
21st IAEA Fusion Energy Conference
Chengdu, China, 16 - 21 October, 2006

IAEA-CN-149/ TH/P2-12

 NIFS-857

Thermal Diffusion
by Stochastic Electromagnetic Fluctuations

N. Nakajima

Oct. 2006



1 TH/P2-12

Thermal Diffusion by Stochastic Electromagnetic Fluctuations

N. Nakajima

National Institute for Fusion Science, Toki, Gifu, 509-5929, Japan

e-mail contact of main author : nakajima@nifs.ac.jp

Abstract. A new simple systematic method has been developed to analytically evaluate the thermal diffusion co-

efficient of guiding center test particles brought by coexisting homogeneously stochastic electrostatic and electro-

magnetic fluctuations. As a most simple case, thermal diffusion coefficients for electrons and ions are analytically

obtained in a large aspect straight tokamak with a small gyro-radius and negligible magnetic shear and negligible

equilibrium ~E × ~B flow shear. Those analytical formulae are applicable to the range beyond so-called quasi-linear

limit; thermal diffusion coefficient are squarely (linearly) proportional to fluctuation amplitudes in the quasi-linear

(beyond quasi-linear) region. It is shown that the thermal diffusion of electrons (ions) is mainly dominated by

magnetic (electrostatic) fluctuations in the experimentally relevant situations, even if both magnetic and electro-

static fluctuations coexist. It is also shown that the resonant electrons do not diffuse when the electric field parallel

to the unperturbed magnetic field lines is negligible, even if electrostatic and electromagnetic fluctuations coexist.

1. Introduction

In the standard high-β experimental conditions, electrostatic and electromagnetic micro fluc-
tuations are considered to coexist. The synergetic treatments of both electrons and ions in the
gyrokinetic simulations allowing both electrostatic and electromagnetic fluctuations are consid-
ered to be quite difficult in the standard experimental situations of LHD and tokamaks. There-
fore, it is quite useful to evaluate an analytical formula ofthe thermal diffusion coefficient of the
test guiding particles in coexisting electrostatic and electromagnetic fluctuations, even if such
fluctuations are not self-consistent field but given field. There may be cases that the transport of
guiding center test particles by the fluctuations is regarded as a diffusion process due to stochas-
tic instability of orbits even in the collisionless limit. The purpose of this paper is to show a new
simple systematic method to derive an analytical formula ofthe thermal diffusion coefficient.
As a most simple example, analytical formulae of thermal conductivities for electrons and ions
are derived in a large aspect straight tokamak with a small gyro-radius and negligible magnetic
shear and negligible equilibrium~E × ~B flow shear. Those analytical formulae are applica-
ble to the range beyond so-called quasi-linear limit [1], [2], because a simple renormalization
technique and the realization of the stochastic instability [3], [4] are included by regarding the
deterministic equations as the stochastic differential equation (SDE).

2. Derivation of mono-energetic conductivity

The deterministic equation of motion of guiding center particles including the electrostatic and
electromagnetic fluctuations is derived from the Lagrangian [5];

~v = v||
~B + δ ~B + ∇× (ρ||

~B)

B + δB|| + ρ||J||

, (1)
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wherev|| is the velocity parallel to the unperturbed magnetic field~B, ρ|| ≡ v||/Ω with the
gyro-frequencyΩ, andδ ~B = ∇ × δ ~A is a perturbed magnetic field withδ ~A = α~B = δA||n̂

and n̂ ≡ ~B/B. Note that only perpendicular magnetic perturbations are considered, because
a strong longitudinal magnetic field is assumed. An electrostatic perturbationδφ is also in-
cluded, which appears throughρ||. In a large aspect straight tokamak with a small gyro-radius
or strong equilibrium magnetic field, the equation of motionof the test guiding center particles
is approximately expressed in the cylindrical coordinates(r, θ, ζ) as

dr

dt
∼ g̃r(~r(t), t),

dθ

dt
∼ v||

ι´́
R

− ωE×B − g̃θ(~r(t), t),
dζ

dt
∼ v||

1

R
(2)

whereR is the major radius,ι´́ and ωE×B are equilibrium rotational transform and~E × ~B
frequency, respectively. The partsg̃r(~r(t), t) and g̃θ(~r(t), t) are fluctuating parts due to the
electrostatic and electromagnetic perturbations;

g̃r(~r(t), t) ≡ v||
1

rB

∂δA||

∂θ
−

1

rB

∂δφ

∂θ
, (3)

g̃θ(~r(t), t) ≡ v||
1

rB

∂δA||

∂r
−

1

rB

∂δφ

∂r
, (4)

where the electromagnetic and electrostatic perturbations are expressed as

δA|| =
∑

mn

δA||mn(r) cos
[

nζ − mθ + δ(δA)
mn − ω(δA)

mn t
]

, (5)

δφ =
∑

mn

δφmn(r) cos
[

nζ − mθ + δ(δφ)
mn − ω(δφ)

mn t
]

. (6)

with m andn being the poloidal and toroidal mode numbers, respectively. Taking into ac-
count the fact that fluctuating quantities cause the stochastic instability of orbits [4], the parts
g̃r(~r(t), t) andg̃θ(~r(t), t) are regarded as Gaussian noises without mean value, so that Eq.(1) be-
comes a Stochastic Differential Equation (SDE). The formalsolution of this SDE is expressed
under the locality of the radial diffusion as

r(t) = r(t0) +

∫ t

t0

dτ g̃r(r = r(t0), θ(τ), ζ(τ), τ), ζ(t) = ζ(t0) + v||
1

R
(t − t0),

θ(t) = θ(t0) +
[

v||
ι´́
R

− ωE×B

]

r(t)=r(t0)
(t − t0) +

∫ t

t0

dτ g̃θ(r = r(t0), θ(τ), ζ(τ), τ),

(7)
where low magnetic sheardι´́ /dr ∼ 0 and low velocity sheardωE×B/dr ∼ 0 are assumed.
From the definitions of the two time-point Lagrangian auto-correlation function and the running
diffusion coefficient for mono-energetic particles, we see

Rr(t, τ) = 〈g̃r (r = r(t0), θ(t), ζ(t), t) g̃r (r = r(t0), θ(τ), ζ(τ), τ)〉 ,
Rθ(t, τ) = 〈g̃θ (r = r(t0), θ(t), ζ(t), t) g̃θ (r = r(t0), θ(τ), ζ(τ), τ)〉 ,

Dr(t, t0) =

∫ t

t0

dτRr(t, τ), Dθ(t, t0) =

∫ t

t0

dτRθ(t, τ), t ≥ τ.
(8)

where〈Q〉 means the ensemble average ofQ. By substituting the formal solution Eq. (7), in-
cluding the perturbed particle orbits through the time integrations of̃gr(r = r(t0), θ(t), ζ(t), t)
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andg̃θ(r = r(t0), θ(t), ζ(t), t), into Eq. (8), the renormalization of the Lagrangian auto-correlation
function has been done. Note that in the quasi-linear approximation, unperturbed particle orbits,
expressed by Eq. (7) setting̃gr(r = r(t0), θ(t), ζ(t), t) = 0 andg̃θ(r = r(t0), θ(t), ζ(t), t) = 0,
are used. Taking account of the Gaussian statistical properties without the mean value of
g̃r(r = r(t0), θ(t), ζ(t), t) andg̃θ(r = r(t0), θ(t), ζ(t), t), namelyCl=1 = Cl≥3 = 0 (Cl is l-th

cumulant and
〈

e±iξ
〉

= exp
[
∑∞

l=1(±i)lCl/l
]

= e−〈ξ
2〉/2), and assuming that the Lagrangian

auto-correlation function has a finite correlation time, a long term limit of Eq. (8) will be taken,
where the statistical properties are considered to become stationary:

Rr(t, τ) ∼ Rr(t − τ) ∼
Dr

τ r
ac

exp{−
t − τ

τ r
ac

}, τ r
ac ∼

1

k
2

rDr

, (9)

Rθ(t, τ) ∼ Rθ(t − τ) ∼
Dθ

τ θ
ac

exp{−
t − τ

τ θ
ac

}, τ θ
ac ∼

1

(rkθ)2Dθ

, (10)

whereτ r
ac and τ θ

ac are the correlation time corresponding to the Lagrangian auto-correlation
functionRr(t, τ) andRθ(t, τ), respectively. The resultant mono-energetic diffusion coefficient
consisting of non-damping terms is expressed as

Dr = lim
t−t0

≫ τ r
ac

∫ t

t0

dτRr(t, τ) ∼ lim
t−t0

≫ τ r
ac

∫ t

t0

dτRr(t − τ)

∼
1

2

∑

mn

{

[

v||
mδA||mn

rB

]2

m2Dθ

− v||
mδA||mn

rB

mδφmn

rB

[

m2Dθ cos Θ(t) +
[

k||v|| + mωE×B − ω(δA)
mn

]

sin Θ(t)
]

}

×
1

[

k||v|| + mωE×B − ω
(δA)
mn

]2

+ [m2Dθ]
2

+
1

2

∑

mn

{

[

mδφmn

rB

]2

m2Dθ

− v||
mδA||mn

rB

mδφmn

rB

[

m2Dθ cos Θ(t) −
[

k||v|| + mωE×B − ω(δφ)
mn

]

sin Θ(t)
]

}

×
1

[

k||v|| + mωE×B − ω
(δφ)
mn

]2

+ [m2Dθ]
2

(11)
whereΘ(t) ≡ δ

(δA)
mn −δ

(δφ)
mn −(ω

(δA)
mn −ω

(δφ)
mn )t andk|| ≡ (n−mι´́ )/R. Note that the cross terms be-

tween magnetic fluctuations and electrostatic fluctuationsexist with oscillatory behaviors. The
renomalization is clear in that the diffusion coefficientDθ appears in the denominator, which
removes the singularity by the wave-particle resonances. Physically, it means that diffusive
particle orbits remove continuous resonance. When the magnetic fluctuations and electrostatic
fluctuations have such a close correlation thatδ

(δA)
mn ∼ δ

(δφ)
mn andω

(δA)
mn ∼ ω

(δφ)
mn ∼ ωmn, the

oscillatory parts disappear sinceΘ(t) ∼ 0, so that the mono-energetic diffusion coefficient
becomes

Dr ∼
1

2

∑

mn

[ m

rB

[

v||δA||mn − δφmn

]

]2 m2Dθ
[

k||v|| + mωE×B − ωmn

]2
+ [m2Dθ]

2
. (12)
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Stochastic instability of orbits is brought by simultaneous influences of multiple waves on or-
bits, so that particles feel infinite number of waves along their perturbed orbits. Because of this
stochastic instability, the discrete parallel wave numberk|| can be treated as a continuous quan-

tity [3], [4];
∑

mn = L||/(2π)
∑

m

∫ δk||max

δk||min
dk||, whereL|| and−δk||min ∼ δk||max ∼ L−1

|| are
the parallel correlation length in the direction of the unperturbed magnetic field and the parallel
wave number contributing to the diffusion aroundk|| = 0, respectively. Thus, perturbed quan-
tities are labeled by them andk||. By assuming moderate variations of the amplitude and the
frequency, Eq. (11) is modified and the resultant mono-energetic running diffusion coefficient
at r = r0 is expressed as

Dr(v||) ∼
L||

4π

∑

m







〈

[

mδA||mk||

rB

]2
〉

k||

v2
|| −

〈

mδA||mk||

rB

mδφmk||

rB
cos Θ(t)

〉

k||

v||







×

∫ δk||max

δk||min

dk||
m2Dθ

[

k||v|| − ω̂
(δA)
m

]2

+ [m2Dθ]
2

−
L||

4π

∑

m

〈

mδA||mk||

rB

mδφmk||

rB
sin Θ(t)

〉

k||

v||

×

∫ δk||max

δk||min

dk||

k||v|| − ω̂
(δA)
m

[

k||v|| − ω̂
(δA)
m

]2

+ [m2Dθ]
2

+
L||

4π

∑

m







〈

[

mδφmk||

rB

]2
〉

k||

−

〈

mδA||mk||

rB

mδφmk||

rB
cos Θ(t)

〉

k||

v||







×

∫ δk||max

δk||min

dk||
m2Dθ

[

k||v|| − ω̂
(δφ)
m

]2

+ [m2Dθ]
2

+
L||

4π

∑

m

〈

mδA||mk||

rB

mδφmk||

rB
sin Θ(t)

〉

k||

v||

×

∫ δk||max

δk||min

dk||

k||v|| − ω̂
(δφ)
m

[

k||v|| − ω̂
(δφ)
m

]2

+ [m2Dθ]
2
,

(13)
where〈Q〉k||

is the averaged value ofQ with respect to the parallel wave numberk|| or the
replacement of thek|| dependence by the typical values at the initial position, and

ω̂
(δA)
m ≡

〈

ω
(δA)
mk||

〉

k||

− mωE×B,

ω̂
(δφ)
m ≡

〈

ω
(δφ)
mk||

〉

k||

− mωE×B.
(14)
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By performing the integration on the parallel wave numberk|| analytically, the mono-energetic
running diffusion coefficient atr = r0 becomes as

Dr(v||) ∼
L||

4π

∑

m







〈

[

mδA||mk||

rB

]2
〉

k||

v|| −

〈

mδA||mk||

rB

mδφmk||

rB
cos Θ(t)

〉

k||







×

{

Tan−1

[

δk||maxv|| − ω̂
(δA)
m

k
2

rDr

]

− Tan−1

[

δk||minv|| − ω̂
(δA)
m

k
2

rDr

]}

−
L||

8π

∑

m

〈

mδA||mk||

rB

mδφmk||

rB
sin Θ(t)

〉

k||

×

{

ln

[

[

k||maxv|| − ω̂(δA)
m

]2
+

[

k
2

rDr

]2
]

− ln

[

[

k||minv|| − ω̂(δA)
m

]2
+

[

k
2

rDr

]2
]}

+
L||

4π

∑

m







〈

[

mδφmk||

rB

]2
〉

k||

1

v||
−

〈

mδA||mk||

rB

mδφmk||

rB
cos Θ(t)

〉

k||







×

{

Tan−1

[

δk||maxv|| − ω̂
(δφ)
m

k
2

rDr

]

− Tan−1

[

δk||minv|| − ω̂
(δφ)
m

k
2

rDr

]}

+
L||

8π

∑

m

〈

mδA||mk||

rB

mδφmk||

rB
sin Θ(t)

〉

k||

×

{

ln

[

[

k||maxv|| − ω̂(δφ)
m

]2
+

[

k
2

rDr

]2
]

− ln

[

[

k||minv|| − ω̂(δφ)
m

]2
+

[

k
2

rDr

]2
]}

,

(15)
where,Dθ is related toDr through the relation;Dθ ∼

(

kr/(rkθ)
)2

Dr, wherekr andkθ are
the typical values ofkr ∼ (∂δA||mn/∂r)/δA||mn ∼ (∂δφ||mn/∂r)/δφ||mn andkθ ∼ m/r, re-
spectively. The typical radial wave numberkr might be related to the perpendicular (radial)
correlation lengthL⊥ askr

>
∼ L−1

⊥ .

3. Thermal conductivity in stationary uniform fluctuations without equilibrium flow

In this section, thermal conductivity in stationary fluctuations without equilibrium flow (ωE×B dim 0)
is considered, wherêω(δA)

m , ω̂
(δφ)
m ∼ 0. Since uniform fluctuations are considered,−δk||min ∼

δk||max ∼ δk|| might hold. Under this condition, the cross terms between magnetic and elec-
trostatic fluctuations disappear. The new notationsδBrmk||

= mδA||mk||
/r and δEθmk||

=

mδφmk||
/r are used in this section. By using the approximation; Tan−1(x) = x for x ≤ π/2,

and Tan−1(x) = π/2 for x ≥ π/2, the nonlinear equation ofDr(v||) given by Eq. (15) is solved

under the conditions that̂ω(δA)
m , ω̂

(δφ)
m ∼ 0 and−δk||min ∼ δk||max ∼ δk||. After the velocity

space integration, various limiting cases of the thermal conductivity are obtained.
A) only magnetic fluctuations

χ
(α)
M ∼

4vTαδk||

π3/2k
2

r

{

R2
M for RM ≤ 1

RM for RM ≥ 1
(16)
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whereRM is defined by

RM ≡





π

8

L||k
2

r

δk||

∑

m

〈

(

δBrmk||

B

)2
〉

k||





1/2

(17)

and interpreted as a scale separator independent of particle species; namely the ratio of displace-
ments by the diffusion to the perpendicular correlation length of fluctuations, whenδk|| ∼ L−1

||

andkr ∼ L−1
⊥ . RM ≪ 1 corresponds to the collisionless quasi-linear limit [1], [2], and aver-

aged (unperturbed) orbits are good approximation. ForRM ≥ 1, diffusive (perturbed) orbits
must be used.
B) only electrostatic fluctuations

χ
(α)
E ∼

4vTαδk||

π3/2k
2

r

{

R
(α)
E

∫ R
(α)
E

0

dx(1 + x2)e−x2

+
(

R
(α)
E

)2
∫ ∞

R
(α)
E

dx

(

1

x
+ x

)

e−x2

}

(18)

whereR(α)
E is defined as

R
(α)
E ≡





π

8

L||k
2

r

δk||

∑

m

〈

(

δEθmk||

BvTα

)2
〉

k||





1/2

, (19)

and interpreted as a scale separator of particle speciesα; namely the ratio of the displacements
by the diffusion to the perpendicular correlation length offluctuations, whenδk|| ∼ L−1

|| and

kr ∼ L−1
⊥ . For the electrostatic fluctuations, perturbed (unperturbed) orbits have to be used for

low (high) velocity particles independent of the magnitudeof the fluctuations.
Note that in both cases A) and B), the diffusion coefficient isproportional to the square

(linear) of the fluctuation amplitude for low (high) amplitude cases and thatR(α)
E depends on

the particle speciesα in contrast withRM .
C) coexisting electrostatic and magnetic fluctuations
Since(R(α)

E /RM)2 ∼ (c/vTα)2R, withR ≡ (ε0/2)
∑

m < (δEθmk||
/B)2 >k||

/((1/2µ0)
∑

m <

(δBθrk||
/B)2 >k||

), andR(e)
E ∼ (me/mi)

1/2R
(i)
E ≪ R

(i)
E , three interesting cases exist depend-

ing on the ratio of the power spectraR

1. R ∼ 1, R
(i)
E ≫ R

(e)
E ≫ RM

The dominant thermal transport comes from electrostatic fluctuations given by Eq. (18)
for both electrons and ions;χ(i) ∼ χ

(i)
E > χ(e) ∼ χ

(e)
E .

2. R ∼
me

mi
, R

(i)
E ≫ RM ≫ R

(e)
E

The thermal transport of electrons is governed by the magnetic fluctuations given by
Eq. (16), and the thermal transport of ions is governed by theelectrostatic fluctuations
given by Eq. (18);χ(i) ∼ χ

(i)
E > χ(e) ∼ χ

(e)
M .

3. R ≪
me

mi
The dominant thermal transport comes from magnetic fluctuations given by Eq. (16) for
both electrons and ions;χ(i) ∼ χ

(i)
M > χ(e) ∼ χ

(e)
M .
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4. Thermal conductivity in correlated fluctuations without equilibrium flow

In this section, thermal conductivity without equilibriumflow (ωE×B ∼ 0) is considered under
the condition that the magnetic fluctuations and electrostatic fluctuations have such a strong
correlation thatδδA

mn ∼ δδφ
mn andωδA

mn ∼ ωδφ
mn. In this case, the mono-energetic running diffusion

coefficient is given by Eq. (12). In a weak diffusion limitD → 0, taking account of~E =
−∂ ~A/∂t −∇φ, Eq. (12) becomes

Dr ∼
π

2

∑

mn

[ m

rB

[

v||δA||mn − δφmn

]

]2

δ(k||v|| − ωmn)

∼
π

2

∑

mn

k2
θ

B2|k|||

[

ωmnδA||mn − k||δφmn

]2
δ

(

v|| −
ωmn

k||

)

∼
π

2

∑

mn

k2
θ

B2|k|||
E2

|| δ

(

v|| −
ωmn

k||

)

(20)

Since the phase velocityωmn/k|| is very fast, only electrons mainly satisfy the resonance condi-
tion. Such resonant electrons, however, can not diffuse when the parallel electric field vanishes,
even if both magnetic and electrostatic fluctuations coexist.

5. Summary and Discussion

A new simple systematic method is developed in order to analytically evaluate the thermal dif-
fusion coefficient in the coexisting given electrostatic and electromagnetic fluctuations. The
analytical formula of the thermal diffusion coefficient is obtained by considering the test guid-
ing center orbits consisting of the free stream along the unperturbed magnetic field lines and
motions due to the fluctuating coexisting magnetic and electrostatic fluctuations. It is shown
that the thermal diffusion of electrons (ions) is mainly dominated by magnetic (electrostatic)
fluctuations in the experimentally relevant situations, even if both magnetic and electrostatic
fluctuations coexist. It is also shown that the resonant electrons do not diffuse when the elec-
tric field parallel to the unperturbed magnetic field lines isnegligible, even if electrostatic and
electromagnetic fluctuations coexist.

The present method is applicable to toroidal tokamaks with acircular cross section by using
action-angle variables, where the effects of the trapped particles are included. In such a case,
it might be expected that passing particles mainly contribute to the thermal diffusion, from the
viewpoint of the velocity space integration.
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