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Linearized model collision operators for multiple ion species plasmas are presented, which con-
serve particles, momentum, and energy, and satisfy adjointness relations and Boltzmann’s H-theorem
even for collisions between different particle species with unequal temperatures. The model collision
operators are also written in the gyrophase-averaged form that can be applied to the gyrokinetic
equation. Balance equations for the turbulent entropy density, the energy of electromagnetic fluctu-
ations, the turbulent transport fluxes of particle and heat, and the collisional dissipation are derived
from the gyrokinetic equation including the collision term and the Maxwell equations. It is shown
that, in the steady turbulence, part of the entropy produced by the turbulent transport fluxes pro-
duced in the unstable nonzonal-mode region is nonlinearly transferred into the stable zonal-mode
region where the collisional dissipation occurs.
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I. INTRODUCTION

Nowadays, kinetic theories and simulations are basic
means which are extensively used to investigate transport
processes in high-temperature plasmas [1, 2]. Collisions
are one of important factors in the kinetic framework
to determine plasma transport. In magnetically-confined
toroidal plasmas, Coulomb collisions are a main cause of
the neoclassical transport [3, 4], which is investigated by
using the drift kinetic equations. On the other hand, the
turbulent transport is driven by plasma microinstabilities
and it is described by the gyrokinetic equation [5], which
still needs a collision term for the steady turbulent state
to be realized. Therefore, it is desirable to use a good
collision model in the kinetic equations, which is easy to
treat analytically or numerically but satisfies physically
correct constraints such as conservation laws of particles,
momentum, and energy.

A well-established collision term for collisions between
particle species a and b is given by the Landau operator
Cab(fa, fb) [6] which is bilinear with respect to the dis-
tribution functions fa and fb, where the subscripts a and
b represent the corresponding particle species. When the
distribution functions are given by the sum of the equi-
librium part fa0 and the small perturbation part δfa as
fa = fa0 + δfa, one often use the linearized collision op-
erator CL

ab that is defined from Cab by

CL
ab(δfa, δfb) = Cab(δfa, fb0) + Cab(fa0, δfb), (1)

where the first and second terms on the right-hand
side represent the test- and field-particle collision oper-
ators, respectively. The equilibrium distribution func-
tion is assumed to take Maxwellian form, fa0 = faM ≡
(na/π3/2v3

Ta) exp(−v2/v2
Ta), where na is the density,

vTa ≡ (2Ta/ma)1/2 is the thermal velocity, Ta is the tem-
perature, and ma is the particle mass for species a. Then,

the test-particle collision term derived from the Landau
operator is written as

Cab(δfa, fb0) = νab
D (v)Lδfa + Cab

v δfa +
ma

Tb

(
1− Tb

Ta

)

× 1
v2

∂

∂v

[
νab
‖ (v)

2
v5δfa

]
. (2)

Here, L represents the pitch-angle-scattering operator de-
fined by

L ≡ 1
2

∂

∂v
· (v2I− vv

) · ∂

∂v

=
1
2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂2ϕ

)
, (3)

where I denotes the unit tensor and (v, θ, ϕ) represent
spherical coordinates in the velocity space. The operator
Cab

v in Eq. (2) is defined by

Cab
v g ≡ 1

v2

∂

∂v

[
νab
‖ (v)

2
v4faM

∂

∂v

(
g

faM

)]
, (4)

where g represents an arbitrary function of
v. The collision frequencies for pitch-angle
scattering and energy diffusion are given by
νab

D (v) ≡ (3
√

π/4)τ−1
ab [Φ(xb) − G(xb)]/x3

a and
νab
‖ (v) ≡ (3

√
π/2)τ−1

ab G(xb)/x3
a, respectively, where

(3
√

π/4)τ−1
ab ≡ 4πnbe

2
ae2

b lnΛ/(m2
av3

Ta) (ln Λ: The
Coulomb logarithm), Φ(x) ≡ 2π−1/2

∫ x

0
e−t2dt,

G(x) ≡ [Φ(x) − xΦ′(x)]/(2x2), xj ≡ v/vTj , and
vTj ≡ (2Tj/mj)1/2 (j = a, b). From analytical and
numerical points of view, the field-particle collision term
Cab(fa0, δfb) given by the Landau operator is more
complicated than the test-particle collision term shown
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in Eq. (2) because laborious velocity-space integration is
required.

Recently, Abel et al. [7] proposed linearized model col-
lision operators for gyrokinetic simulations. Their like-
particle-collision operators for the gyrokinetic equations
are derived from the gyrophase average of the same test-
and field-particle collision operators as used by Lin et
al. [8] and Wang et al. [9] for δf simulations of neo-
classical transport caused by ion-ion collisions. The
test-particle collision operator used by these authors is
the exact one Caa(δfa, fa0) given by Eq. (2) for a = b
while their field-particle collision operator is derived ap-
proximately such that particles, momentum, and energy
are conserved. In addition, their linearized model colli-
sion operators for like-particle collisions are self-adjoint
and obey Boltzmann’s H-theorem in contrast to other
models [10–12]. The self-adjointness and the H-theorem
are also satisfied by the approximate test- and field-
particle collision operators presented by Hirshman and
Sigmar [13] although, as pointed out by Abel et al. [7],
the energy-diffusion process included in the exact Lan-
dau test-particle collision operator (but dropped in the
Hirshman-Sigmar model operator) plays an important
role in the damping of fine velocity-space structures ap-
pearing in the turbulent distribution function.

From the viewpoint of applications to practical cases,
it is now natural to consider the model operator for colli-
sions between different particle species in plasmas includ-
ing multiple ion species. The established model operators
for collisions between electrons and ions are available be-
cause the approximation is well justified by the small ra-
tio of the electron mass me to the ion mass mi. Besides,
because of this small ratio, me/mi ¿ 1, the temperatures
of electrons and ions are allowed to be unequal, Te 6= Ti.
When there exist multiple ions species and their masses
are very different, they may have unequal temperatures,
too. In the present work, we derive the linearized model
collision operator which can be used even for collisions
between different species of ions with unequal tempera-
tures. For the unequal-temperature case, we find that
the linearized Landau collision operators does not rigor-
ously satisfy the adjointness relations and the H-theorem
because of the last term proportional to (1− Tb/Ta) ap-
pearing in the right-hand side of Eq. (2). However, these
relations and theorem are very favorable for analytical
and numerical studies of the kinetic equations with the
collision term. For example, the adjointness relations are
essential for the variational formulation of the solution to
the drift kinetic equation [14] as well as for the Onsager
symmetry of the classical and neoclassical transport ma-
trices [3, 4, 6, 15, 16]. The H-theorem implies the asymp-
totic relaxation of the distribution function to the local
equilibrium state. Therefore, the approximate linearized
operator is desired to keep the adjointness relations and
the H-theorem in addition to the other conservation laws.
These requirements are fulfilled in this work.

In this paper, we also discuss the steady turbulence
which is subject to the entropy balance [17, 18] between

the production terms due to turbulent transport fluxes
and the collisional dissipation based on the gyrokinetic
equation with the gyrophase-averaged collision operator.
Recently, as an attractive mechanism for regulation of
turbulent transport, zonal flows [20–22] which are the
E × B flows produced by electrostatic potential fluctu-
ations with the wave number vectors in the direction
perpendicular to flux surfaces, have been studied inten-
sively by gyrokinetic turbulence simulations [1, 2, 23, 24].
Therefore, it is instructive to discuss the role of such fluc-
tuations with zonal structures from the viewpoint of the
entropy balance. Using the entropy balance equations for
the gyrokinetic turbulence, we can identify the nonlinear
term representing the entropy transfer from nonzonal to
zonal modes, which is expressed in the fluid limit by the
product of the well-known Reynolds stress and the flow
shear.

The rest of this paper is organized as follows. In Sec. II,
properties which should be satisfied by linearized colli-
sion operators such as conservation laws, adjointness rela-
tions, and the H-theorem are shown. In Sec. III, approxi-
mate electron-ion and ion-electron collision operators are
examined about the validity of the properties shown in
Sec. II. This close examination is useful to present the
linearized model collision operators in Sec. IV, where the
model operators are constructed such that the above-
mentioned properties are satisfied even when two par-
ticle species involved in collisions have different back-
ground temperatures because of their mass difference. In
Sec. V, the gyrophase-averaged form of the model col-
lision operator is derived for application to the gyroki-
netic equation. Then, based on the H-theorem satisfied
by the collision operator, the entropy balance in the gy-
rokinetic turbulence is investigated in Sec. VI, where the
balance among the entropy production associated with
the turbulent particle and heat transport, the collisional
dissipation, and the nonlinear entropy transfer from the
nonzonal to zonal modes are discussed. Finally, conclu-
sions are given in Sec. VII.

II. PROPERTIES OF THE LINEARIZED
COLLISION OPERATOR

In this section, several properties satisfied by the lin-
earized Landau operator for collisions between species
a and b are given in such a way as to show explicitly
what conditions are satisfied by each of the test-particle
part CT

ab(δfa) ≡ Cab(δfa, fb0) and the field-particle part
CF

ab(δfb) ≡ Cab(fa0, δfb). Relations shown below hold in
both cases of a = b and a 6= b.

Conservation of particles is separately satisfied by the
test- and field-particle parts as

∫
d3v CT

ab(δfa) =
∫

d3v CF
ab(δfb) = 0, (5)
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while the momentum conservation,
∫

d3v mavCT
ab(δfa) +

∫
d3v mbvCF

ba(δfa) = 0, (6)

and the energy conservation,
∫

d3v
1
2
mav2CT

ab(δfa) +
∫

d3v
1
2
mbv

2CF
ba(δfa) = 0,

(7)

hold when both parts are simultaneously included.
Now, from the Galilean invariance and spherical sym-
metry of the collision operator, we have an iden-
tity,

∫
d3v ma(v − u)Cab[faM (v − u), fbM (v − u)] =∫

d3v mavCab[faM (v), fbM (v)] = 0, for an arbitrary vec-
tor u which is independent of v. Then, taking the u → 0
limit of the above identity and using Eqs. (5) and (6), we
can derive useful relations written as∫

d3v mav CT
ab(faMmav/Ta)

=
∫

d3v mbv CT
ba(fbMmbv/Tb)

= −
∫

d3v mav CF
ab(fbMmbv/Tb)

= −
∫

d3v mbv CF
ba(faMmav/Ta). (8)

It should be noted that Eq. (8) is rigorously satisfied even
when Ta 6= Tb.

The adjointness relations for the test- and field-particle
collision operators are given by

∫
d3v

δfa

faM
CT

ab(δga) =
∫

d3v
δga

faM
CT

ab(δfa),

Ta

∫
d3v

δfa

faM
CF

ab(δfb) = Tb

∫
d3v

δfb

fbM
CF

ba(δfa).

(9)

As shown by Rosenbluth, Hazeltine, and Hinton [14], the
solution of the linearized drift kinetic equation with the
collision term satisfying the adjoint relations in Eq. (9)
can be obtained from the variational principle for any
collisional regime. Besides, the Onsager symmetry of the
classical and neoclassical transport matrices is derived
from the adjoint relations [3, 4, 6, 15, 16] .

The H-theorem is written as

Ta

∫
d3v

δfa

faM
[CT

ab(δfa) + CF
ab(δfb)]

+Tb

∫
d3v

δfb

fbM
[CT

ba(δfb) + CF
ba(δfa)] ≤ 0. (10)

In Eq. (10), the equality is satisfied only when

δfa = faM

[
δna

na
+

ma

Ta
ua · v +

δTa

Ta

(
mav2

2Ta
− 3

2

)]

δfb = fbM

[
δnb

nb
+

mb

Tb
ub · v +

δTb

Tb

(
mbv

2

2Tb
− 3

2

)]
,

(11)

where ua = ub and δTa/Ta = δTb/Tb. Strictly speak-
ing, the adjointness relations and the H-theorem de-
scribed by Eqs.(9)–(11) are rigorously satisfied by the
linearized Landau collision operator only for the case
of Ta = Tb. These properties are approximately valid
when the inequality between equilibrium temperatures
Ta 6= Tb is allowed by a large difference between ma

and mb. However, we find from Eq. (8) that, even for
Ta 6= Tb, the adjointness relations in Eq. (9) and the H-
theorem written in Eqs. (10) and (11) are rigorously sat-
isfied for an arbitrary mass ratio ma/mb when δfa, δfb,
δga, and δgb are given in the shifted Maxwellian form,
fsM [δns/n0 + (ms/Ts)us · v] (s = a, b).

III. ELECTRON-ION AND ION-ELECTRON
COLLISION OPERATORS

It is instructive to revisit the approximate operators
for electron-ion and ion-electron collisions here before
proceeding to the next section where we consider model
collision operators for general cases of collisions between
different species. The collisional exchange of energy be-
tween electrons and ions occurs slowly because of the
small electron-ion mass ratio me/mi ¿ 1. Therefore,
the equilibrium electron and ion distribution functions
generally can be assumed to take the Maxwellian forms
with different temperatures, Te 6= Ti. The approximate
electron-ion and ion-electron collision operators [6, 14]
are obtained by using (me/mi)1/2 as an expansion pa-
rameter.

For electron-ion collisions, we can still neglect
Cei(feM , fiM ). The linearized electron-ion collision op-
erator is given by

CL
ei(δfe, δfi) = CT

ei(δfe) + CF
ei(δfi), (12)

where the test- and field-particle collision parts are writ-
ten as

CT
ei(δfe) = νei

DLδfe,

CF
ei(δfi) = νei

D

me

Te
ui[δfi] · vfeM , (13)

where ui[δfi] ≡ n−1
i

∫
d3v δfiv represents the ion flow

velocity.
Using me/mi ¿ 1, the ion-electron collision operator

also can be expressed in the simplified form,

Cie(fi, fe)

= −Fei · v
niTi

fiM +
1
τei

neme

nimi

∂

∂v
·
[
(v − ui)fi +

Te

mi

∂fi

∂v

]

= Cie(fiM , feM ) + CL
ie(δfi, δfe) +O[(δfi)2], (14)

where Fei ≡ − ∫
d3vδfeν

ei
D (v)mev + nemeui/τei repre-

sents the electron-ion collisional friction force and

Cie(fiM , feM ) =
2fiM

τei

neme

nimi

(
Te

Ti
− 1

)(
x2

i −
3
2

)
(15)
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describes the slow collisional energy exchange between
ions and electrons. Here, x2

i ≡ miv
2/2Ti. The linearized

ion-electron collision operator is derived from Eq. (14) as

CL
ie(δfi, δfe) = CT

ie(δfi) + CF
ie(δfe), (16)

where the test- and field-particle collision parts are writ-
ten as

CT
ie(δfi) =

1
τei

neme

nimi

[
Te

mi

∂

∂v
·
{

fiM
∂

∂v

(
δfi

fiM

)}

+
(

1− Te

Ti

)
∂

∂v
· (δfiv)

]
, (17)

and

CF
ie(δfe) =

fiMv
niTi

·
∫

d3v δfeν
ei
D (v)mev, (18)

respectively.
It is easy to verify that the electron-ion and ion-

electron collision operators given by Eqs. (13), (17), and
(18) satisfy particle and momentum conservation laws,
Eqs. (5) and (6). However, the energy conservation law,
Eq. (7), is broken by these operators because Eq. (13)
misses terms of higher order in (me/mi)1/2 which are
necessary for correctly describing the slow collisional en-
ergy transfer from electrons to ions.

Regarding the adjointness relations given in Eq. (9),
they hold for the operators CT

ei, CF
ei, and CF

ie defined
by Eqs. (13) and (18), although the test-particle opera-
tor CT

ie defined in Eq. (17) does not satisfy Eq. (9) when
Ti 6= Te. Since CT

ie is necessary for the collisional momen-
tum conservation, it cannot be simply neglected. In the
neoclassical transport theory by Rosenbluth, Hazeltine,
and Hinton [14], only the first term −(Fei · v/niTi)fiM

of the second line in Eq. (14) is kept in Cie. This cor-
responds to replacing CT

ie with its momentum-transfer
part, C̃T

ie(δfi) ≡ (neme/niTiτei)ui[δfi] · vfiM . Since this
approximate test-particle operator for ion-electron col-
lisions is self-adjoint even for Ti 6= Te, the variational
method based on the self-adjoint properties can be ap-
plied to calculation of the neoclassical transport coeffi-
cients. We should note that the terms neglected in re-
ducing CT

ie to C̃T
ie have the magnitude of the same order

as C̃T
ie although they are smaller than Cii by the factor

of (me/mi)1/2.
In the rest of this section, we consider an improved

approximation of CT
ie in Eq. (17) by keeping the whole

energy-diffusion term and replacing the last term propor-
tional to (1 − Te/Ti) on the right-hand side of Eq. (17)
with

−faM

τei

neme

nimi

(
1− Te

Ti

){
mi

Ti
ui[δfi] · v

+ 2
(

δni[δfi]
ni

+
δTi[δfi]

Ti

) (
x2

i −
3
2

)}
, (19)

which conserves the particle number and gives the same
transfer rates of momentum and energy as the original

term. Here, δni[δfi] ≡
∫

d3vδfi, ui[δfi] ≡ n−1
i

∫
d3vδfiv,

and δTi[δfi]/Ti ≡ n−1
i

∫
d3vδfiv(miv

2/3Ti − 1). Now,
the new test-particle operator CTS

ie for ion-electron colli-
sions is given by

CTS
ie (δfi) =

1
τei

neme

nimi

[
Te

mi

∂

∂v
·
{

fiM
∂

∂v

(
δfi

fiM

)}

−fiM

(
1− Te

Ti

){
mi

Ti
ui[δfi] · v

+ 2
δTi[fi]

Ti

(
x2

i −
3
2

)}]
, (20)

where CT
ie(fiMδni[δfi]/ni) is subtracted from CT

ie(δfi)
in order to guarantee that CTS

ie (δfi) vanishes when δfi

takes the Maxwellian form, δfi = (δni[δfi]/ni)fiM .
The energy-diffusion is still retained in Eq. (20) and
CTS

ie coincides with CT
ie if Ti = Te. Now, it is im-

portant to note that CTS
ie satisfies the self-adjointness

condition,
∫

d3v(g/fiM )CTS
ie (h) =

∫
d3v(h/fiM )CTS

ie (g),
as the aforementioned approximate test-particle opera-
tor C̃T

ie(δfi) ≡ (neme/niTiτei)ui[δfi] · vfiM . This self-
adjointness of CTS

ie is more evidently seen when we
rewrite Eq. (20) as

CTS
ie (δfi) =

1
τei

neme

nimi

Te

mi
Qie

∂

∂v
·
{

fiM
∂

∂v

(Qieδfi

fiM

)}
,

(21)

where the operator Qie is defined by

Qieg ≡ g + [(Ti/Te)1/2 − 1](P1ig + P2ig). (22)

Here, g is an arbitrary function of v. The projection
operators P1i and P2i are defined by

P1i g ≡ fiM
mi

Ti
ui[g] · v,

P2i g ≡ fiM
δTi[g]

Ti

(
x2

i −
3
2

)
, (23)

where ui[g] ≡ n−1
i

∫
d3vδfiv, and δTi[g]/Ti ≡

n−1
i

∫
d3v(miv

2/3Ti − 1)g(v). These projection opera-
tors satisfy the conditions, (P1i)2 = P1i, (P2i)2 = P2i,
and P1iP2i = P2iP1i = 0. We easily find that P1i, P2i,
Qie, and accordingly CTS

ie are self-adjoint adjoint opera-
tors. Then, we can also show

∫
d3 δfi

fiM
CTS

ie (δfi)

= − 1
τei

neme

nimi

Te

mi

∫
d3vfiM

∣∣∣∣
∂

∂v

(Qieδfi

fiM

)∣∣∣∣
2

≤ 0,

(24)

which is a desirable condition corresponding to
a limited version of the H-theorem shown in
Eq. (10). The necessary and sufficient condi-
tion for

∫
d3(δfi/fiM )CTS

ie (δfi) = 0 is given by
δfi = fiMδni[δfi]/ni.
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The self-adjoint test-particle operator for ion-electron
collisions shown in Eq. (21) becomes a useful reference
for the next section, where we present the model colli-
sion operators which satisfy the adjointness properties as
well as the conservation laws even for collisions between
different species with unequal temperatures.

IV. LINEARIZED MODEL COLLISION
OPERATORS

We now consider the linearized collision operator for
collisions between species a and b,

CL
ab(δfa, δfb) = CT

ab(δfa) + CF
ab(δfb). (25)

Here, species a and b are allowed to have different temper-
atures, Ta 6= Tb, when the difference between ma and mb

is large as in the case of the electron-ion or ion-electron
collisions. When Ta 6= Tb, the rigorous test-particle op-
erator given by Eq. (2) contains the part proportional
to (1− Tb/Ta), which breaks the self-adjointness. Then,
as explained in the previous section, we aim to reduce
the test-particle operator to the form for which the self-
adjointness is recovered.

We now follow the way similar to the one in deriving
the self-adjoint operator CTS

ie from CT
ie, and modify the

test-particle operator CT
ab into the self-adjoint form,

CT
ab(δfa) = Qab CT0

ab Qab δfa.

(26)

Here, CT0
ab is given by

CT0
ab (g) ≡ νab

D L(g) + Cab
v (g) (27)

where L and Cab
v are defined in Eqs. (3) and (4), respec-

tively, and g represents an arbitrary function of v. The
operator Qab is defined by

Qab g ≡ g + (θab − 1)(P1a g + P2a g), (28)

where the dimensionless parameter θab is given by

θab ≡

Ta

(
1

ma
+ 1

mb

)
(

Ta

ma
+ Tb

mb

)



1/2

. (29)

The projection operators P1a and P2a is defined by

P1a g ≡ faM
ma

Ta
ua[g] · v,

P2a g ≡ faM
δTa[g]

Ta

(
x2

a −
3
2

)
, (30)

where ua[g] ≡ n−1
a

∫
d3vδfav, δTa[g]/Ta ≡

n−1
a

∫
d3v(mav2/3Ta − 1)g(v), and x2

a ≡ mav2/2Ta.
These projection operators satisfy the conditions,
(P1a)2 = P1a, (P2a)2 = P2a, and P1aP2a = P2aP1a = 0.

The definition of θab is such that Eq. (26) gives ex-
actly the same value of

∫
d3v mavCT

ab(faMmav/Ta) as
Eq. (2) does [See Eqs. (8) and (40)]. When Ta = Tb,
Eq. (26) coincides with Eq. (2) because θab = 1 and
Qab(g) = g for that case. We see that, even if Ta 6= Tb,
the operator Cab

v satisfies the self-adjointness condition,∫
d3v(g/faM )Cab

v (h) =
∫

d3v(h/faM )Cab
v (g), as L does.

Moreover, Pab, Qab, CT0
ab , and CT

ab given by Eq. (26) are
self-adjoint, too.

Equation (26) can be rewritten as

CT
ab(δfa) = CT0

ab (δfa) + (θab − 1)(PaCT0
ab δfa + CT0

ab Paδfa)
+ (θab − 1)2PaCT0

ab Paδfa, (31)

where Pa ≡ P1a + P2a,

PaCT0
ab δfa = faM

[
ma

Ta
v · 1

na

∫
d3v

δfa

faM
CT0

ab (faMv)

+
(

x2
a −

3
2

)
1
na

∫
d3v

δfa

faM

2
3
CT0

ab (faMx2
a)

]
,

CT0
ab Paδfa =

ma

Ta
ua[δfa] · CT0

ab (faMv)

+
δTa[δfa]

Ta
CT0

ab (faMx2
a),

PaCT0
ab Paδfa

= faM

[
ma

Ta
ua[δfa] · v 1

na

∫
d3v

mav
3Ta

· CT0
ab (faMv)

+
δTa[δfa]

Ta

(
x2

a −
3
2

)
1
na

∫
d3v

2
3
x2

aCT0
ab (faMx2

a)
]

.

(32)

For evaluating Eq. (32), we use

CT0
ab (faMv) = −(1 + α2

ab)faMνab
‖ x2

av

= −3
√

π

4
(1 + α2

ab)
faMv
τab

2G(αabxa)
xa

,

CT0
ab (faMx2

a) = Cab
v (faMx2

a) =
1
x2

a

d

dxa
(νab
‖ x5faM )

= −3
√

π

4τab
faM

2
α2

abxa
[Φ(αabxa)− αabxa(1 + α2

ab)Φ
′(αabxa)],

1
na

∫
d3v

mav
3Ta

· CT0
ab (faMv) = − αab

τab(1 + α2
ab)1/2

,

1
na

∫
d3v

2
3
x2

aCT0
ab (faMx2

a) = − 2αab

τab(1 + α2
ab)3/2

, (33)

and αab ≡ vTa/vTb.
In the case of ma À mb, which corresponds to αab ¿ 1,

we have θab ' (Ta/Tb)1/2, νab
D ' νab

‖ ' αabτ
−1
ab x−2

a ,
CT0

ab (faMv) ' −αabτ
−1
ab faMv, and CT0

ab (faMx2
a) '
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−2αabτ
−1
ab faM (x2

a − 3/2). Then, Eq. (31) reduces to

CT
ab(δfa) =

1
τba

nbmb

nama

[
Tb

ma

∂

∂v
·
{

faM
∂

∂v

(
δfa

faM

)}

−faM

(
1− Tb

Ta

) {
ma

Ta
ua[δfa] · v

+ 2
δTa[fa]

Ta

(
x2

a −
3
2

)}]
(for ma À mb),

(34)

which coincides with Eq. (20) for the case of ion-electron
collisions. In the opposite case of ma ¿ mb (or αab À
1), we have θab ' 1 and νab

D À νab
‖ . Then, Eq. (26) is

approximated by CT
ab(δfa) ' νab

D Lδfa, which agrees with
Eq. (13) for the case of electron-ion collisions. Thus,
the test-particle operator given by Eq. (26) or Eq. (31)
smoothly covers both ranges of the mass ratio, ma/mb À
1 and ma/mb ¿ 1.

Now that the self-adjoint test-particle collision opera-
tor has been obtained as shown in Eq. (26) or Eq. (31),
we proceed to construct the model field-particle collision
operator CF

ab such that the conservation laws in Eqs. (5)–
(7) and the adjointness relations in Eq. (9) are satisfied.
The resulting expression for CF

ab is given by

CF
ab(δfb) = −Vab[δfb] · CT

ab(faMmav/Ta)
−Wab[δfb]CT

ab(faMx2
a), (35)

respectively, where

CT
ab(faMmav/Ta) = −θab(1 + α2

ab)
faM

τab

mav
Ta

×
[
3
√

π

4
2G(αabxa)

xa
+

αab(θab − 1)
(1 + α2

ab)3/2

]
,

(36)

CT
ab(faMx2

a) = −θab
faM

τab

[
3
√

π

4
2

α2
abxa

× {
Φ(αabxa)− αabxaΦ′(αabxa)(1 + α2

ab)
}

+
2αab(θab − 1)
(1 + α2

ab)3/2

(
x2

a −
3
2

)]
, (37)

Vab[δfb] ≡ Tb

γab

∫
d3v

δfb

fbM
CT

ba(fbMmbv/Tb), (38)

and

Wab[δfb] ≡ Tb

ηab

∫
d3v

δfb

fbM
CT

ba(fbMx2
b). (39)

In Eqs. (38)–(39),

γab ≡ Ta

∫
d3v(mav‖/Ta)CT

ab(faMmav‖/Ta)

= −nama

τab

αab

(1 + α2
ab)3/2

(
Ta

Tb
+ α2

ab

)

= −16
√

π

3
nanbe

2
ae2

b lnΛ
(v2

Ta + v2
Tb)3/2

(
1

ma
+

1
mb

)
, (40)

and

ηab ≡ Ta

∫
d3vx2

aCT
ab(faMx2

a)

= −naTa

τab

3αab

(1 + α2
ab)5/2

(
Ta

Tb
+ α2

ab

)

= −8
√

π lnΛ
nanbe

2
ae2

bv
2
Tav2

Tb

(v2
Ta + v2

Tb)5/2

(
1

ma
+

1
mb

)
(41)

are used. We see γab = γba and ηab = ηba from Eqs. (40)
and (41), respectively.

It can be easily verified that the test-particle opera-
tor CT

ab and the field-particle CF
ab defined in Eqs. (26)

and (35) obey conservation laws for particles, momen-
tum, and energy written in Eqs. (5)–(7). In addition, as
shown in Appendix A, CT

ab and CF
ab satisfy the adjoint-

ness relations and the H-theorem given in Eqs. (9)–(11).
We find in Appendix A that the model linearized collision
operator CL

ab(δfa, δfb) = CT
ab(δfa) + CL

ab(δfb) vanishes if
and only if δfa and δfb take the perturbed Maxwellian
form in Eq. (11) with ua = ub and δTa/Ta = δTb/Tb.

For the case of (a, b) = (e, i), the model collision oper-
ators given in Eqs. (26) and (35) coincide with the cor-
responding electron-ion collision operators in Eqs. (13)
to the lowest order in (me/mi)1/2, although the former
operators also contain higher-order terms such as the
electron energy diffusion term. For (a, b) = (i, e), the
test-particle operator in Eq. (26) reduces to Eq. (20) as
mentioned previously.

When Ta = Tb, Eq. (26) represents the exact Landau
test-particle collision operator. Especially, for collisions
between particles of the same species (a = b), the com-
bination of Eqs. (26) and (35) gives the same linearized
model collision operator given in Refs. [7–9].

V. COLLISION OPERATORS FOR
GYROKINETIC EQUATIONS

In this section, for the purpose of application to the
gyrokinetic equation, we derive the gyrophase-averaged
form of the linearized model collision operator presented
in the previous section. In the gyrokinetic theory, fluctu-
ations with short wavelengths in the directions perpen-
dicular to the magnetic field B are treated. The per-
turbed particle distribution function is represented by
δfa =

∑
k⊥ δfak⊥ exp[iSk⊥(x)], where the eikonal Sk⊥

describes the rapid perpendicular variation and its gra-
dient gives the perpendicular wavenumber vector k⊥ =
∇Sk⊥ [19]. We should note that the amplitude δfak⊥ for
the wavenumber vector k⊥ still has a slow dependence on
the particle position x and it is divided into the adiabatic
and nonadiabatic parts as

δfak⊥ = −eaφk⊥

Ta
faM + hak⊥e−ik⊥·ρa . (42)

Here, hak⊥ represents the nonadiabatic part of the distri-
bution function, which is independent of the gyrophase,
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and the gyroradius vector ρa ≡ b × v/Ωa contains the
gyrophase dependence, where b ≡ B and Ωa ≡ eaB/mac
denote the unit vector parallel to the magnetic field and
the gyrofrequency, respectively. The gyrophase ϕ is de-
fined by the angle of the direction of the perpendicu-
lar velocity v⊥ (or the gyroradius vector ρa) around the
magnetic field line. Using the gyrokinetic ordering in
terms of the small parameter ρa/L where L is a gradient
scale length of a macroscopic variable such as the equi-
librium pressure, the gyrokinetic equation [5] for hak⊥ is
derived from the Boltzmann equation as

[
∂

∂t
+ v‖b · ∇+ i(ωE + ωDa)

]
hak⊥

=
ea

Ta
faM

[
∂

∂t
+ i(ωE + ωT

∗a)
]

ψak⊥

+
c

B

∑

k′⊥+k′′⊥=k⊥

[b · (k′⊥ × k′′⊥)]ψak′⊥hak′′⊥

+
∑

b

C
(GK)
ab , (43)

where ωE ≡ k⊥ · (cE × b/B), ωDa ≡ k⊥ · (cb/eaB) ×
(µ∇B + mav2

‖b · ∇b), ωT
∗a ≡ ω∗a[1 + ηa(x2

a − 3/2)],
ω∗a ≡ k⊥ ·(cTab/eaB)×∇ ln na, and ηa ≡ d ln Ta/d lnna.
Here, hak⊥ is regarded as a function of time t and phase-
space variables x, w ≡ mav2/2, and µ ≡ mav2

⊥/2B. The
gyrophase-averaged potential ψak⊥ for the turbulent elec-
tromagnetic fields is defined in terms of the electrostatic
potential φk⊥ and the vector potential Ak⊥ by

ψak⊥ ≡
∮

dϕ

2π
eik⊥·ρa

(
φk⊥ −

v
c
·Ak⊥

)

= J0

(
k⊥v⊥
Ωa

) (
φk⊥ −

v‖
c

A‖k⊥
)

+ J1

(
k⊥v⊥
Ωa

)
v⊥
c

B‖k⊥
k⊥

, (44)

where A‖k⊥ ≡ b ·Ak⊥ and B‖k⊥ ≡ ib · (k⊥×Ak⊥). The
gyrokinetic collision term C

(GK)
ab is defined by taking the

gyrophase average of the linearized collision term as

C
(GK)
ab ≡

∮
dϕ

2π
eik⊥·ρaCL

ab(δfak⊥ , δfbk⊥). (45)

Using Eqs. (31) and (35), C
(GK)
ab is written as the sum of

the test- and field-particle collision parts,

C
(GK)
ab = C

T (GK)
ab + C

F (GK)
ab . (46)

The test-particle part is given by

C
T (GK)
ab

=
∮

dϕ

2π
eik⊥·ρaCT

ab(e
−ik⊥·ρahak⊥)

=
∮

dϕ

2π
eik⊥·ρaCT0

ab (e−ik⊥·ρahak⊥)

+ (θab − 1)
∮

dϕ

2π
eik⊥·ρaPaCT0

ab (e−ik⊥·ρahak⊥)

+ (θab − 1)
∮

dϕ

2π
eik⊥·ρaCT

abPa(e−ik⊥·ρahak⊥)

+ (θab − 1)2
∮

dϕ

2π
eik⊥·ρaPaCT0

ab Pa(e−ik⊥·ρahak⊥),

(47)

where the first term on the right-hand side is given by

∮
dϕ

2π
eik⊥·ρaCT0

ab (e−ik⊥·ρahak⊥)

= νab
D (v)Lhak⊥ +

1
v2

∂

∂v

[
νab
‖ (v)

2
v4faM

∂

∂v

(
hak⊥

faM

)]

− hak⊥
k2
⊥

4Ωa

[
νab

D (v)
(
2v2
‖ + v2

⊥
)

+ νab
‖ (v)v2

⊥
]
. (48)

The other terms on the right-hand side of Eq. (47) are
rewritten by using

∮
dϕ

2π
eik⊥·ρaPaCT0

ab (e−ik⊥·ρahak⊥)

=
faM

na

[
J0v‖

∫
d3vJ0

hak⊥

faM
CT0

ab (faMmav‖/Ta)

+ J1v⊥

∫
d3vJ1

hak⊥

faM

v⊥
v‖

CT0
ab (faMmav‖/Ta)

+ J0

(
x2

a −
3
2

) ∫
d3vJ0

hak⊥

faM

2
3
CT0

ab (faMx2
a)

]
,

(49)

∮
dϕ

2π
eik⊥·ρaCT0

ab Pa(e−ik⊥·ρahak⊥)

= J0C
T0
ab (faMmav‖/Ta)n−1

a

∫
d3vJ0hak⊥v‖

+ J1
v⊥
v‖

CT0
ab (faMmav‖/Ta)n−1

a

∫
d3vJ1hak⊥v⊥

+ J0C
T0
ab (faMx2

a)n−1
a

∫
d3vJ0hak⊥

2
3

(
x2

a −
3
2

)]
,

(50)
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and
∮

dϕ

2π
eik⊥·ρaPaCT0

ab Pa(e−ik⊥·ρahak⊥)

= − faM

naτab

αab

(1 + α2
ab)1/2

[
ma

Ta

(
J0v‖

∫
d3vJ0hak⊥v‖

+ J1v⊥

∫
d3vJ1hak⊥v⊥

)
+

2J0

1 + α2
ab

(
x2

a −
3
2

)

×
∫

d3vJ0hak⊥
2
3

(
x2

a −
3
2

)]
,

(51)

where CT0
ab (faMmav‖/Ta) and CT0

ab (faMx2
a) are evalu-

ated from Eq. (33) and the Bessel functions J0 =
J0(k⊥v⊥/Ωa) and J1 = J1(k⊥v⊥/Ωa) are used. The
field-particle part of the gyrokinetic collision operator is
given by

C
F (GK)
ab

=
∮

dϕ

2π
eik⊥·ρaCF

ab(e
−ik⊥·ρbhbk⊥)

= − Tb

γab
CT

ab(faMmav‖/Ta)
[
J0

∫
d3vJ0

hbk⊥

fbM

× CT
ba(fbMmbv‖/Tb) + J1

v⊥
v‖

∫
d3vJ1

hbk⊥

fbM

× v⊥
v‖

CT
ba(fbMmbv‖/Tb)

]
− Tb

ηab
J0C

T
ab(faMx2

a)

×
∫

d3vJ0
hbk⊥

fbM
CT

ba(fbMx2
b),

(52)

where CT
ab(faMmav‖/Ta) and CT

ab(faMx2
a) on the right-

hand side are evaluated by using Eqs. (36) and (37).

VI. ENTROPY BALANCES IN GYROKINETIC
ELECTROMAGNETIC TURBULENCE

We now derive several relations among the entropy
variable associated with the turbulent distribution func-
tions, the energy of electromagnetic fluctuations, the tur-
bulent particle and heat transport, and the collisional dis-
sipation in gyrokinetic turbulence. Here, the H-theorem
shown in Eq. (10) guarantees the positive collisional dis-
sipation which balances with the finite turbulent trans-
port driven by the thermodynamic gradient forces in the
steady turbulent state.

The difference δSa ≡ SaM − 〈Sa〉ensemble between the
macroscopic entropy density SaM ≡ − ∫

d3vfaM log faM

and the ensemble-averaged (or statistically-averaged)
microscopic entropy density 〈Sam〉ensemble ≡
−〈∫ d3v(faM + δfa) log(faM + δfa)〉ensemble is given
by [25]

δSa =
∑

k⊥

〈∫
d3v

|δfak⊥ |2
2faM

〉

ensemble

, (53)

where terms of higher order than O(δf2
a ) are neglected.

As seen from Eq. (53), our definition of δSa ≡ SaM −
〈Sa〉ensemble is such that δSa never becomes negative.
The relation among SaM , 〈Sa〉ensemble, and δSa is
schematically shown in Fig. 1, where the abscissa and or-
dinate represent the ensemble (or the functional space)
of fa ≡ faM + δfa and the entropy density, respectively.
The average value 〈Sa〉ensemble of the microscopic entropy
density never exceeds the entropy density SaM in the
equilibrium state.

Using Eq. (42), the contribution from the turbulent
fluctuation with the wave number vector k⊥ to δSa is
written as

∫
d3v

|δfak⊥ |2
2faM

=
∫

d3v
|hak⊥ |2
2faM

− nae2
a

2T 2
a

|φk⊥ |2 −
ea

Ta
Re

[
φ∗k⊥δnak⊥

]
,

(54)

where Re[· · · ] and (· · · )∗ represent the real part and the
complex conjugate, respectively, and the perturbed den-
sity δna is defined by δna ≡

∫
d3v δfa. We find from

Eq. (54) that the turbulent entropy variable is given by∫
d3v|δfak⊥ |2/2faM = (nae2

a/2T 2
a )|φk⊥ |2 in the case of

the completely-adiabatic response, for which hak⊥ = 0
and δnak⊥ = naeaφk⊥/Ta. This expression of the
squared electrostatic potential is often seen for electrons
in the studies of the ion temperature gradient (ITG)
mode [26] where adiabatic electrons are assumed. Be-
sides, as shown in Appendix B, Eq. (54) can be given in
another form to show separately the contribution from
the polarization part of the distribution function. Us-
ing Eq. (42) and noting that hak⊥ is independent of the
gyrophase, we obtain

∫
d3v

|δfak⊥ |2
2faM

v‖ = −naea

Ta
Re

(
φ∗k⊥u‖ak⊥

)

+
∫

d3v
|hak⊥ |2
2faM

v‖
∫

d3v
|δfak⊥ |2
2faM

v⊥ = −naea

Ta
Re

(
φ∗k⊥u⊥ak⊥

)
, (55)

which are related to the turbulent transport of δSa.
Here, the perpendicular flow velocity u⊥ak⊥ is de-
fined by u⊥ak⊥ ≡ n−1

a

∫
d3v δfak⊥v⊥ = −i(k⊥ ×

b/k⊥)n−1
a

∫
d3v J1(k⊥v⊥/Ωa)hak⊥v⊥.

Hereafter, we consider turbulence in magnetically-
confined plasmas, in which equilibrium magnetic field
lines form toroidal nested surfaces. We also neglect the
temporal variation of the equilibrium density na and
temperature Ta (or the equilibrium distribution function
faM ) as higher-order terms with respective to the gyro-
radius parameter while we still keep the time derivative
terms of the ensemble average of squared fluctuations
such as (∂/∂t)〈∫ d3v|hak⊥ |2/2faM 〉ensemble in the several
forms of entropy balance equations shown below, which
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are useful for monitoring the accuracy of gyrokinetic tur-
bulence simulations. Now, from the gyrokinetic equation
shown in Eq. (43), we obtain [18]

∂

∂t

∑

k⊥

〈〈∫
d3v

|hak⊥ |2
2faM

〉〉

= JA
a1X

A
a1 + JA

a2X
A
a2 + JA

a3X
A
a3

+
∑

k⊥

Re

〈〈∫
d3v

δf∗ak⊥
faM

∑

b

CL
ab(δfak⊥ , δfbk⊥)

〉〉
,

(56)

where 〈〈· · · 〉〉 represents a double average over the mag-
netic flux surface and the ensemble. Here, the thermo-
dynamic gradient forces

[
XA

a1, XA
a2

] ≡
[
−∂ ln pa

∂s
− ea

Ta

∂Φ
∂s

, −∂ ln Ta

∂s

]
(57)

make conjugate pairs with JA
a1 and JA

a2 which represent
the surface-averaged radial fluxes of particles and heat
defined by [18]

[
JA

a1, JA
a2

] ≡
[
ΓA

a ,
qA
a

Ta

]

≡ Re
〈〈∫

d3v

[
1,

(
x2

a −
5
2

)]

×
∑

k⊥

∑

k⊥

h∗ak⊥
(
−i

c

B
ψak⊥k⊥ × b

)
· ∇s

〉〉
,

(58)

where s denotes an arbitrary radial coordinate to label
flux surfaces and the gyrophase-averaged electromagnetic
potential ψak⊥ is defined by Eq. (44). Appendix C shows
the gyrokinetic Maxwell equations which govern the tur-
bulent electromagnetic fields. Combining Eqs. (C4)–(C5)
in Appendix C and the definition in Eq. (58), we find
that the turbulent radial particle fluxes JA

a1 satisfy the
ambipolarity condition,

∑
a

eaJA
a1 = 0. (59)

In Eq. (56), XA
a3 ≡ 1/Ta is the inverse temperature while

JA
a3 is related to the turbulent heat exchange and written

as

JA
a3 ≡ ea

∑

k⊥

Re
〈〈∫

d3v h∗ak⊥
∂ψak⊥

∂t

〉〉

= − ∂

∂t

[
Ta

∑

k⊥

〈〈∫
d3v

|δfak⊥ |2 − |hak⊥ |2
2faM

〉〉]

−
∑

k⊥

〈〈
∇ ·

[
Ta

∫
d3v

|δfak⊥ |2
2faM

v
]〉〉

+ eana

∑

k⊥

Re
〈〈

(u∗ak⊥ ·Ek⊥)(3)
〉〉

, (60)

where the detailed expression to define (u∗ak⊥ ·Ek⊥)(3) is
given by Eq. (C8) in Appendix C.

Equation (56) gives one of the entropy balance equa-
tions. Its left-hand side represents the variation rate of
the nonadiabatic part of the turbulent entropy density
while the right-hand side consists of the source part in
the inner-product form J · X and the sink part due to
the collisional dissipation. Using Eq. (60), Eq. (56) is
rewritten in another form of the turbulent entropy bal-
ance equation,

∂

∂t

∑

k⊥

〈〈∫
d3v

|δfak⊥ |2
2faM

〉〉

+
∑

k⊥

〈〈
∇ ·

[∫
d3v

|δfak⊥ |2
2faM

v
]〉〉

−
∑

k⊥

Re

〈〈∫
d3v

δf∗ak⊥
faM

∑

b

CL
ab(δfak⊥ , δfbk⊥)

〉〉

= JA
a1X

A
a1 + Janom

a2 XA
a2 +

eana

Ta

∑

k⊥

Re
〈〈

(u∗ak⊥ ·Ek⊥)(3)
〉〉

,

(61)

where Janom
a2 ≡ qanom

a /Ta is given from JA
a2 by the rela-

tion [18]

Janom
a2 ≡ qanom

a

Ta

= JA
a2 +

∑

k⊥

〈〈∫
d3v

|δfak⊥ |2
2faM

v · ∇s

〉〉
.(62)

Using Eqs. (C10) and (62), we find

∑
a

TaJA
a2 =

∑
a

TaJanom
a2 +

∑

k⊥

c

4π
Re

〈〈
(E∗k⊥ ×Bk⊥) · ∇s

〉〉
,

(63)
which shows that

∑
a TaJA

a2 is equal to the sum of the
turbulent heat flux

∑
a TaJanom

a2 =
∑

a qanom
a and the

Poynting flux due to the turbulent electromagnetic fields.
Using Eq. (C9), (C10), and (60), we find

∑
a

JA
a3 = − ∂

∂t

∑

k⊥

[
Ta

〈〈∫
d3v

|δfak⊥ |2 − |hak⊥ |2
2faM

〉〉

+
1
8π

〈〈|Ek⊥ |2 + |Bk⊥ |2
〉〉]

, (64)

which implies
∑

a JA
a3 = 0 in the steady turbulence state.
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From Eqs. (C9), (C10), and (61), we obtain

∂

∂t

∑

k⊥

[∑
a

Ta

〈〈∫
d3v

|δfak⊥ |2
2faM

〉〉

+
1
8π

〈〈|Ek⊥ |2 + |Bk⊥ |2
〉〉]

=
∑

a

Ta(JA
a1X

A
a1 + JA

a2X
A
a2)

+
∑

k⊥

∑

a,b

Ta

〈〈∫
d3v

δf∗ak⊥
faM

CL
ab(δfak⊥ , δfbk⊥)

〉〉
.

(65)

The above entropy balance equation can be used to ex-
amine the accuracy of gyrokinetic turbulence simulation.
On the left-hand side of Eq. (65), the magnitude of the
electric field energy term is evaluated as k2

⊥λ2
D (λD: The

Debye length) times the adiabatic portion included in
the first term. Thus, the electric field energy term van-
ishes in the case of k2

⊥λ2
D ¿ 1 where the quasineutral-

ity condition is used instead of Poisson’s equation. For
the electrostatic turbulence, the magnetic energy term
disappears, too. The simplified version of Eq. (65) for
the electrostatic toroidal ITG turbulence was used for
testing the phase-space resolution in simulation studies
in Refs. [27, 28], where the turbulent ion entropy den-
sity was expressed by using Eq. (B3). As pointed out
by Krommes and Hu [17] in the discussion of entropy
paradox, Eq. (65) implies that, without collisions, the
turbulent entropy variable included in the left-hand side
of Eq. (65) monotonically increases in the presence of
the stationary turbulent transport fluxes JA

aj combined
with the gradient forces Xaj (j = 1, 2). In fact, this was
verified in the collisionless slab ITG turbulence simula-
tion [29, 30], where the finite turbulent heat flux was
found to continuously generate fine structures in the
velocity-space distribution function through the phase-
mixing entropy-cascade process that leads to the mono-
tonic increase of the entropy variable. The sum of the
turbulent entropy and electromagnetic energy quantities
appearing on the left-hand side of Eq. (65) was called
the generalized energy by Schekochihin et al. [31] who
used it to investigate turbulent cascades in astrophysical
plasmas.

We now define zonal modes as fluctuations which have
the wave number vectors in the direction perpendicular
to flux surfaces, k⊥ = ks∇s. It is important to note that
the zonal modes never contribute to the radial transport
fluxes JA

a1 and JA
a2 as seen from Eq. (58). Then, we divide

the summation over wave number vectors into regions of
zonal and nonzonal modes,

∑

k⊥

=
∑

k⊥(Z)

+
∑

k⊥(NZ)

, (66)

where (Z) and (NZ) represent zonal and nonzonal modes,
respectively. Now, Eq. (65) is divided into nonzonal and

zonal parts as

∂

∂t

∑

k⊥(NZ)

[∑
a

Ta

〈〈∫
d3v

|δfak⊥ |2
2faM

〉〉

+
1
8π

〈〈|Ek⊥ |2 + |Bk⊥ |2
〉〉]

=
∑

a

Ta(JA
a1X

A
a1 + JA

a2X
A
a2)− T (NZ → Z)

+
∑

k⊥(NZ)

∑

a,b

Ta

〈〈∫
d3v

δf∗ak⊥
faM

CL
ab(δfak⊥ , δfbk⊥)

〉〉
,

(67)

and

∂

∂t

∑

k⊥(Z)

[∑
a

Ta

〈〈∫
d3v

|δfak⊥ |2
2faM

〉〉

+
1
8π

〈〈|Ek⊥ |2 + |Bk⊥ |2
〉〉]

= T (NZ → Z) +
∑

k⊥(Z)

∑

a,b

Ta

×
〈〈∫

d3v
δf∗ak⊥
faM

CL
ab(δfak⊥ , δfbk⊥)

〉〉
,

(68)

respectively. We should note that the source terms given
by the product of the fluxes JA

aj and XA
aj (j = 1, 2) ap-

pear in Eq. (67) while they don’t in Eq. (68). Here,
T (NZ → Z) represents the nonlinear entropy transfer
from the nonzonal modes to the zonal modes, which is
expressed by

T (NZ → Z)

≡
∑

a

Ta

〈〈
c

B

∑

k⊥(Z)

∑

k′⊥(NZ)

∑

k′′⊥(NZ)

δk′⊥+k′′⊥,k

× [b · (k′⊥ × k′′⊥)]
∫

d3v
1

faM
Re[ψak′⊥hak′′⊥h∗ak⊥ ]

〉〉
.

(69)

In the steady turbulence, we find from Eq. (68) that
T (NZ → Z) > 0 because of the H-theorem shown in
Eq. (10). Thus, we see from Eq. (67) that the zonal
modes tend to regulate the amplitudes of the nonzonal
modes and the turbulent transport.

Balance equations for energy-like variables, which are
similar to Eqs. (67) and (68), are found in Refs. [32–
34] based on fluid models where the product of the
Reynolds stress and the background flow shear plays a
role of T (NZ → Z) in the turbulence regulation. If
a simple approximation hik⊥ ' (n(h)

ik⊥/n0)fiM is used,

n
(h)
ik⊥ = [n0(e/Ti)φk⊥ + δne](1 + k2

⊥ρ2
ti/2) is obtained

for small wave numbers k2
⊥ρ2

ti ¿ 1 (ρti ≡
√

Ti/mi/Ωi)
from the quasineutrality condition in the case of a plasma
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consisting of electrons and a single species of ions with
charge ei = +e. The perturbed electron density is
approximately given by the Boltzmann relation δne =
n0eφk⊥/Te for the electrostatic drift wave turbulence. In
the case of cold ions Ti ¿ Te, δne is neglected in the
quasineutrality condition and n

(h)
ik⊥/n0 ' (e/Ti)φk⊥(1 +

k2
⊥ρ2

ti/2) is used to derive

T (NZ → Z)

'
〈〈

n0mic
3

2B3

∑

k⊥(Z)

∑

k′⊥(NZ)

∑

k′′⊥(NZ)

δk′⊥+k′′⊥,k

× [b · (k′⊥ × k′′⊥)][(k′′⊥)2 − (k′⊥)2]Re[φk′⊥φk′′⊥φ∗k⊥ ]
〉〉

=

〈〈 ∑

k⊥(Z)

∑

k′⊥(NZ)

∑

k′′⊥(NZ)

δk′⊥+k′′⊥,k

× Re[vEk′⊥vEk′′⊥ : (ik⊥vEk⊥)∗]
〉〉

, (70)

where vEk⊥ ≡ −i(c/B)φk⊥(k⊥ × b) represents the
E × B drift velocity for the wave number vector k⊥.
Equation (70) represents the product of the Reynolds
stress due to the nonzonal E × B flows and the zonal
E × B flow shear. Besides, the turbulent entropy den-
sity 〈〈∫ d3v|δfak⊥ |2/(2faM )〉〉 and the collisional dissipa-
tion terms in Eqs. (67) and (68) can be represented by
the squares of the perturbed fluid variables such as the
density, flow, and temperature fluctuations if we use a
truncated expression of the distribution function in terms
of the velocity-moment expansion as shown in Ref. [35].
Thus, the balance equations obtained from fluid models,
which represent the interaction between the turbulent
(nonzonal) fluctuations and shear (or zonal) flows, can
be regarded as an appropriate fluid limit of Eqs. (67)
and (68).

The variation of the macroscopic entropy density
SaM ≡ − ∫

d3vfaM ln faM is determined by the classi-
cal, neoclassical, and turbulent transport as shown in
Ref. [18], where the variation rate of SaM due to all
transport processes was derived. Here, retaining only
the contribution of the turbulent transport, the balance
equation for the macroscopic entropy density is written
as

∂SaM

∂t
=

∂

∂t
〈〈Sam + δSa〉〉

= − 1
V ′

∂

∂s

[
V ′

(
SaM

na
JA

a1 + Janom
a2

)]

+ JA
a1X

A
a1 + Janom

a2 XA
a2

+
eana

Ta

∑

k⊥

Re
〈〈

(u∗ak⊥ ·Ek⊥)(3)
〉〉

,

(71)

where V ′ ≡ dV (s)/ds and V (s) is the volume enclosed
by the flux surface with the label s. Here, SaM is re-
garded as a flux-surface function because, to the lowest

FIG. 1: The relation among the entropy variables SaM ,
〈Sa〉ensemble, and δSa. The abscissa represents the ensemble
(or the functional space) of fa ≡ faM + δfa. The microscopic
entropy density Sam ≡ − R d3v(faM + δfa) log(faM + δfa) is
delineated by a curved line.

order, na and Ta are so, too. The contributions from
the classical and neoclassical transport fluxes of parti-
cles and heat, which are omitted in Eq. (71), can be
found in Ref. [18]. Now, based on Eqs. (67), (68), (71),
(C9), and (C10), the entropy balances are schematically
summarized in Fig. 2, where the entropy and electro-
magnetic energy quantities are represented by bounded
regions and the transfer terms in the entropy balance
equations are delineated by arrows. Table I shows in de-
tail what quantities the bounded regions and the arrows
in Fig. 2 represent. For example, the arrow W denotes
the entropy transfer T (NZ → Z) from the nonzonal to
zonal modes defined in Eq. (69). A combination of the
regions TDSNZ, TDSZ, and TDSm gives

∑
a TaSaM . In

the steady state, the entropy production (the arrow JX)
due to the transport fluxes under the thermodynamic
gradient forces balances with the collisional dissipation
(CNZ and CZ), which finally equals the loss (D) due to
the divergence of the entropy flow. Note that the zonal
modes make no contribution to the the radial Poynt-
ing flux, (c/4π)

∑
k⊥(Z) Re〈〈(E∗k⊥ × Bk⊥) · ∇s〉〉 = 0,

and therefore, in the zonal-mode region, the ohmic loss
(JEz) should vanish when the zonal electromagnetic en-
ergy (EMz) reaches the steady state.

In the same manner as described above, the entropy
balances for toroidal plasmas with large mean flows on
the order of the ion thermal velocity can be derived as
shown in Refs. [36, 37], where the extended version of
the gyrokinetic equation for rotating plasmas is used to
define the toroidal momentum transport as an additional
transport flux conjugate to the toroidal flow shear that
appears in the gyrokinetic equation as a new thermody-
namic force.
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FIG. 2: The schematic diagram representing the entropy
balance equations. The entropy and electromagnetic energy
quantities are represented by bounded regions while the trans-
fer terms in the entropy balance equations are delineated by
arrows. See Table I which shows in detail what quantities the
bounded regions and the arrows represent.

TABLE I: Quantities represented by bounded regions and ar-
rows in Fig. 2.

Region Quantity

TSm −Pa Ta



R
d3v(faM + δfa) log(faM + δfa)

��
TDSNZ

P
k⊥(NZ)

P
a Ta



R
d3v|δfak⊥ |2/2faM

��
TDSZ

P
k⊥(Z)

P
a Ta



R
d3v|δfak⊥ |2/2faM

��
EMNZ

P
k⊥(NZ)



|Ek⊥ |2 + |Bk⊥ |2
��

/8π

EMZ

P
k⊥(Z)



|Ek⊥ |2 + |Bk⊥ |2
��

/8π

Arrow Quantity

JX
P

a Ta(JA
a1X

A
a1 + JA

a2X
A
a2)

W T (NZ → Z) [Eq. (69)]

CNZ −Pk⊥(NZ)

P
a,b Ta〈〈

R
d3v(δf∗ak⊥/faM )

× CL
ab(δfak⊥ , δfbk⊥)〉〉

CZ −Pk⊥(Z)

P
a,b Ta〈〈

R
d3v(δf∗ak⊥/faM )

× CL
ab(δfak⊥ , δfbk⊥)〉〉

D
P

a(Ta/V ′)(∂/∂s)[V ′{(SaM/na)JA
a1 + JA

a2}]
P −(c/4πV ′)(∂/∂s)[V ′〈〈(E×B) · ∇s〉〉]
JENZ

P
a eana

P
k⊥(NZ) Re〈〈(u∗ak⊥ · Ek⊥)(3)〉〉

JEZ

P
a eana

P
k⊥(Z) Re〈〈(u∗ak⊥ · Ek⊥)(3)〉〉

VII. CONCLUSIONS

In this paper, the linearized model collision operator
for multiple-ion-species plasmas is presented, which is ap-
plicable to the general case where the different species
can have different temperatures because of the mass dif-
ference. The test- and field-particle collision parts of the
model operator are given by Eqs. (26) [or (31)] and (35),
respectively, which satisfy conservation laws for parti-
cles, momentum, and energy, the adjointness relations,
and the H-theorem. Since the adjointness relations hold,

the linearized drift kinetic equation using the model col-
lision operator can be solved for any collisional regime
based on the variational principle, which is useful for
calculating the neoclassical transport coefficients. For
the application to the gyrokinetic equation, the test- and
field-particle operators are represented in the gyrophase-
averaged form shown in Eqs. (47)–(52). From the gyroki-
netic equation with the collision term and the Maxwell
equations, several balance equations are derived for the
entropy density associated with the perturbed distribu-
tion function, the energy of electromagnetic fluctuations,
the turbulent transport fluxes of particles and heat, and
the collisional dissipation of turbulence. In the steady
turbulence, the collisional dissipation balances with the
entropy production resulting from the turbulent parti-
cle and heat fluxes driven by the thermodynamic gra-
dient forces. Dividing the steady balance equation into
the zonal and nonzonal mode parts illuminates the ten-
dency of the zonal modes to regulate the turbulence. It is
shown that part of the entropy produced by the turbulent
transport fluxes in the unstable nonzonal-mode region is
nonlinearly transferred into the stable zonal-mode region
where the collisional dissipation occurs.
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APPENDIX A: PROOF OF ADJOINTNESS
RELATIONS AND BOLTZMANN’S H-THEOREM

It is shown in this Appendix that the test-particle op-
erator CT

ab and the field-particle operator CF
ab defined by

Eqs. (26) and (35) obey the adjointness relations and
Boltzmann’s H-theorem shown in Eqs. (9) and (10), re-
spectively. First, we find that CT

ab and CF
ab satisfy the

adjointness relations as seen from

∫
d3v

δfa

faM
CT

ab(δga)

= −
∫

d3v
νab

D (v)
2faM

(
v × ∂(Qabδfa)

∂v

)
·
(
v × ∂(Qabδga)

∂v

)

−
∫

d3v
v2

2
νab
‖ (v)faM

[
∂

∂v

(Qabδfa

faM

)][
∂

∂v

(Qabδga

faM

)]

=
∫

d3d3v
δga

faM
CT

ab(δfa), (A1)
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and

Ta

∫
d3v

δfa

faM
CF

ab(δfb) = −γabVab[δfb] ·Vba[δfa]

− ηabWab[δfb]Wba[δfa]

= Tb

∫
d3v

δfb

fbM
CF

ba(δfa).

(A2)

From Eq. (A1), we immediately obtain
∫

d3d3v
δfa

faM
CT

ab(δfa)

= −
∫

d3v
νab

D (v)
2faM

∣∣∣∣v ×
∂(Qabδfa)

∂v

∣∣∣∣
2

−
∫

d3v
v2

2
νab
‖ (v)faM

[
∂

∂v

(Qabδfa

faM

)]2

≤ 0,

(A3)

where the necessary and sufficient condition for the equal-
ity is written as∫

d3v
δfa

faM
CT

ab(δfb) = 0 ⇐⇒ δfa = faMδna[δfa]/na.

(A4)

Here, δna[δfa] ≡ ∫
d3vδfa is used. Let us define the

inner product between two pairs of distribution functions
(δfa, δfb) and (δga, δgb) by

(δfa, δfb|δga, δgb)

≡ −Ta

∫
d3v

δfa

faM
CT

ab(δga)− Tb

∫
d3v

δfb

fbM
CT

ba(δgb),

(A5)

which is used to define the squared norm of (δfa, δfb) as

||(δfa, δfb)||2 ≡ (δfa, δfb|δfa, δfb) ≥ 0. (A6)

From Eq. (A4), we see that the necessary and sufficient
condition for ||(δfa, δfb)||2 ≡ (δfa, δfb|δfa, δfb) = 0 is
given by

δfα = fαMδnα[δfα]/nα (α = a, b). (A7)

Regarding ||(λδfa−δga, λδfa−δga)||2 as the quadratic
polynomial with respect to λ and considering its discrim-
inant, the Schwarz inequality is derived as

||(δfa, δfb)||2||(δga, δgb)||2 ≥ (δfa, δfb|δga, δgb)2. (A8)

In Eq. (A8), the equality holds if and only if there are a
pair of real numbers (c1, c2) 6= (0, 0) that satisfy δha =
faMδna[δha]/na and δhb = fbMδnb[δha]/nb where δha ≡
c1δfa + c2δga and δhb ≡ c1δfb + c2δgb.

Now, we expand an arbitrary velocity distribution
function F (v) as

F (v) =
∞∑

l=0

F (l)(v),

F (l)(v) =
l∑

m=−l

Fm
l (v)Y m

l (θ, ϕ), (A9)

where Y m
l (θ, ϕ) represent spherical harmonic functions

and (v, θ, ϕ) are spherical coordinates in the velocity
space. Especially, F (l=1) can be rewritten in the form
of

F (l=1)(v) =
∑

j=x,y,z

vjF
(l=1)
j (v). (A10)

We can also divide F (v) into the even and odd parts with
respect to the velocity v as

F (v) = F (even)(v) + F (odd)(v), (A11)

where

F (even)(v) =
∞∑

m=1

F (2m)(v),

F (odd)(v) =
∞∑

m=1

F (2m−1)(v). (A12)

Since CT
ab has the rotational symmetry, we have

(δfa, δfb|δga, δgb) =
∞∑

l=0

(δf (l)
a , δf

(l)
b |δg(l)

a , δg
(l)
b )

=
∞∑

l=0

l∑

m=−l

(δfm
al Y

m
l , δfm

bl Y m
l |δgm

alY
m
l , δgm

bl Y
m
l ).

(A13)

Using Eq. (A10), we also obtain

(δf (1)
a , δf

(1)
b |δg(1)

a , δg
(1)
b )

=
∑

j=x,y,z

(vjδf
(1)
aj , vjδf

(1)
bj |vjδg

(1)
aj , vjδg

(1)
bj ). (A14)

In the Schwarz inequality shown in Eq. (A8), we
replace δfα and δgα by δf

(l=1)
αj (j = x, y, z) and

fαMmαvj/Tα (α = a, b), respectively, and find

2γab

[
Ta

∫
d3v

δf
(1)
aj

faM
CT

ab(δf
(1)
aj )

+ Tb

∫
d3v

δf
(1)
bj

fbM
CT

ba(δf (1)
bj )

]

≥
[
Ta

∫
d3v

δf
(1)
aj

faM
CT

ab(faMmavj/Ta)

+ Tb

∫
d3v

δf
(1)
bj

fbM
CT

ba(fbMmbvj/Tb)

]2

≥ 4Ta

∫
d3v

δf
(1)
aj

faM
CT

ab(faMmavj/Ta)

× Tb

∫
d3v

δf
(1)
bj

fbM
CT

ba(fbMmbvj/Tb), (A15)
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where the definition of γab(< 0) in Eq. (40) is used. Using
Eq. (A15) and the field-particle collision operator defined
in Eqs. (35), we obtain

Ta

∫
d3v

δf
(odd)
a

faM

[
CT

ab(δf
(odd)
a ) + CF

ab(δf
(odd)
b )

]

+ Tb

∫
d3v

δf
(odd)
b

fbM

[
CT

ba(δf (odd)
b ) + CF

ba(δf (odd)
a )

]

≤ Ta

∫
d3v

δf
(1)
a

faM

[
CT

ab(δf
(1)
a ) + CF

ab(δf
(1)
b )

]

+ Tb

∫
d3v

δf
(1)
b

fbM

[
CT

ba(δf (1)
b ) + CF

ba(δf (1)
a )

]

≤ 0, (A16)

where the left-hand side vanishes if and only if

δf (odd)
α = δf (1)

α = fαM
mα

Tα
uα[δfα] · v (α = a, b),

ua[δfa] = ub[δfb]. (A17)

Next, substituting δf
(even)
α and fMαx2

α into δfα and
δgα (α = a, b), respectively, in the Schwarz inequality
shown by Eq. (A8) leads to

2ηab

[
Ta

∫
d3v

δf
(even)
a

faM
CT

ab(δf
(even)
a )

+ Tb

∫
d3v

δf
(even)
b

fbM
CT

ba(δf (even)
b )

]

≥
[
Ta

∫
d3v

δf
(even)
a

faM
CT

ab(faMx2
a)

+ Tb

∫
d3v

δf
(even)
b

fbM
CT

ba(fbMx2
b)

]2

≥ 4Ta

∫
d3v

δf
(even)
a

faM
CT

ab(faMx2
a)

× Tb

∫
d3v

δf
(even)
b

fbM
CT

ba(fbMx2
b), (A18)

where ηab(< 0) is defined in Eq. (41). Equation (A18) is
rewritten by using Eqs. (35) as

Ta

∫
d3v

δf
(even)
a

faM

[
CT

ab(δf
(even)
a ) + CF

ab(δf
(even)
b )

]

+ Tb

∫
d3v

δf
(even)
b

fbM

[
CT

ba(δf (even)
b ) + CF

ba(δf (even)
a )

]

≤ 0, (A19)

where the equality is satisfied only when

δf (even)
α = fαM

[
nα[δfα]

nα
+

δTα[δfα]
Tα

×
(

x2
α −

3
2

)]
(α = a, b),

δTa[δfa]
Ta

=
δTb[δfb]

Tb
. (A20)

Finally, Eqs. (A16) and (A19) are combined to yield the
H-theorem,

Ta

∫
d3v

δfa

faM

[
CT

ab(δfa) + CF
ab(δfb)

]

+ Tb

∫
d3v

δfb

fbM

[
CT

ba(δfb) + CF
ba(δfa)

]

≤ 0, (A21)

where the necessary and sufficient conditions for the left-
hand side to vanish are given by

δfα = fαM

[
nα[δfα]

nα
+

mα

Tα
uα[δfα] · v

+
δTα[δfα]

Tα

(
x2

α −
3
2

)]
(α = a, b),

ua[δfa] = ub[δfb],
δTa[δfa]

Ta
=

δTb[δfb]
Tb

. (A22)

APPENDIX B: GYROCENTER DISTRIBUTION
FUNCTION

In the electrostatic gyrokinetic turbulence such as the
ion temperature gradient (ITG) turbulence, the per-
turbed gyrocenter distribution function δf

(g)
ak⊥ , which is

independent of the gyrophase, is defined by

δf
(g)
ak⊥ = −J0(k⊥ρa)

eaφk⊥

Ta
faM + hak⊥ , (B1)

where hak⊥ represents the adiabatic part of the per-
turbed particle distribution function δfak⊥ as shown in
Eq. (42). Then, using Eqs. (42) and (B1), δfak⊥ is writ-
ten as

δfak⊥ = e−ik⊥·ρaδf
(g)
ak⊥ −

eaφk⊥

Ta
faM

× [
1− e−ik⊥·ρaJ0(k⊥ρa)

]
. (B2)

On the right-hand side of Eq. (B2), the factor e−ik⊥·ρa

in the first term results from the difference between the
particle and gyrocenter positions while the second group
of terms represents the polarization, that is the variation
of the particle distribution due to the potential pertur-
bation.

Using Eq. (B1), we can rewrite Eq. (54), which rep-
resents the contribution from the turbulent fluctuation
with the wave number vector k⊥ to the turbulent en-
tropy variable δSa, as

∫
d3v

|δfak⊥ |2
2faM

=
∫

d3v
|δf (g)

ak⊥ |2
2faM

+
nae2

a

2T 2
a

|φk⊥ |2 [1− Γ0(ba)] . (B3)

The expression for the turbulent entropy variable given
in Eq. (B3), where the contributions from the gyrocen-
ter distribution function and the polarization part are
separately shown, is often used in the literature of the
gyrokinetic ITG turbulence simulations [27, 28].
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APPENDIX C: GYROKINETIC MAXWELL
EQUATIONS

Based on the gyrokinetic ordering, the lowest-order
(first-order) perturbed electromagnetic fields are written
in terms of the electrostatic potential φk⊥ and the vector
potential Ak⊥ as

Ek⊥ = −ik⊥φk⊥ ,

Bk⊥ = ik⊥ ×Ak⊥ , (C1)

and the second-order electromagnetic fields are given by

E(2)
k⊥ = −∇φk⊥ −

1
c

∂Ak⊥

∂t
,

B(2)
k⊥ = ∇×Ak⊥ . (C2)

In the eikonal representation such as φ(x, t) =∑
k⊥ φk⊥(x, t) exp[iSk⊥(x)] with k⊥ = ∇Sk⊥ , the rapid

perpendicular variation is described by the oscillatory
factor exp[iSk⊥(x)] while the amplitude φk⊥ still has a
slow dependence on the particle position x. In Eq. (C2),
the gradient operator ∇ acts only on the slowly-varying
amplitude part and therefore |∇| ¿ k⊥. The turbu-
lent electromagnetic fields are linked to the charge den-
sity

∑
a eaδnak⊥ and the current density

∑
a naeauak⊥

through the Maxwell equations. The first-order per-
turbed density δnak⊥ ≡ ∫

d3v δfak⊥ and flow velocity
uak⊥ ≡

∫
d3v δfak⊥v are given by

δnak⊥ = naeaφk⊥/Ta +
∫

d3v hak⊥J0(k⊥v⊥/Ωa),

nauak⊥ = b
∫

d3v v‖hak⊥J0(k⊥v⊥/Ωa)

− i(k× b/k⊥)
∫

d3v v⊥hak⊥J1(k⊥v⊥/Ωa),

(C3)

where the first-order perturbed distribution function
δfak⊥ given in Eq. (42) is used. Using Eq. (C3), the
lowest-order Maxwell equations are given by Poisson’s
equation,

(k2
⊥ + λ−2

D )φk⊥ = 4π
∑

a

ea

∫
d3v hak⊥J0(k⊥v⊥/Ωa),

(C4)
and the parallel and perpendicular components of
Ampére’s law written as

k2
⊥A‖k⊥ =

4π

c

∑
a

ea

∫
d3v v‖hak⊥J0(k⊥v⊥/Ωa),

−k⊥B‖k⊥ =
4π

c

∑
a

ea

∫
d3v v⊥hak⊥J1(k⊥v⊥/Ωa),

(C5)

where λD ≡ (
∑

a 4πnae2
a/Ta)−1/2 and B‖k⊥ ≡ Bk⊥ ·b ≡

i(k⊥ × Ak⊥) · b. The displacement current appears on
the next order of the Maxwell equation,

∇×Bk⊥ =
4π

c

∑
a

naeau
(2)
ak⊥ +

1
c

∂Ek⊥

∂t
, (C6)

where u(2)
ak⊥ represents the second-order flow velocity. We

find from Eq. (C3) that the first-order flow, uak⊥ , satis-
fies the incompressible condition, k⊥ · uak⊥ = 0, as the
lowest-order continuity equation. The next-order conti-
nuity equation for the perturbed density δna ≡

∫
d3v δfa

is written as

∂δnak⊥

∂t
+∇ · (nauak⊥) = −inak⊥ · u(2)

⊥ak⊥ . (C7)

Since k⊥·uak⊥ = 0, we find uak⊥ ·Ek⊥ = 0 from Eq. (C1).
Then, the lowest-order nonvanishing part of the inner
product of the flow velocity and the electric field is the
third-order quantity given by

naRe(u∗ak⊥ ·Ek⊥)(3)

≡ naRe(u∗ak⊥ ·E
(2)
k⊥ + u(2)∗

ak⊥ ·Ek⊥)

= −Re
[
φ∗k⊥

∂δn⊥ak⊥

∂t
+∇ · (φ∗k⊥nauak⊥)

+
1
c

∂A∗
k⊥

∂t
· nauak⊥

]
. (C8)

From Eqs. (C2), (C5), (C6), and (C8), we can derive the
equation for the energy of electromagnetic fluctuations,

1
8π

∂

∂t
(|Ek⊥ |2 + |Bk⊥ |2)

= −Re

[
c

4π
∇ · (E∗k⊥ ×Bk⊥) +

∑
a

eana(u∗ak⊥ ·Ek⊥)(3)
]

,

(C9)

where the first and second terms on the right-hand side
represent the energy inflow due to the Poynting flux and
the energy loss caused by the Joule heating, respectively.
Using Eqs. (C1) and (C5), the relation between the tur-
bulent entropy transport given in Eq. (55) and the Poynt-
ing flux is obtained as

∑
a

Ta

∫
d3v

1
2faM

(|δfak⊥ |2v − |hak⊥ |2v‖b
)

= − c

4π
Re(E∗k⊥ ×Bk⊥). (C10)
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