in so different regimes, these branches have been 
analyzed separately with proper approximations. This paper gives unified expres-
sions of these response functions. Drift kinetic equation is integrated along parti-
cle orbits by expressing particle orbits in Fourier series expansion. The obtained 
formula disclosed some interesting aspects of the response function, for example, 
the existence of a low frequency Geodesic Acoustic Mode and the harmonic 
resonance effects of individual particles. 

 
I. Introduction 

The stationary zonal flow and the Geodesic Acoustic Mode (GAM) are gathering attentions, for 
they are supposed to have weak damping and therefore potentially regulate the turbulence and re-
duce the associated anomalous transports. Winsor et al. [1] pointed out possible existence of GAM 
and many theoretical works followed it. However, the frequency range of validity is limited for they 
are mostly based on the MHD equations, and applied primarily to tokamaks. In our previous paper 
[2-3], the theory of GAM oscillation was extended to helical systems. Drift kinetic equation was 
used there in order to incorporate the kinetic effects. However, since parallel velocity was assumed 
constant in these works, some kinetic effects were not properly incorporated. Recently, the station-
ary zonal flow response function was extended to helical systems by Sugama et al.[4] by use of the 
gyro-kinetic equation. The response of the plasma flow to the nonlinear drive is in itself interesting 
subject of research and therefore, some works are dedicated to clarification of the transient re-
sponses by use of drift kinetic equation [5] and gyro-kinetic equation [6-7]. Particularly, the latter 
two papers suggested that damping is small for the stationary zonal flow and the residual flow sur-
viving through the damping is interpreted in terms of neo-classical polarization screening.  
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This paper presents a formulation that unifies these previous works. Since extension of the 
GAM theories to helical system has been dealt with in our previous work [2], we limit the scope 
of this paper to axisymmetric device. For reference, Rosenbluth [8] and Mikhailovskii [9] em-
ployed the drift-kinetic equation incorporating the toroidal effect in the analyses of waves in the 
plasmas. Though these papers successfully predicted the combined effects of toroidal effects and 
collisions, they are not formulated in a convenient way to describe the zonal flows and GAM os-
cillations. Recent work by Sugama et al. [10] developed a new formulation of the response func-

tion for GAM oscillation including finite orbit effects. However, since υ�  is assumed constant in 

these theories, some parallel finite Larmor radius effect and mode coupling is missing. Present 
paper intends to improve the previous our work [2-3] by including all these effects. In order to 
extend the theory to tokamaks of arbitrary cross-section, the formulation is made in the coordi-
nate-independent form. The general formulation is presented in section 2. Some of the properties 
of the response function are shown in section 3: In section 3A, the formula is reduced in the low 
frequency range is and exact agreement with Rosenbluth Hinton neoclassical shielding effect is 
confirmed. In section 3B, the formula is applied to GAM frequency range and comparison is 
made to the previous work. In section 4, the obtained formula is reduced with constant velocity 
approximation for a simple tokamak to confirm that it is sound extension of the latter. The formu-
lation in section 2 requires subsidiary formulas related to particle orbits expressed in the Fourier 
components. They are presented in Appendix I~V. 

 
II. Formulation 

As in the previous paper [2], we start with the drift kinetic equation with independent variables 
( , )w µ , kinetic energy and magnetic moment, respectively. 
 
 

0

0

0 ,0 0 ,0 0

( ) ( ) ( ) exp(

( , , , , ) exp( )

D i D
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f f )f e ik ik i t
t w
S w m k ik i t
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µ ω ψ ω

∂ ∂⎡ ⎤+ + ⋅∇ = + ⋅∇ −⎣ ⎦∂ ∂
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� � ω
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  (1)

 

Here, f , Dυ
r

, and υ�

r  are the distribution function, drift velocity, and parallel velocity of the parti-

cles. The electric field has been assumed to be electrostatic, characterized by the frequency ω , the 

radial wave number kψ , and the amplitude of the perturbation 0φ , respectively.  The  on the 
0mS
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right hand side is the non-linear drive due to the turbulence. Here, 0ω , , and  are the fre-
quency, radial wave number, and poloidal mode number of non-linear drive. The two terms on the 
right hand side is regarded as the external force and the two terms on the left hand side compose a 
propagator.  

,0kψ 0m

A problem existing in the previous works [2,11] is in the approximation applied to the propaga-

tor, ( )D
f f
t

υ υ∂
+ + ⋅∇

∂ �

r r . In these works, some of the finite Larmor radius effects were ignored as-

suming moderate radial wave number for zonal flows.  Recent experiments, however, shows that 
the wave number can be of the order of inverse poloidal Larmor radius [12,13,14]. Therefore, the 
finite orbit effect is also taken into consideration in this paper. In the previous papers an approxi-

mation ( ) ( )D f fυ υ υ+ ⋅∇ ≈ ⋅∇�

r r r
�  was made. The ( )D fυ ⋅∇

r
term is retained in the present analysis 

and the radial wave number is explicitly included in the assumed form of the potential 

,0 0exp( )ik i tψφ ψ ω∝ − . In the previous works 2( ( ) /b E B rυ σ µ= −� m
rr r  was treated as inde-

pendent of time in order to simplify the calculation; Therefore, previous works miss some impor-

tant mode coupling and finite orbit effects. Thus this paper deals with 2( ( ) /b E B rυ σ µ= −�

r
mr r  

as dependent on particle position and therefore time dependent. 
Here, the solution to Eq.(1) is obtained by an integration along the trajectories of particles time 
dependently: 
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fde dt i i t ik t
dt w

fe i t ik i i t ik t t t d
w

ψ ψ

ψ

ψ ψ

υ φ υ ψ ω

ψφ ω ω ψ

φ ω ψ ω ω ψ ψ

−∞ −∞

−∞

∂ ∂⎡ ⎤′ ′ ′ ′ ′ ′= − ⋅ = ⋅∇ − +⎣ ⎦ ∂ ∂

∂⎡ ⎤′ ′ ′= + − +⎢ ⎥′ ∂⎣ ⎦
∂ ′′ ′′ ′= − + + − − −
∂

∫ ∫

∫

rr r

0

]t
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 (2) 

In order to perform the integration, the integrand is series expanded in the power of ( ( ) ( ))t tψ ψ ′′− : 

0 0

1 ( )
!

( )
exp( ( ))( ( ) ( )) ( 1) ( ) exp( ( ))

( )

n
n

n

n n n
n

c c

I ik I
n

I I t t
I i t t t t dt i t dt

t t

ψ

υ υ
ω ψ ψ ω

ω ω

∞ ∞

= −

′′−
′′ ′′ ′′ ′′ ′′= − − = − −

′′−

∑

∫ ∫ � �

 (3) 

The second equality is due to toroidal momentum conservation / .cI constψ υ ω+ =
�

 
For , we obtain 0n =
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0
0

1exp( ( ))I i t dt
i

ω
ω

∞

′′ ′′= =
−∫   (4) 

, which exactly cancels the first term in the bracket in Eq.(2). Therefore, we need to calculate 
nI only for . In order to proceed further, the integrand in Eq.(3) is Fourier decomposed. Since 0n ≠

/ cIυ ω� is a periodic function of time with period ( , ; ) 2 / ( , ; )T w wµ ψ π µ ψ= Ω  whether it is a 

passing particle or a trapped particle, the adoption of Fourier expansion is adequate: 
 

,

( )
( ) exp( )

( )
n

n m
mc c

I I t t
H im

t t
t

υ υ
ω ω

′′−
′′− =

′′− ∑� � Ω   (5) 

where 

,
0

( )1 ( ) exp( )
( )

T
n

n m
c c

I I t t
H i

T t t
υ υ
ω ω

m t dt
′′−

′′ ′= − − Ω
′′−∫ � � ′ .  (6) 

Since 
( )

( )
( )

n

c c

I I t t
t t

0
υ υ
ω ω

′′−
− =

′′−
� � t′′ =

d

 at t , the following sum rules are obtained from the inspection 

of Eqs. (5) and (6). 

, 0n m
m

H =∑ .  (7) 

In order to study the properties of , We introduce in Appendix-I,,n mH
0

( ) ( / ) /K dl d
θ

θ θ υ θ= ∫ �  

specifying the particle orbits with their initial conditions ( ) ( ( ))t K t Kθ θ′ ′= + − . Here, ( )K θ  
physically means the time for a particle to travel from equatorial plane 0θ =  to θ θ= , which de-
pends on ( , )wµ . In association, we define  

1

, 1
0

( ( ))
( , ) (1/ ) ( ) exp( )

( ( ))

T
n

n m
c

I K t
b w T im t d

K t
υ

µ
ω

−

−= −∫ � tΩ , (8) 

for passing particles with respect to those moving in positive direction. The same definition is used 
for trapped particles which however is defined with respect to those moving in positive direction at 
t=0. Their detailed properties are shown in Appendix-I. 

In Appendix-II,  are expressed in terms of with details of their analytic properties. One of 

the useful properties obtained working with are: 

,n mH ,n mb

,n mb

, ,2 ( )[sin ( )]n m n mH ih m K for odd nθ θ+= − Ω   (9) 
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and  

, ,2 ( )[cos ( )]n m n mH h m K for even nθ θ+= Ω  . (10) 

 
Here,  

, ,
0

( ( ))
( , , ) ( 1) ( )

( ( ))

n
l n

n m n l l m
l c

I t
h w C b

t ,
lυ θ

θ µ
ω θ

−
−

=
≡ −∑ � . (11) 

and it has even dependence on θ ( see Appendix-II). 

Once, the Fourier components  are calculated, it is easy to integrate Eq.(2) to obtain the dis-

tribution function of each order of .

,n mH

n

[ ] ,0 ,
0

0

1 ( ) exp( )
! (

n nn
n i

m

H Hff e i ik i t ik
w n i i mψ ψφ ω ω ψ

ω ω≠ )
m⎡ ⎤∂

= + − + +⎢ ⎥∂ − − + Ω⎣ ⎦
∑ .  (12) 

We introduce the following notations for brevity: 

V̂L gd dθ ζ⋅ ≡ ⋅∫ , 2
,

ˆ (2 / ) /i w iL m Bdwd
σ

π µ υ⋅ ≡ ⋅∑ � , ,
ˆ ˆ ˆ

i V i wL L L⋅ ≡ ⋅ ⋅ , 

and 2
, ,

ˆ̂ (2 / ) /i w i iL m Bdwdπ µ υ⋅ ≡ ∫ � . 

The flux surface averaged (=integrated) charge  is obtained by operating 
 

indq ,
ˆ ˆ ˆ

i i i V i we L e L L⋅ ≡ ⋅

2(2 / ) /i ie gd d m Bdwdθ ζ π≡ ∫ �µ υ ˆ
w to the distribution function Eq.(12); ,

ˆ̂ ˆ ˆ
i V iL L L= ⋅  is used in-

stead of ˆ
iL  where the summation over σ  is included in ( see Appendix II). Similarly we 

define corresponding notations for electrons changing the subscripts from  to . 

,n mH

i e
We express the induced charge as 

,i induced i n
n

q , 0χ φ=∑    (13) 

using the susceptibility ,i nχ  defined by 

2
, 2 ,

1 ˆ̂4 ( ) ( , , )
! (

m
n

i n n i i n m
m

f ie ik L H w
n w i mψ )

ωχ π θ µ
ω

=∞

′=
=−∞

∂
= ⋅

∂ −∑ + Ω

qR

.  (14) 

The essential difference of this formulation from other works is that ~ /kυ υ� � �  included in pre-

vious works are replaced by ( , )wµΩ , the period of the particle, without assuming constancy of 
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~ /k qRυ υ� � � ( , )w; µΩ  is independent of θ . Therefore, mode coupling and higher harmonic ef-

fects caused by the variation of the velocity change are correctly incorporated. 
It is found that nf s with odd integer  have odd dependences on n θ  and make no contribute to 

the ion response; since g  and B have even dependence on θ , they vanish after integration over 

θ  included in . ˆ̂
iL ⋅

The induced charge due to the classical polarization is employed from the well-known for-
mula in wave physics:

classicalq

 

22
2 2 2 2 2

0 0 ,2 2
, ,

( )1 1 1ˆ4 4 ( ) ( ) (
2 2

pol pol
classical classical i i M D i T

c i c i
q e ik L f k V

Tψ ψ

ψυ 2
0) ( )kπ χ φ π ψ φ υ

ω ω
⊥ ∇

′= = ⋅ ∇ = − φ   

(15) 
 

So far, calculus was shown for ions. For electrons, we assume that the response is adiabatic and 
adopt the following form (see appendix-III): 

, , ,0 ,0( / )( ( ) ( ) )( / )e i e i n i n e ef e e n n f nθ θ= − − < >  (16) 

where . , ,
ˆ( , )i n i w i nn t L fθ = ⋅ ,

, 0

The electron response is then written in the form 

, 04 e induced e e n
n

qπ χ φ χ φ= = ∑  (17) 

with the electron response function ,e nχ defined by 

, , ,0 ,0 , ,
1 ˆ4 ( )( )[( )( / )]( ( ) ( ) )i

e n e e d e e e i n i n
e

ee L ik f n n n
i eψχ π υ ψ θ θ
ω

= ⋅ ⋅∇ − − <
rr

>   (18) 

Using Fourier components , the ,n mH ,e nχ is expressed as follows: 

,02 2
, 2 , ,0 ,0 , 2 1,

1 1ˆˆ ˆ4 ( ) ( )[( / )] ( ; , )
(2 1)! ( )

m
in

e n n i e d e e e i w n m
m

f
e ik L f n L H w

w n i mψχ π υ ψ θ µ
ω

=∞
′

′ ′= −
=−∞

∂
= − ⋅ ⋅∇ ⋅

′∂ − −∑
rr

+ Ω

(19) 
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Thus, the electron response is expressed in the power of as ion response is. However, since 2( )kψ

,( d e )υ ψ⋅∇
rr

 in this expression has odd dependence on θ , electron response Eq. (19) contributes 

through  with odd , which has odd dependence on (2 1),n n mH ′= − n θ  as shown in Eq.(9). It is noted 

that the potential form of Eq.(16), has θ  dependence which causes E Bθ ×
r r

 drift.  We dropped 

these terms in the formulation, assuming that electron and ion contributions cancel each other. 
The source term on the right hand side of Equation (1) causes the following external charges. 

, ,, , , 0 ,0 0 0 ,0 0
ˆ( ) ( , , , , ) exp( ( ) ( ) )

t

i e turbulence i e i eq e L dt S w m k im t ik tψ ψµ ω θ ψ
−∞

i tω′ ′ ′= ⋅ + −∫ ′   (20) 

The sum of the contributions from ions and electrons, , ,turebulence i turebulence e turebulenceq q q= + , gives the 

total external charge. Eq.(20) may be calculated by use of similar algorism that is applied to the 
calculation of induced charge. Exact calculation of the drive term is not however discussed in this 

paper, for , 0 ,0( , , , , )i eS w m kψ 0µ ω  is not always specified. 

Gathering all the terms and assuming quasi-neutrality,  
 

, ,( )classical i induced e induced turebulenceq q q q q= + + + 0=  (21) 

 
We obtain the following response function: 

0 0
, ,

2 2

4 turbulence

classical i n e n
n n n n

qπ
φ

χ χ χ
′ ′= =

−
=

+ +∑ ∑
   (22) 

The denominator of this equation, D , consists of the following terms: 

[ ]
2

2 ,00 2
2

,
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2

i
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c i

f
e L k

w ψ
σ

υχ π ψ
ω
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2 0

1ˆ̂4 ( 1) ( ) ( , , )
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1ˆ̂4 ( 1) ( ) ( , , )
(2 )! ( )

m
i n n

i n i i n m
n n n n m

i n n
i i n m

n n m

f ie L k H w
w n i m

f ime L k H w
w n i m

ψ

ψ

ωχ π θ µ
ω

π θ µ
ω

=∞
′ ′

′
′ ′= = =−∞

′ ′
′

′= ≠

∂
= ⋅ −

′∂ −
∂ − Ω

= ⋅ −
′∂ −

∑ ∑ ∑

∑ ∑

+ Ω

+ Ω

  (24) 
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2
, , ,0 ,0

2

,0 2
, 2 1,

2 0

ˆ4 ( )[( / )]

1 1ˆ̂ ( 1) ( ) ( ; , )
(2 1)! ( )

e n i e d e e e
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m
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i w n m
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e L f n

f
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ω
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=∞
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× ⋅ −
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−

i m− + Ω

∑

∑ ∑
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  (25) 

The second transformation in Eq.(24) is due to the sum rule, . 2 , ( , , ) 0
m

n m
m

H wθ µ
=∞

′
=−∞

=∑

Eq. (23-25) is presented as a sum of the terms of the form, 

, ( , , )
( ( ,

n mH w
i m w ))

θ µ
ω µ+ Ω

.  (26) 

The index of the summation  physically designate the order of Finite Orbit Effects associated 
with the finite radial wave number as demonstrated in Ref [10]. Equations (23-25) contain also 
summation over  for each order of , which is caused by the inclusion of the variation of 

n

m n υ
� . 

Thus it is found in this paper that variation of υ�  causes many harmonics, which may affect 

damping of GAM oscillation as well as finite orbit effects.  
Though Eqs.(23-25) contain somewhat complicated integrations, some reduction can be made in the 

numerical calculations: By introducing variable /k wµ=  and using 2 / iw mυ =  in place of  w

we can separate the two variables in ( , )w µΩ : ( , ) ( )
T

w kυµ
υ

Ω ≡ Ω . Similarly, we find that 

( , ) ( , , )K k K wθ θ µ≡ Ω%  is independent of 2 / iw mυ = .  

Further, we define 

, , ,0( ) ( / ) ( / )l l
l m l m T c Tb k b Iυ ω υ υ−≡% −  (27) 

and 

, ,
,0

1 ( )
( , ) ( 1) ( ) ( )

( ) /
l n l

n m n l l m
l c c

kB
h k C b

θ
θ

ω θ ω
−

−

−
≡ −∑% %

, k

n

 (28) 

in order to separate variables:  

, ,0 ,

, ,0 ,

( , , ) ( / ) ( / ) ( , ) cos( ( , ))

( , , ) ( / ) ( / ) ( , ) sin( ( , ))

n n
n m T c T n m

n n
n m T c T n m

H w I h k mK k for even

H w I h k mK k for odd n

θ µ υ ω υ υ θ θ

θ µ υ ω υ υ θ θ

=

=

% %

% %
   (29) 

The integration remains still complex but stays in a tractable level. In order to integrate Eqs.(23-25) 
over υ , we introduce the dispersion function nZ ; 
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0

1 (( ) exp( )
( )

n

n
xZ dx x

x
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ζπ

∞

≡ −
−∫  . (30) 

For instance, the neoclassical ion response is written in the simplified form after the integration over 
. iw

2 2
,

2 ,0

2 , 2 3 ,
0

1 1ˆ( 1) ( ) ( )
(2 )! 1

[ 2 ( , ) cos( ( , ))] ( )

n nT
ion D i V

n n c
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m
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υχ
ω
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≠

= − − ⋅ ⋅
′ −

× × −

∑ ∫

∑ % %
   (31) 

Similar calculations lead to a simplification of electron contributions Eq.(25) : after conductiong 
integrations over and , and we obtain.  ew ek iw
 

2 2 2
, ,0

2 0

,0 2
2 1, 2 1 ,3

1( ) ( ) ( 1) ( ) ( / )
(2 1)!

1[ [ ( ) ] ( , ) sin( ( , )) ( ) ( )
1

n n ni e
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m
c
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mc

e T k k I
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B mkB

ψχ υ ω

ω υθ θ
ω

′ ′ ′

′= ≥

=∞

′ ′− +
=−∞

= − −
′ −

× ⋅ ⋅∇ ⋅ ⋅ × −
Ω−

∑

∑ ∫
r r

% % ]m kζ

i

 

(32) 
 
The notable differences of the electron term from that of ions are: 1) The former has the multipli-
cation factor , which takes important roles depending on experimental conditions. 2) /eT T 2 1nZ ′+  
appears in the former, whereas  appears in the latter due to the different kinetics between 

them.  Since 

2 3nZ ′+

,0 2
3

1[ ( )c
p

c

]B B
B

ω
ω

⋅∇
r r

 and are both odd functions of 2 1, ( , )n mh θ′−
% k θ , we find elec-

trons contributes through even dependent parts of 2 1 ,( )n mZ kζ′+ − on ,m kζ . The Eqs. (31) and (32) still 

have numerical integrations over  and k θ , which however are inevitable containing important 
physics related to mode coupling. 

 
 
Section 3. Relationship to preceding works: 
 
A. Neoclassical Screening Effect 
In the very low frequency range, as considered by Rosenbluth [5-6], the 0

2
mχ = gives larger contribu-

tion than other terms by factors /m ωΩ . Electron response can be ignored in the low frequency 
range for its small mass ratio. Therefore, Eq. (22) reduces to 
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0 0 0
,2

4 turbulence
m

classical i

qπφ
χ χ =

−
=

+
. (33) 

 
Using the identities  

2 2

2 2ˆ / p

p

dl
L gd d Bdwd A dwd A

m mσ σ

π πθ ζ µ υ µ
υ

⋅ ≡ ⋅ =∑ ∑∫ ∫� ∫ ,   (34) 

0
2
mχ =  is transformed to the following form (see Appendix-IV): 

22
20 2

2 2
1 24 ( )( ) [ ]pm

i
c cp

dl I Ifie ik dwd
i m wψ

σ

υ υπχ π ω µ
ω ωυ

=
⎛ ⎞⎛ ⎞∂

= + − ⎜ ⎟⎜ ⎟ ⎜ ⎟− ∂ ⎝ ⎠ ⎝ ⎠
∑∫ ∫ � �

ω
 .  (35)

Thus it has been shown that general expression Eq. (33) is reduced to Eq.(14) in ref.[5] and thus 
 is identified as the neoclassical polarization effect itself [4]. It is noted that the two terms in 

Eq.(35) in the bracket effectively cancels each other and leaves small residue for passing particles. 

For trapped particles however 

0
2
mH =

/ cIυ ω 0=�  and such cancellation does not occur. Therefore, 

trapped particles are considered to take more important roles though they are smaller in population. 
Using the numerical results in ref. (5), one can reach the following familiar form for a simple model 
tokamak. 

 0 2
0 4 /( (1 1.6 /turbulence classicalq q ))φ π χ= − + ε   (36) 

Equation (35) and (36) are important results that new formulations have to be reduced to in the low 
frequency range in order for them to be correct. 
 
B) Application to Geodesic Acoustic Mode. 
 
The geodesic acoustic mode response function is obtained in the lowest order from the term propor-

tional to 2

,0

( T

c

I kψ )υ
ω

. The reduction is obtained from Eq.(22), which gives unified expression of the 

response function valid through zero to GAM frequency range. In the GAM frequency range, 
0

2
mχ ≠ are retained as well as 0

2
mχ = . 

 

0 0 0 0
,2 ,2 ,2

4
( )

turbulence
m m M

classical i i e

q
0

π
φ

χ χ χ χ= ≠

−
=

+ + + ≠   (37) 
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20 2
,2 2,0

20 2
,2 2,

0

1 ˆ̂4 ( )( ) ( , , )
2
1 ˆ̂4 ( )( ) ( , , )
2 (

m
i i i

m
i i i m

m

f ie k L H w
w i
f ie k L H w
w i

ψ

ψ )m

ωχ π θ µ
ω

ωχ π θ µ
ω

=

≠

≠

∂
= − ⋅

∂ −
∂

= − ⋅
∂ −∑ + Ω

 (38) 

0 2 2
, 2 , ,0 ,0 , 1, 0

0 2 2
, 2 , ,0 ,0 , 1, 0

0

1ˆˆ ˆ4 ( ) ( )[( / )] ( , , ) 0

1ˆˆ ˆ4 ( ) ( )[( / )] ( , , )
( )

m
e n i e d e e e i w n m

m
e n i e d e e e i w n m

m

fe k L f n L H w
w i
fe k L f n L H w
w i

ψ

ψ

χ π υ ψ θ µ
ω

χ π υ ψ θ µ
ω

=
= = =

≠
= = ≠

≠ m

∂
= ⋅ ⋅∇ ⋅ =

∂ −
∂

= ⋅ ⋅∇ ⋅
∂ − + Ω∑

rr

rr  

(39) 
 
The dispersion relation is obtained by the putting the denominator to be zero to determine the oscil-
lation frequency and the damping rate of GAM, i.e., non-trivial solutions are sought. 
 

0 0 0
2 2( )m m

classical eD χ χ χ χ= ≠≡ + + + 0= .   (40) 

 
 Using Eqs.(15), (38), and(39), the dispersion relation is obtained in the following form:  
 

[

2 2

2
2

2,0 2,2
, 0

2 ,02
, ,0 ,0 , 1, 0

0

ˆ̂4 ( )( )

1 1 1( ) ( , , ) ( , , ) ]
2 2 2 ( )

1ˆˆ ˆ[4 ( )( ) ( )[( / )] ( , , ) ]
( )

i i

m
c i m

i
i e d e e e i w n m

m

fD e k L
w

iH w H w
i m

f
e k L f n L H w

w i

ψ

σ

ψ

π

υ ωψ θ µ θ µ
ω ω

π υ ψ θ µ
ω

⊥

≠

= ≠
≠

∂
= ⋅

∂
−

∇ + +
− + Ω

∂
+ ⋅ ⋅∇ ⋅

m∂ − + Ω

∑ ∑

∑
rr

  

(41) 
 
Eq.(41) suggests that the oscillation frequency is determined by equating the sum of classical- and 
neoclassical-) polarization currents( the first-and the second terms in the bracket) with other geo-
desic current (the third term in the bracket). An alternative form is, however, obtained by using the 

sum rule, , and eliminating terms which are odd function in 2, 0m
m

H =∑ θ . 

[

2 ,02

2
2

2,2
, 0

ˆ̂4 ( )( )

1 1( ) ( , , ) ]
2 2 ( )

i
i i

m e
c i m

f
D e k L

w
imH w

i m

ψ

σ

π

υψ θ µ
ω ω

⊥

≠

∂
=

∂
+ Ω

∇ + +
− + Ω∑ ∑ 0χ =

  (42)
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Or, equivalently, using the properties that 2, ( , , )mH wθ µ = 2, ( , , )mH wθ µ−  and they are real, ion 

terms are further transformed as follows:
 

[
2 2

2 2 2
2,2 2 2

, 0

1 1 ( )ˆ̂4 ( ) ( ) ( , , ) ]
2 2 ( )i i m e

c i m

f mD e k L H w
w mψ

σ

υπ ψ θ µ
ω ω

⊥

≠

∂ Ω
= ⋅ + ∇ + +

∂ −∑ ∑ 2 0χ =
Ω

 

(43) 
 
In the formula given in Eq.(42) and (43), the frequency of the oscillation is determined by equating 
the classical polarization current ( the first term in the bracket ) with the geodesic current ( the sec-
ond term in the bracket). This formula has essentially the same structure that we obtained in the 
previous work [2]. The present paper thus provides the unified expression of response functions in 
the wide frequency range from stationary zonal flow to Geodesic Acoustic Modes.  
 
Section 4. Reduction to the constant velocity approximation:  
 
Under the assumption that particle velocity does not change, the formula given above is analytically 
reduced to familiar forms. As shown in the previous section, we analyze the second order term in 

2

,0

( T

c

I kψ )υ
ω

by putting  in Eqs.(24). 2n =

 
2 2

, 2,
0,0

1ˆ( ) ( ) [ ( , ) cos( ( , ))] (
1

T
i D i V m n m k

mc

Ik k L Bdk h k mK k Z
kBψ 2 3 , )υχ θ

ω ′+
≠

= ⋅ ⋅ × ×
−

∑∫ % % θ ζ−  

(44) 
 
For the simple tokamak case with circular cross section, the Jacobean is expressed as 

0 (1 cos )drg rR
d

ε θ
ψ

= + . Under the approximation that velocity does not change while along the 

trajectory, we may put cos( ( , )) cos( )mK k mθ θ→% . In this simplest case, it is shown in Appendix-V 

that 2 2 2
2, 1 ,0( / ) ( / ) cosT c Th Iυ ω υ υ ε− = − θ  and 2 2 2

2,2 ,0
1( , ) ( / ) ( / ) ( 1)
4T c Th k I 2θ υ ω υ υ ε= + −% .  

Gathering these analytic expressions we may write 
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2 , 2 3 , 2 3 ,
1

2 2
2 3 1, 2 3 1, 2 3 2, 2 3 2,

[ ( , ) cos( ( , ))] [ ( ) ( )]

1[ cos cos( )] [ ( ) ( )] [ cos(2 )] [ ( ) ( )]
4

n m n m k n m k
m

n k n k n k n

h k mK k Z Z

Z Z Z Z

θ θ ζ ζ

ε θ θ ζ ζ ε θ ζ

′ ′ ′+ +
≥

′ ′ ′ ′+ + + +

× − + +

= − × − + + + × − + +

∑ % %

kζ
 

(45) 

On integration over , we replace k ,m kζ with , 0m kζ =  in order to keep consistency with the assump-

tion that velocity dose not change. Therefore we obtain 1( )
1

Bdk
kB

2⋅ =
−∫ . 

It is shown that the second term makes no contribution as an average is taken by applying ˆ
VL ⋅   

2 2 2
, 2 3 1,

,0

2 2 2
, 0 2 3 1, 2 3 1,

,0

ˆ( ) [ cos cos( )] [ ( ) (

1 ( ) [ ( ) ( )]
2

T
ion D i V n k n k

c

T
D i n k n k

c

Ik k L Z Z

Ik k V Z Z

ψ

ψ

2 3 1, )]υχ ε θ θ ζ
ω
υ ε ζ ζ
ω

′ ′+ +

′ ′+ +

= − ⋅ × − + +

′= − − + +

ζ

 

(46) 

where 2
0 0(2 ) drV rR

d
π

ψ
′ ≈ . 

For electrons we start with Eq.(32):

 

2 2 2
, ,0

2 0

,0 2
1, 2 1 ,3

1

( ) ( ) ( ) ( / )

1[ [ ( ) ] ( , ) sin( ( , )) ( ) ( )
1

i e
electron D i T c

n ne i

c
V p m n

mc

e T k k I
e T

BL B B dk h k mK k Z
B mkB

ψχ υ ω

ω υθ θ
ω

′= ≥

′+
=±

=

× ⋅ ⋅∇ ⋅ ⋅ × −
Ω−

∑

∑ ∫
r r

% % ]m kζ
 

(47) 

and use sin( ( , )) sin( )mK k mθ θ=% , ,0 2
3

,0

1 1[ ( ) ] 2 sipc
p

c t

B
B B

B B
ω

n
R

θ
ω

⋅∇ ≈ +
r r

, and 1,
1( , )
2mh kθ ε=% . 

Writing that  

1, 2 1 ,
1

2 1 1, 2 1 1,

( , ) sin( ( , )) ( ) ( )]

1 sin( ) ( )[ ( ) ( )]
2

m n
m

n m k n m k

h k mK k Z
m

Z Z

m k
υθ θ ζ

υε θ ζ ζ

′+
=±

′ ′+ = + =−

× −
Ω

= × − + −
Ω

∑ % %

  (48) 

, we obtain 
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2 2 2
, ,0

2 1 1, 2 1 1,
,0 0

2 2 2 2
, ,0 2 1 1, 2 1

( ) ( )( ) ( / )

1 1ˆ[ 2 sin sin( ) ( )[ ( ) ( )]
2

1 ( ) ( )( ) ( / ) [ ( ) ( )]
2

i e
electron D i T c

e i

p
V n m k

t

i e
D i T c n m k n m k

e i

e T k k I
e T

B
L Z Z

B R
e T k k I V Z Z
e T

ψ

ψ

χ υ ω

υθ ε θ ζ ζ

υ ω ε ζ ζ

′ ′+ = + =−

′ ′+ = + =−

=

× ⋅ ⋅ × − + −
Ω

′= × − + 1,

n m k

−

 . (49) 

 

where an interpretation was made that 
0qR

υ
Ω = . Gathering Eqs.(46) and (49), Eq.(40) is ex-

pressed in terms of the dispersion functions:  
 

2 2 2 2
, ,0

2 3 1, 2 3 1, 2 1 1, 2 1 1,

( )( ) ( / )

1 [ ( ) ( )] ( ) [ ( ) ( )
2

classical ion electron classical D i T c

i e
n m k n m k n m k n m k

e i

D k k I

e TZ Z Z Z
e T

ψχ χ χ χ υ ω ε

ζ ζ ζ ζ′ ′ ′ ′+ = + =− + = + =−

′= + + = +

⎡ ⎤
× − − + − + − + −⎢ ⎥

⎣ ⎦
]

V
. 

(50) 
The dispersion relation is therefore: 

2 2
,

2
2 2 2 2 4 2 4

,02
,

( )( )

( )1 1 15 1 15 7 3 1 15 1( ) ( / ) [( ) ( ) ] ( ) [ ( ) ( ) ] 0
2 8 16 4

D i

i e
T T c

c i e i

D k k V

e TI
e T

ψ

ψ
υ ε υ ω

ω ζ ζ ζ

′= ×

⎡ ⎤∇ ×
× − + + + ⋅ ⋅ ⋅ + − + =⎢ ⎥

⎢ ⎥⎣ ⎦8 ζ

 

(51) 
The lowest order solution is 

2 2
,02 2 2 2 2

2
2

2
,

( / ) 15 3 15 3( ) ( ) [( ( ) ] ( ) [( ( )
8 4 8 4( )

( )

T c i e i eT T T

e i e i
T

c i

I e T e T
qR qR e T R e T

ε υ ωυ υ υω ζ
ψ

υ
ω

= = + − ≈ + −
∇

]  

(52) 
, which reproduces the formula obtained under the assumption that velocity is constant along the 
trajectory. 
 
Conclusion. 
The response function of radial electric field to external drive was investigated in this paper. This 
paper presents an analytic formulation to numerically calculate the response without setting the as-
sumption that particle does not change speed due to magnetic in-homogeneity. Also, Finite Larmor 
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radius effects have been taken into consideration by assuming radial wave number. The formula 
therefore contains the Larmor radius effects of full orders. The velocity change of particles (par-
ticularly barely trapped particles) gives additional linear mode coupling and consequently causes 
higher harmonic resonances. 
This formulation satisfies exactly the result obtained by Rosenbluth and Hinton in the low fre-
quency range as well as it gives correct kinetic responses for geodesic acoustic mode. 
Therefore, the formula obtained in this paper is a proper unification of those derived for stationary 
zonal flow and for Geodesic Acoustic Mode. 
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Appendix－I :     Modeling Particle Orbits  
 
The following form of the particle orbit is assumed relating the position of the particle 
θ ′with time : t′

0

/dl dt d
θ θ θ α

υ

′

′ = ∫
�

+  (A-1-1) 

In order to determine α , the initial condition of the particles are used; particles exist at 
poloidal angle θ  at time t yielding 

0

/ ( )dl dt d t K
θ θα θ

υ
= − = −∫

�

θ , (A-1-2) 

where 

0

/( ) dl dK
θ

dθθ θ
υ

≡ ∫
�

 .   (A-1-3) 

Substituting (A-1-2) into (A-1-1), we obtain

 
0 0

/ / ( (dl d dl dt d d t K
θ θθ θ ))θ α θ

υ υ

′ ′

′ = + = + −∫ ∫
� �

θ   (A-1-4) 

, which is solved for θ ′  yielding 

1

0

/( (dl dK d t
θ θθ θ

υ
−′ ′= −∫

�

))t− . (A-1-5) 

For the uses in Appendix-II, we define by ,l mb

1

,1

( ( ))
( ) exp( )

( ( ))
l

l m
c

I K t
b im

K t
υ
ω

−

− ≡ ∑� tΩ  . (A-1-8) 

The s are calculated with respect to particles moving in positive direction while for 

trapped particles they are calculated for those moving in positive direction at time t=0.  

,l mb

 
 

Appendix II.  Properties of : ,n mH
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Now we define by nH

( )
( )

( )
n

n
c c

I I t t
H

t t
υ υ
ω ω

′−
= −

′−
� �   (A-2-1) 

and decompose it in Fourier series: 

, ( ) exp( )n n m
m

H H im tθ ′= Ω∑    (A-2-2) 

,
0 0

( )1 1exp( ) ( ) exp( )
( )

T T
n

n m n
c c

I I t t
H H im t dt im t

T T t t
υ υ
ω ω

dt
′−

′ ′≡ − Ω = − − Ω
′−∫ ∫ � � . (A-2-3) 

The integrand in Eq. (A-2-1),  is expanded using two term expansion coefficients 

: 

nH

,l nC

,

( ) ( ( )) ( ( ))
( ) ( 1) ( ) (

( ) (( ( )) (( ( ))
n l n l

n l n
c c c c

I I t t I t I t t
H C

t t t t t
)lυ υ υ θ υ

ω ω ω θ ω θ
− θ′ ′− −

= − = −
′ ′− −∑� � � �    (A-2-4) 

Substituting Eq. (A-2-4) into Eq. (A-2-2), we obtain 

, ,
0

( ( )) ( ( ))1 ( 1) ( ) ( ) exp( )
(( ( )) (( ( ))

T
l n l l

n m l n
l c c

I t I t t
H C im t

T t t t
υ θ υ θ
ω θ ω θ

− dt
′−

′ ′≡ − − Ω
′−∑ ∫� � . (A-2-5) 

 
 
 
A. Passing particles: 
 
For passing particles, an index 1σ = ±  is introduced to designate the direction of parti-
cles. By writing  

,

( ( ))
( ) exp( ( ( ) )

(( ( ))
l l

l m
mc

I t t
b im K

t t σ t
υ θ

σ θ
ω θ

′−
′= −

′− ∑� . (A-2-6) 

in terms of defined in Appendix-I and from the definition Eq.(A-2-3), the following 

equation is obtained : 

,l mb

, , ,

( ( ))
( ) ( 1) ( ) exp( ( ( ))

(( ( ))
l l n l

n m n l n m
l c

I t
H C b im K

t
υ θ

σ σ σ σ
ω θ

+ −
−

+

= − − Ω∑ � θ+   (A-2-7) 

with 

, , ,
( ( ))( 1) ( ) ( , )

(( ( ))
l n l

n m n l l m
l c

I th C b w
t

υ θ µ
ω θ

+
−

−≡ −∑ � .   (A-2-8) 
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Due to the properties given in Appendix-I, , ,l m l mb b −= , ,, l ml mb b∗
−=  and , 

the summation over 

,l mb rea= l

1σ = ±  gives the following convenient form: 

, , ,( ) exp( ( )) [exp( ( )) ( 1) exp( ( ))]n n
n m n m n mH h im K h imK imK

σ σ σ
σ σ σ θ θ+ += − = − + −∑ ∑ ∑ θ+

   (A-2-9) 
,i.e., 

, ,

, ,

( ) 2 [sin ( )]
( ) 2 [cos ( )]

n m n m

n m n m

H ih m K for odd n
H h m K for even n

σ θ

σ θ
+

+

= − Ω

= Ω
  (A-2-10) 

Thus, it has been shown for odd  that n , ( )n mH
σ

σ∑  is an odd function of θ . On the 

contrary, for even number of ,n , ( )n mH
σ

σ∑  is an even function of θ . 

 
Trapped particles: 
 

For trapped particles also, is expressed as follows with the definition of ,n mH ,l mb −  

given by Eq.(A-1-8):  

, , ,
0

( ( ))
( 1) ( ) exp( ( ))

(( ( ))

n
l n l

n m n l l m
l c

I t
H C b im K

t σ
σ

υ θ
θ

ω θ
−

−
=

= − − Ω∑ ∑ �  (A-2-11) 

There exist two ( )K θ s for given values of θ , designated by the subscript ( )σ = ±  

which are associated with the direction of the parallel velocity υ υ= ±� �  at initial con-

dition, ( , )t tθ θ= = . They have an interrelationship: 
 

( ) ( )
2
TK Kσ σθ θ

−
= −

+
  (A-2-13) 

 

In calculating , , ( )n m n mH H
σ

σ= ∑  as the sum of these two states, the following proper-

ties are used: 1) For even number of , takes non-zero values only for even number 

of m and 2) For odd number of , takes non-zero values only for odd number of m.  

l ,l mb

l ,l mb
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Dividing the sum over  into even- and odd- . l l

(2 1) (2 1)
, , 2 1, (2 1)

2 1

(2 ) (2 )
, 2 , (2 )

2

( ( ))
( 1) ( ) exp( ( ))

(( ( ))

( ( ))
( 1) ( ) exp( ( ))

(( ( ))

n
l n l n l

n m n l l m
l l c

n
l n l n l

n l l m
l l c

I t
H C b im

t

I t
C b im K

t

σ
σ

σ
σ

υ θ
Kσ θ

ω θ

υ θ
σ θ

ω θ

′ ′− + − +
′ ′+ − +

′= +

′ ′− −
′ ′−

′=

= − − Ω

+ − − Ω

∑ ∑

∑ ∑

�

�

    

(A-2-14) 

,n mH  is subject to the following transformation: 

(2 1)
, , 2 1, (2 1)

2 1

(2 1) (2 1)

(2 )
, 2 , (2 1)

2

(2 )

( ( ))
( 1) ( )

(( ( ))

[ exp( ( )) exp( ( ))]

( ( ))
( 1) ( )

(( ( ))

[ exp( (

n
l n l

n m n l l m
l l c

n l n l

n
l n l

n l l m
l l c

n l

I t
H C b

t

im K im K

I t
C b

t

im K

υ θ
ω θ

σ θ σ θ

υ θ
ω θ

σ

′− +
′ ′+ − +

′= +

′ ′− + − +
+ + −

′−
′ ′− +

′=

′−
+ +

= −

× − Ω − + Ω

+ −

× − Ω

∑

∑

�

�

(2 ))) exp( ( ))n l im Kθ σ θ′−
− ++ + Ω

+  

Gathering the summation over 2l l′= and 2l l 1′= + , we finally obtain the formula: 

, ,

, ,

2 [sin( ( ( ))]

2 [cos( ( ( ))]

n m n m

n m n m

H ih m K for odd n
and
H h m K for even n

θ

θ

+

+

= − Ω

= Ω
   (A-2-15) 

where 

, ,
0

( ( ) )
( 1) ( )

(( ( ))

n
l n

n m n l l m
l c

I t
h C b

t
υ θ
ω θ

−
,

l
−

=
= −∑ �   (A-2-16) 

Thus it has been shown that s due to passing particles and trapped particles are 

cast into the same form and have the following properties: For odd number of , 

,n mH

n

, , ( )n m n mH H
σ

σ= ∑  has only odd dependence on θ . On the contrary, for even number 

of , n , , ( )n m n mH H
σ

σ= ∑  has only even dependence on θ . 

 
 
Appendix-III, Derivation of the electron term, Eq. (16): 
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We start with the drift kinetic equation  

,0 ,0
1 1( ) ( ) ( ) ( )e

D e e D e e D e
f f e f e
t T

υ υ υ υ φ φ υ φ∂
+ + ⋅∇ = − + ⋅∇ − < > − ⋅∇ < >

∂ � �

rr r f
T

. (A-3-1) 

It is assumed that electrons move along the magnetic surface in the lowest order and 
drifts across the magnetic surface in the next order. Therefore, for first order, we take 
the second term on the LHS and first term on the RHS as the dominant terms.  As-

suming that ( ) ( )Dυ υ⋅∇ ⋅∇�

r rr
� , Eq. (A-3-1) is reduced to the following simpler form: 

0,
1( ) ( ( ) ) 0e e e
e

f e f
T

υ φ φ⋅∇ + − < > =�

rr .   (A-3-2) 

The following solution is obtained from Eq. (A-3-2), known as adiabatic response. 

[ ,0( )e
e e

e

e ]f f
T

φ φ= − − < >  (A-3-3) 

Equation (A-3-3) limits the functional form of the electron distribution, i.e., it is ex-
pressed as a product of the Maxwell distribution function and the factor that gives θ  
dependence. Imposing neutrality condition along the magnetic lines of forces, the elec-
tron distribution function assumes the following forms: 

,0 ,0 ,( / ) ( ,i
e e e i n

ne

e )f f n n t
e

θ= − ∑ %  (A-3-4) 

Here, ,1 ( , )in tθ is obtained by integrating ,1if  revealing up-down asymmetry: 

, ,
ˆ̂( , )i n i w i nn t L fθ = ⋅ ,    (A-3-5) 

where 

[ ] ,0 ,
, 0

0
exp( )( )

( )
n n

i n i
m

H Hff e i i t ik ik
w iψ ψφ ω ω ψ

ω ω≠

m

i m
⎡ ⎤∂

= + − + + +⎢ ⎥∂ − − − Ω⎣ ⎦
∑   (A-3-6) 

Equation (A-3-4) can be integrated in the velocity space and can be shown to satisfy the 
quasi-neutrality condition: 

,1 ,0 ,0 ,1 ,12
2( , ) [ ( / )] ( , ) ( , )i i

e e e i
e ee

e eBdwdn t f n n t n t
e emσ

π µ
iθ θ

υ
= − = −∑∫

�

θ  (A-3-7) 

By using Eq. (A-3-4), the solution to Eq. (A-3-1) is obtained for each order of ε . 

, , ,0 ,0
1 ( )( )[ ( / )] ( ,i

e n d e e e i n
e

e
, )f ik f n n t

i eψ υ ψ θ
ω

= ⋅∇ −∫
rr    (A-3-8) 

The electron charge integrated in the flux surface, Eq.(17) in the text, is thus obtained.  
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Appendix IV.     Proof of Eq. (26) in the text: 
 

The  included in the expression of 2,0H 0
,2
m
iχ
=  is expressed in terms of time averages as 

follows: 

2 2 2
2,0

0

( ) ( ) ( ) ( ) ( )1 ( ) ( ) ( ) 2
( ) ( ) ( ) ( ) ( )

T

c c c c c c

I I t t I I t t I I t t
H dt

T t t t t t
υ υ υ θ υ υ θ υ
ω ω ω θ ω ω θ ω

′′ ′′ ′′− −
′′= − = + −

′′ ′′ ′′− −∫ � � � � � �

t
−
−

  

(A-4-1) 

Taking account of that 2( )
( )

( )c

I t t
t t

υ
ω

′′−
′′−

� and
( )
( )c

I t t
t t

υ
ω

′′−
′′−

� are the functions of ( , )w µ only, the 

order of the integrations is changed allowing the following transformations for arbitral 
function of θ , ( )G θ :  

2 2

2

2 2( ; , ) ( ; , )

2 ( , ) ( ; , )

p

p

dlBgd d dwd G w u dwd G w u
m m

dwd T w G w u
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σ σ
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π πθ ζ µ θ µ θ
υ υ

π µ µ θ
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∑ ∫

�

�
   

(A-4-2) 
Using Eqs. (A-4-1) and (A-4-2), the following expression is obtained: 
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20 2

2 2
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i
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I Ifie ik dwd T w
i m wψ
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   (A-4-3) 

This is equivalent to the more familiar form, 
22

20 2
2 2

1 2( )( ) [pm
i

p c

dl I Ifie ik dwd
i B m wψ

σ

υ υπχ ω µ
ω ω

=
⎛ ⎞⎛ ⎞∂
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∑∫ ∫ � �

� ]
cω

.    (A-4-4) 

Thus, it has been shown that 0
2
mχ = represents the same physics that was referred to as 

the neoclassical shielding effect in reference [5]. 
 
 

Appendix V Analytic expressions of  for a simple case. , ( , )n mh θ% k
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Here, we tabulate a few terms of  in the analytic forms under the assumption 

that the particles do not change velocity along the trajectories. Under this assumption all 
the particles are regarded as passing particles and therefore we may put 

, ( , )n mh θ% k

1 ( ( )) 1 (kB t t kB )θ θ′′− − = − . Then the definition Eq.(28) is interpreted as: 

 

0
, , , ,0( , ) ( 1 ( )) ( 1) ( ) ( )( / ) ( / )n l n l n l n l

n m n l l m T c T
l

Bh k kB C b k I
B

θ θ υ ω υ υ− −
−≈ − −∑ %% % −  (A-5-1) 

where  

, ( ) (1 cos( ( )) exp( )l
l mb k t t im tε− ′′ ′′≡ + Ω − Ω∫%%   (A-5-2) 

In Eq. (A-5-1), ( 1 ( ))nkB θ−  may be put equal unity under the assumption that the 

particles do not change velocity along the trajectories. 

I.   2, 1( , )h kθ±
%

2 20
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where, we have used 1, 1
1( ) ~
2

b k εm

%%  and 2, 1( ) ~b k εm

%% . 

II.   2, 2 ( , )h kθ±
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, where we have used 2
2, 2

1( )
4

b k ε=m

%% . 
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III.   2, 0 ( , )h kθ±
%
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(A-5-5) 

where we have used , 0,0 ( ) 1b k =%%
1,0 ( ) 1b k =%% , and 2

2,0
1( ) 1
2

b k ε= +%% . 

 

The Fourier components  are given as follows: ,n mb%%
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