1S5 0975- 633X

NATIONAL INSTITUTE FOR FUSION SCIENCE

Linearized Model Collision Operators for Multiple Ion Species
Plasmas and Gyrokinetic Entropy Balance Equations

H. Sugama, T.-H. Watanabe, and M. Nunami

(Received - July 30,2009 )

RESEARCH REPORT
: NIFS Series =

TORL, TAPAN




This report was prepared as a preprint of work performed as a collaboration research of the
National Institute for Fusion Science (NIFS) of Japan. The views presented here are solely those
of the authors. This document is intended for information only and may be published in a
journal after some rearrangement of its contents in the future.

Inquiries about copyright should be addressed to the Research Information Office,

National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan.

E-mail: bunken@nifs.ac.jp

<Notice about photocopying>

In order to photocopy any work from this publication, you or your organization must obtain
permission from the following organizaion which has been delegated for copyright for clearance by the
copyright owner of this publication.

Except in the USA
Japan Academic Association for Copyright Clearance (JAACC)
6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan
Phone: 81-3-3475-5618 FAX: 81-3-3475-5619 E-mail: jaacc@mtd.biglobe.ne.jp

In the USA
Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923 USA
Phone: 1-978-750-8400  FAX: 1-978-646-8600




Linearized model collision operators for multiple ion species plasmas and gyrokinetic
entropy balance equations
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Linearized model collision operators for multiple ion species plasmas are presented, which con-
serve particles, momentum, and energy, and satisfy adjointness relations and Boltzmann’s H-theorem
even for collisions between different particle species with unequal temperatures. The model collision
operators are also written in the gyrophase-averaged form that can be applied to the gyrokinetic
equation. Balance equations for the turbulent entropy density, the energy of electromagnetic fluctu-
ations, the turbulent transport fluxes of particle and heat, and the collisional dissipation are derived
from the gyrokinetic equation including the collision term and the Maxwell equations. It is shown
that, in the steady turbulence, part of the entropy produced by the turbulent transport fluxes pro-
duced in the unstable nonzonal-mode region is nonlinearly transferred into the stable zonal-mode

region where the collisional dissipation occurs.
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I. INTRODUCTION

Nowadays, kinetic theories and simulations are basic
means which are extensively used to investigate transport
processes in high-temperature plasmas [1, 2]. Collisions
are one of important factors in the kinetic framework
to determine plasma transport. In magnetically-confined
toroidal plasmas, Coulomb collisions are a main cause of
the neoclassical transport [3, 4], which is investigated by
using the drift kinetic equations. On the other hand, the
turbulent transport is driven by plasma microinstabilities
and it is described by the gyrokinetic equation [5], which
still needs a collision term for the steady turbulent state
to be realized. Therefore, it is desirable to use a good
collision model in the kinetic equations, which is easy to
treat analytically or numerically but satisfies physically
correct constraints such as conservation laws of particles,
momentum, and energy.

A well-established collision term for collisions between
particle species a and b is given by the Landau operator
Cup(fa, fv) [6] which is bilinear with respect to the dis-
tribution functions f, and f, where the subscripts a and
b represent the corresponding particle species. When the
distribution functions are given by the sum of the equi-
librium part f,o and the small perturbation part Jf, as
fa = fao + 6 fa, one often use the linearized collision op-
erator C(’;‘b that is defined from C,; by

CL(6fa,6f1) = Cab(8fay fr0) + Can(fa0,6f5), (1)

where the first and second terms on the right-hand
side represent the test- and field-particle collision oper-
ators, respectively. The equilibrium distribution func-
tion is assumed to take Maxwellian form, f,0 = fom =
(na /73?03, ) exp(—v?/v2,), where n, is the density,
vrq = (2T, /ma)'/? is the thermal velocity, T, is the tem-
perature, and m,, is the particle mass for species a. Then,

the test-particle collision term derived from the Landau
operator is written as

Cab(8fay fro) = vH (W)L fo +C205 £, 4 Ma (1 _ Tb)

T T,
10 [V| (v)

6 fa (2)
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Here, L represents the pitch-angle-scattering operator de-
fined by
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where I denotes the unit tensor and (v, 0, ) represent
spherical coordinates in the velocity space. The operator
C% in Eq. (2) is defined by

I B I 7 () B R
Cvg:qﬂ&)[ B UfaM(%<faM>, (4)

where ¢ represents an arbitrary function of
V. The collision frequencies for pitch-angle
scattering and energy diffusion are given by
vp(v) = (3\7/4) o (@) — G(xp)]/z  and

I/ﬁ’b(v) = (3y7/2)7,, G(xp) /23, respectively, where
Byr/HT, = 47mbee InA/(mZv3,) (InA: The
Coulomb logarithm), ®(z) = 27 12 [ e dt,
G(z) = [®(z) — 29'(x)]/(22?), z; = v/vrj, and
vr; = (2T;/m;)/? (j = a,b). From analytical and
numerical points of view, the field-particle collision term
Cub(fa0,0fp) given by the Landau operator is more
complicated than the test-particle collision term shown



in Eq. (2) because laborious velocity-space integration is
required.

Recently, Abel et al. [7] proposed linearized model col-
lision operators for gyrokinetic simulations. Their like-
particle-collision operators for the gyrokinetic equations
are derived from the gyrophase average of the same test-
and field-particle collision operators as used by Lin et
al. [8] and Wang et al. [9] for 0f simulations of neo-
classical transport caused by ion-ion collisions. The
test-particle collision operator used by these authors is
the exact one Cuu(dfa, fao) given by Eq. (2) for a = b
while their field-particle collision operator is derived ap-
proximately such that particles, momentum, and energy
are conserved. In addition, their linearized model colli-
sion operators for like-particle collisions are self-adjoint
and obey Boltzmann’s H-theorem in contrast to other
models [10-12]. The self-adjointness and the H-theorem
are also satisfied by the approximate test- and field-
particle collision operators presented by Hirshman and
Sigmar [13] although, as pointed out by Abel et al. [7],
the energy-diffusion process included in the exact Lan-
dau test-particle collision operator (but dropped in the
Hirshman-Sigmar model operator) plays an important
role in the damping of fine velocity-space structures ap-
pearing in the turbulent distribution function.

From the viewpoint of applications to practical cases,
it is now natural to consider the model operator for colli-
sions between different particle species in plasmas includ-
ing multiple ion species. The established model operators
for collisions between electrons and ions are available be-
cause the approximation is well justified by the small ra-
tio of the electron mass m, to the ion mass m;. Besides,
because of this small ratio, m./m; < 1, the temperatures
of electrons and ions are allowed to be unequal, T, # T;.
When there exist multiple ions species and their masses
are very different, they may have unequal temperatures,
too. In the present work, we derive the linearized model
collision operator which can be used even for collisions
between different species of ions with unequal tempera-
tures. For the unequal-temperature case, we find that
the linearized Landau collision operators does not rigor-
ously satisfy the adjointness relations and the H-theorem
because of the last term proportional to (1 — T3/7,) ap-
pearing in the right-hand side of Eq. (2). However, these
relations and theorem are very favorable for analytical
and numerical studies of the kinetic equations with the
collision term. For example, the adjointness relations are
essential for the variational formulation of the solution to
the drift kinetic equation [14] as well as for the Onsager
symmetry of the classical and neoclassical transport ma-
trices [3, 4, 6, 15, 16]. The H-theorem implies the asymp-
totic relaxation of the distribution function to the local
equilibrium state. Therefore, the approximate linearized
operator is desired to keep the adjointness relations and
the H-theorem in addition to the other conservation laws.
These requirements are fulfilled in this work.

In this paper, we also discuss the steady turbulence
which is subject to the entropy balance [17, 18] between

the production terms due to turbulent transport fluxes
and the collisional dissipation based on the gyrokinetic
equation with the gyrophase-averaged collision operator.
Recently, as an attractive mechanism for regulation of
turbulent transport, zonal flows [20-22] which are the
E x B flows produced by electrostatic potential fluctu-
ations with the wave number vectors in the direction
perpendicular to flux surfaces, have been studied inten-
sively by gyrokinetic turbulence simulations [1, 2, 23, 24].
Therefore, it is instructive to discuss the role of such fluc-
tuations with zonal structures from the viewpoint of the
entropy balance. Using the entropy balance equations for
the gyrokinetic turbulence, we can identify the nonlinear
term representing the entropy transfer from nonzonal to
zonal modes, which is expressed in the fluid limit by the
product of the well-known Reynolds stress and the flow
shear.

The rest of this paper is organized as follows. In Sec. II,
properties which should be satisfied by linearized colli-
sion operators such as conservation laws, adjointness rela-
tions, and the H-theorem are shown. In Sec. III, approxi-
mate electron-ion and ion-electron collision operators are
examined about the validity of the properties shown in
Sec. II. This close examination is useful to present the
linearized model collision operators in Sec. IV, where the
model operators are constructed such that the above-
mentioned properties are satisfied even when two par-
ticle species involved in collisions have different back-
ground temperatures because of their mass difference. In
Sec. V, the gyrophase-averaged form of the model col-
lision operator is derived for application to the gyroki-
netic equation. Then, based on the H-theorem satisfied
by the collision operator, the entropy balance in the gy-
rokinetic turbulence is investigated in Sec. VI, where the
balance among the entropy production associated with
the turbulent particle and heat transport, the collisional
dissipation, and the nonlinear entropy transfer from the
nonzonal to zonal modes are discussed. Finally, conclu-
sions are given in Sec. VII.

II. PROPERTIES OF THE LINEARIZED
COLLISION OPERATOR

In this section, several properties satisfied by the lin-
earized Landau operator for collisions between species
a and b are given in such a way as to show explicitly
what conditions are satisfied by each of the test-particle
part CL,(6f.) = Cap(8fas fro) and the field-particle part
CE(6f) = Cap(fa0,0fp). Relations shown below hold in
both cases of a = b and a # b.

Conservation of particles is separately satisfied by the
test- and field-particle parts as

[ ekt = [@ochen =0 ©



while the momentum conservation,

/d3v mang;,((5fa)+/d3v myvCE (6f,) = 0, (6)

and the energy conservation,
1 1
/d3v imav2(§fb(5fa) + /d3v imvale;(éfa) = 0,
(7)

hold when both parts are simultaneously included.
Now, from the Galilean invariance and spherical sym-
metry of the collision operator, we have an iden-
tity, [d*v ma(v — w)Cop[fars(v — W), forr(v — u)] =
J &30 movCap|fars(v), fors(v)] = 0, for an arbitrary vec-
tor u which is independent of v. Then, taking the u — 0
limit of the above identity and using Egs. (5) and (6), we
can derive useful relations written as

/dgv MoV CL (farrmav/Ty)
= /dS’U mpyv Cg;(fmebV/Tb)
= 7/d3U mqeVv Cﬂ(fmebV/Tb)

_ / & myv CF (farmav/Ty). 8)

It should be noted that Eq. (8) is rigorously satisfied even
when Ty, # Tp.

The adjointness relations for the test- and field-particle
collision operators are given by

/d?’v 0fa Cg;,((Sga) _ /d% 09a C(Z;;(&fa)7

faM faM
Ofa 1)
1, [ ijC£<5fb) =1, [ ﬂiﬂiqi(éfa).
9)

As shown by Rosenbluth, Hazeltine, and Hinton [14], the
solution of the linearized drift kinetic equation with the
collision term satisfying the adjoint relations in Eq. (9)
can be obtained from the variational principle for any
collisional regime. Besides, the Onsager symmetry of the
classical and neoclassical transport matrices is derived
from the adjoint relations [3, 4, 6, 15, 16] .
The H-theorem is written as

5fa
T / & f{w [CT (5f.) + CF (8£,)]

a

bM

o, [ d J‘ffb (CL.(5f) + CE(Gf)] < 0. (10)

In Eq. (10), the equality is satisfied only when

a a Ta/ a/2
5fu = forr {5” 4 My vyl (”” —3)}

ne | Ta T, \ 21, 2
ony  mp 5Ty, (mpv® 3
5y = T v 2t -2
Jo fbM[nb+Tbub vt \en T2
(11)

where u, = u, and 07, /T, = 0Tp/Tp. Strictly speak-
ing, the adjointness relations and the H-theorem de-
scribed by Eqgs.(9)—(11) are rigorously satisfied by the
linearized Landau collision operator only for the case
of T, = T,. These properties are approximately valid
when the inequality between equilibrium temperatures
T, # Ty is allowed by a large difference between m,
and m,. However, we find from Eq. (8) that, even for
T, # Tp, the adjointness relations in Eq. (9) and the H-
theorem written in Egs. (10) and (11) are rigorously sat-
isfied for an arbitrary mass ratio mg/mp when 0 fq, 6 fp,
0g., and dgp are given in the shifted Maxwellian form,
fsmlons/ng + (ms/Ts)us - v] (s = a, b).

III. ELECTRON-ION AND ION-ELECTRON
COLLISION OPERATORS

It is instructive to revisit the approximate operators
for electron-ion and ion-electron collisions here before
proceeding to the next section where we consider model
collision operators for general cases of collisions between
different species. The collisional exchange of energy be-
tween electrons and ions occurs slowly because of the
small electron-ion mass ratio m./m; < 1. Therefore,
the equilibrium electron and ion distribution functions
generally can be assumed to take the Maxwellian forms
with different temperatures, T, # T;. The approximate
electron-ion and ion-electron collision operators [6, 14]
are obtained by using (m./m;)'/? as an expansion pa-
rameter.

For electron-ion collisions, we can still neglect
Cei(fen, firne). The linearized electron-ion collision op-
erator is given by

CLi(8fe,6fi) = Cai(6fe) + CL (6 2), (12)

where the test- and field-particle collision parts are writ-
ten as

CL(5f.) = vELsfe,

M
Ci(0f:) = v wlofi] - vien, (13)
where w;[0f;] = n;l J d3v §fiv represents the ion flow

velocity.
Using m./m; < 1, the ion-electron collision operator
also can be expressed in the simplified form,

Cie(fivfe)
Fe - v 1 neme 0 T, Of;
- 'fL/I’Z fZM + E n;m; 87V ' |:(V B uz)fz + mzav}

= Cie(fire, forr) + CE(Sfi,6f.) + O[(6f:)?], (14)

where F,; = — fd?’véfeug(v)mev + nemeu; /Te; repre-
sents the electron-ion collisional friction force and

Cie(fire, ferr) = 2fint neme (Te - 1) <xf — g) (15)

Tei Mimy; \T;




describes the slow collisional energy exchange between
ions and electrons. Here, 22 = m;v?/2T;. The linearized
ion-electron collision operator is derived from Eq. (14) as

Cr(6fi,6fe) = CL(8i) + CL(5fe), (16)

where the test- and field-particle collision parts are writ-

ten as
1 neme [T O 0fi
CL(6f;) = Tmmmi[mla\, {ffM <sz>}
T.\ 0O
(1= ) 26|, a7)
and

szV
Cii(éfe) - T.

Nl

./d% Sfos()ymev,  (18)

respectively.

It is easy to verify that the electron-ion and ion-
electron collision operators given by Egs. (13), (17), and
(18) satisfy particle and momentum conservation laws,
Egs. (5) and (6). However, the energy conservation law,
Eq. (7), is broken by these operators because Eq. (13)
misses terms of higher order in (m./m;)'/? which are
necessary for correctly describing the slow collisional en-
ergy transfer from electrons to ions.

Regarding the adjointness relations given in Eq. (9),

they hold for the operators CZL, CL. and CE defined
by Egs. (13) and (18), although the test-particle opera-

tor CL defined in Eq. (17) does not satisfy Eq. (9) when
T; # T,. Since C’Z; is necessary for the collisional momen-
tum conservation, it cannot be simply neglected. In the
neoclassical transport theory by Rosenbluth, Hazeltine,
and Hinton [14], only the first term —(Fe; - v/n;T;) fin
of the second line in Eq. (14) is kept in C;.. This cor-
responds to replacing C with its momentum-transfer
part, CL(3f;) = (neme/niTiTei) ;[0 fi] - v fins. Since this
approximate test-particle operator for ion-electron col-
lisions is self-adjoint even for T; # T., the variational
method based on the self-adjoint properties can be ap-
plied to calculation of the neoclassical transport coeffi-
cients. We should note that the terms neglected in re-
ducing CL to CL have the magnitude of the same order
as CN’E; although they are smaller than C;; by the factor
of (me/m;)/2.

In the rest of this section, we consider an improved
approximation of C in Eq. (17) by keeping the whole
energy-diffusion term and replacing the last term propor-
tional to (1 — T./T;) on the right-hand side of Eq. (17)

with
Slanne (1 2 { G v

Tei MMy T; T;

s (miffi] . 5Ti}ffi]> (xlz _ 3) } (19)

which conserves the particle number and gives the same
transfer rates of momentum and energy as the original

term. Here, on;[0f;] = [ d®véf;, w;[0f;] =n; ' [ d>vdfiv,
and 6T;[0£,]/T; = n; ' [ d®vdfiv(mv 2/3T —1). Now,
the new test-particle operator CL* for ion-electron colli-
sions is given by

1 neme [T, O 0 (4fi

Tei MiMi |:mz ov {fZMav <fz‘M)}
—fim (1 — %) {Tgui[éfi] ‘v

N 26T£f[ifi] (1512 _ 2) H ’ (20)

where CL(finroni[0fi]/n;) is subtracted from CL(5f;)
in order to guarantee that CL9(§f;) vanishes when §f;
takes the Maxwellian form, d§f; = (dn[0fi]/ni)fin-
The energy-diffusion is still retained in Eq. (20) and
CLS coincides with CL if T, = T,. Now, it is im-
portant to note that CLS satisfies the self-adjointness
condition, fdgv(g/fiM)CTS = [d®v(h/fin)CES (9),
as the aforementioned appr0x1mate test-particle opera-
tor CL(0f;) = (neme/niTiTe;)0i[6fi] - v iar. This self-
adjointness of CLS is more evidently seen when we
rewrite Eq. (20) as

crs@f) =

1 e e Zpé 3
Cpsef) = —teleg O {sz (Q L )}
Tei TG My sz
(21)
where the operator Q;. is defined by
Qieg =g+ [(E/Te)l/Q — 1](Prig + P2ig)- (22)

Here, g is an arbitrary function of v. The projection
operators P1; and Py; are defined by

Prig = filw%ui[g]'v7
_ 0Tilgl ( 5 3
Png - sz Ti ((El 5 ) (23)

where w[g] = n;![dvf;v, and OTi[g)/T; =
n; ! [ d*v(m;v?/3T; — 1)g(v). These projection opera-
tors satisfy the conditions, (P1;)? = P1i, (P2;)? = Pay,
and P1;Po; = P2;P1; = 0. We easily find that Py;, Poy,
Qie, and accordingly CZS are self-adjoint adjoint opera-
tors. Then, we can also show

/d3 6.f1 CTS 5fz)

_ 1nemeT6/ddvflM‘ <Q165f1>

Tei MM My fim

<0

— )

(24)
which is a desirable condition corresponding to
a limited version of the H-theorem shown in
Eq. (10). The necessary and sufficient condi-
tion for [d*(5fi/fim)CES(5f;) = 0 is given by
6fi = finednild fil /.



The self-adjoint test-particle operator for ion-electron
collisions shown in Eq. (21) becomes a useful reference
for the next section, where we present the model colli-
sion operators which satisfy the adjointness properties as
well as the conservation laws even for collisions between
different species with unequal temperatures.

IV. LINEARIZED MODEL COLLISION
OPERATORS

We now consider the linearized collision operator for
collisions between species a and b,

Ca(8far8f5) = Cayp(9fa) + Cap(0fo)- (25)

Here, species a and b are allowed to have different temper-
atures, T, # Ty, when the difference between m, and my
is large as in the case of the electron-ion or ion-electron
collisions. When T, # T}, the rigorous test-particle op-
erator given by Eq. (2) contains the part proportional
to (1 — Tp/T,), which breaks the self-adjointness. Then,
as explained in the previous section, we aim to reduce
the test-particle operator to the form for which the self-
adjointness is recovered.

We now follow the way similar to the one in deriving
the self-adjoint operator CTS from C, and modify the

e
test-particle operator C, into the self-adjoint form,

ng)(éfa) - Qab 02;0 Qab 6fa-
(26)
Here, C10 is given by
Cay(9) = vBL(9) +Cy’(9) (27)

where £ and C% are defined in Egs. (3) and (4), respec-
tively, and g represents an arbitrary function of v. The
operator Qg is defined by

Qab g=g + (eab - 1)(P1a g + 7)211 g)a (28)

where the dimensionless parameter 6, is given by

1/2
1 1
7. (7 + )
Op = | —/——m= .
(% + %)

The projection operators Pi, and Ps, is defined by

(29)

Pla g = faM%ua[g] -V,
oT, 3
Paa g = faM# (xi - 2) ) (30)
where u,[g] = gt [dPéfev, T.0g)/T. =

ngt [ d3v(mgv 2/3T - 1) (v), and 22 = m,v?/2T,.
These projection operators satisfy the conditions,
(PIG)Q = Pla7 (P2a)2 = 732(17 and Plap2a = 7DQa,Pch =0.

The definition of 6,5 is such that Eq. (26) gives ex-
actly the same value of [ dv maVCL (fartmav/T,) as
Eq. (2) does [See Egs. (8) and (40)]. When T, = Tp,
Eq. (26) coincides with Eq. (2) because 6, = 1 and
Qaub(g) = g for that case. We see that, even if T, # T},
the operator C2 satisfies the self-adjointness condition,
[ d3v g/faM)C“b = [d3v(h/far)CP(g), as L does.
Moreover, Pqp, Qab, abo and CJ, given by Eq. (26) are
self—adjoint, too.

Equation (26) can be rewritten as
SHIARIC

CL(f.) = ab — 1)(Pa

where P, = P14 + Paa,

2;06.}0(1 = faM %V' = /d3 5fa (Z;)O(faMV)
Ta faM

2 3 5fa
N (“‘2) ol
T al8fu] - Ol (Farrv)
0T, [0 fa)
+ T

CHOPf, =

Cﬂo(faMirz)a

PCTOP, 5 fa
1 MgV
= faM |: [dfa] a/d3 3T .

+6T [0fa) (3 2)

For evaluating Eq. (32

CEZJO (faMV>

d3 f;vQC (faMx)

(32)
), we use

CIO(furrv) = —(1+ a2,) farnrfa2v
_3\f farrv 2G(aapy)

= ]_ + « R
( ) Tab Lq

| —

d
dx,

CI(famal) = CO¥(famal) =

_ 3\ff 2
T ATy Mozzbo:a

ng)o(faMV) =

z (VHb 5faLM)

[SEN)

1 2oy MY
—_— v . —7
Ng 3Ty, Tap(1 + a )1/2

1 3 2 9470 2 2001
— —x-C i) = ——————
Ny, graab (Farrza) Tab(1 +a3b)3/2

Qgh

and agp = Ura/VTh.
In the case of m, > my, which corresponds to a,p < 1,
we have O, ~ (T,/Ty)"/?, v ~ yﬁb ~ gt T 2,

Cg;o(fan) ~ _aabTazlfaMV7 and C (fa]%x) =~

105 f, + CLOPL fa)
+ (Oap — 1) P, C op, 5fa, (31)

ab (faMx) ’

[@(aba) — QapTa(l + )P (apa),

(33)



—200abT faM(x —3/2). Then, Eq. (31) reduces to

1 nymy [Tb { <5fa>}
faM
faM

Tha MaMqg | Ma v
u,[0fa] - v

Tb mg
e (1= 72 ) {

(dfa) -

+ 2% <535 — 2) H (for mg > my),
(34)

T,

which coincides with Eq. (20) for the case of ion-electron
collisions. In the opposite case of my < my (or agp >
1), we have 0,, ~ 1 and v%’ > I/ﬁ’b Then, Eq. (26) is

approximated by CZ, (6 f,) ~ v L3 f,, which agrees with
Eq. (13) for the case of electron-ion collisions. Thus,
the test-particle operator given by Eq. (26) or Eq. (31)
smoothly covers both ranges of the mass ratio, m, /my >
1 and mg/mp < 1.

Now that the self-adjoint test-particle collision opera-
tor has been obtained as shown in Eq. (26) or Eq. (31),
we proceed to construct the model field-particle collision
operator Cf; such that the conservation laws in Egs. (5)-
(7) and the adjointness relations in Eq. (9) are satisfied.
The resulting expression for Cf} is given by

Ch0fs) = —Vap[0fs] - Cop(faremav/Ta)
— Wab[6 /o] Cop(farsw?), (35)
respectively, where
L (fartmav/Ta) = —Bup(1 + a2y T2 Ma¥
Tab Ta
3ﬁ ZG(Ozabl‘a) aab(eab — 1)
X
A (S AR
T 2\ faM 3\F 2
Cab(faan) - eab Tab |: 4 aabxa

X {<I> (apTq)

QOéab(Hab—l) 9 3
ez (73]

T 1)
Valin] = - / d%ﬁi]j[cfa(fwmbv/n» (38)
and
Walofy) = 2 [ @00 CT (fra?).  (39)
Nab Sforr

In Egs. (38)—(39),
T, / dBo(mavy /Ta)CE (funimavy ) Ta)
NgMg Qb T +
= — a?
Tab (1 "’0‘21))3/2 ab

_ _lﬁﬁ nanpezes In A ( 1 1), (40)
b

3 (U T 03)Y2 \ma

Yab

- O‘abxa‘b (aabxa)(l + O‘ib)}

and

o = 7o [ e

naly 3ap T, +
= —_ O{
Tap (14 a2,)%/? ab

2 2
nanbeaevaava 1 1

-8 InA——4>+2 2| — 4+ — | (41

Vrin (v, + V3, )/ (ma +mb>( )

are used. We see Yqp = Yba and s = Mpe from Eqgs. (40)
and (41), respectively.

It can be easily verified that the test-particle opera-
tor C1, and the field-particle Cf; defined in Egs. (26)
and (35) obey conservation laws for particles, momen-
tum, and energy written in Eqgs. (5)—(7). In addition, as
shown in Appendix A, C%, and C%, satisfy the adjoint-
ness relations and the H-theorem given in Eqgs. (9)—(11).
We find in Appendix A that the model linearized collision
operator CL (5 f,,0fy) = CL(0f.) + CL (6 f,) vanishes if
and only if §f, and Jf, take the perturbed Maxwellian
form in Eq. (11) with u, = v and 67, /T, = 6Ty/Tp.

For the case of (a,b) = (e, i), the model collision oper-
ators given in Eqgs. (26) and (35) coincide with the cor-
responding electron-ion collision operators in Egs. (13)
to the lowest order in (m./m;)/?, although the former
operators also contain higher-order terms such as the
electron energy diffusion term. For (a,b) = (i,¢e), the
test-particle operator in Eq. (26) reduces to Eq. (20) as
mentioned previously.

When T, = Ty, Eq. (26) represents the exact Landau
test-particle collision operator. Especially, for collisions
between particles of the same species (a = b), the com-
bination of Eqs. (26) and (35) gives the same linearized

" model collision operator given in Refs. [7-9].
(36)

V. COLLISION OPERATORS FOR
GYROKINETIC EQUATIONS

In this section, for the purpose of application to the
gyrokinetic equation, we derive the gyrophase-averaged

(37) form of the linearized model collision operator presented

in the previous section. In the gyrokinetic theory, fluctu-
ations with short wavelengths in the directions perpen-
dicular to the magnetic field B are treated. The per-
turbed particle distribution function is represented by
6fa = Dy, 0fax, expliSk, (x)], where the eikonal Sk,
describes the rapid perpendicular variation and its gra-
dient gives the perpendicular wavenumber vector k; =
V Sk, [19]. We should note that the amplitude 0 fox, for
the wavenumber vector k| still has a slow dependence on
the particle position x and it is divided into the adiabatic
and nonadiabatic parts as

e(ld)kj_

fars + ha, e+ Pa,
T,

5fakJ_ - -

(42)

Here, hqx, represents the nonadiabatic part of the distri-
bution function, which is independent of the gyrophase,



and the gyroradius vector p, = b x v/Q, contains the
gyrophase dependence, where b = B and Q, = e, B/mc¢
denote the unit vector parallel to the magnetic field and
the gyrofrequency, respectively. The gyrophase ¢ is de-
fined by the angle of the direction of the perpendicu-
lar velocity v, (or the gyroradius vector p,) around the
magnetic field line. Using the gyrokinetic ordering in
terms of the small parameter p, /L where L is a gradient
scale length of a macroscopic variable such as the equi-
librium pressure, the gyrokinetic equation [5] for hgx, is
derived from the Boltzmann equation as

0 )
{at +vb-V+i(wp +wDa)} hax

€q 0
= ?faM [Bt i(wg + wZ;)] Yak |
+ E Z b (K} x K)[taw, haw;
K, 4k =k,
+ >, (43)
b

where wp = k, - (cE x b/B)7 wpa = k1 - (cb/e,B) X
(LVB + mqv ||b Vb), wl, = will + malz} — 3/2)],
wiq =k (cT,b/e,B)xVinng, and n, = dInT,/dInn,.
Here, hqx, is regarded as a function of time ¢ and phase-
space variables x, w = m,v?/2, and p = m,v? /2B. The
gyrophase-averaged potential ¢4, for the turbulent elec-
tromagnetic fields is defined in terms of the electrostatic
potential ¢y, and the vector potential Ay, by

do . v
’(ﬂakl = %%ekipa (qbkl_z'Akl)

kLvL U”
() )
kivi\ vi Bk,
—_ 44
o () e, (49

where Ay, =b-Ayx, and B, =ib-(ky x Ax, ). The

gyrokinetic collision term C(%;K) is defined by taking the
gyrophase average of the linearized collision term as

do
it = %gem'p“cfb((sfaku5fbkL)- (45)

Using Egs. (31) and (35), C((LfK) is written as the sum of
the test- and field-particle collision parts,

C’ESK) _ CT(GK)_FCF(GK. (46)

The test-particle part is given by

T(GK
Cab( )
dQO k1P, T (p—ik
— z C iki-pP, ha
de ik, P, ~T0(,—ik
— 2 C 1Lph
[ 2 )

do ,
w1 § %elki’f’apaczbo<eﬂkrpahm>
dy —

+ (eab - 1)2 f ;i ZkJ— Pe P C P ( _“g_.pa'hakL)a
Y
(47)

where the first term on the right-hand side is given by

dg ik P, ~TO(,—ik.-P,
%QW Cap (€ frarc, )
_i_iﬁ V\Tb(v) 4f hakL
v2 v 2 oM fam
2

— hak, 4%@ [VD( ) (21}H + ’UL> + vy b(v )vﬂ . (48)

= l/%b (U)ﬁhakL

The other terms on the right-hand side of Eq. (47) are
rewritten by using

 SEe PP, e P
m

a hﬂ
= f:niM |:J0’U|/d31)<]0 ka_ OTO(faMmaUH/Ta)

ha
+ lel /d UJ f Zaky ULC (faMmaUH/T )
aM

3 : ha 2

(49)

% ;lﬁeikl‘pa Cg;?O/Pa (e_ikL.pa haki)
™

/d UJO akLUH

/ d*vJ1hax, v1

_ 2 3
n,t /dngohakLg (aji — 2)] ,

(50)

= JoC ab (faMmavll/T
+ J1f|| ab (faMmaUH/T

+ JOCg;;O(faMxZ)



and

d
%280 e P C P ( _Zkl'pahakl)
_ faM Qgp Mg J dd Joh
T et (L a2 [T, 00 R
2J 3
3 0 2
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2 3
X /dS’UJOhakLg (l’i — 2>:| s
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where CZ0(fanrmavy/T,) and CLO(fara2) are evalu-
ated from Eq. (33) and the Bessel functions Jy =
Jo(kivy /) and J; = Ji(kivy/Q.) are used. The
field-particle part of the gyrokinetic collision operator is
given by

F(GK)
Cab

dp i, P.F (,—iki-p
— (2 K2 h
j{% Caple vhik, )

= —TC (faMma’U”/T) [ /d3UJ0 }}bki

bM
v h
X Coa(Foramvy /o) + Jlf d%Jlﬁ
v
vjl_cg;(fmebvl/Tb)] - 7Jo (faMﬂ? )

x / o, ’}”M L (fonsa?),
(52)

where CL (fanrmavy/Ta) and CZ(farra2) on the right-
hand side are evaluated by using Egs. (36) and (37).

VI. ENTROPY BALANCES IN GYROKINETIC
ELECTROMAGNETIC TURBULENCE

We now derive several relations among the entropy
variable associated with the turbulent distribution func-
tions, the energy of electromagnetic fluctuations, the tur-
bulent particle and heat transport, and the collisional dis-
sipation in gyrokinetic turbulence. Here, the H-theorem
shown in Eq. (10) guarantees the positive collisional dis-
sipation which balances with the finite turbulent trans-
port driven by the thermodynamic gradient forces in the
steady turbulent state.

The difference 6S, = Sapr — (Sa)ensemble between the
macroscopic entropy density Sqnr = — [ d®v fanr 10g famr
and the ensemble-averaged (or statistically-averaged)
microscopic  entropy  density  (Sum)ensemble =
_<f dSU(faM + 6fa) log(faM + 5fa)>ensemb1e is given

by [25]
= 3 M
6Sa—z</dv2faM e
kJ_ ensemble

where terms of higher order than O(§f2) are neglected.
As seen from Eq. (53), our definition of 65, = Sap —
(Sa)ensemble 18 such that 0S5, never becomes negative.
The relation among Sgasr, (Sa)ensemble; and 65, is
schematically shown in Fig. 1, where the abscissa and or-
dinate represent the ensemble (or the functional space)
of fo = fam + 0 f, and the entropy density, respectively.
The average value (S, )ensemble Of the microscopic entropy
density never exceeds the entropy density Sgas in the
equilibrium state.

Using Eq. (42), the contribution from the turbulent
fluctuation with the wave number vector k; to 6.5, is
written as

5fak |2
d3’U| L
/ 2faM

|hak ‘2 ea
= /dSU 2faJ]_\4 2T2 |¢k¢‘2

Re [djik(J_(SnakJ_] 5
(54)

where Re[---] and (---)* represent the real part and the
complex conjugate, respectively, and the perturbed den-
sity dn, is defined by én, = [d®v 0f,. We find from
Eq. (54) that the turbulent entropy variable is given by
J P[0 fax, ?/2fars = (nee2/2T7)|¢x, |* in the case of
the completely-adiabatic response, for which h.x, = 0
and 0ngx, = ngeadx, /Ta. This expression of the
squared electrostatic potential is often seen for electrons
in the studies of the ion temperature gradient (ITG)
mode [26] where adiabatic electrons are assumed. Be-
sides, as shown in Appendix B, Eq. (54) can be given in
another form to show separately the contribution from
the polarization part of the distribution function. Us-
ing Eq. (42) and noting that h,x, is independent of the

gyrophase, we obtain
3 |5fak |
/ Ryl Re (¢, tjax.)
/d3 |hakL‘
2faM
Na€q

0fax, *
/d3 |éff(1:1\/[| = — Ta Re ((ﬁkLuJ_akL)’ (55)

which are related to the turbulent transport of §.5,.
Here, the perpendicular flow velocity ujqk, is de-
fined by Ujgk, = N, deU 6fakJ_VL = —i(kl X
b/kl 71fd3’UJ1 kLUl/Q) ak, V1.

Hereafter, we consider turbulence in magnetically-
confined plasmas, in which equilibrium magnetic field
lines form toroidal nested surfaces. We also neglect the
temporal variation of the equilibrium density n, and
temperature T, (or the equilibrium distribution function
fanr) as higher-order terms with respective to the gyro-
radius parameter while we still keep the time derivative
terms of the ensemble average of squared fluctuations
such as (0/0t)( [ d®v|hax, |?/2far)ensemble in the several
forms of entropy balance equations shown below, which

naea




are useful for monitoring the accuracy of gyrokinetic tur-
bulence simulations. Now, from the gyrokinetic equation
shown in Eq. (43), we obtain [18]

9 |hase, [*
- d3 1
ot ; <</ 2fam
= JAXA +IAXA + JAXA

6 *
+ %:Re <</cl3vf:]1;L zb:cilb((sfakLa(sfbkL)>

(56)

where ((---)) represents a double average over the mag-
netic flux surface and the ensemble. Here, the thermo-
dynamic gradient forces

(X2

al»

dlnp, e,0P OInT,
Xc‘:‘Q] = [— - ——

Js T, ds s ] (57)

make conjugate pairs with J4 and J2, which represent
the surface-averaged radial fluxes of particles and heat
defined by [18]

A
[‘]ala J(g] = [F?a g:;:|

= ne({foee (23)

<3S b, (f%%hkl x b) : v5>> :

k, ki
(58)

where s denotes an arbitrary radial coordinate to label
flux surfaces and the gyrophase-averaged electromagnetic
potential .k, is defined by Eq. (44). Appendix C shows
the gyrokinetic Maxwell equations which govern the tur-
bulent electromagnetic fields. Combining Egs. (C4)—(C5)
in Appendix C and the definition in Eq. (58), we find
that the turbulent radial particle fluxes J4 satisfy the
ambipolarity condition,

> eadh =0. (59)

a

In Eq. (56), X/, = 1/T, is the inverse temperature while
JA is related to the turbulent heat exchange and written
as

OVak |
Jh = eakZRe<</d3v ak lfjatk >>
3 5fakL|2_|hakL|2>>
Ta§<</d ! 2fam
6 farc, |I?
{7 [ S ])

9

where the detailed expression to define (

uly Ex )@ s
given by Eq. (C8) in Appendix C.

Equation (56) gives one of the entropy balance equa-
tions. Its left-hand side represents the variation rate of
the nonadiabatic part of the turbulent entropy density
while the right-hand side consists of the source part in
the inner-product form J - X and the sink part due to
the collisional dissipation. Using Eq. (60), Eq. (56) is
rewritten in another form of the turbulent entropy bal-
ance equation,

5 S )
(e )
_ %:Re<< / d3v‘5ﬁjb§bjcfb(afakﬂ§fbkl>>>

S e (e, B,

_ JA YA anom y A
- JalXal + Ja2 Xa2

(61)

where Jom = ganom /T ig given from JZ, by the rela-
tion [18]

anom — qZ‘nOIn

a2 - Ta

v-Vs)) (62)

_ A 3 ‘5fakL|
- Ja2+§<</d T

Using Egs. (C10) and (62), we find

Ek X By, ) - Vs>>,

S Tadlh = T.J3om+ Z

which shows that Y 7,J% is equal to the sum of the
turbulent heat flux ) 7,J35°™ Yoo @2"°™ and the
Poynting flux due to the turbulent electromagnetic fields.
Using Eq. (C9), (C10), and (60), we find

A _ 0 |6fakL|2_‘hakL‘2
za:Jag - _ag [Ta<</d% 2fam >>

+ % ({|Ex, >+ |Bkl|2>>} , (64)

(63)

which implies Y~ JZ = 0 in the steady turbulence state.



From Egs. (C9), (C10), and (61

35 [ (o))
b o (B, B, )]

= ZTa(JﬁXfl + 5 X0)

PSS (( f e chista, ) ) )

kL ab

), we obtain

(65)

The above entropy balance equation can be used to ex-
amine the accuracy of gyrokinetic turbulence simulation.
On the left-hand side of Eq. (65), the magnitude of the
electric field energy term is evaluated as k2 A%, (Ap: The
Debye length) times the adiabatic portion included in
the first term. Thus, the electric field energy term van-
ishes in the case of k2 A3, < 1 where the quasineutral-
ity condition is used instead of Poisson’s equation. For
the electrostatic turbulence, the magnetic energy term
disappears, too. The simplified version of Eq. (65) for
the electrostatic toroidal ITG turbulence was used for
testing the phase-space resolution in simulation studies
in Refs. [27, 28], where the turbulent ion entropy den-
sity was expressed by using Eq. (B3). As pointed out
by Krommes and Hu [17] in the discussion of entropy
paradox, Eq. (65) implies that, without collisions, the
turbulent entropy variable included in the left-hand side
of Eq. (65) monotonically increases in the presence of
the stationary turbulent transport fluxes J{% combined
with the gradient forces X,; (j = 1,2). In fact, this was
verified in the collisionless slab ITG turbulence simula-
tion [29, 30], where the finite turbulent heat flux was
found to continuously generate fine structures in the
velocity-space distribution function through the phase-
mixing entropy-cascade process that leads to the mono-
tonic increase of the entropy variable. The sum of the
turbulent entropy and electromagnetic energy quantities
appearing on the left-hand side of Eq. (65) was called
the generalized energy by Schekochihin et al. [31] who
used it to investigate turbulent cascades in astrophysical
plasmas.

We now define zonal modes as fluctuations which have
the wave number vectors in the direction perpendicular
to flux surfaces, k; = ksVs. It is important to note that
the zonal modes never contribute to the radial transport
fluxes JZ and J2 as seen from Eq. (58). Then, we divide
the summation over wave number vectors into regions of
zonal and nonzonal modes,

2=+ D . (66)

ki ki, (Z) ki(NZ)

where (Z) and (NZ) represent zonal and nonzonal modes,
respectively. Now, Eq. (65) is divided into nonzonal and
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zonal parts as

5fakl|2
VRS )
k%m za: / 2fam

b o (B 7+ B, )]

= ZT (JAXA + JAXA) - T(NZ — 27)

5 *
+ Z ZT <</ ff:;LC(fb(afakJ_véfbkl)>>7

k, (NZ) a,b

(67)

and

oy

6fakL|2
n (S *5R))
S Za: / 2fam

b o (B, 7+ B, )]

22T

k. (Z) ab

. Ofx
X <</d31).]L,Z]\]?'Cfb((sfaklvéfbkl)>>7

(68)

= T(NZ—-7Z)+

respectively. We should note that the source terms given
by the product of the fluxes J(f; and X;“j (j =1,2) ap-
pear in Eq. (67) while they don’t in Eq. (68). Here,
T(NZ — Z) represents the nonlinear entropy transfer
from the nonzonal modes to the zonal modes, which is
expressed by

T(NZ — 7)
SDA(CD S Sii) D YR
a k. (Z) K, (NZ k”(NZ
<o (6 < KD [ Rewak/hk/fhm]».
aM

(69)

In the steady turbulence, we find from Eq. (68) that
T(NZ — Z) > 0 because of the H-theorem shown in
Eq. (10). Thus, we see from Eq. (67) that the zonal
modes tend to regulate the amplitudes of the nonzonal
modes and the turbulent transport.

Balance equations for energy-like variables, which are
similar to Eqgs. (67) and (68), are found in Refs. [32-
34] based on fluid models where the product of the
Reynolds stress and the background flow shear plays a
role of T(NZ — 7Z) in the turbulence regulation. If

a simple approximation h;, =~ (n Eﬁl /o) fine is used,

R [no(e/T;)dw, + one](1 + k% p?,/2) is obtained

lkJ_

for small wave numbers k2% p?, < 1 (py; = /Ti/mi /)
from the quasineutrality condition in the case of a plasma



consisting of electrons and a single species of ions with

charge e; = +e. The perturbed electron density is

approximately given by the Boltzmann relation dn. =

noegy, /T for the electrostatic drift wave turbulence. In

the case of cold ions T; < T67 5ne is neglected in the

quasineutrality condition and n / no =~ (e/T;) bk, (1 +
k% p?,/2) is used to derive

SIS SRR

NZ — Z)
k. (Z) k', (NZ) k! (NZ)

N TLO’ITLZ
: <<
< KDIRD)? = (KL IRelow, dur i, 1) )

<< S OY Y e

k. (Z) k', (NZ) k' (NZ)

X Re[VEk’LVEkl' : (iklkal)*}>>, (70)

where vgr, = —i(c/B)¢x, (ki x b) represents the
E x B drift velocity for the wave number vector k; .
Equation (70) represents the product of the Reynolds
stress due to the nonzonal E x B flows and the zonal
E x B flow shear. Besides, the turbulent entropy den-
sity ((J d3v|6 fax, |*/(2fanr))) and the collisional dissipa-
tion terms in Egs. (67) and (68) can be represented by
the squares of the perturbed fluid variables such as the
density, flow, and temperature fluctuations if we use a
truncated expression of the distribution function in terms
of the velocity-moment expansion as shown in Ref. [35].
Thus, the balance equations obtained from fluid models,
which represent the interaction between the turbulent
(nonzonal) fluctuations and shear (or zonal) flows, can
be regarded as an appropriate fluid limit of Eqs. (67)

and (68).
The wvariation of the macroscopic entropy density
Som = —fd?’ufaM In f,pr is determined by the classi-

cal, neoclassical, and turbulent transport as shown in
Ref. [18], where the variation rate of S,ps due to all
transport processes was derived. Here, retaining only
the contribution of the turbulent transport, the balance
equation for the macroscopic entropy density is written
as

0Suri
ot~ ar ! (Sam +05a))

_ ]- 8 ! SCLM anom
-~ |V ()|

+ JA XA JanomXA

€allg *
5 Do Re (i, Be) @ )),
a O

(71)

where V' = dV(s)/ds and V(s) is the volume enclosed
by the flux surface with the label s. Here, S,ps is re-
garded as a flux-surface function because, to the lowest
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FIG. 1: The relation among the entropy variables Sqn,
(Sa)ensemble, and 6S,. The abscissa represents the ensemble
(or the functional space) of fo = fam + 9 fo. The microscopic
entropy density Sem = — f d3v(faM + 0 fa)log(fars + 6 fa) is
delineated by a curved line.
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order, n, and T, are so, too. The contributions from
the classical and neoclassical transport fluxes of parti-
cles and heat, which are omitted in Eq. (71), can be
found in Ref. [18]. Now, based on Egs. (67), (68), (71),
(C9), and (C10), the entropy balances are schematically
summarized in Fig. 2, where the entropy and electro-
magnetic energy quantities are represented by bounded
regions and the transfer terms in the entropy balance
equations are delineated by arrows. Table I shows in de-
tail what quantities the bounded regions and the arrows
in Fig. 2 represent. For example, the arrow W denotes
the entropy transfer 7(NZ — Z) from the nonzonal to
zonal modes defined in Eq. (69). A combination of the
regions TDSnz, TDSz, and TDS,, gives Y, ToSan- In
the steady state, the entropy production (the arrow JX)
due to the transport fluxes under the thermodynamic
gradient forces balances with the collisional dissipation
(Cnz and Cyz), which finally equals the loss (D) due to
the divergence of the entropy flow. Note that the zonal
modes make no contribution to the the radial Poynt-
ing flux, (¢/4m) ZkL(Z) Re(((Ej,, x By, ) - Vs)) = 0,
and therefore, in the zonal-mode region, the ohmic loss
(JE,) should vanish when the zonal electromagnetic en-
ergy (EM,) reaches the steady state.

In the same manner as described above, the entropy
balances for toroidal plasmas with large mean flows on
the order of the ion thermal velocity can be derived as
shown in Refs. [36, 37], where the extended version of
the gyrokinetic equation for rotating plasmas is used to
define the toroidal momentum transport as an additional
transport flux conjugate to the toroidal flow shear that
appears in the gyrokinetic equation as a new thermody-
namic force.
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FIG. 2: The schematic diagram representing the entropy
balance equations. The entropy and electromagnetic energy
quantities are represented by bounded regions while the trans-
fer terms in the entropy balance equations are delineated by
arrows. See Table I which shows in detail what quantities the
bounded regions and the arrows represent.

TABLE I: Quantities represented by bounded regions and ar-
rows in Fig. 2.

Region Quantity
TS = S0 Ta {{f d*0(farr + 6fa) log(farr + 6a)))
TDSwz Zki(NZ) Za Ta <<f d3v|5fakL |2/2faM>>
TDSz Yk, 2y 2a Ta ((J 0|6 faxc, [?/2fare))
EMnz 2k, (N7) ((|Ex_ |* + |Bi, |?)) /87
EMz ZkL(Z) <<‘EkL |2 + Bk, |2>> /8m
Arrow Quantity
JX S0 Ta(JA X + Jib Xh)
W T(NZ —7Z) [Eq. (69)]
Cnz _ZkL(NZ) Ea,,b Ta<<f d3U(5f;kL/faM)
X Ca(8 fare, 0 forc, )
Cz — Yk, ) 2oap Tal(f d*0(8 e, / farr)
X Ccfb(dfakL ) 6fbkL )>>
D > (Ta/V')(0/05)[V'{(Sant [1a) Jih + Jiz}]
P —(c/4mV")(0/0s8)[V'{({(E x B) - Vs))]
JENz P atta X, vy Re(((ui, - B )®))
JEz Y. €amta Y, 7y Re(((ui, - Eie, )™))

VII. CONCLUSIONS

In this paper, the linearized model collision operator
for multiple-ion-species plasmas is presented, which is ap-
plicable to the general case where the different species
can have different temperatures because of the mass dif-
ference. The test- and field-particle collision parts of the
model operator are given by Egs. (26) [or (31)] and (35),
respectively, which satisfy conservation laws for parti-
cles, momentum, and energy, the adjointness relations,
and the H-theorem. Since the adjointness relations hold,
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the linearized drift kinetic equation using the model col-
lision operator can be solved for any collisional regime
based on the variational principle, which is useful for
calculating the neoclassical transport coefficients. For
the application to the gyrokinetic equation, the test- and
field-particle operators are represented in the gyrophase-
averaged form shown in Eqgs. (47)—(52). From the gyroki-
netic equation with the collision term and the Maxwell
equations, several balance equations are derived for the
entropy density associated with the perturbed distribu-
tion function, the energy of electromagnetic fluctuations,
the turbulent transport fluxes of particles and heat, and
the collisional dissipation of turbulence. In the steady
turbulence, the collisional dissipation balances with the
entropy production resulting from the turbulent parti-
cle and heat fluxes driven by the thermodynamic gra-
dient forces. Dividing the steady balance equation into
the zonal and nonzonal mode parts illuminates the ten-
dency of the zonal modes to regulate the turbulence. It is
shown that part of the entropy produced by the turbulent
transport fluxes in the unstable nonzonal-mode region is
nonlinearly transferred into the stable zonal-mode region
where the collisional dissipation occurs.
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APPENDIX A: PROOF OF ADJOINTNESS
RELATIONS AND BOLTZMANN’S H-THEOREM

It is shown in this Appendix that the test-particle op-
erator C’:{b and the field-particle operator C’fb defined by
Egs. (26) and (35) obey the adjointness relations and
Boltzmann’s H-theorem shown in Egs. (9) and (10), re-
spectively. First, we find that C7, and CI, satisfy the
adjointness relations as seen from

0fa
/ oo (560)

faM
_ vy (v) (Qapdfa)
= - [ (v ALY (A

3 U2 ab 0 Qab(sfa 0 Qabéga
- [aegtern 5 (3] |5 (%

0Ga
/dBd%fiMc;(éfa),

y 6(Qab6.ga))

)

(A1)



and
Ta/d% e Ch(0fs) = —varVas[0fs] - Va0 fa]
faM
- nabWab [5fb]Wba [dfa]
= Tb/d3 %C’ba (5f2).

(A2)
From Eq. (Al), we immediately obtain

/di”d%?ﬁcgg((sfa)
v (v) (Qundfa)|?
/ a 2l}aM ‘” v

2
/dSU*VH ) fanm Lfv <Q;§fja)] <0,
(A3)

where the necessary and sufficient condition for the equal-
ity is written as

/d%}ficgb(afb) =0 < 0fa = farrOna[dfa]/na-
aM
(Ad)

Here, 0ny[dfa] = fd3v5fa is used. Let us define the
inner product between two pairs of distribution functions

(6fa:0fp) and (6ga,dgs) by
(6.fas0fbl0gas dgn)
= 1, [ @odlectog) -1y [ ol ctoa),
Jam Jorr
(A5)
which is used to define the squared norm of (§f,,d ) as

(8 fas 6 fo)II* = (6.far 0f5|0fa,8f) > 0. (A6)

From Eq. (A4), we see that the necessary and sufficient

condition for |[(0fa,dfu)||> = (6fa,0fp|0fa,dfp) = 0 is
given by

0fa = famona[dfa]/na (o =a,b). (A7)

Regarding ||(AS fo—09a, A0 fa—094)||? as the quadratic
polynomial with respect to A and considering its discrim-
inant, the Schwarz inequality is derived as

18 fas 8f0)I11(0ga: 69)|* > (8fa, 6£5/09a, 0gs)*.  (AB)

In Eq. (A8), the equality holds if and only if there are a
pair of real numbers (c1,c2) # (0,0) that satisfy dh, =
famOnaldha]/ne and dhy = foardng[dhs)/ny where 6h, =
€10 fq + c20g, and Shy = 16 fy + c209p.

Now, we expand an arbitrary velocity distribution
function F(v) as

Pv) = 3 FO)
=0

!
> EM )Y (0, 9),

m=—1
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where Y™ (6, ¢) represent spherical harmonic functions
and (v,0,p) are spherical coordinates in the velocity
space. Especially, F(=1) can be rewritten in the form

of
Z o, F 11)

j=x,y,2

FU=D(y (A10)

We can also divide F'(v) into the even and odd parts with
respect to the velocity v as
F(v) = F)(v) + Fd(v), (A11)

where

F(even)(v) _ ZF(Qm)(V)
m=1

FED(v) = Y Fem(v), (A12)
m=1
Since C7 has the rotational symmetry, we have
(6far 001090, 8g) = (6D, 6£" (69, 695"
1=0

a Y 0 f Y 1090 Y™ g V™).

S S 6

=0 m=—1
(A13)
Using Eq. (A10), we also obtain
(615, 555159 695)
= Y (ibdyy iy 0300, viday)). (A14)
J=T,Y,2
In the Schwarz inequality shown in Eq. (A8), we

replace 0f, and dg, by 5f(l D (j = =z,y,2) and
farmav; /Ty (o =a,b), respectlvely, and find

294 | T,

/d3 a] O 5f(1))

(1)
+T/d3 00y CE( 6f )]

> Ta/d3 ffag C (faMmaU]/T)
(1) 2
o [’ fbﬂ L funrmuvy 1)
(1)
> 4Ta/d3 (}f” Coy(farrmav;/Ty)

< [ ffbj CL(forrmaey/Ty),  (A15)
bM



where the definition of v,5(< 0) in Eq. (40) is used. Using
Eq. (A15) and the field-particle collision operator defined
in Egs. (35), we obtain

3 6f150dd) (odd) F (odd)
Ta/dv i [ L0 M) 4 CF (5] )]

(odd)

)
+T | Po—b—
b/ fbM

gTa/d%ﬁ[

Py
7, [ @ P Ol 5" + )]

(CRFD) + Cl(o1iea)]

CHOID) + Ch 6]

bM
<0, (A16)
where the left-hand side vanishes if and only if
5f¢§¢0dd) 5f(1) = fa 71104 [dfa] ’ (a = a,b),
u,[6fa] = [0 f). (A17)

cvon

Next, substituting d fa and fuo22 into 0f, and
dga (o = a,b), respectively, in the Schwarz inequality
shown by Eq. (A8) leads to

6f(£even)
2 | T [ o i)
faM

—|—Tb/d3’l)
6fa(even)
T, | d&v
/ faM
(even)
+Tb/d306fb
/dg 5 fl (even)
fa]w
X Tb/dgv

where 745(< 0) is defined in Eq. (4
rewritten by using Eqs. (35) as

6faeven)
T, | d®v—2—o
/ faM

5 (even) even
13 [ @0t [ef i) + e osiem)]
<0, (A19)
where the equality is satisfied only when

. [na[afa] | 0Tulofo]

N To

x (z2 - ;’)] (o = a,b),

0Tal0fa] _ OTo[0fs] (A20)

6fl5cvcn)

c&(éff””)]

v

Cg;;(faMQfL)

2
CbTa(fbMIg)]

v

Cg;)(fasz)

o, b O (aad), (ALY

1). Equation (A18) is

{CT (5flevem)y 1 CF, (5f(even)>}

5fo(éeven)
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Finally, Egs. (A16) and (A19) are combined to yield the

H-theorem,
/d3 5fa

0
+T, / dg”ﬁ% [ClL(6fs) + CL (6 fa)]
<0, (A21)

w(0fa) + Cly(615)]

where the necessary and sufficient conditions for the left-
hand side to vanish are given by

0 = forr | 2le] 1

Tt 5] v
+ DBkl 9] a-a),

Ny Ta
Ta
6T,[6fa] 8T8 1)

U, [dfa} = ub[(sfb]a T - Tb

. (A22)

APPENDIX B: GYROCENTER DISTRIBUTION
FUNCTION

In the electrostatic gyrokinetic turbulence such as the
ion temperature gradient (ITG) turbulence, the per-

turbed gyrocenter distribution function ¢ f(g) , which is
independent of the gyrophase, is defined by

€q
518, = ok p) D fors 4 s (B)
a

where h,k, represents the adiabatic part of the per-
turbed particle distribution function §f,kx, as shown in
Eq. (42). Then, using Egs. (42) and (B1), d fax, is writ-
ten as

—ik | - €a
S, = e RPgfl) O
a

x [1—e ™ PaJo(kipa)] - (B2)

On the right-hand side of Eq. (B2), the factor e~ %+ Pa
in the first term results from the difference between the
particle and gyrocenter positions while the second group
of terms represents the polarization, that is the variation
of the particle distribution due to the potential pertur-
bation.

Using Eq. (B1), we can rewrite Eq. (54), which rep-
resents the contribution from the turbulent fluctuation
with the wave number vector k| to the turbulent en-
tropy variable S, as

5, |0 farc, ”
/dv 2faM
6']0(59) 2
= [aoblael teis - re). 39

The expression for the turbulent entropy variable given
in Eq. (B3), where the contributions from the gyrocen-
ter distribution function and the polarization part are
separately shown, is often used in the literature of the
gyrokinetic ITG turbulence simulations [27, 28].




APPENDIX C: GYROKINETIC MAXWELL
EQUATIONS

Based on the gyrokinetic ordering, the lowest-order
(first-order) perturbed electromagnetic fields are written
in terms of the electrostatic potential ¢y, and the vector
potential Ay as

Ex, = —iki¢x,,
Bk = ikJ_XAkL,

L (C1)

and the second-order electromagnetic fields are given by

1 0Ak
Vo T e

B = VxA,.

2
by

(C2)

In the eikonal representation such as ¢é(x,t) =
Dok, Px. (x,t) expliSk, (x)] with ki = VS, the rapid
perpendicular variation is described by the oscillatory
factor exp[iSk, (x)] while the amplitude ¢y, still has a
slow dependence on the particle position x. In Eq. (C2),
the gradient operator V acts only on the slowly-varying
amplitude part and therefore |V| <« ki. The turbu-
lent electromagnetic fields are linked to the charge den-
sity >, €adnqk, and the current density > nqeqUak,
through the Maxwell equations. The first-order per-
turbed density on.k, = fd3v 0fux, and flow velocity
Wk, = [ d3v 0fax, v are given by

5naki = ’I’LaeaqﬁkL/Ta—‘r/dg’U hakLJ()(kJ_'UJ_/Qa),
NgUWgk, = b/d31} U”hakijo(k‘LUl/Qa)
— Z(k X b/kl)/d%} ULhakJ_Jl(kLUL/Qa)y
(C3)
where the first-order perturbed distribution function
dfax, given in Eq. (42) is used. Using Eq. (C3), the

lowest-order Maxwell equations are given by Poisson’s
equation,

(2 4050w, =4S e, / 0 hae, Jo(k 101 /),

(C4)
and the parallel and perpendicular components of
Ampére’s law written as

4
kjiAHkl = %Zea/dgv UHhakLJO(kLUL/Qa%

47
_kLBHkL = 726(1/dBUULhaijl(kle/Qa),

(C5)
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where Ap = (3, 4mnqe2/T,) "/ and Bjx, =By, -b =
i(kL x Ax,) - b. The displacement current appears on
the next order of the Maxwell equation,

4
V x By, = il naeau(Q)
c

a

| 10By,

aki T 9t 7 (C6)

where ufk)L represents the second-order flow velocity. We

find from Eq. (C3) that the first-order flow, ugy  , satis-
fies the incompressible condition, k; - usk, = 0, as the
lowest-order continuity equation. The next-order conti-
nuity equation for the perturbed density én, = [ d3v éf,
is written as

85nakL
ot

+ V- (nguex, ) = —ingky - u(fikL. (C7)

Since k| ‘uqk, =0, we find uyx, -Ex, = 0 from Eq. (C1).
Then, the lowest-order nonvanishing part of the inner
product of the flow velocity and the electric field is the
third-order quantity given by

nqeRe(ug, - EkL)(?’)

= nqRe(ugy Efj + u((i)i -Ey,)
. 0ny, .
= e [, P 4T 0, mata, )
10AL
- BtL -nauakL] . (C8)

From Egs. (C2), (C5), (C6), and (C8), we can derive the
equation for the energy of electromagnetic fluctuations,

10
0 (B + B )
c * *
— —Re Ev . (EkL X BkL) + Z 6ana(uaki . EkL)(?)) ,

(C9)

where the first and second terms on the right-hand side
represent the energy inflow due to the Poynting flux and
the energy loss caused by the Joule heating, respectively.
Using Egs. (C1) and (C5), the relation between the tur-
bulent entropy transport given in Eq. (55) and the Poynt-
ing flux is obtained as

1
Z(I:Ta/d3v2faM

c *
= —ERe(EkL x By, ).

(I8 faxc, IV = |hax, |*v)b)

(C10)
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