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Abstract

A new analvtic representation of the physical sputtering yvield at normal ion incidence
is derived. providing a unified description of the sputtering data at all impact energies
and for all ion-monoatomic-solid-target combinations. The reduced sputtering vield Y
is expressed in terms of only one energy parameter 7. The function Y (%) has a simple
analytic form and describes all the available experimental and calculated data with an
rms deviation of 32%. Tables of the parameters entering the analytic formula for ¥ (1))
are provided for a number of ions and monoatomic solids of interest in fusion and other
research fields.
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1 Introduction

The existing analvtic representation of phys-
ical sputteriug yield Y'(E) for normal ion in-
cidence on solids {I. 2. 3. 1. 5] are all based
on the factorization

V(BEu Bre) = Qv ()o@
E
C T B W

where £ is the projectile ion energy, Ly, is
the threshold energy and Erp is the Thomas-
Fermi energy. defined as (see, e.g., [2]):

M,
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( + Ml)
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where N, (AL) and Z,{Z,) are the mass and
nuclear charge of the projectile ion (target
atom), respectively.

The function s, (£) in Eq.(1) represents the
nuclear stopping cross section and its Spe-
cific form depends on the interaction poten-
tial used for the ion-target atom interaction.
The electronic stopping contribution to Y
is usually included in Q in an implicit way,
when @ is treated as a fitting parameter in
(1) [1, 2, 3], or explicitly [4, 5]. There is, at
present, no clear physical basis for determin-
ing the function ¢ (E/Ey,) (see, however, [4])
and its form is usually determined empirically
to provide the best description of the data in
the threshold region. In the well-known Bo-
hdansky formula [1] and its modified version
{2], @ (z) is taken in the form

Folr) =

r =

£, (3)

while Yamamura and his coworkers [4, 5] use

Pra(r) = (1—2717%)° (1)

with s = 2.5 or 5 = 2.8. Tt should be noted
that the functions pp(r) and ¢y.(x) both
tend to zero when x tends to one (threshold).
and they tend to one when x > 1.

If both ) and E,, are treated as fitting pa-
rameters in Eq.(1). then it has been shown
in Ref. [2] that determining s, (¢) on a ba-
sis of the Kr-C interaction potential (rather
than from the Thomas-Fermi potential, as
was originally done by Bohdansky [1]) pro-
vides a more successful fit to the experimen-
tal data for all projectile-monoatomic target
combinations. The revised Bohdansky sput-
tering formula [2], thus, uses s, () in the
form

() = 0.51n (1 + 1.2288¢) (5)
A T 0.1728¢% 1 0.008:0150°

The factorization (1) of sputtering yield
Y(E) is useful in the sense that it indicates
that in the threshold region Y (E) for all
projectile-target combinations can be repre-
sented in a unified way in terms of the re-
duced energy parameter x = E/E,, and the
function ¢ (z). while in the asymptotic re-
gion the parameter £ = E/FErp serves as ap-
propriate reduced energy parameter with the




function s, {2} deseribing the energy behiav-
ior of ¥ i a unified wav (c.g.. when ¥ is di-
vided by Q). The appearance of the reduced
energy parameters . and £ in the threshold
and asvmptotic regions. respectively. is nat-
ural since these parameters express the colli-
ston energy in terms of the characteristic po-
tential interaction energy in the two regions
(the surface binding energy E,. related to
Fin. and the Thomas-Fermi teraction en-
ergy Erp. respectivelv). In the intenmedi-
ate energy region. however. neither £}, nor
Err can be considered as characteristic mea-
sures for the potential interaction energyv in
the system, in terms of which the collision en-
ergy can be expressed in a natural way. From
this point of view. the factorization {1}, while
providing an adequate description of Y (E) in
the threshold and asymptotic regions. fails to
do so in the intermediate energy range. This
explains the need for so many fitting param-
eters in the functions  (z) and s, {¢) (eight,
in the case of Bohdansky original and revised
formulae) to describe the consistently smooth
and uniform behavior of Y(E).

In the present report we construct a
generalized reduced energy parameter n =
n(E, Ey, Erp) which appropriately repre-
sents the ratio of dynamical and potential
interaction forces in the intermediate energy
range, and in the threshold and asymptofic
regions goes over smoothly into the reduced
energy parameters E/Ey, and £, respectively.
The reduced energy parameter n allows one
to introduce a reduced (scaled) sputtering
yield Y which depends only on 7. The unified
representation Y (i) of sputtering yield can
also be presented in an analytic form which

deseribes the available experimental and cal-
culated spatrering data tor lon-monodtomic
target collision svstes with an accuracy well
within their own wncertaties. A briel ac-
count of the derivation of }-’(u) was giveu else-
where [6]. The purpose of the present report
is to provide more details on the derivation of
Y(n) and describe the procedure of generat-
ing ¥ (£) from the universal function Y (7).

The organization of the report is as fol-
lows. In the next section we give the deriva-
tion of reduced sputtering yield and provide
an analytic expression for Y (n). In Section
3 we describe the procedure for calculating
Y(E) for any projectile-monoatomic target
combination on the basis of reduced sputter-
ing vield function Y{n) and provide a table of
the parameters entering Y (1) for a quick cal-
culation of Y (&) for a number of ion-target
combinations of interest to fusion and other
research fields. In Section 4 we give some
concluding remarks.

2 Derivation of Reduced
Sputtering Yield Func-
tion Y{(n)

We introduce the notation

E . By
= e, J= 6
Erp Erp (6)

in terms of which the factorized sputtering
vield of Eq. (1) can be written as

V(59 =0s(5) o

£

(1%



We further detine the generalized encrgy pa-
rameter 7 = p(E. Ey,. E7p) by the expression

e ()

where a. b and 4 depend on 4. and the re-
duced sputtering vield

(7)

Y (E. Eu,. ETF) = Y (E, (5)
QG (o) QG ()
where G{d) is a function of § and Q is de-
fined in a usual way (see, e.g., [2]) by the
equation Y~ = @ s,{c). Y~ being the sput-
tering yield in the asymptotic region (so that
() is a constant). Instead of using this equa-
tion, € is usually (see. e.g., [2, 3]), together
with F.p, treated as a free fitting parameter
for the entire Y(£) and thus acquires a -
dependence. Therefore, the ratio Y/Q. even
in the asymptotic region, becomes dependent
on 0. (For the majority of projectile-target
combinations investigated so far, the varia-
tions of the parameters @ and & are in the
ranges 1072 — 107! and 1075 — 107!, respec-
tively.} The function G(6) in Eq. (8) is
determined from the condition that sputter-
ing yields for the individual ion-solid collision
pairs (with & spanning the above range) have
the same maximum value, Y;,. The depen-
dence G(4) is rather smooth and can be ac-
curately represented by the function

Yn) = (8)

G (8) = 0.85 + 4.0exp (—2.948%%) . (9)

The reduced sputtering vields Y (g, 6)/QG (§)
on the e-scale now all have the same maxima

but are mutually displaced due to their 4-
dependence {(see Fig.1) In order to eliminate
the d-dependence of reduced sputtering vield.
we use the relation (7). which transforms the
variable = into 7. and impose on the functions
a(6}). b{d) and ~ {9} the condition that all re-
duced yields Y{(¢. §)/QG (&) coincide with the
reduced vield for é = 1. This condition de-
termines uniquely the dependences a (3). b (8)
and 7y (9) in the entire range of variation of 4.
To a high degree of accuracy. the dependen-
cies of a. b and v on 4 can be represented by
the expressions

) = 1.265 ————
(0 =126 Gy (10
52/5
=205 —MM—.
b() 05(1+1125) (1)
- (0.0051 + 8/5)
v (8) = 0.81 T on (12)

The reduced sputtering yield representation
Y (1) is now completely defined.

With the functions a (4). b (8) and v (&) de-
termined, we can now investigate the asymp-
totic behavior of 5. It follows from Eq. (7)
that in the threshold region, ie. /6 =
E/Ey, — 1, 7 ~ (E/Ey)**™. For all val-
ues of §(< 1) the parameter v is always less
than one, and therefore in the high energy
region the leading term in 9 is ag/d. Fur-
thermore, noting that a ~ & (see Eq.(10}),
it follows that n ~ £ and the proportionality
factor weakly depends on d. Therefore, the




seneralized reduced energy parameter g hias
the proper plivsical behavior in the threshold
aldd asvmptotic regions.

In order to verify (and demonstrate) the of-
fectiveness of the unified representation ¥ {7}
of the sputtering vield. we first show in Fig. 2
the experimental data collected in Ref. {2] in
the ordinary Y (F) representation. Two fea-
tures should be noted on this graph. First.
the data for the same projectile-target com-
bination are considerably scattered and. sec-
ond, the value of the sputtering vield for dif-
ferent ion-solid collision pairs at given en-
ergy can vary by as much as five orders of
magnitude. In Fig. 3, the same data are
plotted i the Y {n) representation. It is ap-
parent. that the data for different projectile-
target combinations tend to follow a single
line. while their original uncertainties remain
unchanged. This indicates that the reduced
sputtering yield Y (n). as defined by Egs. (7)-
{12) . provides a unified representation of
sputtering data for all considered projectile-
target combinations. Figures 4 and 5 give
a similar comparison of the Y (E) and Y ()
representations for the sputtering data calcu-
lated with the Monte Carlo simulation code
TRIM.SP and given also in Ref. [2]. The
smaller dispersion of ¥ (n) TRIM.SP data in
Fig. 5 with respect to that of experimental
ones in Fig. 3 reflects the fact that TRIM.SP
data have a higher consistency among each
other than the experimental ones (see Ref.
2)).

The smooth overall behavior of the reduced
sputtering yield data on Figs. 3 and 5 sug-
gests that these data can be fitted to a simple
analytic function Y () in the entire n-region.

The function Y (1) should obviously possess
the following properties

Y () —gn) —0.for n—1 (13)
-, . fuy
V)= riy~ = dorn oo (1)

The condition (13) expresses the mere fact
of existence of a threshold (n = 1} for the
sputtering process. while the property (14} 1s
consistent with the high-energy behaviour of
Bohdansky's formula. As it was mentioned in
the Introduction. there is. at present. no clear
physical basis for determining more specif-
ically the form of the function g(n). We.
therefore, adopt a pragmatic approach and
from the multitude of possible forms for g ()
satisfving the condition (13),we choose the
simplest one which provides a good descrip-
tion of the data behavior in the threshold re-
gion. Exploration of the possible functional
forms for g (n) and f (n) has led to the con-
clusion that the function

g

Y (n) = (1

has the simplest and most compact form
which satisfies the conditions (13) and (14}
and provides equally good fit to the data as
other functions with more fitting parameters.
A least-square fit of the experimental data on
Fig. 3 gives for the coefficients o, A and B
the values @ = 3, A = 0.451, B = (1.183, with
an rms deviation of 33%. The least-square fit



of the TRIM.SP data in Fig. 5 with the func-
tion (15} gives o = 3. 4 = 0.414. B = 0.246.
with an rms deviation of 30%. We see that
the values of the fitting parameters A and B
are close for both sets of data. We therefore
combine the two data sets into one (Fig. (6))
and then fit all data points with the func-
tion (15). The best fit is obtained with the
parameters:

a=3 A=0436. B=10212

(16)

with an rms deviation of 32%. The solid
curve in Fig. 6 represents the function Y (1)
with the parameters given by Eq. (16).

A distinct feature of the reduced sputter-
ing yield Y () is the simplicity of its ana-
lytic form, Eq. (15). This is to be contrasted
with the complex expression for the reduced
sputtering yield Y/Q = ¢ (E/Ey) sn(s) =
Y;5(, 6) following from the revised Bohdan-
sky formula, Egs. (1)-(5). It can be remarked
that the reduced revised Bohdansky sputter-
ing yield formula Y, 5(z, &) can also be written
in terms of the scaled energy for 1. From the
procedure of determining the functions a (4),
b(d) and -y (4) it is clear that the n-scaled Y, p
can be obtained by setting § = 1 and replac-
ing € with 57 in Y, 5, Le.,

Y5 (n) Yp(e—n0=1)
¢

(1) s (1) .

(17)

The function Yz () is shown in Fig. 6 by
the dashed line. This function differs from
1-’(17) only for very large values of 5 (about
15% for i = 300. for instance).

3 Determination of Y(F)
from Reduced Sputter-
ing Yield Function Y ()

The reduced sputtering vield function Y {(n)
given by Eqgs. (15)-(16). represents the
sputtering vield for all projectile-monoatomic
solid combinations in a unified form. There-
fore. it can be used to determine the sput-
tering Y (£) for any projectile-elemental tar-
get combination by using the relation (8)
and Egs. (7). (9)-(12). Besides the col-
lision energy E, the only input parameters
in these relations are @ and 6§ = E/Epp.
'The Thomas-Fermi energy Erp. expressed in
terms of the nuclear charge and mass of pro-
jectileion (Z), M) and target atom (Z3, AL),
is given by Eq. ( 2).

The parameters @@ and E,;, can also be ex-
pressed in terms of Z, 5, M 5 by the relations
12):

1/3
QB = 0218(2:2:)° (21 + 23)

M\Y® 1
“\ 1, My
1 1+1\_f1

ﬂ4—2 —(.54 ﬁ4-2 1.12
=70 ——= 0.15 | —
0 (Ml) A V72

(19)

(18)

Ein
E,

where FE; is the surface binding energy in
units of €V [2, 7]. The relations (18) and (19)
have been obtained in Ref. [2] as best fits of
the values for (@ and F,;, determined by fitting



the experimnental and TRINLSP data to the
revised Bohdansky sputtering forula. Eqgs.
(13}-{5). It should be noted. however. that the
dispersion of the experimental and TRIM.SP
Q aud Ey, data with respect to the best-fit
functions (18) and (19). respectively. is fairly
large and can lead to errors in the calculated
Y (F) yield up to a factor of two or more.

In order to facilitate the calculation of
Y(E) from Y (1) by using the relation

Y(E)=QG()Y () =Q (&)Y ()

we have calculated the parameters 6, Q(4).
a(8). b(8), and ~(8) for a number of projectile-
monoatomic target combinations which are of
interest in fusion and other research fields.
The corresponding @ and FEy, values were
taken from the fits of experimental data (and
where unavailable. from TRIM.SP data} to
the revised Bohdansky formula [2], which in
its n-scaled form is consistent with the ¥ (1)
function (see the preceding section). The
values of the above parameters for the se-
lected ion-solid collision pairs, together with
the value of E,;. are given in Table 1. We note
also that £/d appearing in the expression for
n, Eq. (7). can be replaced by E/Ey,.

(20)

4 Conclusions

In the present work we have derived a uni-
fied analytic representation of physical sput-
tering yield for normal ion incidence by in-
troducing the generalized reduced energy pa-
rameter n and the reduced sputtering yield
Y. The generalized reduced (scaled) energy

parameter n describes adequately the ratio
of dyvnamical and potential interactions in
the svstem in the entire region of its vari-
ation. and in the threshold and asviptotic
regions goes over into its well-known forms.
The reduced (scaled) sputtering vield func-
tion Y {n). given by Egs. (15)-(16). repre-
sents the experimental and computer siimula-
tion data well within their own uncertainties.
The function ¥ (1) has also proper plysical
behavior in the threshold and asyvmptotic re-
gions. The established unified representation
of the sputtering yield for all 1on-monoatomic
solid target combinations expresses the fact
that the underlying physical mechanisms gov-
erning the sputtering phenomenon are, gen-
erally speaking, the same in all ion-solid colli-
sion systems. This fact is also revealed by the
success of Monte Carlo simulation codes (e.g..
TRIM.SP and ACAT) in describing the sput-
tering process. The single reduced sputtering
vield function Y {n} can be used to generate
the sputtering yield Y (£} in ion-monoatomic
target collision systems for which data are not
available.
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Figure Captions.

Figure 1. Reduced sputtering yield Y(z. 5}/QG{0) vs. = for differeut values of paranieter
d.

Figure 2. Experimental data on norwmal incidence sputtering vield [2].

Figure 3. Reduced sputtering yield and the best least-square fit for experimental data of
Ref. [2].

Figure 4. Theoretical (TRIM.SP) data on normal incidence sputtering vield [2].

Figure 5. Reduced sputtering yield and the best least-square fit for theoretical (TRIM.SP)
data of Ref. [2].

Figure 6. Reduced sputtering yield and the best least-square fit for experimental and
theoretical {TRIM.SP) data of Ref. [2].



Tabie 1. The parameters for calewlation of the reduced cuergy i (Eq. (7))

vield ¥ (Eq. (20)) for a number of projectile(d)-target combinations.

Al Ew | o | a T & [ 5 T ©
Target: Be
H || 3.51e+01 | 1.371e-01 | 3.890e-01 | 5.661e-01 | 5.351e-01 1.964e-01
D || 2.62e+01 | 9.291e-02 | 3.052e-01 | 6.948e01 | 4.941e-01 | 5.106e-01
He | 4.45e-+01 | 6.181e-02 | 2.325e-01 | 8.498e-01 | 4.5476-01 1.580e+00
Be || 2.30e+01 | 1.042e-02 | 5.787e-02 | 1.5246+00 | 3.23%-01 | 3.2006+00
Ne || 4.02e+01 | 3.771e-03 | 2.336e-02 | 1.546e4-00 | 2.795¢-01 8.465e-+00)
Ar || 4.81e4+01 | 1.306e-03 | 8.604e-03 | 1.2556+00 | 2.570e-01 1.372e+401
Target: C
H || 2.73e401 | 6.578e-02 | 2.426e-01 | 8.249¢-01 | 4.605¢-01 | 8.401e-02
D 1l 2.43e+01 | 5.436e-02 | 2.126e-01 | 9.022e-01 | 4.431e-01 | 1.9506-01
He || 3.02e+01 | 2:778e-02 | 1.293e-01 | 1.189¢+00 | 3.878¢-01 | 1.427e+00
C || 3.50e+01 | 6.153e-03 | 3.645¢-02 | 1.584e+00 | 2.981e-01 | 5. 196e4-00
Ne || 6.96e+01 | 4.995¢-03 | 3.020e-02 | 1.578¢+00 | 2.895e-01 | 7.020e+00
Ar [ 7.11e4+01 | 1.552e-03 | 1.015e-02 | 1.314e+00 | 2.591e-01 1.411e401
Target: Fe
H || 6.70e+01 | 2.634e-02 | 1.241e-01 | 1.212e100 | 3.838¢-01 | 1.6360.01
D || 4.50e+01 | 1.737e-02 | 8.895¢-02 | 1.376e100 | 3.547e-01 | 4.7250-01
He || 2.60e401 | 4.713e-03 | 2.865¢-02 | 1.574e400 | 2.8736-01 1.884e4-00
Fe || 3.58e+01 | 2.056e-04 | 1.417e-03 | 6.715e-01 | 2.634e-01 | 6.5440+01
Table I (continned).
Al B | 5 « | b R,
Target: Cu
H || 5.10e+01 | 1.743e-02 | 8.919¢-02 | 1.374¢+00 | 3.549¢-01 | 2.510¢ 01
D | 3.30e+01 | 1.110e-02 | 6.113e 02 | 1.510e--00 | 3.274e-01 9.625e-01
He || 1.80e+01 | 2.860e-03 | 1.808¢-02 | 1.492e-+00 | 2.7136-01 3.791e+00
Ar | 2.70e+01 | 2.558¢-04 | 1.759¢-03 | 7.289¢-01 | 2.6080-01 G.673e+01
Cu || 2.66e+01 | 1.184¢-04 | 8211e-04 | 5.4376-01 ! 2.700e.01 8.826e+01
Target: Mo
H || 1.99e+02 | 4217e-02 | 1.771e-01 | 1.010e+00 | 1.210e.01 2.740e-02
D | 9.00e401 | 1.888e 02 | 9.517e-02 | 1.345¢+00 | 3.602¢-01 9.742e-02
T 1-6.00e4+01 | 1.246e-02 | 6.741e-02 | 1.481e+00 | 3.3400.01 3.840e-01
He || 4.75e+01 | 4.776e-03 | 2.900e-02 | 1.575e+00 | 2.878e.01 | 7. 170e-01
Ne || 2.80e+01 | 4.381e-04 | 2.984e-03 | 8.863e-01 | 2.5586-01 1.217e4+01
Ar || 3.25e+01 | 2.268e-04 | 1.562e-03 | 6.068¢-01 | 2.6220.01 '3.746e+01
Mo || 5.51e+01 | 1.034e-04 | 7.176e-04 | 5.158¢-01 | 2.729¢-01 | 7.68 le+01
Target: W
H || 4.29e+02 | 4.346e-02 [ 1.811e-01 | 9.966e-01 | 4.2366.01 | 2.3836-02
D | 1.78e+02 | 1.793e-02 | 9.129e-02 | 1.364e+00 | 3.5686-01 | 7.090e-02
T || 1.29e+02 | 1.293e-02 | 6.957e-02 | 1.471e+00 | 3.3626-01 | 2.6620-01
He | 1.07e+02 | 5.251e-03 | 3.160e-02 | 1.581e+00 | 2.9156-01 | 4.812c-01
Ne || 2.60e-+01 | 2.183e-04 | 1.504e-03 | 6.868e-01 | 2.6275-01 1.275e+01
Ar || 3.65e+01 | 1.480e-04 | 1.024e-03 | 5.9256-01 | 2.678e-01 3.640e+01
W || 5.90e+01 | 2.952e-05 | 2.063¢-04 | 3.150e-01 | 2.809¢.01 1.491e+4+02

- 10—

and sputtering
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Figare 1. Reduced sputtering yield Y( e, 8 J/QG(J) vs. ¢ for different values of parameter &.
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Figure 2. Experimental data on normal incidence sputtering yield [2].



Reduced sputtering yield, Y
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