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We investigate the relation between the diagonal (σxx) and off-diagonal (σxy) components of the
conductivity tensor in the quantum Hall system. We calculate the conductivity components for a
short-range impurity potential using the linear response theory, employing an approximation that
simply replaces the self-energy by a constant value −i~/(2τ) with τ the scattering time. The ap-
proximation is equivalent to assuming that the broadening of a Landau level due to disorder is
represented by a Lorentzian with the width Γ = ~/(2τ). Analytic formulas are obtained for both
σxx and σxy within the framework of this simple approximation at low temperatures. By examining
the leading terms in σxx and σxy, we find a proportional relation between dσxy/dB and Bσ2

xx. The
relation, after slight modification to account for the long-range nature of the impurity potential,
is shown to be in quantitative agreement with experimental results obtained in the GaAs/AlGaAs
two-dimensional electron system at the low magnetic-field regime where spin splitting is negligibly
small.

Keywords:Quantum Hall effect; conductivity tensor; two-dimensional electron system; GaAs; Al-
GaAs; long range impurity potential.

I. INTRODUCTION

The experimental finding by Chang and Tsui [1] of
the striking similarity between the longitudinal resistivity
ρxx and the derivative of the Hall resistivity with respect
to the electron density ne, dρxy/dne, in the quantum Hall
regime has attracted considerable interest and has since
been a subject of a number of experimental [2–8] and
theoretical [9–11] studies. Using a low-carrier-density (ne

≤1×10−15 m−2) high-mobility (µ ≥ 300 m2V−1s−1) two-
dimensional electron system (2DES) in GaAs/AlGaAs,
Stormer et al. [4] showed that all features in ρxx (in-
cluding overshooting flanks around quantum Hall states)
are faithfully reproduced by the derivative of ρxy with
respect to the magnetic field B in the form

B
dρxy

dB
≃ βρxx, (1)

where β is a sample-dependent constant value (typically
between 20 and 40). Note, as pointed out in Ref. [1],
that the differentiation by B and that by ne are basically
equivalent to each other, −B(d/dB) = ne(d/dne), if the
relevant variable in the problem is the filling factor ν =
neh/eB and not ne or B separately.

The origin of the intriguing empirical relation Eq. (1)
remains largely enigmatic. A possible explanation is
given by Simon and Halperin [10], who ascribed the re-
lation to the microscopic inhomogeneity in the electron
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density ne inevitably present in real 2DES samples. Not-
ing that the macroscopic value of ρxx measured in ex-
periments is mainly determined by the fluctuation in the
local Hall resistivity ρxy(r⃗) resulting from the inhomo-
geneity in ne rather than by the local longitudinal resis-
tivity ρxx(r⃗), their theory leads to Eq. (1) for not too low
temperatures if disorders are taken into consideration on
multiple length scales. In a recent experiment by Pan et
al. [8] using an ultrahigh mobility (µ = 3100 m2V−1s−1)
2DES at an extremely low temperature (∼ 6 mK), exper-
imentally measured value of ρxx was interpreted [8, 11]
as essentially reflecting the difference in ρxy(r⃗) between
the voltage probes placed under slightly different (∼0.5
%) electron density ne, and accordingly as virtually ir-
relevant to the local resistivity ρxx(r⃗). Note, however,
that the van der Pauw geometry used in their study is
not necessarily an ideal setup for the measurement of the
resistivity.

In the present paper, we explicitly calculate the di-
agonal (σxx) and the off-diagonal (σxy) components of
the conductivity tensor in the quantum Hall system by
employing the linear response theory. Although there al-
ready exist a number of sophisticated theories devoted
to the calculation of σxx and σxy in the quantum Hall
system (see, e.g., Refs. [12–15]), they have not been ap-
plied, to the knowledge of the present authors, to the
interpretation of the relation between the two compo-
nents of the conductivity tensor exemplified by Eq. (1).
We take the effect of disorder into account by simply as-
suming the Lorentzian broadening of the Landau levels
with the width Γ independent of B; this can readily be
done by substituting a constant value −iΓ for the self-
energy in the Green’s function. Although this appears
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to be somewhat an oversimplified approximation, the
Lorentzian with the B-independent width is suggested by
a number of experiments to be a function that describes
quite well the broadening of Landau levels due to disor-
der [16–19]. By contrast, the well-known self-consistent
Born approximation [12] yields a semi-elliptical broaden-
ing, which is by far a less accurate representation of the
experimentally observed Landau levels. A great advan-
tage of the simple approximation employed in the present
study is that it allows us to deduce analytic formulas for
both σxx and σxy for low enough temperatures kBT ≪ εF

with εF the Fermi energy. The analytic formulas, in turn,
provide us with a transparent way to examine the under-
lying relation between the two components. By picking
out the most significant terms at high magnetic fields in
the formulas, we find the relation

dσxy

dB
≃ λBσ2

xx, (2)

with the coefficient λ determined by scattering parame-
ters and εF [see Eq. (45) below for details]. The relation
is analogous to Eq. (1) but with a notable difference that
σxx enters the equation in the squared form. Note that
Eq. (1) can be rewritten as

B
dσxy

dB
≃ βσxx (3)

by using the approximate relations for not too-small mag-
netic fields, ρxy ≈ 1/σxy and ρxx ≈ σxx/σ2

xy. In contrast
to the previous study [10], we have not introduced inho-
mogeneity in ne in our calculation.

The relation between σxx and σxy found in the present
study is compared with experimental results obtained
in a GaAs/AlGaAs 2DES using the Hall-bar geome-
try, the geometry well-suited to the measurement of the
resistivity. Care should be taken in the comparison,
since our theoretical calculation is based on short-range
impurity potential, while the dominant scattering in a
GaAs/AlGaAs 2DES is known to be of long-ranged. We
find that Eq. (53) below obtained by modifying Eq. (2) to
accommodate the long-range potential describes the ex-
perimental results remarkably well for the low magnetic
field range where the spin splitting, the localization, and
the formation of edge states can be neglected.

The paper is organized as follows. In Sec. II, we in-
troduce the Green’s function to be employed in the later
calculations. Components of the conductivity tensor are
calculated in Sec. III, which are shown in A to approach
the semiclassical formulas asymptotically for B → 0. The
relation between σxx and σxy is examined in Sec. IV,
and is compared with experimental results in Sec. V af-
ter modification to account for the long-range nature of
the impurity potential. The validity of our approxima-
tion and the magnetic-field range for our approximation
to be accurate are discussed in Sec. VI, followed by con-
cluding remarks in Sec. VII.

II. IMPURITY SCATTERING IN THE
QUANTUM HALL SYSTEM

We consider a 2DES in a magnetic field perpendicular
to the 2D plane. The Hamiltonian of the system is given
by

HQH = H0 + Vimp, (4)

H0 =
1

2m∗ (p⃗ + eA⃗)2, (5)

where p⃗ denotes the momentum operator, −e is the
charge of an electron, A⃗ is the vector potential of the
magnetic field (0, 0, B) and Vimp represents the impurity
potential. We neglect spins for simplicity. The term H0

in the Hamiltonian gives the Landau levels. The eigen-
function of H0 in the Landau gauge is given by

ϕkN (x, y) =
1√
L

eikxχN (y − yk), (6)

where L is the length of the system, χN denotes the eigen-
function of the harmonic oscillator in the Nth Landau
level whose energy is given by EN = ~ωc(N + 1/2) with
ωc = e|B|/m∗ the cyclotron frequency, and yk = −kℓ2

is the guiding center with ℓ =
√

~/e|B| the magnetic
length.

We consider a short-range potential of the form

Vimp(r⃗) =
∑

i

Viδ(r⃗ − r⃗i). (7)

Owing to the impurity potential, Landau levels acquire
width, which are otherwise delta functions placed at
ε = EN (N = 0, 1, 2,...). The resulting density of states
(DOS), or the line shape of the impurity-broadened Lan-
dau levels, has been calculated for various types of the
impurity potential. For a white-noise potential (impuri-
ties with constant strength Vi distributed at random po-
sitions r⃗i), the broadening was shown to be well described
by a Gaussian line shape [20–22]. Calculations were also
done assuming a distribution P (Vi) in the strength of
the impurity scattering Vi [21–27]. Brezin et al. [21] and
Benedict et al. [25] showed that a Lorentzian distribu-
tion of P (Vi) results in DOS described by a Lorentzian
line shape. Lorentzian broadening of the Landau levels
is consistent with experiments on the tunneling into a
2DES [16, 19] or measurement of the magnetization in a
2DES [17, 18].

In the present paper, we start by assuming the
Lorentzian DOS

D(ε) =
1

2πℓ2

∞∑
N=0

1
π

Γ
(ε − EN )2 + Γ2

. (8)

As will be shown, this simple approximation allows us
to deduce analytic formulas of the conductivity tensor,
which proves to be essential for the later analysis of the
relation between the components of the conductivity ten-
sor.
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The simple DOS Eq. (8) implies analogous simplicity
in the electron Green’s function. For sufficiently short-
ranged impurity potential, the Green’s function can be
written in the diagonalized form as

GN (ε)δN,N ′δk,k′ =
⟨

N, k

∣∣∣∣ 1
ε − HQH

∣∣∣∣N ′, k′
⟩

=
δN,N ′δk,k′

ε − EN − ΣN (ε)
, (9)

where |N, k⟩ represents the eigenstate of the unperturbed
Hamiltonian given by Eq. (6), and ΣN (ε) denotes the self-
energy resulting from Vimp. The DOS is related to the
imaginary part of the electron Green’s function (9) by

D(ε) = − 1
2πℓ2

∑
N

ρN (ε), (10)

with ρN (ε) introduced as

ρN (ε) =
1
π

ImGN (ε + i0). (11)

It is easy to see that Eq. (10) reproduces Eq. (8) if the
self-energy ΣN (ε) in Eq. (9) is replaced by a constant
value −iΓ = −i~/(2τ), yielding

GN (ε + i0) =
1

ε − EN + iΓ
. (12)

We exploit the simple Green’s function Eq. (12) in the
following calculations.

III. CONDUCTIVITY TENSOR

We introduce the particle-current operator j⃗ of the
form

j⃗ =
1

m∗ (p⃗ + eA⃗). (13)

The conductivity tensor σαβ (with α and β representing
either of x or y) of the 2DES is given by the Kubo formula

σαβ(ω) = Re
[

1
iω

(Kαβ(ω + i0) − Kαβ(0))
]

, (14)

where Kαβ represents the thermal Green’s function cor-
responding to the current-current correlation function

Kαβ(iωn) = − e2

L2~

∫ ~/kBT

0

dτeiωnτ ⟨Tτ jα(τ)jβ(0)⟩,

(15)
with L the system size, Tτ the chronological operator
and ωn = 2nπkBT/~ for an integer n. The bracket ⟨...⟩
here denotes the ensemble average. In the calculation of
the conductivity tensor (14), we consider only the loop
diagram shown in Fig. 1 and neglect the correction from

FIG. 1: The diagram for the current-current correlation func-
tion.

the current vertex part. The correlation function Kαβ is
then written as

Kαβ(iωn)

= −kBTe2

L2

∑
ωm

∑
N,k,N ′,k′

⟨N, k |jα|N ′, k′⟩ ⟨N ′, k′ |jβ |N, k⟩

×GN ′(i~ωm + i~ωn + εF)GN (i~ωm + εF),
(16)

where the electron Green’s function GN is given by Eq.
(12) and the matrix elements of the particle current are

⟨N, k |jx|N ′, k′⟩

=

(
− ~

mℓ

√
N + 1

2
δN ′,N+1 −

~
mℓ

√
N

2
δN ′,N−1

)
δk,k′ ,

⟨N, k |jy|N ′, k′⟩

=

(
−i

~
mℓ

√
N + 1

2
δN ′,N+1 + i

~
mℓ

√
N

2
δN ′,N−1

)
δk,k′ .

(17)

Performing analytic continuation of iωn to ω and taking
the limit ω → 0 + i 0, we obtain the dc parts of the
diagonal and off-diagonal components in the conductivity
tensor in the forms

σxx(T, εF) =
e2

2~
(~ωc)2

×
∫ ∞

−∞
dε

(
−∂f(ε)

∂ε

) ∞∑
N=0

(N + 1)ρN (ε)ρN+1(ε),

(18)

σxy(T, εF) = − e2

2π~
(~ωc)2

∞∑
N=0

∫ ∞

−∞
dεf(ε)(N + 1)

×
(

ρN (ε)
∂GN+1(ε + i0)

∂ε
− ρN+1(ε)

∂GN (ε + i0)
∂ε

)
,

(19)
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where f(ε) = 1/{exp[(ε−εF)/(kBT )]+1} is the Fermi dis-
tribution function. Equations (18) and (19) are basically
equivalent to Eqs. (50) and (51) in Ref. [28] by Jonson
and Girvin, except that the self-energy in the Green’s
function is replaced by a constant value in our case.

We can calculate the components of the conductiv-
ity tensor Eqs. (18) and (19) further using the electron
Green’s function (12). We first examine the diagonal
component σxx. For kBT ≪ εF, we can approximate the
derivative of the Fermi distribution function by the delta
function −∂f(ε)/∂ε ≃ δ(ε− εF). Thus Eq. (18) becomes

σxx(εF) ≃ e2

2~
(~ωc)2

∞∑
N=0

(N + 1)ρN (εF)ρN+1(εF). (20)

Introducing dimensionless parameters

XF =
εF

~ωc
− 1

2
, (21)

and

γ =
Γ

~ωc
, (22)

we can rewrite Eq. (20) as

σxx(εF) =
e2

2π2~
γ2

1 + 4γ2

∞∑
N=0

2XF + 1
(XF − N)2 + γ2

. (23)

To evaluate the summation over N in Eq. (23), we use
the Poisson sum formula

∞∑
N=−∞

1
N − XF ∓ iγ

= ±2πi

∞∑
ν=−∞

θ(∓ν)e−i2πνXF−2π|ν|γ

=
π[− sin(2πXF) ± i sinh(2πγ)]

cosh(2πγ) − cos(2πXF)
,

(24)

where θ(ξ) is the unit step function. Using Eq. (24), we
derive from Eq. (23)

σxx(εF) =
e2

h

2γ

1 + 4γ2

(XF + 1/2) sinh(2πγ)
cosh(2πγ) − cos(2πXF)

=
e2

h
σ̃xx(XF, γ), (25)

where we approximated
∑∞

N=0 by
∑∞

N=−∞, noting that
terms with N < 0 are negligibly small at εF in the typical
situations εF ≫ Γ. Equation (25) bears the same form
as Eq. (2.11) in Ref. [12] by Ando, if we replace our XF

and γ with X ′/(~ωc) and X ′′/(~ωc), respectively. In the
second equality in Eq. (25), we introduced the notation
σ̃αβ for the conductivity σαβ normalized by e2/h.

Next we examine the off-diagonal component σxy of the
conductivity tensor. Introducing a variable of integration

X =
ε

~ωc
− 1

2
, (26)

and performing the integration by parts, we rewrite Eq.
(19) as

σxy(T, εF) = − e2

2π~

∞∑
N=0

(N + 1)

×
∫ ∞

−∞
dX

(
−∂f (~ωc(X + 1/2))

∂X

)
LN (X), (27)

with

LN (X) ≡ (~ωc)2
∫ X

−∞

×
[
ρN

(
~ωc

(
X ′ +

1
2

))
∂GN+1 (~ωc(X ′ + 1/2) + i0)

∂X ′

−ρN+1

(
~ωc

(
X ′ +

1
2

))
∂GN (~ωc(X ′ + 1/2) + i0)

∂X ′

]
dX ′.

(28)

For kBT ≪ εF, we obtain

σxy(εF) = −e2

h

∞∑
N=0

(N + 1)LN (XF). (29)

Using Eq. (12) and performing the integration L(X) in
Eq. (28) up to XF, we obtain

σxy(εF) = − e2

2π2~

{
2γ3

1 + 4γ2

×
∞∑

N=0

[
1

2γ2

(XF − N)
(XF − N)2 + γ2

− 2N + 1
(XF − N)2 + γ2

]

+
∞∑

N=0

[
arctan

(
XF − N

γ

)
+

π

2

]}
.(30)

We can evaluate the summation over N in Eq. (30), fol-
lowing a similar procedure as in the calculation from Eqs.
(23) to (25). The first line in the right hand side (r.h.s.)
of Eq. (30) becomes

e2

h

1
cosh(2πγ) − cos(2πXF)

×
[
−γ sin(2πXF) +

4γ2(XF + 1/2)
1 + 4γ2

sinh(2πγ)
]

, (31)

where we used Eq. (24), employing the approximation∑∞
N=0 →

∑∞
N=−∞ as before. Along the same line, we

can accurately approximate the last term in the r.h.s. of
Eq. (30) by

−e2

h

1
π

[ ∞∑
N=−∞

arctan
(

XF − N

γ

)
+

π

2

]
, (32)

noting that arctan((XF − N)/γ) ≃ π/2 for N < 0 since
(XF − N)/γ = [εF − (N + 1/2)~ωc]/Γ ≫ 0 for εF ≫ Γ.
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FIG. 2: The diagonal [Eq. (35)] and the off-diagonal [Eq. (36)]
components of the conductivity tensor. The horizontal axis
is the inverse magnetic field.

Using the relation arctan((X−N)/γ) =
∫

γ/[(X−N)2+
γ2]dX + const. and Eq. (24), we can rewrite Eq. (32)
further as

−e2

h

[ ∞∑
N=−∞

∫ XF

0

1
π

γ

(X − N)2 + γ2
dX +

1
2

]

= −e2

h

[
1
π

arctan (coth(πγ) tan(πXF))

+Int
(

XF +
1
2

)
+

1
2

]
, (33)

with Int(ξ) representing the integer part of ξ. We finally
arrive at

σxy(εF) =
e2

h

{
1

cosh(2πγ) − cos(2πXF)

×
[
4γ2(XF + 1/2)

1 + 4γ2
sinh(2πγ) − γ sin(2πXF)

]
− 1

π
arctan (coth(πγ) tan(πXF)) − Int

(
XF +

1
2

)
− 1

2

}
=

e2

h
σ̃xy(XF, γ). (34)

As far as we know, an explicit analytic formula for σxy

has never been reported thus far.
In Fig. 2, we show the diagonal σ̃xx and off-diagonal

σ̃xy components of the normalized conductivity tensor
calculated by Eqs. (25) and (34) [or equivalently, by Eqs.
(35) and (36) below], respectively. The parameters are
selected to be typical values in a GaAs/AlGaAs 2DES:
m∗ = 0.067m0 with m0 the bare electron mass, εF = 7.5
meV, and Γ = ~/(2τ) = 0.12 meV. The traces basically
reproduce well-known behavior of a 2DES in the mag-
netic field: the staircase with plateaus at integer multi-
ples of e2/h for σxy and peaks at inter-plateau transition
for σxx. The non-monotonic 1/B dependence observed

in σxy for B ≤ 1 T (the depression in −σxy that occurs in
step with the peak in σxx) is usually not seen in the exper-
imental traces for a high-mobility GaAs/AlGaAs 2DES,
but can be seen in early experiments on Si-MOSFET [29]
and is likely to be related to the short-range nature of the
impurity potential. (See Fig. 4 below for comparison with
the result in the long-range potential.)

For brevity and for the convenience in later use, we
rewrite σ̃xx and σ̃xy in concise formulas,

σ̃xx(XF, γ)

=
2γ

1 + 4γ2

(
XF +

1
2

)
Fsinh(XF, γ) (35)

σ̃xy(XF, γ)
= −IFsinh(XF, γ) − γFsin(XF, γ)

+
4γ2

1 + 4γ2

(
XF +

1
2

)
Fsinh(XF, γ), (36)

where we introduced notations Fsin(XF, γ),
Fsinh(XF, γ), and IFsinh(XF, γ) defined as

Fsin(XF, γ) =
sin(2πXF)

cosh(2πγ) − cos(2πXF)
,

Fsinh(XF, γ) =
sinh(2πγ)

cosh(2πγ) − cos(2πXF)
,

IFsinh(XF, γ) =
∫ XF

− 1
2

dXFsinh(X, γ)

=
1
π

arctan (coth(πγ) tan(πXF))

+Int
(

XF +
1
2

)
+

1
2
. (37)

Although it appears, at first glance, that the stepwise
behavior of σxy is reflecting only the first term in Eq.
(36), the second term is also playing its own share of roles
by extending the width of the plateau and thus making
the slope of the inter-plateau region much steeper than
it would be were it not for the term. The steepness of
the slope is of paramount importance in our theory that
attempts to explain the behavior of dσxy/dB.

We note in passing that the DOS given by Eq. (8) can
also be rewritten, following the same procedure as in the
derivation of Eq. (35), as

D(ε) = D0Fsinh(X, γ), (38)

where D0 = m∗/(2π~2) represents the DOS of a 2DES in
the absence of the magnetic field, and X = ε/(~ωc)−1/2
as defined earlier. Accordingly, the cumulative number
of states N(ε) below ε reads

N(ε) =
∫ ε

0

D(ε′)dε′ =
1

2πℓ2
IFsinh(X, γ). (39)

We will show in A that Eqs. (35) and (36) tends to the
well-known semiclassical formulas for B → 0.
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IV. THE RELATION BETWEEN DIAGONAL
AND OFF-DIAGONAL CONDUCTIVITIES AT

HIGH MAGNETIC FIELDS

We now move on to the main topic of the present paper,
the relation between σ̃xx and σ̃xy at high magnetic fields.
Since both of XF and γ are functions of B, the derivative
of the off-diagonal component σ̃xy with respect to B is
written as

dσ̃xy(XF,γ)
dB

=
∂σ̃xy(XF, γ)

∂XF

dXF

dB
+

∂σ̃xy(XF, γ)
∂γ

dγ

dB

= − 1
B

[(
XF +

1
2

)
∂σ̃xy(XF, γ)

∂XF
+ γ

∂σ̃xy(XF, γ)
∂γ

]
(40)

Differentiation by XF and by γ can be analytically done
on Eq. (36) and we obtain

B
dσ̃xy(XF, γ)

dB

=
(

XF +
1
2

)
×
[

1 − 4γ2

(1 + 4γ2)2
− 1 + 8γ2

1 + 4γ2
2πγ coth(2πγ)

]
Fsinh(XF, γ)

+
(

XF +
1
2

)
1 + 8γ2

1 + 4γ2
2πγFsinh2(XF, γ)

−

[
1 − 4

1 + 4γ2

(
XF +

1
2

)2
]

2πγ2Fsin(XF, γ)

×Fsinh(XF, γ), (41)

or, with the aid of Eq. (35),

B
dσ̃xy(XF, γ)

dB

=
1
2γ

[
1 − 4γ2

1 + 4γ2
− 2πγ(1 + 8γ2)coth(2πγ)

]
σ̃xx(XF, γ)

+
π

2γ

(1 + 8γ2)(1 + 4γ2)
XF + 1/2

σ̃2
xx(XF, γ)

− π(1 + 4γ2)
2 sinh(2πγ)

[
1 + 4γ2

(XF + 1/2)2
− 4

]
sin(2πXF)σ̃2

xx(XF, γ).

(42)

We will pick out the dominant term at high magnetic
fields from the r.h.s. of Eq. (42). Since γ = Γ/(~ωc)
tends to zero with the increase of the magnetic field, we

expand the coefficients in terms of γ for this purpose as

B
dσ̃xy(XF, γ)

dB

=
[
−
(

8 +
2π2

3

)
γ + O(γ2)

]
σ̃xx(XF, γ)

+

[
π

2γ
(
XF + 1

2

) + O(γ)

]
σ̃2

xx(XF, γ)

−

{
1
γ

[
1

4
(
XF + 1

2

)2 − 1

]
+ O(γ)

}
sin(2πXF)σ̃2

xx(XF, γ).

(43)

The diagonal component σ̃xx can be readily seen from
Eq. (35) to take peaks at XF = N (integer), namely
when the Fermi energy lies at the center of Nth Landau
level, with the peak height given by

σ̃xx(N, γ) =
2γ

1 + 4γ2

(
XF +

1
2

)
sinh(2πγ)

cosh(2πγ) − 1

=
(

XF +
1
2

)[
2
π

+
(
− 8

π
+

2π

3

)
γ2 + O(γ4)

]
,

(44)

and σ̃xx ∼ 0 away from the sharp peaks (see also Fig. 2).
From Eqs. (43) and (44), and noting that sin(2πXF) ∼ 0
at XF ∼ N , we find that the second term in Eq. (43)
makes the dominant contribution, leading to our final
result,

dσ̃xy(XF, γ)
dB

≃ πµ
~ωc

εF
σ̃2

xx(XF, γ), (45)

or λ = (h/e2)π~eµ(m∗εF)−1 in Eq. (2). Here we made
use of the mobility µ = eτ/m∗ = e~/(2m∗Γ). Plots of
dσ̃xy/dB calculated using Eq. (41) (solid red line) and
πµ(~ωc/εF)σ̃2

xx with σ̃xx computed by Eq. (35) (dashed
green line) shown in Fig. 3 attest to the validity of Eq.
(45) for B ≥ 1 T. The deviation seen at lower magnetic
fields is attributable to higher order terms in γ neglected
in Eq. (45). In Fig. 3, we used the same parameter values
as in Fig. 2.

It is interesting to point out that we obtain the relation
dσxy/dB ∝ σxx instead of Eq. (45) if we keep only the
first term in Eq. (36),

dσ̃xy(XF, γ)
dB

(1)

=
1
B

[(
XF +

1
2

)
Fsinh(XF, γ) − γFsin(XF, γ)

]
≃ µσ̃xx, (46)

which is not legitimate as discussed below Eq. (37) in Sec.
III. In fact, the peaks calculated by Eq. (46) exhibit much
larger width and smaller (roughly half) height compared
with those calculated by Eq. (41), as displayed in Fig. 3.
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FIG. 3: The plots of dσ̃xy/dB calculated by an unabridged
equation, Eq. (41) (solid red line), and by an approximated
equation, Eq. (45), with σ̃xx calculated by Eq. (35) (dashed

green line). We also plot dσ̃xy/dB(1) in Eq. (46), obtained
by keeping only the first term in Eq. (36), for comparison
(dot-dashed blue line).

V. COMPARISON WITH EXPERIMENTAL
RESULTS

A. Modification for long-range potential

In this section, we make an attempt to compare the
relation between σ̃xx and σ̃xy deduced in Sec. IV to the
experimental results obtained in a GaAs/AlGaAs 2DES.
It is well known that the main source of scattering in a
GaAs/AlGaAs 2DES is the ionized donors. The donors
are set back from the 2DES plane by a spacer layer with
the thickness typically a few tens of nanometers. There-
fore, the scattering in a GaAs/AlGaAs 2DES should be
described by a long-range impurity potential. Since a
short-range potential is assumed in our theory, slight
modification is necessary to implement the comparison.
This is done by following the prescription given in Ref.
[30].

First we observe that the off-diagonal component Eq.
(36) can be rewritten in the form presented in Ref. [14],
σxy = −e[∂N(εF)/∂B]−ωcτσxx, which reads in the nor-
malized form,

σ̃xy = −h

e

∂N(εF)
∂B

− 1
2γ

σ̃xx. (47)

The equivalence of Eq. (47) to Eq. (36) can readily be
verified by performing the differentiation by B on N(εF)
given by Eq. (39):

h

e

∂N(εF)
∂B

= IFsinh(XF, γ) + γFsin(XF, γ)

−
(

XF +
1
2

)
Fsinh(XF, γ). (48)

In a long-range potential, it is important to recall
that the scattering is characterized by two distinct scat-
tering times, namely, the quantum scattering time τq

=~/(2Γ) that describes the impurity broadening of the
Landau levels and the momentum relaxation time τm =
σ0m

∗/(nee
2) related to the conductivity at B = 0. The

latter time is typically 10 times larger than the former
in a GaAs/AlGaAs 2DES, while the relaxation times are
simply τq = τm = τ for short-range scatterers. Coleridge
et al. [30] suggested an appropriate way of replacing τ by
either of τq or τm, with which the resultant σxx and σxy

describe the conductivities under the long-range poten-
tial quite well. The method, in our notation, is to replace
γ only in the prefactor of Eq. (35) by γm = 1/(2ωcτm),
leaving γ = γq = Γ/(~ωc) = 1/(2ωcτq) in Fsinh(X, γ)
intact:

σ̃LR
xx (XF, γq, γm) =

2γm

1 + 4γ2
m

(
XF +

1
2

)
Fsinh(XF, γq).

(49)
The Hall conductivity is obtained by substituting γm and
σ̃LR

xx into the second term of Eq. (47) as

σ̃LR
xy (XF, γq, γm) = − h

e

∂N(εF)
∂B

∣∣∣∣
γ=γq

− 1
2γm

σ̃LR
xx

= −IFsinh(XF, γq) − γqFsin(XF, γq)

+2γmσ̃LR
xx . (50)

With these substitutions, the derivative of σ̃LR
xy by B

reads

dσ̃LR
xy (XF, γq, γm)

dB
= η1(XF, γq)+η2(XF, γq)+η3(XF, γq, γm)

(51)
with

η1(XF, γq) =
1
B

[(
XF +

1
2

)
Fsinh(XF, γq) − γqFsin(XF, γq)

]
,

η2(XF, γq) =
1
B

{(
XF +

1
2

)
2πγqFsinh(XF, γq)

× [Fsinh(XF, γq) − coth(2πγq)]

+γqFsin(XF, γq) − 2πγ2
qFsin(XF, γq)Finh(XF, γq)

}
,

and

η3(XF, γq, γm) = −2γm

B
σ̃LR

xx (XF, γq, γm)

×
{

2πγqcoth(2πγq) + 1 +
2

1 + 4γm
2

−2π

[(
XF +

1
2

)
Fsin(XF, γ) + γqFsinh(XF, γq)

]}
,

where the terms η1, η2 and η3 are derived from the first,
the second and the third term in Eq. (50), respectively.
Accordingly, the dominant term at high magnetic field
changes from Eq. (45) to

dσ̃LR
xy (XF, γq, γm)

dB
≃ π

µ2
m

µq

~ωc

εF

[
σ̃LR

xx (XF, γq, γm)
]2

,

(52)
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FIG. 4: The diagonal [Eq. (49)] and the off-diagonal [Eq. (50)]
components of the conductivity tensor modified to account for
the long-range potential. The horizontal axis is the inverse
magnetic field.
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FIG. 5: The plots of dσ̃LR
xy /dB without approximation, Eq.

(51) (solid red line), and dσ̃LR
xy /dB approximated by Eq. (52)

with σ̃LR
xx calculated by Eq. (49) (dashed green line).

[λ = (h/e2)π~e(µ2
m/µq)(m∗εF)−1 in Eq. (2)], where µq =

eτq/m∗ and µm = eτm/m∗ are mobilities corresponding
to τq and τm, respectively.

In Fig. 4, we show the longitudinal and the Hall con-
ductivities calculated by Eqs. (49) and (50) with param-
eters εF = 7.5 meV, µq = 7.1 m2/(Vs) (corresponding to
Γ = 0.12 meV), and µm = 78 m2/(Vs). The parameters
are taken from our experiment to be presented below.
The diagonal component σxx has become much smaller
than in Fig. 2 (note the 10 times magnification in Fig.
4), in accordance with experiments in a GaAs/AlGaAs
2DES. Note that the non-monotonic behavior of σxy ob-
served in Fig. 2 has vanished in Fig. 4. The high accuracy
of the approximation given by Eq. (52) at high enough
magnetic fields (B ≥ 1 T) is demonstrated in Fig. 5.

Although Eq. (52) as well as Eq. (45) is intended for the
use in high magnetic fields, stringent comparison with ex-
perimental results is possible only in rather low magnetic-

1 (T )/B
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d
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y

B
e

h
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FIG. 6: The plots of dσ̃LR
xy /dB without approximation, Eq.

(51) (thin solid red line), and dσ̃LR
xy /dB approximated by Eq.

(52) (thin dotted green line) and by Eq. (53) (thick dashed
green line) for a lower magnetic field range than in Fig. 5.

field range (B ≤0.5 T) for a couple of reasons to be dis-
cussed in Sec. VI. Above all, we neglected the spin of
the electrons altogether in the theory. In principle, the
spin can be included in the theory by adding σgµBB to
EN with σ = ±1/2 representing the spin and µB the
Bohr magneton. Difficulty arises, however, because of
the dependence of the g-factor on the magnetic field ow-
ing to the exchange interaction [31]: the g-factor expe-
riences strong enhancement at the magnetic field where
the Fermi energy lies between the Zeeman gap (exchange
enhancement), which defies simple analytical treatment.
If we limit ourselves to B ≤0.5 T, spin splitting can be
completely neglected because of the small (bare) g-factor
g = −0.44 in GaAs. In this low magnetic field range, ap-
proximation in Eq. (52) that retains only the leading term
in γ turns out to be insufficient, as demonstrated in Fig.
6. The approximation is improved by keeping the terms
deriving from the first two terms in the r.h.s. of Eq. (50),
η1 and η2, except for the term including Fsin(XF, γ) (the
third term η3 can safely be neglected since γm ≪ γq):

dσ̃LR
xy (XF, γq, γm)

dB
≃ π

µ2
m

µq

~ωc

εF

[
σ̃LR

xx (XF, γq, γm)
]2

+µm

[
1 − π

µqB
coth

(
π

µqB

)]
σ̃LR

xx (XF, γq, γm). (53)

In Fig. 6, we plot dσ̃LR
xy (XF, γ)/dB without approxima-

tion, Eq. (51), along with approximated traces, Eqs. (52)
and (53), calculated using σ̃LR

xx (XF, γ) in Eq. (49). Devi-
ation of Eq. (52) from the exact result becomes evident
below ∼0.5 T, while Eq. (53) reproduces the trace almost
indistinguishable from that of the exact calculation in the
magnetic field range shown in Fig. 6.
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FIG. 7: Experimental traces to be compared with Fig. 6:
dσ̃xy/dB deduced by numerical differentiation of experimen-
tally obtained σxy (thin solid red line), dσ̃xy/dB approxi-
mated by Eq. (52) (thin dotted green line) or by Eq. (53)
(thick dashed green line) calculated using experimentally ob-
tained σxx. The r.h.s. of Eq. (3) with the experimentally
obtained σxx and β = 2τm/τq is also plotted by dot-dashed
blue line.

B. Relation between experimentally observed
longitudinal and Hall conductivities

Let us now turn to our experimental data. We pre-
pared a GaAs/AlGaAs 2DES sample with µm = 77
m2/(Vs) and ne = 2.1×1015 m−2, hence εF = 7.5 meV,
shaped in a Hall bar geometry by photolithography. The
quantum mobility µq = 7.1 m2/(Vs) was determined from
the damping of the Shubnikov-de Haas oscillation at low
magnetic fields [32]. Measurements were done in a dilu-
tion refrigerator equipped with a superconducting mag-
net at the base temperature (∼15 mK), the temperature
low enough for the approximation kBT ≪ εF to be valid.
The longitudinal and the Hall resistivities ρxx and ρxy

were measured, from which σxx and σxy were obtained by
numerically inverting the tensor, σxx = ρxx/(ρ2

xx + ρ2
xy)

and σxy = ρxy/(ρ2
xx + ρ2

xy). As mentioned earlier, spin
splitting can completely be neglected for B ≤ 0.5 T. Due
to the spin degeneracy, the conductivities experimentally
measured in this magnetic field range are simply twice as
large as those without the spins; considering the spin de-
generacy, the normalized conductivities are defined here
as σ̃αβ = σαβ/(2e2/h).

In Fig. 7, we show dσ̃xy/dB attained by the numer-
ical differentiation of experimentally obtained σxy, and
dσ̃xy/dB approximated by Eqs. (52) and (53) using ex-
perimentally acquired σxx. It can be seen by compar-
ing Figs. 6 and 7 that our theory reproduces the exper-
imentally obtained traces remarkably well. Note that
the same vertical scale is used for the two figures. Both

d
xy

/d
B 

 ((
e2 /h

) T
1 )

1/B (T 1)

 

B (T)

FIG. 8: Experimental traces for higher magnetic-field range:
dσ̃xy/dB deduced by numerical differentiation of experimen-
tally obtained σxy (thin solid red line), dσ̃xy/dB approxi-
mated by Eq. (52) (thick dashed green line) calculated using
experimentally obtained σxx, and the r.h.s. of Eq. (3) with the
experimentally obtained σxx and β ≃ 400 (dot-dashed blue
line).

figures reveal that the approximation by Eq. (52) pro-
gressively worsen with decreasing magnetic field, while
Eq. (53) remains a good approximation over the mag-
netic field range shown in the figure. We want to empha-
size that the good quantitative agreement, demonstrated
in Fig. 7, between dσ̃xy/dB directly deduced from σxy

and that approximated by Eq. (53) using σxx is achieved
without any fitting parameter. In Fig. 7, we also plot
the r.h.s. of Eq. (3), a more conventional empirical re-
lation. For the coefficient β, we adopted the relation
β = 2τm/τq = 2µm/µq proposed by Coleridge et al. [5].
We can see that Eq. (53) describes the relation between
σxx and σxy much better than Eq. (3). It is clear from
the figure that even if we use β as a fitting parameter,
agreement by Eq. (3) cannot be improved very much.

For higher magnetic fields, spin splitting manifests it-
self as the splitting of the peaks in σxx and dσxy/dB. The
peaks take place at the conditions εF = EN +g∗σµBB [N
= 0, 1, 2,..., σ = ±1/2, and g∗ represents the g-factor in-
cluding (B-dependent) exchange enhancement], instead
of εF = EN in the spin-degenerate case, and therefore
Eqs. (49) and (50) no more describe the positions of
peaks or steps between adjacent plateaus correctly. Nev-
ertheless, concurrent occurrence of peaks in σxx and in
dσxy/dB still allows us an attempt to see the applicability
of Eq. (52), as shown in Fig. 8. Here σ̃αβ = σαβ/(e2/h)
again since spin degeneracy is now lifted. We see that
Eq. (52) reproduces roughly right order of magnitude for
the height of the peaks in dσxy/dB, although the increase
in the peak height with increasing magnetic field for 1 T
≤ B ≤ 2.5 T is at obvious variance with the behavior
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of dσxy/dB. The discrepancy is mainly ascribable to the
deviation of experimental peak heights in σxx from the
∝ 1/B dependence inferred from Eq. (49). By contrast,
we find that our experimental result is well described by
Eq. (3) in accordance with previous studies [2–8], albeit
with the value of the parameter β ≃ 400 roughly 20 times
larger than 2τm/τq.

VI. DISCUSSION

The relation between σxx and σxy is already implicit
in Eqs. (18) and (19), since both of the components de-
rives from the same set of Green’s function GN (ε) (N =
0, 1, 2,...), or from the same DOS; note that once the
DOS is given, both imaginary and real parts of GN (ε)
are known by Eq. (11) and by the Kramers-Kronig re-
lation, respectively. We have shown in Sec. IV that the
relation can be explicitly written down as Eq. (42), or
approximately as Eq. (45), if we assume a simple form
given by Eq. (12) for the Green’s function corresponding
to the Lorentzian broadening of the Landau levels Eq.
(8). It might be argued that the expression Eq. (12) is
too crude to represent a 2DES under magnetic field. We
expect, however, that improvement in GN (ε) does not
alter the relation Eq. (42) to a large extent [if we keep
ourselves within the framework of the approximate re-
lation between the conductivity tensor and the Green’s
function represented by Eqs. (18) and (19)], so long as
the resultant DOS does not significantly deviate from the
Lorentzian line shape. An important point we would like
to stress is that the relation Eq. (42) is inherent in the ex-
pressions of σxx and σxy and requires no external source,
e.g., the inhomogeneity in the electron density.

In Eqs. (18) and (19), we have neglected a number of
effects known to take place in a 2DES subjected to a mag-
netic field. These include the localization, the formation
of the edge states (stripes of compressible states parallel
to the edge of the sample interleaved with incompressible
regions), and the electron-electron interaction. We have
also neglected spins altogether as mentioned in Sec. V.
Due to the localization in the tails of Landau level peaks,
the width of the peaks in σxx will become narrower than
what is shown in Figs. 2 and 4 for the high magnetic
field region where overlap between adjacent Landau level
peaks can be neglected. The electron-electron interac-
tion will engrave additional minima on the peaks of σxx

between adjacent integral quantum Hall states for N < 2
Landau levels via the fractional quantum Hall effect [33],
and also affect the height and shape of the peaks for
higher Landau levels through forming the (probably in-
complete) charge density wave states [34, 35]. For long-
range impurity potential, the peaks will be altered also
by the network of the compressible and incompressible
stripes formed around valleys or hills of the impurity po-
tential [36]. Strictly speaking, therefore, our theory ap-
plies only to the low-magnetic field region where these
effects are negligibly small. This is exactly the region we

have employed in the comparison with the experimen-
tal result in Fig. 7. The excellent agreement between
the theory and experiment attests to the correctness of
our theory were it not for the additional effects neglected
in the theory. Slight difference in the line shape between
theoretical (Fig. 6) and experimental (Fig. 7) traces, with
the theoretical trace showing asymmetry between sharp
maxima and rather rounded minima, is attributable to
the use of constant εF in the theory; in the experiment,
εF is expected to oscillate with magnetic field to keep the
electron density ne constant, resulting in more symmetric
peaks and dips [37].

In higher magnetic-field regime, we envisage better
agreement between theoretical and experimental results
by modifying our theory to include the effects neglected
in the present paper listed above, which is the subject of
our future study. In the high-magnetic-field regime, how-
ever, we are unable to rule out the possibility that the
inhomogeneity in ne is the dominant source of the exper-
imentally observed relation Eq. (1) [or Eq. (3) as shown
in Fig. 8], as suggested by previous studies [8, 10, 11];
the effect of the inhomogeneity is expected to gain more
significance at higher magnetic fields, since the difference
in the Hall resistivity ∆ρxy between two points differing
in the electron density by ∆ne, ∆ρxy ≃ ∆neB/(n2

ee),
increases with B. Note that, in realistic samples, both
microscopic inhomogeneity owing to the random distri-
bution of the dopants and macroscopic inhomogeneity
resulting from the technical difficulties in the molecular
beam epitaxy are virtually impossible to be completely
eliminated.

VII. CONCLUSIONS

We have calculated the diagonal (σxx) and off-diagonal
(σxy) components of the conductivity tensor in the quan-
tum Hall system by the linear response theory neglecting
the correction from the current vertex part. A Lorentzian
line shape with the width Γ independent of the magnetic
field was assumed for the broadening of the Landau levels
by the short-range impurity potential. The correspond-
ing simple approximation for the Green’s function Eq.
(12) allowed us to obtain analytic formulas for both σxx

and σxy, given by Eqs. (35) and (36) respectively, for
kBT ≪ εF. The formulas asymptotically approach the
semiclassical formulas at low-magnetic fields. Inspection
of the formulas reveals that dσxy/dB is proportional to
Bσ2

xx [Eq. (45)] at high magnetic fields where Γ ≪ ~ωc.
This comprises a possible alternative route to explain,
without resorting to the inhomogeneity in the electron
density, the well-known empirical relation between σxx

and σxy.
To account for the long-range nature of the impurity

potential in a GaAs/AlGaAs 2DES, slight modification
was made by introducing two types of scattering times,
the quantum scattering time τq and the momentum re-
laxation time τm, yielding Eqs. (49) and (50) for σxx
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and σxy, respectively. The resultant relation between the
two components, Eq. (53), is found to be in quantitative
agreement with the experimental result obtained in the
GaAs/AlGaAs 2DES at the magnetic field range where
the spin splitting, the localization, formation of the edge
states, etc., can be neglected.
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APPENDIX A: CONDUCTIVITY TENSOR IN
THE WEAK MAGNETIC FIELD LIMIT

In the derivation of Eqs. (35) and (36), we have made
no assumption on the strength of the magnetic field.
Therefore the equations should, in the low-field limit,

asymptotically coincide with the well-known semiclassi-
cal expressions

σSC
xx =

σ0

1 + (ωcτ)2
(A1)

σSC
xy = − σ0ωcτ

1 + (ωcτ)2
= −nee

B
+

1
ωcτ

σSC
xx , (A2)

with σ0 = nee
2τ/m∗ = εFe2τ/(2π~2) or, in the normal-

ized forms,

σ̃SC
xx =

2γ

1 + 4γ2

(
XF +

1
2

)
(A3)

σ̃SC
xy = − 1

1 + 4γ2

(
XF +

1
2

)
= −

(
XF +

1
2

)
+ 2γσ̃SC

xx . (A4)

Since Fsinh(XF, γ) → 1 with γ → ∞, it is ready to see
σ̃xx → σ̃SC

xx with B → 0 in Eq. (35). From Eqs. (35) and
(36), we find

σ̃xy(XF, γ) = −IFsinh(XF, γ)
−γFsin(XF, γ) + 2γσ̃xx(XF, γ).(A5)

Noting that IFsinh(XF, γ) → (XF + 1/2) and
γFsin(XF, γ) → 0 with γ → ∞, we can also perceive
σ̃xy → σ̃SC

xy with B → 0.
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