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Abstract

A multifractal analysis based on evaluation and interpretation of Large
Deviation spectra is applied to plasma edge turbulence data from di¤erent
devices (MAST and Tore Supra). It is demonstrated that in spite of some
universal features there are unique characteristics for each device as well as
for diferent con�nement regimes. In the second part of the exposition the
issue of estimating the variable power law behavior of spectral densities is
addressed. The analysis of this issue is performed using fractional Brown-
ian motion (fBm) as the underlying stochastic model whose parameters
are estimated locally in time by wavelet scale spectra. In such a manner
information about the inertial range as well as variability of the fBm pa-
rameters is obtained giving more information important for understanding
edge turbulence and intermittency.
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1. Introduction

Plasma edge turbulence, known for a long time to be intermittent in the scrape-o¤
layer [1] , is in focus of intense current research e¤orts aimed to understanding
plasma con�nement and dynamics of turbulent transport in magnetic fusion de-
vices which represent important issues related to the control of con�ned plasma.
Turbulence studies of the scrape-o¤ layer (SOL) have revealed that intermittency
in this region is caused by large-scale coherent structures with high radial velocity
designated as blobs (or avaloids). A natural route for understanding turbulence
and intermittency in the edge region of con�nement devices and related transport
properties is to search for universal properties and di¤erences between dynamics of
di¤erent systems and regimes. The �rst studies performed in this direction have
concentrated on search for long-range dependence properties of plasma density
�uctuations as well as on their eventual self-similar properties [2], [3]. Self-similar
processes were attractive models to describe scalings of plasma �uctuations due
to the fact that they are well documented and mathematically well-de�ned. In
addition they are relatively simple and parsimonious and each of their properties
are controlled by the one unique parameter, H, known as the Hurst parameter. It
was soon realized that in spite of observed self-similarity for several con�nement
devices, over the mesoscale range of time scales , i.e. scales between 10 times
the turbulence decorrelation time and plasma con�nement time, di¤erent scaling
laws exist in di¤erent time scale ranges. Hence, it became clear that self-similar
processes are not adequate to model the extremely complex plasma turbulence
�uctuations. Existence of long-range correlations, noticed in several magnetic
con�nement devices, suggested that scaling models with a single parameter are
appropriate at large scales but at small scales, characteristic for intermittency,
more parameters are needed. As a consequence, a need for multifractal analysis,
an extension of monofractal analysis which is based on self-similarity concept, was
recognized relatively recently. In spite of that, only few studies were devoted to
the multifractal analysis of plasma �uctuations and more importantly a multifrac-
tal analysis tools used were inadequate to recognize subtle di¤erences in various
con�nement devices and hence deviations from universal characteristics [4], [5].
Plasma turbulence studies, usually rely on results obtained for neutral �uid

turbulence which may be bene�cial from many aspects although care must be
taken in recognizing di¤erences and speci�c features of each. In particular, non-
linearites in plasma turbulence are more numerous having di¤erent spectral cas-
cade directions in addition to the E � B nonlinearity, leading to more complex



�uctuating characteristics. One of the most important di¤erences is that time and
space measurements lead to di¤erent information on the structure of turbulence
[6]. Driving mechanisms and damping characteristics are re�ected in the tempo-
ral aspect of �uctuations while measurements at di¤erent spatial locations provide
information on spatial structures for various scale lengths. For the case of neutral
�uids, time records of turbulent velocity at a single spatial location obtained with
the use of a hot-wire or laser Doppler anemometer, are usually interpreted via
Taylor�s frozen �ow hypotheses, as one-dimensional spatial cuts through the �ow.
However, this approach that generates information about temporal measurements
from spatial ones and vice versa, is not applicable in the case of plasma turbu-
lence. Speci�cally, turbulence in the case of neutral �uids is generated at a certain
spatial position and carried by the �ow past the probe location so that recordings
at di¤erent times at a �xed location are equivalent to simultaneous recordings at
di¤erent spatial locations along the �ow. However, in plasma turbulence due to
speci�c nature of nonlinearities, turbulence is created and damped at the same
spatial position where the measurements are taken so that spatial and temporal
informations are interwoven. For the same reason the inertial range [7], may exist
only locally in space or in time, and the extent of this range changes along the
temporal scale as well as along space, for example along poloidal direction. One of
the main results of the study presented here is to establish the existence of local (in
time) inertial range and to estimate its scaling properties for various devices and
con�nement regimes. Proving the existence of local inertial range and evaluating
its characteristics may be of great importance, among other things, in generating
synthetic random media for simulation of wave propagation in turbulent plasma,
relevant for Doppler re�ectometry for example.
One of the �rst important issues to be agreed upon in the analysis of plasma

turbulence, and in particular intermittency and its multifractal character, is the
choice of relevant measure. In neutral �uid turbulence, in addition to velocity,
enstrophy and energy dissipation represent quantities of particular interest al-
though they cannot be constructed in their entirety from a single point velocity
time-series. These quantities are usually replaced by the so-called surrogate �elds
which take the form of a single component of a many component �elds. Intermit-
tency is usually studied via energy dissipation rate whose complete expression is
given by

�(�!r ) = �

2

X
i;j

(@ivj + @jvi)
2 ; (1)

where indices i and j represent coordinate axes. This expression evidently can-



not be constructed from recorded time-series as usually only the longitudinal and
transverse components of velocity, vx and vy respectively, are measured. To over-
come the di¢ culty, expression 1 is replaced by the so called surrogate dissipation

�surr(x) = C�

�
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@x

�2
; (2)

where C is a constant, sometimes taken equal to 15 [8]. Using Taylor�s frozen
�ow hypothesis which is naturally justi�ed in neutral �uid turbulence, expression
2 becomes

�surr(t) � �
�
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@t

�2
: (3)

An important measure quantifying intermittency is the so-called intermittency
exponent. As proposed in [9], it may be extracted from the slope of the two-point
correlation function of energy dissipation �eld. This procedure may be used to
develop a criterion for constructing a measure, analogous to the surrogate dissi-
pation, relevant for plasma turbulence and intermittency. In [10], it was demon-
strated that normalized two-point correlation function h�surr(x+�x)�surr(x)i = h�surr(x)i2
scales as � �x��; where � is the intermittency exponent. Studies in this reference
and in [8], for the case of atmospheric turbulence, and studies in [11] and [12], for
the gaseous helium jet, found � ' 0:22, independent of the Reynolds number.
In the exposition that follows we assume that ion saturation current �uctua-

tions, the only measured quantity used in this exposition, are equivalent to density
�uctuations as justi�ed in detail in [13] . Based on the above description for the
case of neutral �uid turbulence, we set as the goal to construct a measure anal-
ogous to surrogate dissipation whose scaling of two-point correlation function of
L-mode �uctuations would yield an intermittency exponent as close to the value
for neutral �uid turbulence, as possible. The reason for choosing L-mode �uctua-
tions is supported by results presented further on in this study, which imply that
L-mode intermittent �uctuations are very similar in their fractal and multifrac-
tal aspects to the neutral �uid intermittency. A search for appropriate measure,
based on heuristic arguments, was described in [4], and proposed measures are
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A similar measure with dn2=dt replacing dn=dt in 5 was employed in [13]. However
our study based on the analysis of L-mode �uctuations in MAST, Tore Supra and
PISCES devices, indicates that these two measures yield too high or too low values
for the intermittency exponent. The following two measures
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where c is a constant, which upon evaluation of the slope of two-point correla-
tion function yield intermittency exponent � � 0:3; a value closer to the � of
neutral �uid intermittency than the values obtained from two-point correlation
functions of measures 4 and 5. A comparative schematic representation of slopes
of two-point correlation functions for three di¤erent measures is presented in Fig.
1. It should be emphasized that measures in expressions 6 and 7 are by no means
expressions for dissipation but rather surrogate quantities whose multifractal and
two-point correlation function properties give accurate information about bursti-
ness property of the ion saturation current (i.e. plasma density). Namely, one
kind of burstiness arises from dependencies over long time periods as re�ected in
the long-range correlation property and the second kind of burstiness arises from
�uctuations in amplitude and therefore concerns small scale behavior. These two
types of burstiness are well captured and quanti�ed within the multifractal for-
malism by measures that we propose here, 6 and 7.
The rest of the paper is organized as follows. In Sec. II we present basic

features of multifractal processes with special emphasis on large deviation spectra.
In Sec. III we present multifractal characteristics of L-mode and dithering H-mode
of the MAST device, and the L-mode of the Tore Supra device. This analysis is
based on the large deviation spectra which reveal features unobtainable using the
traditional Legendre or Hausdor¤multifractal spectra. In Sec. IV local features of
turbulence are modelled using fractional Brownian motion and wavelet techniques
and in Sec. V we present results pertaining to the two devices considered. Finally,
in Sec. VI we present our conclusions related to the universal and idiosyncratic
aspects of obtained results.



2. Multifractal Measures and Properties

Multifractal measures can be built by iterating a simple procedure called a mul-
tiplicative cascade whose various forms are used to model the energy dissipation
�eld of fully developed turbulence, physically motivated by Richardson cascade
model of energy transfer from large to small scales by random breakup of eddies.
The simplest example of such cascades is the binomial measure on I = [0; 1] (e.g.
[14]). Consider the uniform probability measure �0 on I, and split the unit interval
I into two subintervals I0 = [0; 1=2] and I1 = [1=2; 1]: In the process mass m0 is
spread uniformly over I0 andm1 is spread over I1 so thatm1 = 1�m0 and it is ob-
vious that the density of measure �1 is a step function. With the two subintervals
the procedure is repeated in the same manner so that at the second stage the mea-
sures are �2[I00] = m0m0; �2[I01] = m0m1; �2[I10] = m1m0 and �2[I11] = m1m1:
At stage n, the conserved mass equal to 1 is distributed among the 2n dyadic
intervals I"1:::"n according to all possible products �(I"1:::"n) = m"1 :::m"n ; where
m"i are denoted as multipliers. Iteration of this procedure generates an in�nite
sequence of measures f�ng that weakly converge to the binomial measure �. The
construction creates large and increasing heterogeneity in the allocation of mass
leading to the multifractal properties. The binomial, like many multifractals,
is continuous but singular probability measure that has no density and no point
mass. An extension of such a procedure, more relevant for turbulence phenomena,
randomizes the allocation of mass between subintervals and another procedure,
also of relevance for turbulence research, may also be employed with arbitrary
distribution of multipliers (with mass being conserved either at each stage of the
process or preserved only on the average) yielding multiplicative measures char-
acteristic of multifractals. The relevance of such cascade processes in turbulence
is discussed in, for example, [7], [15].
Multifractality of measures is easily extended to functions so that a stochastic

process X(t) is called multifractal if it has stationary increments and satis�es

E (jX(t)jq) = c(q)t�(q)+1;

for all t and q belonging to intervals on the real line, and where �(q) and c(q) are
functions with domain on the real line. The function �(q) is called the scaling
function of the multifractal process. It may be easily proved that �(q) is concave,
and for self-similar processes, controlled by one exponent H, it assumes a simple
form

�(q) = Hq � 1;



withH known as the Hurst exponent. The corresponding process is called monofrac-
tal. For multifractal processes �(q) is nonlinear. The Legendre transform of the
scaling function �(q) is called the Legendre multifractal spectrum:

f(�) = Inf
q
[�q � �(q)]:

In the above expression � is the local Hölder exponent, whose meaning may be
de�ned in the following way. Let �(t) denote the measure given either by expression
6 or expression 7 at time t 2 [0; T ] so that the in�nitesimal variation of measure
� around time t is heuristically of the form

jln �(t+ dt)� ln �(t)j � Ct(dt)�(t);

where �(t) is called the local Hölder exponent, while Ct is the prefactor at t. From
this de�nition it is apparent that �(t); also known as local scale at t; quanti�es
the scaling properties of the process at a given point in time so that lower values
correspond to more abrupt variations. Multifractal processes contain a continuum
of local scales and such a continuum is re�ected in the smooth Legendre spectrum
f(�): Hence the multifractal spectrum represents a convenient representation for
the distribution of Hölder exponents. The shape of the spectrum is very sensitive
to the distribution of multipliers so that it may give important information about
multiplicative processes.

2.1. Large Deviation Spectrum

As mentioned earlier, the mulitfractal spectrum evaluated by performing the
Legendre transform of the scaling function is a smooth function of local Hölder
exponents. However sometimes more information may be obtained from the mul-
tifractal spectrum derived by applying the Large Deviation Theory. Noticing that
the Hölder exponent may be de�ned as the lim inf of the ratio

ln j�(t+�t)� �(t)j = ln(�t) as �t! 0;

it is suggestive to estimate the distribution of local Hölder exponents at a random
instant. For that reason partition [0; T ] into 2k subintervals [ti; ti + �t]; where
length �t = 2�kT; and calculate for each subinterval the coarse Hölder exponent

�k(ti) � ln j�(ti +�t)� �(ti)j = ln(�t);



so that a set f�k(ti)g of 2k observations is formed. The range of Hölder exponents
is then divided into small intervals ��; and let Nk(�) be the number of coarse
exponents contained in (�; � + ��]: Proceeding further, one could calculate a
histogram with relative frequencies Nk(�)=2k; which for k ! 1 converge to the
probability that a random time moment t has Hölder exponent �: However since
multifractals typically have a dominant exponent �0 implying that �(t) = �0
at almost every instant, the obtained histogram would degenerate into a delta
function, failing to give relevant information on a multifractal process. Instead,
the multifractal spectrum in the context of the Large Deviation Principle [14],
denoted as Large Deviation Spectrum is de�ned as

fLDS(�) := lim
k!1

sup
lnNk(�)

ln 2k
;

so that it represents the renormalized probability distribution of local Hölder
exponents. Indeed, Nk(�)=2k de�nes a probability distribution on f�i : i =
0; :::; 2k�1g: Referring to the Law of Large Numbers and the arguments given ear-
lier, it is expected that this distribution is concentrated more and more about the
most expected value as k increases so that fLDS(�)measures how fast the probabil-
ity Nk(�)=2k to observe an atypical value of � decreases, i.e., Nk(�)=2k ' 2f(�)�1:
As far as the Large Deviation Spectrum of multiplicative measures is concerned,
it directly depends on the asymptotic distribution of �k which in turn depends on
the distribution of multipliers. Actually, most of the mass of the multiplicative
cascade concentrates on intervals with Hölder exponents bounded away from the
most probable value �0, so that the Large Deviation Spectrum gives important
information on these "rare events". A usually determined Legendre multifractal
spectrum is concave by de�nition and represents the convex hull of the Large
Deviation Spectrum.

3. Large Deviation Spectra of plasma turbulence intermit-
tency

The goal of this section is to present a comparative study of Large Deviation
Spectra of the boundary plasma turbulence intermittency in the scrape-o¤ layer
(SOL). The ion saturation current �uctuations of reciprocating Langmuir probe
installed at the edge of magnetic con�nement devices are used to this purpose.
Recent experimental studies have suggested that intermittency in the SOL of
magnetic con�nement devices is caused by nonlocally coherent structures denoted



as blobs or avaloids [16] , which essentially are large-scale structures with high
radial velocity, ejected radially towards the wall and encountered intermittently
in SOL. These structures lead to a direct loss of matter and energy and hence
have a high impact on con�nement in contrast to the second type of coherent
structures which may exist in fusion devices, which represent locally organized
�uctuations and which, due to their non radial propagation, contribute less to the
loss of con�nement. We study intermittency properties of two di¤erent devices,
the MAST spherical tokamak (L- and dithering H-mode) and the Tore Supra
tokamak with limiter con�guration (L-mode).

3.1. MAST spectra

The datasets analyzed here consist of measurements of the ion saturation cur-
rent (ISAT ) performed by the moveable Langmuir probe located at the outboard
midplane on MAST device [17], [18]. Sampling rate was 1 MHz and during the
discharge the distance from the plasma edge to the probe changed slowly. For
this reason, time-periods during which the distance was approximately constant
so that plasma current and con�nement modes were constant, were chosen for
the analysis. The analysis of two con�nement regimes, L-mode and dithering
H-mode is presented here. Discharge 6861 is high density L-mode plasma and
9031 represents a dithering H-mode with heating power close to the threshold for
L-H transition with intermittent high frequency edge localized modes (ELMs).
Time-series of L-mode and dithering H-mode signals are presented in Figs. 2 and
3.respectively. Other relevant discharge parameters are presented in Table 1.

Table 1. Discharge parameters for MAST data

Plasma Normalized Probe distance Duration
current electron density from plasma of signal
(kA) ne=nG edge (cm) (ms)

6861 L 665 0.69 4.4�0:1 40
9031 L/H 535 0.42 5.7�1:0 88

:

The large deviation spectra for 6861 L-mode and 9031 dithering H-mode
are presented in Figs. 4 and 5 respectively on �ve di¤erent scales, namely for
�t = 23; :::, 27: The most striking feature of these spectra is their departure from
a pure bell-shape and concavity and is a good example where Large Deviation
Spectra provide more information than Legendre spectra, which are strictly con-



cave although they may be asymmetrical. One possible explanation for such a be-
havior is that there are more multiplicative laws underlying the cascade processes
so that there is a lumping of measures whose supports are disjoint [19]. In Fig.
6 the lumping of two measures with disjoint supports is presented generating a
spectrum consisting of maximal parts of individual spectra, and illustrating the
mechanism of concavity deformation in the LD spectrum. Also, superposition of
more measures may lead to the departure from concavity in the LD plasma spec-
tra, to produce e¤ects similar to the ones observed in Figs. 4 and 5 [19]. In such
a case the construction of two or more measures is identical from the geometrical
point of view, however the di¤erence stems from the choice of multipliers. In either
case there is a sort of phase transition so that the process contributing mostly to
the singularities corresponding to a speci�c Hölder exponent �; changes from one
measure to another. It is evident that the L-mode has more complex multifractal
structure in the sense that more measures, three in this case, are lumped than
in the case of dithering H-mode, and consequently the cascade mechanism and
energy transfer is more complex. The right-hand slope of the spectra, both in the
case of L- an the L/H- mode, is larger than the left-hand slope, indicating rich
variety of strong singularities and their gradual probability of occurrence.
When � is less than the most probable value of Hölder exponent �0; it corre-

sponds to divergent singularities since �(t) ! 1 as t ! 0; while when � > �0 it
re�ects regular (bounded) singularities since �(t)! 0 as t! 0: The fact that both
spectra are not symmetric again emphasizes the fact that the processes involved
are not purely multiplicative. This implies that the energy across scales is not
transported through the generation of vortices and hence that it is not conserved
at each step of the process, although it may be conserved on the average. This
is closely related to random multiplicative cascades mentioned earlier with mass
being conserved not at each stage of the process but on the average. The width of
the spectrum, de�ned as the j�max � �minj ; is larger in the case of L-mode, due to
the stronger intermittency e¤ects. Moreover, more irregular instants (degenerate
singularities) of �uctuations are present in the L-mode than in the dithering H-
mode since in the former case the width j�min � �0j is larger than in the later case.
Note also the location of the most probable Hölder exponent �0; as �0 � 0:6 for
the L-mode and slightly larger �0 � 0:7 for the dithering H-mode. As mentioned
earlier the shape of the spectra is determined by the distribution of multipliers of
the multiplicative process and this issue will be addressed in detail elsewhere [20].
As a �nal remark we mention that measures in expressions 6 and 7 pro-

posed here as multifractal dissipation measures, for di¤erent dyadic intervals



�t = 2k(k = 1; 2; ::) produce Large Deviation spectra whose most probable Hölder
exponents coincide, which is not the case for other measures, such as 4 and varia-
tions of it. Hence, evaluation of Large Deviation spectra, in addition to two-point
correlation functions, supports the choice for these measures.

3.1.1. Tore Supra spectra

The data were collected on the Tore Supra tokamak, a fusion device with a major
and minor radii equal to R = 2:32 m and a = 0:76 m, respectively. The recipro-
cating Langmuir probe, installed on the top of the Tore Supra tokamak, contains
two sets of three composite carbon tips with 6 mm diameter toroidally separated
by a distance of 20 mm. The probe is immersed into the plasma of SOL at a pre-
determined position and comes back in � 150 ms. Several plunges are performed
during each discharge and 8000 data points were recorded at a frequency of 1MHz.
Detailed description of probes and data acquisition procedure is described in [13].
Four di¤erent signals, each of 8 ms duration are analyzed here, and a sample of
the time series is shown in Figs. 7 and 8.
Large Deviation Spectra of the four signals are presented in Figs. 9-12. As in

the case of MAST turbulence data, rather than looking at the exact values of the
LDS spectra, considerable amount of information may be obtained by inspecting
the shape of the spectra. The most striking feature in the spectra is nonexistence
or very mild lumping of measures with no superposition of measures. This is in
large contrast to the MAST intermittency where lumping of measures is the most
noticeable feature in the shape of the spectra. More interestingly, the mild lumping
occurs for measures corresponding to regular singularities while strong lumping in
MAST intermittency corresponds to divergent singularities. The overall shape of
the spectra and the arguments given above lead to the conclusion that statistical
distribution of multiplicative cascade multipliers is completely di¤erent in the
case of Tore Supra edge turbulence as compared to the MAST case implying
di¤erent energy transport processes and di¤erent nonmultiplicative mechanisms
which accompany energy transfer across scales in two devices. Without getting
into details of calculations, we mention here that distribution of multipliers of the
multiplicative cascade in the MAST turbulence is exponential while for the Tore
Supra device it is log-normal [20]. Another important feature of the Tore Supra
spectra is their smaller width �max � �min: However, more striking is the smaller
range of divergent singularities j�min � �0j ; corresponding to smaller number of
rare �uctuations. Hence, not only is the edge intermittency weaker in Tore Supra



�uctuations, it is less abundant in rare events.
Based on the above comparative analysis, in spite of the universal multifractal

character of �uctuations, there are signi�cant di¤erences with important implica-
tions and care must be taken when generalizing certain properties of �uctuations
and when turning to speci�c features characteristic of a distinct device. Proceed-
ing further with the aim of better understanding edge turbulence properties in
fusion devices we undertake the analysis, presented in the next two sections, to
provide time localized information about the essential frequency content of the
�uctuations and about the existence of inertial range.

4. Estimation of local turbulence properties

Turbulent �uctuations, although highly nonstationary, usually exhibit approxi-
mate stationarity in the appropriately chosen segments over which spectral densi-
ties exhibit approximate power law scaling. Estimation of the power law behavior
of spectral densities from measured plasma edge �uctuations is based upon appro-
priate segmentation of the data and the choice of frequencies over which the search
for power law behavior is performed. The analysis presented here is based on the
method and software presented in [21] The motivation for a such a procedure is
twofold. The �rst is to estimate the local temporal variations in the correlation
properties of the �uctuations and to evaluate the variation of the absolute level
of these correlations. The second is the propagation of microwaves in plasma for
the purpose of Doppler re�ectometry used for estimating plasma rotation pro�les
and turbulence properties. The plasma medium may be modelled based on the
fractional Brownian motion (fBm) and we use fBm as a model for local turbulence.
Fractional Brownian motion represents the most simple local power law process

which is nonstationary but with stationary increments. The variance of the sta-
tionary increments is quanti�ed by the structure function given by

E
�
(BH(t+�t)�BH(t))2

	
= �2 j�tj2H ; H 2 [0; 1]: (8)

In the above expression the Hurst exponent H determines the correlation distance
for the increments of the process and the quantity �2 quanti�es the absolute
level of correlations. Ordinary Brownian motion is characterized by a unique
exponent H = 1=2; so that regarding its multifractal properties BH(t) has a
local Hölder exponent �(t) = H; i.e. it is a monofractal process. Fractional
Brownian motion is self-similar since BH(t) = aHBH(t=a), were the equal sign
implies equality in distribution. Increasing the exponent beyond this value, i.e.



H > 1=2 corresponds to positive correlations (persistence) and long memory, while
the case of H < 1=2 corresponds to negative correlations (antipersistence). On a
set of Lebesgue measure 1, the multifractal process with H > 1=2 is more regular
than a Brownian motion. Since we are dealing with intermittent phenomena which
exhibit multifractal properties, the power law parameters of the local power-law
model, � and H are functions of time and these variations are modelled as a
secondary stochastic process. The other important feature of the fBm application
in the context of edge turbulence data is that the model is applied only over a
subset of scales known as the inertial range. Usually multifractal data, besides
variations in � and H; show variations in the inertial range itself. As explained
in the Introduction, turbulence in plasma is created and damped at the same
spatial location so the existence of the inertial range in plasma turbulence needs
conclusive tests which we set as one of the goals of this study. Wavelet scale
spectra are used for this purpose because they provide time-scale decomposition
that is compliant with power law processes, independent of their stationarity.

4.1. Scale spectrum

Wavelet scale spectra are used for the purpose of �tting the estimated spectrum
to a power law. Scale spectra are more �exible and adjustable to self-similar
processes as veri�ed in numerous studies, e.g.[22]. Haar wavelets with narrow
support are a good choice for the analysis of turbulence due to their simplicity
and versatility however other bases would be also suitable. Let

n = (a0(1); a0(2); ::: a0(2
M),

denote the plasma density data, i.e. ion saturation current �uctuations. Wavelet
coe¢ cients corresponding to the signal are then calculated and scale spectrum of
n; relative to the Haar wavelet basis, is the sequence Sj de�ned by

Sj =
1

2M�j

X2M�j

i=1
(dj(i))

2 ; j = 1; 2; :::;M;

where dj are detail coe¢ cients and j denotes the scale. The scale spectral point Sj
is the mean square of the detail coe¢ cients at scale j; so that the spectrum can be
interpreted as representing energy of the signal at di¤erent scales. The main goal
is now to test whether the edge turbulence data can be modelled in a satisfactory
manner by a power law model over a subrange of scales. For the process modeled
by the structure function given by expression 8 the scale spectrum Sj is linear in



the log log plot, assuming that the record is long enough. Actually, over a suitable
range of scales the mean of the log scale spectrum over a long enough segment is
given by expression

E(log(Sj)) � c� p logKj;

where p = �(2h + 1); c = c(H; �) is a known function and Kj is a spatial fre-
quency [21]. Hence, local Hurst exponents may be calculated readily from the
slope of the log scale spectrum. Of particular interest is the value of H = 1=3
which corresponds to the Kolmogorov�s scaling. Other important issues, relevant
for interpretation of results, such as the choice of segmentation and �ltering to
smooth out the e¤ects of segmentation, are described in detail in [21]. Particularly
sensitive is the former issue as the segmentation should be not too much larger
than the interval of stationarity. The obtained results should be independent
of segmentation which implies that changing the length of segments should not
change the variability of the estimated parameters. Summarizing the procedure,
an estimation of fBm is generalized to a procedure for determination of a local
power law process. For processes under study, the power law (the exponent or
slope) and the multiplicative constant (log intercept of the scale spectrum) are
not constants. Instead, they both vary slowly and the estimation of the power law
parameters and the multiplicative constant are performed by segmenting the data
and then removing segmentation e¤ects by a �ltering procedure. An estimation
procedure requires estimation of time dependent inertial ranges whose existence
and extent also changes with time.

4.2. Local features of MAST and Tore Supra edge turbulence

Local turbulence modelling using fractional Brownian motion and wavelet basis
scaling properties show that indeed inertial range in temporal domain exists and
that it is possible to gain important information about edge turbulence properties
using this approach. In particular, the scale spectra of MAST data reveal a
similar scaling range for both the L-mode and dithering H_mode con�nement.
The variability of the inertial range itself in the dithering H-mode case is enhanced
by the switching process from low to high con�nement, so that it is practically
the same as in the L-mode case. In Fig. 13 an inertial range for the case of
L-mode 6861of the MAST device is presented obtained after careful segmentation
and check for stationarity of the data. In Fig. 14 an inertial range for the L-mode
(L1 signal) of the Tore Supra device is presented and a quick comparison with the
L-mode MAST case reveals a larger extent of the scaling range. This is expected



based on the more regular and more symmetric Large Deviation spectra, implying
less strong intermittency in the Tore Supra edge turbulence data. Figs. 15 and 16
present local temporal variations of the Hurst exponent and the variance of the
fBm model 8. Both parameters show random �uctuations and in the case of L-
mode turbulence data, local Hurst exponent �uctuates close to the Kolmogorov�s
value of 1=3; so that from that aspect of multifractality L-mode plasma turbulence
is similar to the neutral �uid turbulence. In the case of dithering H-mode, Fig.
16, the average Hurst exponent value is lower than in the L-mode case however
it exhibits distinct random variability from a minimum value of H = 0:1. Both
cases are typical of multifractal processes which show fast, random �uctuations of
the regularity parameter H:
Characteristics of local turbulence of the Tore Supra device are presented in

Figs. 17 and 18, where cases (plunges) L1 and L4 are illustrated. Data L2 and
L3 are not presented since they are very similar to the L1 case. The striking
feature on both diagrams is slow, almost deterministic variation of the local Hurst
exponent and the variance. For L4 data, variability is somewhat larger however
it is almost periodic so that it re�ects the deterministic like character of the L1
case. We may conclude that local processes on Figs. 17 and 18 display enough
regularity which are not characteristic of the true multifractals. Actually, this
particular sets of Tore Supra edge turbulence data are multifractional, rather
then multifractal. This is the term used for processes which are not multifractal
in the true sense since they may exhibit local irregularity as re�ected in the H
value that is "deterministic", meaning that it is almost the same or predictable
for all realizations, whereas it is random for truly stochastic process. Moreover,
H varies smoothly or very slowly while this is not the case in a true multifractal
process. Some of these features may have been anticipated based on the shape
of Large Deviation spectra however analysis local in time or in space provides
necessary conclusiveness.

5. Conclusion

Multifractal tools have been employed in order to test the universality of the edge
turbulence properties in various magnetic con�nement devices. It was shown that
Large Deviation spectra represent powerful tools enabling advanced insight into
the multifractal processes and provide information that is sensitive to the data
and hence to the con�nement device in which the date were generated. Com-
plemented by an analysis of local turbulence based on the fractional Brownian



motion and wavelet scaling properties it was shown that turbulence properties
are di¤erent in the MAST device and the Tore Supra tokamak, suggesting that
new studies involving di¤erent devices and possibly extensions of existing meth-
ods for the analysis should be undertaken. Shapes of Large Deviation Spectra
clearly suggest di¤erent energy transport mechanisms in the two devices while lo-
cal analysis reveals a multifractional character of the processes in the Tore Supra
device in contrast to the genuine multifractal processes in the MAST device. In
the light of results presented here the call for a careful interpretation of the univer-
sal characteristics of edge turbulence data is evident. In addition, di¤erences over
local temporal records of turbulence data for various devices show how important
local modelling based on the fractional Brownian motion and wavelet scale spec-
tra is for constructing accurate synthetic random medium for simulation of wave
propagation in turbulent plasma.
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Figure 1: Schematic representation of two-point correlation function slopes cor-
responding to di¤erent multifractal dissipation measures. The optimal measure
yields slope � 0:3.
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Figure 2: Saturation current �uctuations as a function of time for the low con-
�nement regime 6861 of the MAST device.
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Figure 3: Saturation current �uctuations as a function of time for the dithering
H mode con�nement regime of the MAST device.
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Figure 4: Large Deviation Spectrum for the L-mode signal 6861 of the MAST
device for �ve di¤erent scales: �t = 23; :::; 27. Lumping of measures is evident for
singularities smaller than the most probable Hölder exponent.



-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α

 f(
α

)
9031 L/ H

Figure 5: Large Deviation Spectrum for the dithering H-mode signal 9031 of the
MAST device for �t = 23; :::; 27:

Figure 6: The spectrum of the lumping of two measures is the maximum of the
individual spectra. The resulting spectrum shows clear signs of lumping and is
not concave.
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Figure 7: Saturation current �uctuations as a function of time for the low con-
�nement regime in the Tore Supra device. Data taken during plunge 1 is labelled
as L1 and plunge 2 is labelled as L2.
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Figure 8: Saturation current �uctuations as a function of time for the low con-
�nement regime in the Tore Supra device. Data taken during plunge 3 is labelled
as L3 and plunge 4 is labelled as L4.
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Figure 9: Large Deviation Spectrum for the L-mode signal L1 in the Tore Supra
device. The spectra are almost symmetric with respect to the most probable sin-
gularity value.
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Figure 10: jLarge Deviation Spectrum for the L-mode signal L2 in the Tore Supra
device. Very similar to L1.
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Figure 11: Large Deviation Spectrum for the L-mode signal L3 in the Tore Supra
device.
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Figure 12: Large Deviation Spectrum for the L-mode signal L4 in the Tore Supra
device. These spectra are the most symmetric and practiacly there is no lumping
of measures.
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Figure 13: Scale spectra of several nonoverlapping approximately stationary seg-
ments of the L-mode signal 6861 in the MAST device. Stars represent reference
Haar wavelet scales over which the power law applies i.e. the extent of inertial
range.
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Figure 14: Scale spectra of approximately stationary nonoverlapping segments of
the L-mode signal L1 in the Tore Supra device. Stars at the bottom represent
reference wavelet scales over which the power law applies i.e. the extent of inertial
range. Note larger extent of inertial range in the case of Tore Supra device.
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Figure 15: Parameters of the fBm model, Hurst exponent and the variance at unit
lag, for the L-mode of MAST. Note random variations of each parameter re�ecting
mutltifractal character of the plasma density �uctuations. The smoothed vales
are represented by solid lines. Note that Hurst exponent �ucutates approximately
around Kolmogorov�s value H=1/3.
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Figure 16: Parameters of the fBm model, Hurst exponent and the variance at unit
lag for the dithering H-mode in MAST. Note random variations of each parameter
re�ecting mutltifractal character of the plasma density �uctuations. The smoothed
vales are represented by solid lines. Note considerably lower value of the Hurst
exponent than in the case of L-mode.
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Figure 17: Parameters of the fBm model, Hurst exponent and the variance at
unit lag, for the L1 �uctuations of the Tore Supra device. Note smoother, almost
deterministic variations of each parameter in comaprison with random�uctuations
in the MAST case.
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Figure 18: Parameters of the fBm model, Hurst exponent and the variance at unit
lag, for the L4 signal of the Tore Supra device. Variations of these parameters is
the largest among the Tore Supra data, although almost periodic variations in
both parameters are readily noticeable.


