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Abstract. A new simple systematic method has been developed to arellytevaluate the thermal diffusion co-
efficient of guiding center test particles brought by coixgshomogeneously stochastic electrostatic and electro-
magnetic fluctuations. As a most simple case, thermal diffusoefficients for electrons and ions are analytically
obtained in a large aspect straight tokamak with a small-ggdius and negligible magnetic shear and negligible
equilibriumE x B flow shear. Those analytical formulae are applicable todhge beyond so-called quasi-linear
limit; thermal diffusion coefficient are squarely (linegrproportional to fluctuation amplitudes in the quasi-fine
(beyond quasi-linear) region. It is shown that the thernitilsion of electrons (ions) is mainly dominated by
magnetic (electrostatic) fluctuations in the experiméyptalevant situations, even if both magnetic and electro-
static fluctuations coexist. It is also shown that the reabakectrons do not diffuse when the electric field parallel
to the unperturbed magnetic field lines is negligible, e¥efectrostatic and electromagnetic fluctuations coexist.

1. Introduction

In the standard higl# experimental conditions, electrostatic and electromagmeicro fluc-
tuations are considered to coexist. The synergetic tradgsd both electrons and ions in the
gyrokinetic simulations allowing both electrostatic atelctromagnetic fluctuations are consid-
ered to be quite difficult in the standard experimental sibns of LHD and tokamaks. There-
fore, itis quite useful to evaluate an analytical formulahef thermal diffusion coefficient of the
test guiding particles in coexisting electrostatic anatetenagnetic fluctuations, even if such
fluctuations are not self-consistent field but given fieldefBhmay be cases that the transport of
guiding center test particles by the fluctuations is reghedea diffusion process due to stochas-
tic instability of orbits even in the collisionless limith€ purpose of this paper is to show a new
simple systematic method to derive an analytical formulthefthermal diffusion coefficient.
As a most simple example, analytical formulae of thermabcmivities for electrons and ions
are derived in a large aspect straight tokamak with a smatl-ggdius and negligible magnetic
shear and negligible equilibriuh’ x B flow shear. Those analytical formulae are applica-
ble to the range beyond so-called quasi-linear limit [1], f2cause a simple renormalization
technique and the realization of the stochastic instglj@}, [4] are included by regarding the
deterministic equations as the stochastic differentiabéiqn (SDE).

2. Derivation of mono-energetic conductivity

The deterministic equation of motion of guiding center jgéast including the electrostatic and
electromagnetic fluctuations is derived from the Lagram{fd;

§+5§+V X (pué)
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where v is the velocity parallel to the unperturbed magnetic figidp = v/Q with the
gyro-frequency, anddB = V x §4 is a perturbed magnetic field withd = a5 = §A;n
andn = E/B. Note that only perpendicular magnetic perturbations aresiclered, because
a strong longitudinal magnetic field is assumed. An eletat@sperturbationy is also in-
cluded, which appears through. In a large aspect straight tokamak with a small gyro-radius
or strong equilibrium magnetic field, the equation of motadrthe test guiding center particles
is approximately expressed in the cylindrical coordingteg, () as

dr d9 - . d¢ 1

-V ?]T(_’(t) t)? T __WEXB_EJG(T(t)’t)> T

- 2
dt a " YR a ~ YR 2)

where R is the major radius; andwg, p are equilibrium rotational transform and x B
frequency, respectively. The pamgs(r(t),t) and go(7(t),t) are fluctuating parts due to the
electrostatic and electromagnetic perturbations;

1 054, 1 956

g-(r(t),t) = YoBo8 7B a0 (3)

1 00A; 1 960

o (7 = oy — - 7 4
o (7(1), 1) UB 8 T B B (4)
where the electromagnetic and electrostatic perturbatoe expressed as
0A = ZéAllmn cos nC mb + 5 wﬁfmA)t] , (5)
0op = Z5¢mn cos nC mh + 67 wﬁgz)t] : (6)

with m andn being the poloidal and toroidal mode numbers, respectivébking into ac-
count the fact that fluctuating quantities cause the stdichastability of orbits [4], the parts
g-(7(t),t) andgy(7(t), t) are regarded as Gaussian noises without mean value, sajtiih} Be-
comes a Stochastic Differential Equation (SDE). The forswdilition of this SDE is expressed
under the locality of the radial diffusion as

r(t) = r(t0)+/ drg,(r =r(to),0(7),((1),7), C((t) = C(t0)+v%(t—to),

. (t—to) + /to drge(r =r(to), 0(7), (), 7-),(7)

IR
where low magnetic sheak /dr ~ 0 and low velocity sheatdwg, z/dr ~ 0 are assumed.
From the definitions of the two time-point Lagrangian autorelation function and the running
diffusion coefficient for mono-energetic particles, we see

Rr(t, T) = <§r (’f‘ = r(tO)a 0(t>> C(t>7 t) gr (T = T(tO) (7_)7 C(T)> T)>
RE‘(t? T) = <§9 (T = ’f‘(to), 0(t>> C(t>7 t) o (T - T(t()) (T) <( )7 T))
t>

Dy(t,to) = / R4 7), Doltite) = / drRy(t, 7).

to to

o) = 6(to) + |

- WEXB}

(8)

where (@) means the ensemble averagedf By substituting the formal solution Eq. (7), in-
cluding the perturbed particle orbits through the timegnégions ofg, (r = r(to), 0(t), ((t),t)
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andge(r = r(to),0(t), ¢(t),t), into Eq. (8), the renormalization of the Lagrangian autorelation
function has been done. Note that in the quasi-linear afpmetion, unperturbed particle orbits,
expressed by Eq. (7) settigg(r = r(to), 0(t),((t),t) = 0 andge(r = r(to),0(t), ((t),t) = 0,
are used. Taking account of the Gaussian statistical piepewithout the mean value of
f]r(’l“ = ’l“(to), H(t), C(t),t) andgg(’f’ = ’f’(to), Q(t), C(t), t), namerClzl = 0123 =0 (Ol is [-th
cumulant and(e*®) = exp [3_;2, (+0)'Cy/l] = ¢~(€)/2) and assuming that the Lagrangian
auto-correlation function has a finite correlation timegad term limit of Eq. (8) will be taken,
where the statistical properties are considered to bectatiersary:

D, t—T1 1
(T, ~ (F— ~ — - ) e ™ = ) 9
Raltor) ~ Reltmr) v g epte b e~ g ©
D@ t—1T1 0 1
Ro(t, ~ Ry(t — ~ — eXPl Ty Tae Y =, 10
o(t, 7) o(t — 1) ) xp{ v b7 (rkg)2Dy (10)

where 7", and 7’ are the correlation time corresponding to the Lagrangian-aarrelation
functionR,.(t, 7) andRy(t, 7), respectively. The resultant mono-energetic diffusioaficient
consisting of non-damping terms is expressed as

t t
D, = lim > 7. / dTR.(t,7) ~ lim > TZ;C/ dTR,.(t — T)

t—to to t—to to

N —Z{[ méAmn] 2D,
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[m? Dy cos O(t) + [k + mwpxp — wlP] sin Ot )]}
1

X
2
|:k2HU|| + MwExp — w,(g,i?)} + [m2D9]2

- —Z{[mwmﬂ m?Dy

méAHmn mégbmn
rB rB

— v [m*Dy cos O(t) — [kyjv + mwexp — W) | sin©(t)] }
1

2
[kHUH + MwWexB — wﬁfﬁ)] + [m2D9]2

X

(11)
whereO(t) = 6§ﬁfﬁ)—6ﬁﬁfﬁ)—(w£,‘f’4)—w§,‘fﬁ )t andk| = (n—nz)/R. Note that the cross terms be-
tween magnetic fluctuations and electrostatic fluctuatexnst with oscillatory behaviors. The
renomalization is clear in that the diffusion coefficidnj appears in the denominator, which
removes the singularity by the wave-particle resonancéssiBally, it means that diffusive
particle orbits remove continuous resonance. When the etagiuctuations and electrostatic
fluctuations have such a close correlation t&fé,‘f) ~ &Sfi’) and w,@‘iﬁ) ~ w,(ﬁ,‘if) ~ Wy, the
oscillatory parts disappear sin€¥t) ~ 0, so that the mono-energetic diffusion coefficient
becomes

m2 Dg

[kHUH + MWExB — wmn} ? + [m2 Dy

- Z | (016 Ajnn 5¢mn]r (12)
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Stochastic instability of orbits is brought by simultansanfluences of multiple waves on or-
bits, so that particles feel infinite number of waves aloregrtperturbed orbits. Because of this
stochastic instability, the discrete parallel wave nuniperan be treated as a continuous quan-

tity [31, [4]; >, = Ly/2m) >, fé,f‘;‘:n dky, where Ly and —0kjjmin ~ 0kjjmar ~ L' are
the parallel correlation length in the direction of the uripdbed magnetic field and the parallel
wave number contributing to the diffusion arouhd= 0, respectively. Thus, perturbed quan-
tities are labeled by the: andk|. By assuming moderate variations of the amplitude and the
frequency, Eq. (11) is modified and the resultant mono-esiergunning diffusion coefficient

atr = rq is expressed as

I SA 1, OA by, MODy,
Dy(vy) ~ o Z <[m I ’f} > vﬁ B <m T; ull mrB k| Cos@(t)> v
k|

Ky,

5]{3“7“”7 2D
X / d/{ZH m 26
Hiimin kv — @gm] + [m2Dy)”
LH <m5A||m’f MOPmp, >
— sin @( ) UH
Z rB K
5kaaz k _ AgA)
" / dk, 1M — <
k|| min []CHUH — (D}SA)] + [m2D0]2

+ LHZ <{m5¢mk}> _<m5mekmi“Zﬂ’f Cos@(t)> Y|
k| l

6kaaa) 2D
X / dk‘H 0
OK|fmin [kllvll — W}n¢):| + [m2 D]

m(SAHmk:H m(sgbmk“

+ LZ< = sm@()> o)

Ky,

X

*Hlimes vy — &5
dk) L -
k|| min [k‘H’UH — Wm :| + [m2D9]

(13)
where <Q>ku is the averaged value @ with respect to the parallel wave number or the

replacement of thé& dependence by the typical values at the initial positiod, an

C&AjﬁgA) = <w(5:)> — MWExB

TR gy, ’ (14)
~(08) (6¢) _
Wm = <wmk>k mwexB-
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By performing the integration on the parallel wave numbeanalytically, the mono-energetic
running diffusion coefficient at = r, becomes as

Ly MO A, ’ MO Ak MOPmky
D, (v))) ~ Zhrgm:{<{r3] k v — < B B cos@(t)>k
|

|
61{7 max - AQLA) 61{7 man - AgLA)
% Tan! | _ZII w — Tam! | _Q;H w
kD, kD,
L M0 Ak 10 Py
8 B 5 Smew)

Ky

AT A
() (),

~ (60 1)
% Tan_l 6k\\maxv|| - wﬁn ) _ Tan_l 5k||mmv|| — W}n )
EfDr ET D,
+ 3 < B 5 sin O(t)

Ky

{ln [[k‘nmax’vn - @7(2@}2 + [EiDr] 2} —1In {[k’mm’vn — @g(t))f + [EiDr] 1 } )

(15)
where, D, is related toD, through the relationD, ~ (ET/(rE(;))2 D,, wherek, andk, are
the typical values of, ~ (90A|j/0r) /0 A|mn ~ (O6@|jmn/OT) /0P| jmyn @NA Ky ~ m/7, rE-
spectively. The typical radial wave number might be related to the perpendicular (radial)
correlation length., ask, ~ L7'.

X

3. Thermal conductivity in stationary uniform fluctuations without equilibrium flow

In this section, thermal conductivity in stationary fludioas without equilibrium flow® g . g dim 0)
is considered, wherA(M) & ~ 0. Since uniform fluctuations are considered||,, ~
OK||jmaz ~ Okj might hold. Under this condition, the cross terms betweegnatc and elec-
trostatic fluctuations disappear. The new notatiémm,CH = m5z4umkH/T and 5E9mkH =
m(S(bmkH/r are used in this section. By using the approximation; Tan) = z for z < /2,
and Tan'(z) = /2 for z > =/2, the nonlinear equation db, (v) given by Eq. (15) is solved
under the conditions thaﬂm Aﬁ,‘f@ ~ 0 and —6k|jmin ~ Ok|jmac ~ Okj. After the velocity
space integration, various I|m|ting cases of the thermaticativity are obtained.

A) only magnetic fluctuations

(a) 4UT0¢6]€H { R?\J for RM <1 (16)

X ™ 7T3/2E2 Ry for Ry >1
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whereR ), is defined by

Lk 6B 2 v

o T || r rmkH

Ry = | = S (7) (17)
8 ok < B >k

and interpreted as a scale separator independent of paieties; namely the ratio of displace-
ments by the diffusion to the perpendicular correlatiorgtarof fluctuations, whenk; ~ Lﬁl

andk, ~ L7'. Ry < 1 corresponds to the collisionless quasi-linear limit [Z], fand aver-
aged (unperturbed) orbits are good approximation. /Egr > 1, diffusive (perturbed) orbits
must be used.

B) only electrostatic fluctuations

Avra ok R 2 [ 1
) Tl Rl dz(1 + 2?)e™ ( <a>) / d = b (18
Xk 7r3/2Ei {RE /0 z(l4+27)e ™ + (R o v|—ta)e (18)

whereR%”) is defined as

1/2
—92 2
(@) _ ELHkT 6E6'mkH
w = e ((ee)) |- @9
Il

and interpreted as a scale separator of particle specie@mely the ratio of the displacements
by the diffusion to the perpendicular correlation lengtHlottuations, whemk ~ Lﬁl and
k. ~ L7'. For the electrostatic fluctuations, perturbed (unpeedylorbits have to be used for
low (high) velocity particles independent of the magnitad¢he fluctuations.

Note that in both cases A) and B), the diffusion coefficienprigportional to the square
(linear) of the fluctuation amplitude for low (high) amplie cases and thalif“) depends on
the particle species in contrast withR ;.

C) coexisting electrostatic and magnetic fluctuations

Since(RY /Rar)? ~ (¢/vra)* R, With R = (£0/2) 3, < (6B /B)? >, /(1/200) 3, <
(0B, /B)? >w,), andRY) ~ (m./my)?RY « RY, three interesting cases exist depend-
ing on the ratio of the power spectfRa

1L.R~1, RY>RY >Ry
The dominant thermal transport comes from electrostatatifations given by Eq. (18)
for both electrons and iong? ~ x\ > x(© ~ ).

Z'RN#’ RY > Ry > RY

The thermal transport of electrons is governed by the magflattuations given by

Eq. (16), and the thermal transport of ions is governed byetbetrostatic fluctuations

given by Eq. (18)x) ~ x> x© ~ x{7.

3.R<

m;
The dominant thermal transport comes from magnetic fluitnatgiven by Eq. (16) for

both electrons and iong" ~ X(;} > x(©) ~ XE\Z)-
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4. Thermal conductivity in correlated fluctuations without equilibrium flow

In this section, thermal conductivity without equilibriuifow (wz .5 ~ 0) is considered under
the condition that the magnetic fluctuations and electtiostiuctuations have such a strong
correlation that®4 ~ §°¢ andw’4 ~ w?¢ . In this case, the mono-energetic running diffusion

coeﬁicient is given by Eg. (12). In a weak diffusion limit — 0, taking account ofE =
—0A/0t — V¢, EQ. (12) becomes

™ m ?
T ]{32 2 Wmn

T o ]Cg 2 Wmn
~ =N 20 g2 _ Zmn
2 ;B%H ! (v“ K )

Since the phase velocity,,,, / k|| is very fast, only electrons mainly satisfy the resonancelzo
tion. Such resonant electrons, however, can not diffusenlieparallel electric field vanishes,
even if both magnetic and electrostatic fluctuations caexis

5. Summary and Discussion

A new simple systematic method is developed in order to ically evaluate the thermal dif-
fusion coefficient in the coexisting given electrostatic aslectromagnetic fluctuations. The
analytical formula of the thermal diffusion coefficient istained by considering the test guid-
ing center orbits consisting of the free stream along theettnpbed magnetic field lines and
motions due to the fluctuating coexisting magnetic and mdstdtic fluctuations. It is shown
that the thermal diffusion of electrons (ions) is mainly doated by magnetic (electrostatic)
fluctuations in the experimentally relevant situationsgreyf both magnetic and electrostatic
fluctuations coexist. It is also shown that the resonantees do not diffuse when the elec-
tric field parallel to the unperturbed magnetic field lineségligible, even if electrostatic and
electromagnetic fluctuations coexist.

The present method is applicable to toroidal tokamaks witincailar cross section by using
action-angle variables, where the effects of the trappeticpes are included. In such a case,
it might be expected that passing particles mainly conteitba the thermal diffusion, from the
viewpoint of the velocity space integration.
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