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Abstract.
It is investigated how symmetry properties of toroidal magnetic configurations

influence mechanisms of determining the radial electric field such as the momentum
balance and the ambipolar particle transport. Both neoclassical and anomalous
transport of particles, heat, and momentum in axisymmetric and nonaxisymmetric
toroidal systems are taken into account. Generally, in nonaxisymmetric systems, the
radial electric field is determined by the neoclassical ambipolarity condition. For
axisymmetric systems with up-down symmetry and quasisymmetric systems with
stellarator symmetry, it is shown by using a novel parity transformation that the
particle fluxes are automatically ambipolar up to O(δ2) and the determination of the
radial electric field Es requires solving the O(δ3) momentum balance equations, where
δ denotes the ratio of the thermal gyroradius to the characteristic equilibrium scale
length. In axisymmetric systems with large E×B flows on the order of the ion thermal
velocity vTi, the radial fluxes of particles, heat, and toroidal momentum are dependent
on Es and its radial derivative while the time evolution of the Es profile is governed by
the O(δ2) toroidal momentum balance equation. In nonaxisymmetric systems, E×B
flows of O(vTi) are not generally allowed even in the presence of quasisymmetry because
the nonzero radial current is produced by the large flow term in the equilibrium force
balance for which the Boozer and Hamada coordinates cannot be constructed.
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1. Introduction

Roles of radial electric fields in improvement of plasma confinement have been intensively

investigated in theoretical and experimental researches of tokamaks and helical systems

such as stellarators and heliotrons [1, 2]. For example, reduction of turbulent transport

due to the large sheared radial electric field is observed in edge regions of H mode

tokamak plasmas [3]. In nonaxisymmetric systems, neoclassical ripple transport is

significantly reduced in the presence of the radial electric field [4]. It is also well-known

that the neoclassical particle fluxes are automatically ambipolar for any radial electric

field in axisymmetric systems while they are not so in nonaxisymmetric systems [5,

6, 7, 8]. The mechanism to determine the radial electric field is closely connected to

the momentum balance, and there have been numerous theoretical and experimental

studies on the momentum transport in recent years [9, 10, 11, 12, 13, 14, 15, 16]. The

momentum transport processes are deeply influenced by symmetry properties of the

magnetic configuration. In tokamaks, the large toroidal flow velocity on the order of the

ion thermal velocity vTi can be driven by external torque and, in such a case, the toroidal

momentum balance equation governs the time evolution of the profile of the radial

electric field [17, 18, 19, 20, 21, 22]. Also, theoretical studies about effects of up-down

asymmetry on the momentum transport and the radial electric field in tokamaks are

reported by several works [23, 24]. As for the nonaxisymmetric systems, if the magnetic

field strength satisfies a certain condition called ‘quasisymmetry’ [25, 26, 27, 28, 29], the

large flow is expected to be produced in the direction associated with the quasisymmetry,

which may lead to the production of the large radial electric field.

In this work, we comprehensively investigate how the momentum balance as a

mechanism to determine the radial electric field is influenced by symmetry properties

of toroidal magnetic configurations. In Sec. 2, both neoclassical and anomalous

(or turbulent) transport of particles, heat, and momentum in axisymmetric and

nonaxisymmetric systems are treated based on the formulation developed in [19, 21,

30, 31], where the basic kinetic and electromagnetic field equations are separated into

ensemble-averaged and fluctuating parts. There, the E×B drift velocity is assumed to be

on the order of the thermal velocity multiplied by δ, where δ ∼ ρ/L represents the small

gyroradius ordering parameter given as the ratio of the gyroradius ρ to the characteristic

equilibrium gradient scale length L. In Sec. 3, momentum balance equations for

tokamaks and helical systems are expanded with respect to δ, and it is examined order

by order in δ whether the particle fluxes are automatically ambipolar or the radial

electric field is determined by the ambipolarity condition or the momentum transport

equation. In Sec. 4, we prove by employing a novel parity operator that the neoclassical

and anomalous radial momentum transport fluxes vanish automatically up to O(δ2) in

tokamaks with up-down symmetry and in helical systems with stellarator symmetry,

where we need to solve the momentum balance equation up to O(δ3) to determine the

radial electric field. In Sec. 5, we explain how the radial electric field is determined from

the toroidal momentum transport in tokamaks with the large toroidal flow velocity of
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O(vTi) and discuss a problem arising from the equilibrium force balance including the

large flow velocity in helical systems with quasisymmetry. Finally, conclusions are given

in Sec. 6.

2. Basic kinetic equations and radial transport of particles and heat

In this section, it is briefly reviewed how classical, neoclassical, and anomalous (or

turbulent) transport fluxes of particles and heat are defined in terms of the corresponding

parts of the distribution function. We start from a basic kinetic equation that is written

as [
∂

∂t
+ v · ∇ +

ea

ma

{(
E + Ê

)
+

1

c
v ×

(
B + B̂

)}
· ∂

∂v

]
(fa + f̂a)

= Ca(fa + f̂a) (1)

where Ca ≡ ∑
b Cab denotes a collision term and the distribution function for species a

(the electromagnetic fields) is divided into the ensemble average part fa (E = −∇Φ −
c−1∂A/∂t,B = ∇×A) and the fluctuating part f̂a (Ê = −∇φ̂−c−1∂Â/∂t, B̂ = ∇×Â).

The ensemble-averaged and fluctuating parts of the electromagnetic fields are governed

by the corresponding sets of the Maxwell equations obtained by using fa and f̂a,

respectively, to define charge densities and currents. We consider a toroidal plasma,

in which the magnetic field B is written in terms of the flux coordinates (s, θ, ζ) as

B = ψ′∇s ×∇θ + χ′∇ζ ×∇s = Bs∇s + Bθ∇θ + Bζ∇ζ, (2)

where s is an arbitrary label of a flux surface, θ and ζ represent the poloidal and toroidal

angles, respectively, and ′ ≡ ∂/∂s denotes the derivative with respect to s. The toroidal

and poloidal fluxes within the volume inside the surface with the label s are given by

2πψ(s) and 2πχ(s), respectively.

Taking an ensemble average 〈· · ·〉ens of (1) gives the kinetic equation for fa as

d

dt
fa ≡

[
∂

∂t
+ v · ∇ +

ea

ma

(
E +

1

c
v × B

)
· ∂

∂v

]
fa = 〈Ca〉ens + Da, (3)

where the right-hand side consists of the collision term and the fluctuation-particle

interaction term Da defined by [31, 32]

Da = − ea

ma

〈(
Ê +

1

c
v × B̂

)
· ∂f̂a

∂v

〉
ens

. (4)

The differential operator on the left-hand side of (3) is written as

d

dt
≡ ∂

∂t
+ v · ∇ +

ea

ma

(
E +

1

c
v × B

)
· ∂

∂v

≡ ∂

∂t
+ v · ∇′ + ε̇

∂

∂ε
+ µ̇

∂

∂µ
+ ξ̇

∂

∂ξ
. (5)

Here, the phase space variables (x′, ε, µ, ξ) are defined in terms of (x,v) as x′ = x,

ε = 1
2
mv2+eaΦ1(s), µ = mav

2
⊥/2B, and v⊥ = e1 cos ξ+e2 sin ξ, where (e1, e2,b ≡ B/B)
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are unit vectors which forms a right-handed orthogonal system at each point, and

v = v‖b + v⊥ with v‖ = v · b.

In order to expand physical variables perturbatively, we use the small gyroradius

ordering parameter δ ∼ ρa/L, where ρa = v⊥/Ωa and L represents the gyroradius

and the characteristic equilibrium gradient scale length, respectively. When the time

differential operator ∂/∂t acts on ensemble-averaged quantities, the transport time scale

ordering [5, 6] is used to write ∂/∂t = O(δ2) which represents that the characteristic

frequency is on the order of δ2 multiplied by the transit frequency ωT = vTa/L. In

this and next sections, we assume that the E × B drift velocity driven by the lowest-

order equilibrium electrostatic potential Φ1 is tangential to the flux surface and is on

the order of the diamagnetic drift velocity ∼ δvTa, where vTa ≡ (2Ta/ma)
1/2 is the

thermal velocity. Then, Φ1 = Φ1(s) is a flux-surface function and eΦ1/Ti = O(1).

The fast gyro-frequency Ωa ≡ eaB/(mac) = O(δ−1) is contained in ξ̇ as ξ̇ = −Ωa + ξ̇0

[ξ̇0 = O(δ0), ξ̇0/Ωa = O(δ)], and we subtract the fast gyro-frequency from d/dt to define

the operator [33], L ≡ d/dt + Ωa∂/∂ξ. Then, rewriting (1) in the phase space variables

(x′, ε, µ, ξ) and separating it into the average and oscillating parts with respect to the

gyrophase angle ξ, we obtain [31]

L(fa + f̃a) =
〈
Ca

〉
ens

+ Da, Ωa
∂f̃a

∂ξ
= L̃fa −

〈
C̃a

〉
ens

− D̃a (6)

where the average and oscillating parts of an arbitrary function F (ξ) with respect to ξ

are denoted by F ≡ (2π)−1
∮

dξ F and F̃ ≡ F − F , respectively.

The radial particle flux Γa and the radial heat fluxes qa are defined from f̃a as

Γa ≡ 〈Γa · ∇s〉 ≡
〈∫

d3v f̃av · ∇s
〉

,

qa

Ta

≡ 〈qa · ∇s〉
Ta

≡
〈∫

d3v f̃a

(
mav

2

2Ta

− 5

2

)
v · ∇s

〉
, (7)

where 〈· · ·〉 represents the flux-surface average. The radial momentum transport flux

is treated in the next section. The lowest-order distribution function fa0 is given by

the local Maxwellian, fa0 = na0(ma/2πTa0)
3/2 exp(−mav

2/2Ta0), where the lowest-

order density na0 = na0(s) and temperature Ta0 = Ta0(s) are flux surface functions.

From (6), the gyrophase dependent part of the ensemble-averaged distribution function

is given to the lowest order in δ by f̃a1 = Ω−1
a

∫ ξ dξ L̃fa0 = −ρa · ∇′fa0 =

−fa0 (ρa · ∇s) [(∂ ln pa0/∂s) + (ea/Ta)(∂Φ1/∂s) + (∂ ln Ta0/∂s)(mav
2/2Ta − 5/2)], where

ρa = b × v/Ω is the gyroradius vector, pa0 = na0Ta0 is the lowest-order pressure and

the integration constant related to
∫ ξ dξ · · · is uniquely determined by the condition∫ ξ dξ · · · = 0. Substituting f̃a1 into (6) and retaining the O(δ) terms lead to the linearized

drift kinetic equation [5, 6] which governs the O(δ) part fa1 of fa.

The particle and heat flows calculated from f̃a1 give E × B and diamagnetic flows

associated with the equilibrium pressure and temperature gradients although they have

no components in the direction perpendicular to the flux surface. Therefore, Γa and qa
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are of O(δ2) as is well known. The O(δ2) part of f̃a is written as

f̃a2 = f̃N
a + f̃H

a + f̃C
a + f̃A

a ≡ 1

Ωa

∫ ξ

dξ
[
L̃fa1 + L̃f̃a1 − CL

a (f̃a1) − D̃a

]
,(8)

and CL
a denotes the linearized collision operator [6]. Here, f̃H

a is an even function of v

up to O(δ2) and accordingly it makes no contribution to Γa and qa. Using f̃N
a , f̃C

a , and

f̃A
a in (7), we obtain the O(δ2) radial particle and heat fluxes,

Γa = Γncl
a + Γcl

a + Γanom
a , qa = qncl

a + qcl
a + qanom

a

where the superscripts ‘ncl’, ‘cl’, and ‘anom’ represents the neoclassical, classical,

and anomalous (or turbulent) parts derived from f̃N
a , f̃C

a , and f̃A
a , respectively. The

neoclassical fluxes Γncl
a and qncl

a are rewritten in terms of fa1 given as the solution of

the linearized drift kinetic equation. On the other hand, the anomalous fluxes Γanom
a

and qanom
a are rewritten in terms of the turbulent distribution function and the turbulent

electromagnetic fields which are assumed to take the eikonal form [see (34)]. The detailed

expressions for Γanom
a and qanom

a in terms of the fluctuations are found in [31]. For

example, the anomalous radial particle flux is given by

Γanom
a ≡

〈〈∫
d3v

∑
k⊥

Im(ĥ∗
ak⊥

ψ̂ak⊥)(k⊥ × b) · ∇s

〉〉
, (9)

where 〈〈· · ·〉〉 represents a double average over the flux-surface and the ensemble.

The gyrophase-averaged potential for the turbulent electromagnetic fields is defined

by ψ̂ak⊥ ≡ J0(k⊥v⊥/Ωa)[φ̂k⊥ − (v‖/c)Â‖k⊥ ] + J1(k⊥v⊥/Ωa)(v⊥/c)(B̂‖k⊥/k⊥) with Jn

(n = 0, 1) denoting the nth-order Bessel functions. Here, the nonadiabatic part ĥak⊥ of

the perturbed distribution function and the turbulent field variables (φ̂k⊥ , Â‖k⊥ , B̂‖k⊥)

are given as the solutions of a coupled system of the gyrokinetic Boltzmann and Maxwell

equations [31, 34]. The gyrokinetic Boltzmann and Maxwell equations are obtained

from the fluctuating parts of the kinetic equation (1) and the Maxwell equations. It is

shown in [31] by using the gyrokinetic Poisson equation and Ampère’s law that, for both

axisymmetric and nonaxisymmetric systems, the lowest-order or O(δ2) turbulent radial

particle fluxes Γanom
a satisfy the ambipolarity condition,

∑
a eaΓ

anom
a = 0, automatically

for any radial electric field Es = O(δ). The classical particle fluxes are automatically

ambipolar,
∑

a eaΓ
cl
a = 0, too, because of the momentum conservation in collisions.

However, in nonaxisymmetric systems, the ambipolarity of the neoclassical particle

fluxes,
∑

a eaΓ
cl
a = 0, is not automatically satisfied but it puts a constraint on the

radial electric field as explained in Sec. 3.3.

3. Momentum balance and radial electric fields in toroidal plasmas with

E × B drift velocities of O(δvT )

In this section, it is examined how the symmetry of the magnetic geometry

influences the momentum balance, the ambipolarity condition of radial particle fluxes,

and the mechanism to determine the radial electric field Es in axisymmetric and
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nonaxisymmetric toroidal systems. Throughout this section, we assume the E × B

drift velocity to be on the order of the diamagnetic drift velocity (∼ δivTi ∼ δevTe).

Results obtained in this section are summarized in Table 1.

3.1. Momentum balance equations

Multiplying (3) with mav, the ensemble-averaged momentum balance equation is

derived as

∂

∂t
(namaua) = −∇ · Pa + naea

(
E +

ua

c
× B

)
+ Fa1 + Ka1 (10)

where na ≡
∫

d3v fa, naua ≡
∫

d3v fav, Pa ≡
∫

d3v famavv, Fa1 ≡
∫

d3v Ca(fa)mav,

and Ka1 ≡
∫

d3v Dav. Taking the species summation and flux-surface average of the

inner product of (10) and B, we obtain

∂

∂t

∑
a

〈namaua‖B〉 = −
∑
a

〈B · (∇ · Pa)〉 +
∑
a

〈
BKa1‖

〉
, (11)

where
∑

a naea = 0 and
∑

a Fa1 = 0 are used, and ∂B/∂t = 0 is assumed. Similarly,

taking the inner product of (10) and c1∂x/∂θ + c2∂x/∂ζ, where c1 and c2 are arbitrary

constants, and taking its species summation and flux-surface average, we obtain

∂

∂t

∑
a

〈nama(c1uaθ + c2uaζ)〉 = −
∑
a

〈(
c1

∂x

∂θ
+ c2

∂x

∂ζ

)
· (∇ · Pa)

〉
+

∑
a

〈c1Ka1θ + c2Ka1ζ〉

+
1

c
(−c1ψ

′ + c2χ
′)

∑
a

ea 〈nau
s
a〉 , (12)

where contravariant and covariant components of vectors and tensors with respect

to the flux coordinates (s, θ, ζ) are represented by using superscripts and subscripts,

respectively. In terms of the perturbed density n̂a ≡
∫

d3v f̂a and the perturbed current

ĵa ≡ ∑
a eanaûa ≡ ∑

a ea

∫
d3v f̂av, the forces due to the turbulent electromagnetic fields

in (12) are rewritten as

∑
a

Ka1 =

〈(∑
a

ean̂a

)
Ê +

ĵ

c
× B̂

〉
ens

=
1

4π

〈(
∇ · Ê

)
Ê +

(
∇× B̂ − 1

c

∂Ê

∂t

)
× B̂

〉
ens

= ∇ ·
〈

1

4π

(
ÊÊ + B̂B̂

)
− 1

8π

(
Ê2 + B̂2

)
I
〉

ens
− 1

4πc

∂

∂t

〈
Ê × B̂

〉
ens

= ∇ · TEM − ∂

∂t

(
SEM

c2

)
, (13)

where TEM and SEM represent the Maxwell stress tensor and the Poynting vector due

to the electromagnetic fluctuations, respectively. Using the Ampère’s law with the

displacement current and the formula 〈(∇×B) ·∇s〉 = 〈∇ · (B×∇s)〉 = 0, the surface-

averaged radial current on the right-hand side of (12) is rewritten as∑
a

eaΓa ≡
∑
a

ea 〈nau
s
a〉 = − 1

4π

∂

∂t
〈Es〉. (14)
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3.2. Axisymmetric systems and up-down symmetry

In this subsection, we consider axisymmetric toroidal systems, in which the magnetic

field is written as B = I∇ζ+∇ζ×∇χ. Here, I = I(s) is a flux-surface function given by

I = RBT with the major radius R and the toroidal field BT . In axisymmetric systems,

we have ∇(∂x/∂ζ) = R−1 [(∇R)(∂x/∂ζ) − (∂x/∂ζ)(∇R)], (∇Pa) : [∇(∂x/∂ζ)] = 0

, and 〈(∂x/∂ζ) · (∇ · Pa)〉 = 〈∇ · (Pa · ∂x/∂ζ)〉 = (V ′)−1∂
[
V ′

〈
(Pa)

s
ζ

〉]
/∂s, where

V ′ = dV (s)/ds is the radial derivative of the volume V (s) inside the flux surface with

the label s. Then, (12) with (c1, c2) = (0, 1) reduces to the toroidal momentum balance

equation given by

∂

∂t

〈∑
a

namauaζ +
(SEM)ζ

c2

〉
= − 1

V ′
∂

∂s

[
V ′

〈∑
a

(Pa)
s
ζ − (TEM)s

ζ

〉]

+
χ′

c

∑
a

ea 〈nau
s
a〉 . (15)

Noting the transport time scaling ∂/∂t = O(δ2), the first and second terms on the left-

hand side of (15) are of O(δ3) and O(δ4), respectively. We see from (14) that the radial

current is of O(δ3). Then, the O(δ2) ambipolarity condition is derived as

χ′

c

∑
a

ea 〈nau
s
a〉 =

1

V ′
∂

∂s

[
V ′

〈∑
a

(Pa)
s
ζ − (TEM)s

ζ

〉]
= 0, (16)

where the O(δ2) radial transport of the toroidal momentum is written as〈∑
a

(Pa)
s
ζ − (TEM)s

ζ

〉
=

∑
a

(
Πncl

a + ΠH
a + ΠA

a

)
+

1

4π

∑
k⊥

〈〈
(k⊥k⊥) : (R2∇ζ)(∇s)

(
|φk⊥|2 − |Ak⊥|2

)〉〉
. (17)

Here, as shown in [20, 21, 35],

Πncl
a + ΠH

a = − mac

2ea

〈∫
d3v

ma

(
Iv‖
B

)2

+ µ
|∇χ|2

B

 CL
a (f̄a1)

〉
(18)

represents the collisional radial transport flux of the toroidal momentum transport

derived from the solution fa1 of the drift kinetic equation and

ΠA
a ≡ Re

〈〈∫
d3v

∑
k⊥

ĥ∗
ak⊥

[
mac

(
Iv‖
B

)
ik⊥ · (R2∇ζ) ψ̂ak⊥

+ea
1

k2
⊥

(k⊥k⊥) : (R2∇ζ)(∇χ) χ̂ak⊥

]〉〉
(19)

is the turbulent radial transport flux of the toroidal momentum transport. Here,

ψ̂ak⊥ is defined after (9), and χ̂ak⊥ = −γaJ1(γa)[φ̂k⊥ − (v‖/c)Â‖k⊥ ] + [γaJ0(γa) −
J1(γa)](v⊥/c)(B̂‖k⊥/k⊥) is used, where γa ≡ k⊥v⊥/Ωa.

Generally, when up-down symmetry is broken [23, 24], the O(δ2) ambipolarity

condition shown in (16) imposes a nontrivial constraint to give the radial electric field

Es = O(εA), where εA denotes a measure of up-down asymmetry which, for example,
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is given by εA ∼ 〈∂ ln B/∂θ〉. Therefore, if up-down asymmetry is strong (εA À δ), we

need treatment of the large E × B drift velocity of O(εAvTi) as discussed in Sec. 5.

Now, we consider axisymmetric toroids with up-down symmetry. As shown in

Sec. 4, in this case, the collisional and turbulent radial fluxes of the toroidal momentum

shown in (17)–(19) vanish automatically up to O(δ2). Then, the lowest-order terms in

the toroidal momentum balance equation (15) are of O(δ3). Up to O(δ3), (15) is written

as

∂

∂t

[
χ′

4πc

(
〈|∇s|2〉 + 4πc2

∑
a

nama
〈R2〉
(χ′)2

)
Es +

∑
a

ma

(
−c〈R2〉

eaχ′
∂pa

∂s
+ naI

uθ
a

Bθ

)]

= − 1

V ′
∂

∂s

V ′
〈∑

a

(Pa)
s
ζ − (TEM)s

ζ

〉(3)
 , (20)

which describes the temporal variation of the toroidal momentum or the Es profile

caused by the radial toroidal momentum transport due to collisions and turbulent

fluctuations. On the right-hand side of (20), 〈· · ·〉(3) represents that these toroidal

momentum transport terms are of O(δ3). In deriving (20), we have used

〈namauaζ〉 =
namac

χ′ 〈R2〉
(
− 1

naea

∂pa

∂s
+ Es

)
+ namaI

uθ
a

Bθ
, (21)

which is derived from the incompressible-flow condition and is valid to O(δ). In the

axisymmetric system, uθ
a/B

θ is a flux-surface function which can be written in terms of

the thermodynamic forces other than Es by using the O(δ) parallel momentum balance

equations based on the neoclassical theory [5, 6]. The difficulty in determining Es

arises from the right-hand-side terms in (20). In order to evaluate the O(δ3) toroidal

momentum transport terms
〈∑

a(Pa)
s
ζ − (TEM)s

ζ

〉(3)
, we need the solutions of drift kinetic

and gyrokinetic equations with higher-order accuracy than the conventional ones [12].

However, it should be emphasized that, in axisymmetric systems, the lowest-order

neoclassical and anomalous fluxes of particle and heat and the parallel current are

independent of Es. Here, the lowest-order anomalous transport fluxes are considered

to be uninfluenced by the O(δvT ) E × B velocity profile with the gradient scale length

L because the E × B shearing rate of O(δvT /L) is slower than the typical gyrokinetic

turbulence frequency of O(vT /L) by a factor of δ. Therefore, we can calculate the time

evolution of the density and temperature profiles without knowing Es when the E × B

drift velocity is on the order of δvT . If the large E × B drift velocity of O(vTi) exists,

the neoclassical and anomalous transport fluxes are explicitly dependent on Es and the

toroidal momentum balance equation governing the time evolution of the Es profile is

given in O(δ2) as explained in Sec. 5.

3.3. Nonaxisymmetric systems, quasisymmetry, and stellarator symmetry

In nonaxisymmetric systems without quasisymmetry, we need to specify the radial

electric field Es to evaluate the neoclassical particle and heat fluxes. In both
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axisymmetric and nonaxisymmetric systems, the lowest-order nontrivial parallel

momentum balance equation given from (11) is of O(δ) and written as∑
a

〈
B ·

(
∇ · P(1)

a

)〉
=

∑
a

[
Bθ

〈
∂x

∂θ
·
(
∇ · P(1)

a

)〉
+ Bζ

〈
∂x

∂ζ
·
(
∇ · P(1)

a

)〉]
= 0,(22)

where the Hamada [36] coordinates (s, θ, ζ) are used to regard Bθ and Bζ as flux-surface

functions. Here, the O(δ) pressure tensor P(1)
a takes the form of P(1)

a =
∫

d3vfa1[v
2
‖bb+

(v2
⊥/2)(I−bb)] = P

(1)
‖a bb+P

(1)
⊥a (I−bb). The O(δ) parallel viscosity

〈
B ·

(
∇ · P(1)

a

)〉
can

be determined from the neoclassical theory [37, 38]. This parallel momentum balance

does not give a sufficient condition to determine Es from other thermodynamic forces

such as pressure and temperature gradients. For nonaxisymmetric systems without

quasisymmetry, (12) is rewritten to the lowest order in δ as∑
a

〈(
c1

∂x

∂θ
+ c2

∂x

∂ζ

)
·
(
∇ · P(1)

a

)〉
=

1

c
(−c1ψ

′+c2χ
′)

∑
a

ea 〈nau
s
a〉 = 0.(23)

The poloidal and toroidal viscosity terms of O(δ) appearing on the left-hand side of

(23) can be evaluated by the neoclassical theory using the solution of the drift kinetic

equation [39]. When c1/c2 6= Bθ/Bζ , (23) gives another constraint independent of (22)

and represents the O(δ) ambipolarity condition that determines the radial electric field

Es = −∂Φ/∂s from the radial gradients of equilibrium pressures and temperatures and

the parallel electric field 〈BE‖〉 [4, 39, 40, 41].

We now consider nonaxisymmetric systems with quasisymmetry, which satisfy

c1
∂B

∂θ
+ c2

∂B

∂ζ
= 0. (24)

The quasi-axisymmetry and quasi-poloidal-symmetry correspond to (c1, c2) = (0, 1) and

(1, 0), respectively. It is shown in [39] that the quasisymmetry condition (24) written in

the Hamada coordinates is equivalent to the one written in the Boozer coordinates [42].

Using the quasisymmetry condition in (24), we obtain〈(
c1

∂x

∂θ
+ c2

∂x

∂ζ

)
·
[
∇ ·

{
P‖abb + P⊥a (I − bb)

}]〉

= −
〈(

P‖a − P⊥a

) (
c1

∂x

∂θ
+ c2

∂x

∂ζ

)
· ∇ ln B

〉
= 0. (25)

Therefore, we find that the O(δ) ambipolarity condition shown in (23) holds

automatically for an arbitrary value of Es in the same way as in the axisymmetric

case. Then, in (12), the lowest-order terms 〈(c1∂x/∂θ + c2∂x/∂ζ) · (∇ · Pa)〉 and

〈c1Ka1θ + c2Ka1ζ〉 are of O(δ2). Recalling (14) which shows that the radial current

is of O(δ3), the O(δ2) ambipolarity condition is obtained from (12) and (13) as

1

c
(−c1ψ

′ + c2χ
′)

∑
a

ea 〈nau
s
a〉

=
∑
a

〈(
c1

∂x

∂θ
+ c2

∂x

∂ζ

)
·

∇ ·
(∑

a

Pa − TEM

)(2)
〉

= 0, (26)
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where (· · ·)(2) represents that the pressure tensor and turbulent Maxwell stress terms

are of O(δ2). Similarly to the axisymmetric case with up-down asymmetry, if a

quasisymmetric system does not satisfy stellarator symmetry, the O(δ2) ambipolarity

condition shown in (26) imposes a nontrivial constraint to give Es = O(εA), where

εA denotes a measure of stellarator-symmetry breaking which, for example, is given

by εA ∼ 〈(c2∂ ln B/∂θ − c1∂ ln B/∂ζ)〉. Therefore, if stellarator symmetry is strongly

breaking (εA À δ), treatment of the large E×B drift velocity of O(εAvT i) seems to be

required. However, in Sec. 5, we discuss the difficulty arising from the large E×B drift

velocity in quasisymmetric systems.

We now consider quasisymmetric systems with stellarator symmetry. As shown

in Sec. 4, in the presence of stellarator symmetry, all O(δ2) terms in (12) vanish

automatically. Then, keeping terms of O(δ3), (12) reduces to

∂

∂t

(c2χ
′ − c1ψ

′)

4πc

〈|∇s|2〉 +
4πc2 ∑

a nama

(c2χ′ − c1ψ′)2

〈∣∣∣∣∣c1
∂x

∂θ
+ c2

∂x

∂ζ

∣∣∣∣∣
2〉 Es

+
∑
a

ma

(c2χ′ − c1ψ′)

− c

ea

∂pa

∂s

〈∣∣∣∣∣c1
∂x

∂θ
+ c2

∂x

∂ζ

∣∣∣∣∣
2〉

+
naV

′

4π2
〈c1Bθ + c2Bζ〉

〈
c2u

θ
a − c1u

ζ
a

〉


=

〈(
c1

∂x

∂θ
+ c2

∂x

∂ζ

)
·

∇ ·
(
−

∑
a

Pa + TEM

)(3)
〉

, (27)

which describes the temporal variation of Es profile caused by the radial toroidal

momentum transport due to collisions and turbulent fluctuations. On the right-hand

side of (27), (· · ·)(3) represents that the pressure tensor and turbulent Maxwell stress

terms are of O(δ3).

In deriving (27), we have used (14) and the O(δ) formula for the flow in the

quasisymmetry direction,

〈nama(c1uaθ + c2uaζ)〉 =
nama

(c2χ′ − c1ψ′)

c

(
− 1

naea

∂pa

∂s
+ Es

) 〈∣∣∣∣∣c1
∂x

∂θ
+ c2

∂x

∂ζ

∣∣∣∣∣
2〉

+
V ′

4π2
〈c1Bθ + c2Bζ〉

〈
c2u

θ
a − c1u

ζ
a

〉]
. (28)

Equations (27) and (28) are valid whichever of Boozer or Hamada coordinates are

used. In the quasisymmetric system,
〈
c2u

θ
a − c1u

ζ
a

〉
can be expressed in terms of the

thermodynamic forces other than Es by using the O(δ) parallel momentum balance

equations based on the neoclassical theory [39]. Similarly to the axisymmetric case

with up-down symmetry, it is difficult to evaluate the O(δ3) terms on the right-hand

side of (27) which is necessary for determination of Es. However, it is emphasized

again that the lowest-order transport fluxes necessary for determining the density and

temperature profiles can be calculated without knowing Es for quasisymmetric systems

with the E × B drift velocity of O(δvT ).
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4. Axisymmetric systems with up-down symmetry and helical systems with

stellarator symmetry

Here, we consider axisymmetric systems with up-down symmetry and helical systems

with stellarator symmetry. The purpose of this section is to show that, in these systems,

the ambipolarity condition
∑

a eaΓa = 0 is automatically satisfied up to O(δ2) by

the classical, neoclassical, and anomalous particle fluxes for any value of the radial

electric field Es of O(δvT ). In the following, mathematical analyses for stellarator

symmetry are described although those of up-down symmetry of axisymmetric systems

are immediately obtained by just dropping the ζ-dependence (∂/∂ζ → 0) from the case

of stellarator symmetry.

First, we describe the conditions satisfied in the toroidal systems with stellarator

symmetry. In this stage, we do not assume quasisymmetric toroidal systems necessarily.

Figure 1 shows an example of nonaxisymmetric toroidal systems with stellarator

symmetry. We see from Fig. 1 that there exists an axis lying on the equatorial plane

such that the system looks unchanged by a rotation about it by 180 degrees. When

defining the origin (θ, ζ) = (0, 0) at the position where this symmetry axis intersects

the flux surface, the magnetic field strength B(s, θ, ζ) has the same value at the points

(s, θ, ζ) and (s,−θ,−ζ). Thus, we have

B(s,−θ,−ζ) = B(s, θ, ζ). (29)

We also find that the contravariant and covariant components of the magnetic field in

the flux coordinates (s, θ, ζ) have the following parities with respect to the change in

the signs of θ and ζ,

Bθ(s,−θ,−ζ) = Bθ(s, θ, ζ), Bζ(s,−θ,−ζ) = Bζ(s, θ, ζ),

Bθ(s,−θ,−ζ) = Bθ(s, θ, ζ), Bζ(s,−θ,−ζ) = Bζ(s, θ, ζ),

Bs(s,−θ,−ζ) = −Bs(s, θ, ζ), (30)

where we should recall that Bs = 0. Furthermore, the covariant components of the

metric tensor show even or odd parities as follows,

gss(s,−θ,−ζ) = gss(s, θ, ζ), gθθ(s,−θ,−ζ) = gθθ(s, θ, ζ),

gθζ(s,−θ,−ζ) = gθζ(s, θ, ζ), gζζ(s,−θ,−ζ) = gζζ(s, θ, ζ),

gsθ(s,−θ,−ζ) = −gsθ(s, θ, ζ), gsζ(s,−θ,−ζ) = −gsζ(s, θ, ζ),

g(s,−θ,−ζ) = g(s, θ, ζ), (31)

where g = det(gαβ). The contravariant components gαβ have the same parities as the

corresponding covariant components gαβ shown in (31).

We now introduce a formal expansion parameter η which represents the same order

of magnitude as the small gyroradius expansion parameter δ. Therefore, O(η) = O(δ).

This new notation η is used in order to clarify the role played by its sign that is changed

by a certain parity operator associated with stellarator symmetry as explained later. It

is useful to represent the small-gyroradius or large-gyrofrequency ordering by writing the
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electric charge as η−1ea [43]. The above-mentioned rule for using η is adopted in the basic

kinetic equation (1) as well as in the Maxwell equations. Then, the distribution functions

and the electromagnetic fields which are given as the solutions of these equations are

considered to include η as a parameter. For example, the ensemble-averaged distribution

function fa is regarded as a function of (s, θ, ζ, vs, vθ, vζ , t, η) and is expanded with

respect to the parameter η as

fa(s, θ, ζ, vs, vθ, vζ , t, η) = faM(s, v, η2t) + ηfa1(s, θ, ζ, vs, vθ, vζ , η2t)

+ η2fa2(s, θ, ζ, vs, vθ, vζ , η2t) + · · · , (32)

where the lowest-order of fa is given by the local Maxwellian function, faM(s, v, η2t) =

na0(ma/2πTa0)
3/2 exp(−mav

2/2Ta0) with the density na0 = na0(s, η
2t) and the

temperature Ta0 = Ta0(s, η
2t). Here, t enters the functions through the form η2t which

assures that the temporal variation is consistent with the transport time scale ordering,

∂/∂t = O(η2). The electrostatic potential Φ associated with the ensemble-averaged

electric field E of O(δvT ) is written as

Φ(s, θ, ζ, t, η) = ηΦ1(s, η
2t) + η2Φ2(s, θ, ζ, η2t) + · · · . (33)

We assume turbulent fluctuations to be expressed by using the eikonal representa-

tion [44]. For example, the perturbed distribution function f̂a is written as

f̂a =
∑
k⊥

f̂ak⊥ exp
(
iη−1Sk⊥

)
, (34)

where Sk⊥ = Sk⊥(s, θ, ζ) is the eikonal, and the amplitude part f̂k⊥ is written in terms

of the parameter η as

f̂ak⊥ = ηf̂
(1)
ak⊥

(s, θ, ζ, vs, vθ, vζ , t) + η2f̂
(2)
ak⊥

(s, θ, ζ, vs, vθ, vζ , t) + · · · . (35)

The gradient of the eikonal gives the perpendicular wave number vector as

k⊥ = ∇Sk⊥ = ks∇s + kα∇[ζ − q(s)θ]. (36)

We also note that ∂/∂t = O(η0) for turbulent fluctuations. The lowest-order perturbed

distribution function f̂
(1)
k⊥

in (35) and the lowest-order turbulent electromagnetic fields

are given as the solutions of a closed system of the gyrokinetic Boltzmann and Maxwell

equations [31].

We now define the parity operator P acting on an arbitrary function

Q(s, θ, ζ, vs, vθ, vζ , t, η) by

(PQ)(s, θ, ζ, vs, vθ, vζ , t, η) ≡ Q(s,−θ,−ζ, vs,−vθ,−vζ , t,−η). (37)

Then, it is found for the equilibrium magnetic field geometry with stellarator symmetry

satisfying (29)–(31) that, if fa + f̂a, Es + Ês, Eθ + Êθ, Eζ + Êζ , Bs + B̂s, Bθ + B̂θ, and

Bζ+B̂ζ are solutions of the basic kinetic and Maxwell equations, P(fa+f̂a), −P(Es+Ês),

P(Eθ + Êθ), P(Eζ + Êζ), −P(Bs + B̂s), P(Bθ + B̂θ), and P(Bζ + B̂ζ) are also solutions.

Note that the contravariant components of the electromagnetic fields have the same

symmetry as the covariant components because of (31). This symmetry with respect

to the parity transformation P is also shown to be valid for the ensemble-averaged and
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perturbed parts, separately. Here, the distribution function fa and the electrostatic

potential Φ given by (32) and (33) are considered as solutions, the lowest-order parts

of which are given as the local Maxwellian faM(s, v, η2t) and ηΦ1(s, η
2t), respectively.

Since PfaM = faM and −P(ηΦ1) = ηΦ1, we see that Pfa and −P(ηΦ1) are also the

solution which has the same lowest-order parts as fa and Φ. Then,

Pfa = fa, −PΦ = Φ (38)

are derived from uniqueness of those solutions which have the same lowest-order parts.

Since the perturbed parts of the Boltzmann and Maxwell equations have the same

symmetry with respect to P , the probability distribution of the ensemble of the

perturbed solutions is considered to be invariant under the parity transformation,

(f̂a, Ês, Êθ, Êζ , B̂s, B̂θ, B̂ζ) −→ (P f̂a,−PÊs,PÊθ,PÊζ ,−PB̂s,PB̂θ,PB̂ζ).(39)

Therefore, we obtain PDa = Da in the ensemble-averaged kinetic equation (3), which

shows the symmetry with respect to P in consistence with (38). The gyrokinetic

equation for the lowest-order perturbed distribution function f̂a1 written in (34) also

retains the same symmetry. Defining k⊥ from k⊥ in (36) by

k⊥ ≡ ∇Sk⊥
≡ −∇(PSk⊥) = −ks∇s + kα∇[ζ − q(s)θ], (40)

f̂a1 shown in (34) is transformed by P as

P f̂a1 =
∑
k⊥

(
P f̂ak⊥

)
exp

(
iη−1Sk⊥

)
=

∑
k⊥

(
P f̂ak⊥

)
exp

(
iη−1Sk⊥

)
. (41)

From the invariance with respect to the parity transformation in (39), we can derive

〈K(j)
a1θ〉 = 〈K(j)

a1ζ〉 = 〈(T (j)
EM)s

θ〉 = 〈(T (j)
EM)s

ζ〉

= 〈(S(j)
EM)θ〉 = 〈(S(j)

EM)ζ〉 = 0 (for even j), (42)

where the subscript (j) is used to represent the O(δj) part of the quantities.

Using (32), (33), and (38), we obtain

faj(s,−θ,−ζ, vs,−vθ,−vζ , η2t) = (−1)jfaj(s, θ, ζ, vs, vθ, vζ , η2t), (43)

and

Φj(s,−θ,−ζ, η2t) = (−1)j−1Φj(s, θ, ζ, η2t), (44)

where j = 1, 2, · · ·. We find from the (43) that, when j is an even number, faj is an

even function with respect to the parity transformation P . Therefore, we finally obtain〈(
P (j)

a

)s

θ

〉
=

〈(
P (j)

a

)s

ζ

〉
= 0 (for even j), (45)

and 〈
∂x

∂θ
·
(
∇ · P(j)

a

)〉
=

〈
∂x

∂ζ
·
(
∇ · P(j)

a

)〉
= 0 (for even j), (46)

where P(j)
a ≡

∫
d3v fajmavv. As seen in (25),

〈
(c1∂x/∂θ + c2∂x/∂ζ) ·

(
∇ · P(1)

a

)〉
= 0

is automatically satisfied in systems with quasisymmetry c1∂B/∂θ + c2∂B/∂ζ = 0.

Then, we find from (26), (42), and (46) that the ambipolarity condition
∑

a eaΓa = 0
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Figure 1. A nonaxisymmetric toroidal system with stellarator symmetry. The system
looks unchanged by a rotation about the shown axis by 180 degrees.

and 〈(c1∂x/∂θ + c2∂x/∂ζ) · (∇ · Pa)〉 = 0 are automatically satisfied up to O(δ2) in

quasisymmetric systems with stellarator symmetry.

In the same way as described above, it is shown from (16), (42), and (45) that

the ambipolarity condition
∑

a eaΓa = 0 and 〈(Pa)
s
ζ〉 = 〈(TEM)s

ζ〉 = 0 are automatically

satisfied up to O(δ2) in axisymmetric systems with up-down symmetry.

5. Toroidal plasmas with E× B drift velocities of O(vTi)

In the previous sections, we have treated the toroidal systems with E×B drift velocities

of O(δvT ). In such cases, if axisymmetry or quasisymmetry exists, Es does not influence

the lowest-order transport of particles Γa, heat qa, and parallel current 〈J‖B〉. In this

section, we consider toroidal plasmas with E × B drift velocities of O(vT i). Actually,

it is noted in Sec. 3.2 and Table 1 that, if up-down symmetry is strongly broken in

axisymmetric systems (εA À δ), the large radial electric field Es = O(εA) driven by the

momentum balance requires treatment of the large E × B drift velocity.

The equilibrium flow in the axisymmetric system with the E × B drift velocity of

O(vTi) is in the toroidal direction and it is written as[17, 18, 19, 20, 21, 22]

V = V ζ ∂x

∂ζ
, V ζ = −c

Φ′
0(s)

χ′(s)
= O(vTi). (47)

Here, Φ0(s) is the lowest-order electrostatic potential satisfying eaΦ0/Ta = O(δ−1),

which gives the toroidal flow on the order of the ion thermal velocity, V = RV ζ = O(vTi).

The inertia term resulting from the toroidal flow V now enters the equilibrium force

balance as (∑
a

nama

)
V · ∇V =

1

c
J × B −∇P. (48)

Several past works[17, 18, 19, 20, 21, 22] showed that, for this high-speed rotating

plasma, the radial derivative of the toroidal flow [or equivalently the shear of the

radial electric field due to (47)] becomes one of thermodynamic forces to drive the

radial neoclassical and turbulent transport fluxes of particles Γa, heat qa, and toroidal
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Table 1. Remarks on the transport fluxes Γa, qa, 〈J‖B〉, 〈(Pa)s
ζ〉, 〈c1(Pa)s

θ + c2(Pa)s
ζ〉,

the viscosity terms
∑

a〈∂x/∂ζ · (∇ · Pa)〉,
∑

a〈(c1∂x/∂θ + c2∂x/∂ζ) · (∇ · Pa)〉, the
ambipolarity condition

∑
a eaΓa = 0, and the radial electric field Es in toroidal systems

with the E × B drift velocity of O(δvT ). Here, εA is used to represent a measure of
up-down asymmetry or stellarator-symmetry breaking.

Axisymmetric system with up-down symmetry

Γa = O(δ2), qa = O(δ2), and 〈J‖B〉 = O(δ0) are independent of Es = O(δ).

〈(Pa)
s
ζ〉 = 0 and

∑
a〈∂x/∂ζ · (∇ · Pa)〉 = 0 holds up to O(δ2) for any Es = O(δ).∑

a eaΓa = 0 holds up to O(δ2) for any Es = O(δ).

Es = O(δ) is determined from the O(δ3) toroidal momentum balance equation (20).

Axisymmetric system without up-down symmetry

Γa = O(δ2), qa = O(δ2), and 〈J‖B〉 = O(δ0) are independent of Es = O(δ).

〈(Pa)
s
ζ〉 = O(εAδ2) and

∑
a〈∂x/∂ζ · (∇ · Pa)〉 = O(εAδ2)∑

a eaΓa = 0 up to O(δ2) drives Es = O(εA).

=⇒ requires treatment of the large E × B drift velocity of O(εAvTi) when εA À δ

(see Secs. 3.2 and 5).

Nonaxisymmetric system without quasisymmetry

Γa = O(δ2), qa = O(δ2), and 〈J‖B〉 = O(δ0) are dependent on Es = O(δ).

〈(Pa)
s
ζ〉 = O(δ) and

∑
a〈∂x/∂ζ · (∇ · Pa)〉 = O(δ)∑

a eaΓa = 0 up to O(δ) determines Es.

Quasisymmetric system with stellarator symmetry

Γa = O(δ2), qa = O(δ2), and 〈J‖B〉 = O(δ0) are independent of Es = O(δ).

〈c1(Pa)
s
θ + c2(Pa)

s
ζ〉 = 0 and

∑
a〈(c1∂x/∂θ + c2∂x/∂ζ) · (∇ · Pa)〉 = 0 holds

up to O(δ2) for any Es = O(δ).∑
a eaΓa = 0 holds up to O(δ2) for any Es = O(δ).

Es is determined from the O(δ3) momentum balance equation, (27).

Quasisymmetric system without stellarator symmetry

Γa = O(δ2), qa = O(δ2), and 〈J‖B〉 = O(δ0) are independent of Es = O(δ).

〈c1(Pa)
s
θ + c2(Pa)

s
ζ〉 = O(εAδ2) and

∑
a〈(c1∂x/∂θ + c2∂x/∂ζ) · (∇ · Pa)〉 = O(εAδ2)∑

a eaΓa = 0 up to O(δ2) drives Es = O(εA).

=⇒ requires treatment of the large E × B drift velocity of O(εAvTi) when εA À δ

(see Secs. 3.3 and 5).
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momentum Πa, and the parallel current 〈BJ‖〉 while the time evolution of the radial

electric field is governed by the toroidal momentum balance equation which looks similar

to (20) but is O(δ2) instead of O(δ3).

Now, let us consider whether the E × B drift velocity of O(vTi) can be treated

in quasisymmetric systems in the same way as in the axisymmetric case shown above.

Here, for simplicity, we restrict our consideration to the quasiaxisymmetric case, in

which ∂B/∂ζ = 0. In this case, we see that the O(vT i) equilibrium flow should be in

the direction of ∂x/∂ζ as given in (47) and that the equilibrium force balance takes the

same form as (48). Then, taking the inner product between (48) and ∂x/∂ζ, we obtain

1

2

(∑
a

nama

)
(V ζ)2∂gζζ

∂ζ
=

χ′

c
Js =

Bθ

c

(
∂Bζ

∂θ
− ∂Bθ

∂ζ

)
, (49)

where gζζ ≡ |∂x/∂ζ|2. In the rigorous axisymmetric case, gζζ = R2 leads to ∂gζζ/∂ζ = 0.

However, in the quasiaxisymmetric case, ∂gζζ/∂ζ 6= 0 are generally obtained and

therefore (49) results in nonzero radial current Js 6= 0. This gives rise to a serious

problem because the quasisymmetric system is considered usually by using the Boozer

coordinates while neither Boozer nor Hamada coordinates cannot be constructed for

the case of Js 6= 0. Thus, the O(vTi) flow in the ∂x/∂ζ-direction does not seem to be

allowed by the quasiaxisymmetry condition ∂B/∂ζ = 0 alone, and this statement can

be extended to more general cases with quasisymmetry.

Quasisymmetric systems without stellarator symmetry have not been seen in the

literature. However, if stellarator symmetry is strongly broken in quasisymmetric system

(εA À δ), the large radial electric field Es = O(εA) driven by the momentum balance

(see Table 1) may also break the quasisymmetry itself due to the nonzero radial current

Js 6= 0 as explained above.

6. Conclusions

In this work, it is shown how symmetry and asymmetry of the magnetic field geometry

of toroidal plasmas influence the radial electric field dependence of radial transport of

particles, heat, and momentum. Results are summarized in Table 1.

In nonaxisymmetric systems, the radial electric field Es is generally determined from

the ambipolarity condition of only the neoclassical particle fluxes while the turbulent

particle fluxes is automatically ambipolar for any Es. In fact, it is found in the

Large Helical Device (LHD) experiments that observed radial electric fields are in

reasonable agreement with those predicted from the neoclassical ambipolarity condition

even though observed particle fluxes contain significant anomalous parts [45].

When the E × B drift velocity is on the order of the diamagnetic drift velocity,

there exist similarities between axisymmetric systems with up-down symmetry and

quasisymmetric systems with stellarator symmetry, for which the basic kinetic and

Maxwell equations are shown to be invariant under a certain parity transformation.

In both systems, the particle fluxes are automatically ambipolar up to O(δ2) and the

O(δ3) momentum balance equations determine the time evolution of the Es profiles while
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Es does not influence the lowest-order particle and heat transport fluxes. Therefore, the

determination of Es requires solutions of the drift kinetic and gyrokinetic equations of

higher-order accuracy than the conventional ones, although the time evolution of the

equilibrium density and temperature profiles can be determined without Es. Here, the

O(δvT ) E×B velocity profile with the gradient scale length L does not affect the lowest-

order anomalous transport because the E × B shearing rate (∼ δvT /L) is much slower

than the typical gyrokinetic turbulence frequency (∼ vT /L).

In axisymmetric systems with the large E×B flows of O(vTi), the radial fluxes of

particles, heat, and toroidal momentum are dependent on Es and its radial derivative

while the time evolution of the Es profile is governed by the O(δ2) toroidal momentum

balance equation. In quasisymmetric systems, E × B flows of O(vTi) are not allowed

generally because it yields the nonzero radial current from the equilibrium force balance

for which the Boozer and Hamada coordinates cannot be constructed.

It is emphasized from the results shown above for both cases of the small and large

E×B drift velocity that the easiness of determining Es and the necessity to calculate Es

for solving the transport equations for the equilibrium density and temperature profiles

are closely related and happen simultaneously. When Es is influential and necessary

in evaluating the lowest-order particle and heat transport fluxes, Es is determined by

the low-order ambipolarity condition or the low-order momentum balance equation.

If determination of Es requires solution of the higher-order complicated momentum

balance, the lowest-order particle and heat fluxes are independent of Es. The latter

case corresponds to axisymmetric or quasisymmetric systems with low E × B flows

while the former corresponds to helical systems without quasisymmetry or toroidally

rotating tokamaks with high E × B flows.
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